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Abstract: Liquid biopsy is a rapidly emerging field that involves the minimal/non-invasive assess-
ment of signature somatic mutations through the analysis of circulating tumor DNA (ctDNA) shed by
tumor cells in bodily fluids. Broadly speaking, the unmet need in liquid biopsy lung cancer detection
is the lack of a multiplex platform that can detect a mutation panel of lung cancer genes using a
minimum amount of sample, especially for ultra-short ctDNA (usctDNA). Here, we developed a non-
PCR and non-NGS-based single-droplet-based multiplexing microsensor technology, “Electric-Field-
Induced Released and Measurement (EFIRM) Liquid Biopsy” (m-eLB), for lung cancer-associated
usctDNA. The m-eLB provides a multiplexable assessment of usctDNA within a single droplet of
biofluid in only one well of micro-electrodes, as each electrode is coated with different probes for
the ctDNA. This m-eLB prototype demonstrates accuracy for three tyrosine-kinase-inhibitor-related
EGFR target sequences in synthetic nucleotides. The accuracy of the multiplexing assay has an area
under the curve (AUC) of 0.98 for L858R, 0.94 for Ex19 deletion, and 0.93 for T790M. In combination,
the 3 EGFR assay has an AUC of 0.97 for the multiplexing assay.

Keywords: biosensor; ultra-short circulating tumor DNA; lung cancer; liquid biopsy; EGFR

1. Introduction
1.1. Liquid Biopsy and Early-Stage Lung Cancer

Non-small-cell lung cancer (NSCLC) is the most common form of lung cancer, account-
ing for approximately 85% of all cases [1–3]. EGFR mutations are found in approximately
10–15% of NSCLC cases [3,4] in the United States and are more commonly found in pa-
tients who have never smoked or have a history of light smoking. Traditional methods for
detecting EGFR mutations in NSCLC include tissue biopsy, which involves the collection
of tissue samples through invasive procedures such as bronchoscopy or surgery.

Computed tomography (CT) and liquid biopsy are both valuable tools in the early
screening and long-term monitoring of lung cancer [5,6]. CT scans are commonly used to
screen for lung cancer in high-risk individuals, such as smokers, and can detect early-stage
tumors that may not be visible on a chest X-ray. However, the inconvenience of radiation
exposure and the false positive rate limit CT for screening for lung cancer. On the other
hand, liquid biopsy is a minimally invasive method for detecting genetic mutations and
other biomarkers associated with lung cancer, such as circulating tumor DNA (ctDNA) [7,8],
circulating tumor cells (CTCs) [9], and protein markers [10]. Liquid biopsy can provide
information about tumor heterogeneity and evolution, which can be particularly useful
in monitoring disease progression and treatment response over time. In early-stage lung
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cancer, liquid biopsy has become an increasingly important method for detecting specific
mutations in tumor DNA, such as EGFR mutation. Liquid biopsy also has advantages in
detecting mutations that may not be present in the primary tumor or metastases, as well as
the ability to monitor changes in mutation status over time.

1.2. Ultra-Short Circulating Tumor DNA in Lung Cancer

Ultra-short circulating tumor DNA (usctDNA) is a subtype of circulating tumor DNA
(ctDNA) that is characterized by very short fragment lengths, which are typically less
than 100 base pairs in length [11–14]. UsctDNA is thought to be primarily derived from
apoptotic and necrotic cancer cells that have undergone further fragmentation. These small
DNA fragments are then released into the bloodstream. UsctDNA has been detected in
the bloodstream and other body fluids of patients with various types of cancer, including
lung cancer [13]. UsctDNA has several potential advantages over longer ctDNA fragments,
including increased stability and resistance to nuclease degradation [13].

Recent studies have shown that ultrashort-single-stranded cfDNA (uscfDNA) and
usctDNA may have potential clinical utility in the diagnosis and monitoring of lung
cancer [13,14]. In addition, biomarker discovery based on uscfDNA with mutations is also
important and promising. Many of the biomarker discovery methods used for ctDNA
analysis are based on fragmented ctDNA, and there may be a loss or deviation of certain
biomarkers when analyzing very short fragments of ctDNA, such as uscfDNA. Developing
a biomarker panel specifically for usctDNA could be an important area of research. By
focusing on biomarkers that are more readily detectable in usctDNA, researchers may be
able to improve the sensitivity and specificity of ctDNA-based diagnostic and prognostic
assays for lung cancer.

However, the analysis of usctDNA in lung cancer can be challenging. One of the main
challenges in detecting usctDNA is the limitation imposed by the small fragment size of
the DNA. The size of usctDNA fragments is typically less than 100 base pairs in length,
which makes them difficult to detect using traditional sequencing methods. Detection of
mononucleosomal ctDNA routinely involves PCR amplification to locate the rare mutant
copies amongst wild-type noise. For PCR-based detection, however, it is difficult to design
primers that will reliably amplify the target sequence. This can result in poor sensitivity and
specificity and make it challenging to distinguish between usctDNA and non-tumor DNA
fragments that may be present in the sample. Some technologies have been developed
by adding adapters to the ends of the fragments, which can increase their length and
make them easier to detect using standard sequencing methods. This technique is known
as adapter-ligation-based amplification (ALA) [15]. However, ALA has the potential for
adapter bias, in which some fragments may be preferentially amplified over others, which
if applied to usctDNA could lead to a skewed representation in the sample.

1.3. Multiplexing Point-of-Care Device for Lung Cancer Monitor

Point-of-care (POC) devices are medical devices that perform diagnostic tests in close
proximity to the patient, with results available quickly and easily [16,17]. In the case
of NSCLC and EGFR mutation monitoring, POC devices are particularly useful for the
following reasons. Firstly, in early-stage NSCLC, it can be challenging to obtain enough
tissue samples for accurate EGFR mutation analysis. Liquid-biopsy-based POC devices
can provide an alternative solution by detecting ctDNA in the patient’s blood, allowing
for more reliable and timely detection of EGFR mutations [18]. Secondly, patients with
NSCLC receiving targeted therapy, such as tyrosine kinase inhibitors (TKIs), require regular
monitoring to evaluate treatment efficacy and detect resistance mutations. POC devices
that can detect EGFR mutations in blood samples can provide real-time monitoring of the
patient’s treatment response and help guide treatment decisions, including the selection of
alternative therapies in cases of TKI resistance [19]. In summary, POC devices offer faster
turnaround time, reduced cost, and ease of use, which makes them a more practical and
convenient option for monitoring EGFR mutations in NSCLC patients.
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Historically, liquid biopsy platforms were designed for a limited panel of targets. For
example, for NSCLC, EGFR L858R point mutation at exon 21 and deletions within exon
19 were prioritized for their involvement in treatment selection [20]. Recently, further
research showed the importance of simultaneous biomarker detection since lung cancer
is a complex disease with multiple genetic mutations and alterations that can influence
treatment outcomes [21,22]. During early-stage screening for indeterminate pulmonary
nodules (IPNs), the tumor burden is typically low, and therefore detection of single cancer-
specific biomarkers in blood or other body fluids is challenging and always results in low
sensitivity and specificity. Therefore, using a panel of biomarkers that reflect lung cancer in
combination with imaging techniques such as low-dose computed tomography (LDCT)
may improve early detection rates and reduce the number of false-positive results. This
theoretical panel of biomarkers, which includes multiple genetic mutations and protein
markers, may provide a comprehensive approach to diagnosis and treatment planning. In
addition, in patients undergoing targeted therapy, such as TKI treatment, monitoring a
panel of biomarkers that includes genetic mutations associated with TKI resistance, such as
T790M [23], C797S [24] in EGFR, MET amplification [25], and HER2 amplification [26], can
provide a more comprehensive approach to monitoring treatment response and detecting
the emergence of resistance.

1.4. Single-Droplet Microarray-Based Multiplexing EFIRM Platform for usctDNA

The requirement of sufficient biomolecule concentration for rare mutation detection in
lung cancer liquid biopsy has been a continual challenge. For the main types of liquid biopsy
for lung cancer, ctDNA analysis and circulating tumor cell (CTC) analysis require about
10 mL of blood, and exosome analysis typically needs around 5 mL of body fluids. In the
case of early-stage lung cancer, the amount of ctDNA or CTCs present in the bloodstream
or other body fluids is likely very low, making it more difficult to detect using liquid biopsy.
This means that larger sample volumes may be needed to increase the sensitivity of the test.
Obtaining even greater sample volumes can be challenging in patients with early-stage
disease who may not have large tumor burdens or significant amounts of tumor-derived
biomarkers in circulation. In addition, long-term monitoring of lung cancer using liquid
biopsy may require repeated sampling over time to detect changes in tumor burden or
molecular profile, particularly in response to treatment. Repeated sampling can be difficult
for patients, especially if larger sample volumes are required or if invasive procedures
such as lung biopsies are needed. This may limit the utility of liquid biopsy for long-term
monitoring in some patients.

The electric-field-induced release and measurement (EFIRM) platform is a molecular
detection technology that can detect mutations in circulating tumor DNA (ctDNA) from
a patient’s blood or saliva sample [27–31]. EFIRM works by applying an electric field to
the clinical sample, which induces the release of ctDNA from tumor cells. The released
ctDNA is then captured by a microarray, a small chip containing DNA probes that are
specific to various genetic mutations. The captured ctDNA is then analyzed using an
electrochemical-based method that allows for the detection of specific mutations, such as
the EGFR mutation in NSCLC. The EFIRM can detect the presence of mutant ctDNA in a
patient’s blood/saliva sample, even at low levels, providing a highly sensitive approach
for disease monitoring and the detection of treatment resistance.

Here, we developed a single-droplet multiplex EFIRM liquid biopsy (m-eLB) platform
that can directly detect ultra-short DNA fragments. The original EFIRM demonstrated the
ability to directly detect usctDNA without PCR amplification [14,32]. The shortest fragment
length that EFIRM can detect is around 30 bp of oligonucleotide without the use of adapters
or ligands. EFIRM can uniquely provide a direct measurement of usctDNA without
DNA extraction. In this proof-of-concept study, we show the m-eLB can simultaneously
detect multiple usctDNA synthetic oligos in a single drop of biofluid, allowing for a more
comprehensive analysis of the patient’s disease status. This can provide a more complete
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picture of the patient’s disease and can be used for early detection, disease monitoring, and
treatment guidance.

2. Results
2.1. m-eLB Sensor for Multiple EGFR Mutations

The EFIRM sensors were first precoated with a single EGFR probe and assayed for
multiple targets. Three EGFR probes—L858R, Ex19del, and T790M—were electrochemi-
cally polymerized onto the sensor by a single droplet of coating buffer. According to the
specificity and sensitivity of m-eLB (Supplementary Materials Figures S1 and S2), each
sensor chip was then assayed for the three EGFR mutation targets at 100 pM, as well as a
blank control (hybridization buffer only). The location of the three targets and blank is in
the four quadrants of the 96-array; four different droplets of target were dropped onto the
surface, as illustrated in Figure 1A. Each droplet was around 100 µL. Individual readings
of each electrode are shown in Figure 1B, and the averaged data for each target are shown
in Figure 1C. For each EGFR mutation probe, the sensor only shows a positive signal for its
correspondent target, whereas a negative signal is given for other EGFR targets, including
the blank. The signal-to-noise ratio (SNR) of the L858R probe was 18.0 for Ex19del, 35.7
for T790M, and 17.8 for the blank. The SNR of the Ex19del probe was 17.0 for L858R, 9.1
for T790M, and 8.3 for the blank. The SNR of the T790M probe was 11.6 for L858R, 46.1
for Ex19del, and 20.9 for the blank. The total reaction time was around 45 min. Signal
difference was observed within each quadrant, possibly due to the different distributions
of target in the droplets on the surface.
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Figure 1. Specificity of three EGFR mutation targets on EFIRM microsensor. (A) Distribution of
three EGFR targets and blank control on the sensors. EFIRM reading with sensors coated with single
EGFR probe for (B(i))-L858R; (B(ii))-Ex19del; (B(iii))-T790M for each individual electrode. Color
maps are provided to indicate the EFIRM current reading. (C) Averaged amperometric signal reading
from L858R/Ex19del/T790M-coated sensor from each group on targets; two standard deviations are
included in the error bar.

2.2. Multiplexing DNA Measurement for Three EGFR Mutations in a Single Droplet

For a single-droplet-based multiplexing assay, the context of use is that for each
individual clinical sample, multiple biomarkers need to be assayed simultaneously in one
reaction well. Therefore, multiple probes for a biomarker panel need to be pre-immobilized
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onto the sensor at pre-designated locations for the same sample droplet. Since the EFIRM
probe immobilization is a rapid aqueous-based electrochemical polymerization for only
8 s, a microprinting platform is combined with the EFIRM platform to undertake rapid
fabrication and measurement in situ. The total time taken for printing three EGFR probes
and a blank control is 5 min or less, followed by the 8 s polymerization (Figure 2A).
This is followed by the EFIRM sample measurement using our homemade connection
to the multichannel potentiostat. Amperometric currents for all 96 channels are read out
simultaneously.
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Figure 2. Multiplexing EFIRM sensor for EGFR mutation detection. (A) Overlay of pattern for
microprinting EGFR probes and the circuit design with three EGFR sequences and pyrrole-only
control. (B) Picture of amperometric reading with TMB substrate. Blue dots indicate positive signal.
(C) EFIRM reading of L858R targets. (D) Ex19del targets. (E) T790M targets. Blank electrodes were
disconnected as location markers. Bar charts are based on duplicated assay with standard deviation
shown as error bars.

Since the amperometric reading is based on a TMB substrate with a couple redox
procedure between HRP, hydrogen peroxide, and the TMB mediator, the TMB will turn blue
for a positive reading (Figure 2B). However, the colorimetric reaction is not localized, and it
is not accurate to measure the color, especially for high-throughput microarrays. In addition,
colorimetric measurement requires additional optical instrumentation, including a light
source, optical pathway alignment, and optical grating to measure specific wavelengths to
avoid non-specific signals. Here, the EFIRM directly measures the redox current, utilizing
the same instrumentation for polymerization and hybridization. The 2-D mapping of the
current in –nA is shown in Figure 2C–E after background subtraction. A high reading in
the negative current indicates a positive signal. A low current suggests a negative signal.

2.3. Acurracy of m-eLB Platform for usctDNA

The accuracy of the EFIRM microsensor has been illustrated in Figure 3A–D. The
accumulated EFIRM results from the 3 EGFR sequence are overlayed with the original
design of the microprinted pattern. It shows that all the EGFR-positive probes detected a
positive EFIRM signal and that all the negative electrodes only gave a low EFIRM reading.
For quantitative analysis, receiver operator characteristics (ROC) were obtained. For each
EGFR mutation probe, the individual ROC curves are shown in Figure 3E–G, with the area
under the curve (AUC) of L858R being 0.98, that of Ex19del being 0.94, and that of T790M
being 0.93. The combinational ROC for the three markers is also provided (Figure 3H) and
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has an AUC of 0.97. Those results suggest the high sensitivity and specificity of the EFIRM
microsensor for EGFR mutation.
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Figure 3. Accuracy of EFIRM multiplexing microsensors with EFIRM reading for (A) L858R,
(B) Ex19del, (C) T790M, and (D) overlay of 3 EGFR mutation EFIRM results with designed dis-
tribution of EGFR markers. The accuracy of the EFIRM sensor is analyzed by receiver operating
characteristics for (E) L858R, AUC = 0.98; (F) Ex19del, AUC = 0.94; (G) T790M, AUC = 0.93; and
(H) combined 3 EGFR, AUC = 0.97. The 95% confidence interval of the AUC is listed as the lower
confidence limit (LCL) and upper confidence limit (UCL) on each plot.

The results demonstrate that the m-eLB platform is capable of performing multiplex
biomarker detection from a single sample droplet. Although this is a proof-of-concept
prototype with oligonucleotides in a model system, it shows the novelty of a single-droplet
liquid biopsy assay in one reaction for the detection of multiple lung cancer markers.
With a limited sample volume (~400 µL) and a miniaturized size of the sensor (total area
around 1 cm2), there are notable challenges for both sensitivity and specificity (including
cross-reaction between different sensors in the simultaneous assay). The total reaction time
takes place within 1 h. Our recent study shows that introducing chaotropic ions into both
the sample collection and assay will significantly improve the sensitivity of eLB to low
copy numbers of usctDNA directly in a sample of less than 10 µL. The current sample
volume used in this study is around 400 µL, in order to cover the whole sensor chip and
form a stable liquid environment. Regarding the possible throughput of the m-eLB (up to
96 assays in one well), less than 5 µL is used for each electrode. In addition, eLB has already
shown multiplexibility for multiple types of targets in previous studies, including the
measurement of protein, DNA, and RNA simultaneously on the same sensor chip [33,34].
According to the COSMIC database, a biomarker panel with 14-plex-circulating lung tumor
ctDNA and a 6-plex miRNA biomarker panel can provide 85% coverage for early-stage
lung cancer assessment. Our further work will develop the m-eLB into a 14-plex ctDNA
and 6-plex miRNA LCBP, truly multiplexing.

In our previous study, eLB showed specificity in differentiating down to a 0.1% target
with a large amount of other interferents [18]. This proof-of-concept study also suggests
very limited cross-reactivity between different markers (AUC > 0.9 for all three assays).
Although m-eLB shows good differentiation between different usctDNA sequences, in
the context of clinical sample measurement, the interferents for m-eLB are not limited
to different ctDNA sequences only. The complexity of the biomatrix from body fluids is
presented in the mixture of cells and a multitude of molecules dissolved within it, such as
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proteins, electrolytes, hormones, enzymes, metabolites, and waste products. Specifically
for saliva, the high viscosity from mucin will also cause interference with the eLB assay.
According to the previous eLB application in plasma and saliva, those interferents did not
cause a significant signal in the eLB assay [18,19,30,33]. To further eliminate the biomatrix
effect on m-eLB, sample pre-treatment will be applied for additional quality security. In the
saliva usctDNA assay, a sample collector has been developed to remove the majority junk
of the matrix that may interfere with the assay, including cells, while still preserving the
protein and nucleotide in the samples [35].

The results indicate there is potential for direct measurement of ultra-short oligonu-
cleotides. Previous literature suggests that ultra-short ctDNA (~40 bp) (usctDNA) is present
in the plasma and saliva of NSCLC patients [13,14,32]. In limited samples, usctDNA was
detected by targeted sequencing. Those reports indicate that usctDNA is a novel type of
candidate for liquid biopsy. In our previous study on usctDNA in lung cancer plasma
and saliva, comparisons between EFIRM and ddPCR were carried out side by side [14].
In a plasma sample from NSCLC, ddPCR can detect a portion of the positive subjects,
whereas EFIRM has around 100% sensitivity. In saliva samples, ddPCR can rarely detect the
positive subject, whereas EFIRM can still detect all the positive samples. This preliminary
study indicates that EFIRM is very efficient in its ability to directly detect usctDNA and
mncfDNA, whereas PCR-based technologies cannot. The theoretical dynamic range of
EFIRM for usctDNA is from 40 bp to 160 bp [14].

3. Materials and Methods
3.1. m-eLB Sensor Fabrication

The microchip was fabricated with a 100 nm gold film deposited on a glass substrate
using E-beam evaporation for a smooth surface (Platypus Technologies, Madison, WI, USA).
The microchip consists of 96 individual electrochemical cells, and the cells are isolated with
an epoxy-based negative photoresist SU-8 layer on top of the final chip (Figure 4A,B). The
microchip uses a two-electrode system (working/counter) with the counter electrode (CE)
shared on the potentiostat for multiplexing. Each cell has a diameter of 2 mm, and they
are placed 1.5 mm apart (Figure 4B). With a BioDOT multichannel microprinter (Biodot
OmniaTM, Irvine, CA, USA), around 50 pL of each probe was precisely printed onto each
electrode at a specified location (Figure 4C). For the multiplexing assay, multiple probes
were printed onto different locations, together with negative controls. To avoid evaporation
during printing, humidity is strictly controlled.
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A custom adapter was designed to interface the microchip with a multichannel poten-
tiostat (Figure 4D,E) (IVIUM CompactStat.h with 3 multiWE32, Eindhoven, The Nether-
lands). The potentiostat can control and measure the 96 electrodes simultaneously.

3.2. m-eLB Platform with Multi-Channel Potentiostat

The basic EFIRM assay has been previously described in detail [18,33,36]. The single-
droplet EFIRM multiplexing assay utilizes a 150 µL clinical sample without any pretreat-
ment. Paired probes (capture and detector; Integrated DNA Technologies, San Diego, CA,
USA) specific for the three TKI EGFR mutations were designed for EFIRM as shown in
Table 1. The targeted sequences for all three are around 50 bp in length.

Table 1. EFIRM probes for three tyrosine kinase inhibitor mutations in EGFR for lung cancer.

EGFR Mutation Oligo Type Sequence (5′-3′)

L858R

Capture probe AAAAAAAAAAGAAATAAACAAATAAAACAATAACAAATAAAAAAA
AACAAATAAACAATAAAAAAAAACAA GTTTGACCCGCCCA

Detector probe AAAATCTGTGATCTTGACATGCTGCGGTGTTTTCACCAG-/biotin/

Ultra-short target CTGGTGAAAACACCGCAGCATGTCAAGATCACAGATTTTGGGCGGGCC
AAACTG (54 bp)

Ex19 deletion

Capture probe AAAAAAAAAAAATAAAAAAAAAAAAATAAAAAAAAAAAAATAAAA
AAAAAAAAATAAAA AAAAACGCTTTCGGAGATGTTTTGATAGC

Detector probe GACGGGAATTTTAACTTTCTCACCTTC-/biotin/

Ultra-short target GAAGGTGAGAAAGTTAAAATTCCCGTCGCTATCAAAACATCTCCGAAAGC
(50 bp)

T790M

Capture probe
AAAAAAAAAAGAAATAAACAAATAAAACAATAA

CAAATAAAAAAAAACAAATAAACAATAAAAAAAAACAA
GAGCGGCATGATGA

Detector probe GCTGCACGGTGGAGGTGAGGCAGATGCCCAGC-/biotin/

Ultra-short target GCTGGGCATCTGCCTCACCTCCACCGTGCAGCTCATCATGCAGCTCATG
CCC (52 bp)

The whole procedure is illustrated in Figure 5. All the capture probes were unlabeled.
All the detector probes were biotinylated on the 3′ end. The capture probes (100 nmol/L)
were first co-polymerized with pyrrole onto the bare gold electrodes by applying a cyclic
square-wave electric field at 300 mV for 1 s and 1100 mV for 1 s for four cycles. The
sensor was then washed with 1× PBST buffer (Thermo Fisher, Waltham, MA, USA). Hy-
bridization was performed in 300 µL of ultra-sensitive hybridization buffer (Thermo Fisher
Scientific, Waltham, MA, USA), spiked with a single oligonucleotide or a mixture of more
than one. The EFIRM condition was 300 mV for 1 s and 500 mV for 1 s for a total of
150 cycles of 2 s, each followed by a 15-minute incubation at room temperature. After
washing, the detector probes were mixed with casein-phosphate buffered saline (Invitrogen,
Carlsbad, CA, USA) at a 1:100 dilution and transferred onto the electrodes. Subsequently,
streptavidin poly-HRP80 conjugate (Fitzgerald Industries, Acton, MA, USA) was mixed
with casein-phosphate-buffered saline (Invitrogen) at a 1:3 ratio and incubated for 15 min.
Amperometric current was finally measured in TMB (3,3′,5,5′-tetramethylbenzidine) at
−200 mV for 1 min.
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4. Conclusions

The m-eLB enables the simultaneous detection of multiple mutations in a single
droplet of sample, making it a comprehensive and efficient diagnostic tool for lung cancer
monitoring. The eventual direct measurement of multiple usctDNA in a clinical sample is
not only critical for ctDNA diagnosis but also for the discovery of new usctDNA biomarkers
correlated to disease conditions. Therefore, in the future, the EFIRM platform’s electro-
chemical detection method combined with microarray technology can offer significant
benefits for EGFR mutation monitoring in lung cancer patients.
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