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ABSTRACT OF THE DISSERTATION

Electronic Structure Models: Solution Theory, Linear Scaling Methods, and
Stability Analysis

by

Houdong Hu

Doctor of Philosophy in Physics with a Specialization in Computational Science

University of California, San Diego, 2014

Professor Michael Holst, Chair

Various approaches have been developed to investigate materials in the last cen-

tury. Quantum methods, solving the Schrödinger equation with different types of ap-

proximations, have best accuracy comparing with other methods. The most commonly

used quantum methods are wavefunction method and density functional method. Wave-

function method is based on obtaining the wavefunction of the system. The simplest

wavefunction method is Hartree-Fock (HF) theory. Density functional theory (DFT)

considers electronic density as the basic variable instead of the wave function. Density

functional theory offers a practical computational scheme, which is similar to Hartree-

Fock method.

Although Hartree-Fock and density functional theory have been studied many

xii



years, only a small number of papers discuss the mathematical properties of these mod-

els. We generalize the work of Suryanarayana et al. on local spin density approximation

model, and developed finite-element formulations for Hartree-Fock and density func-

tional theory models, including restricted Hartree-Fock, unrestricted Hartree-Fock, local

spin density approximation, generalized gradient approximation, meta generalized gra-

dient approximation and more generalized density functional theory models. We prove

the well-posedness, and the existence of minimizers for these models in a finite cal-

culation domain for both the all-electron problem and pseudopotential approximations.

We also established the convergence of the finite-element approximation, and the con-

vergence of finite element approximation with numerical quadratures by Γ-convergence

for both the all-electron problem and pseudopotential approximations. It will be useful

for the development of studying Hartree-Fock and density functional theory models nu-

merically by finite element method. In Chapter 3, we present the mathematical proofs

of the mathematical properties of these models.

After well-defined models are proposed, numerical methods are needed to dis-

cretize and solve these problems. Much effort has been devoted to develop scalable real-

space methods over the past decade , such as finite difference method, wavelet method,

and finite element method. Difficulties arise when finite element method is used to solve

a model with exact exchange energy, such as Hartree-Fock model. In order to handle ex-

act exchange operator, we successfully proposed and numerically implemented a linear

time cost and memory cost method with finite element bases. Multigrid method is used

in our algorithm in order to achieve linear scaling. A variety of numerical experiments

for atoms and molecules demonstrate reliable precision and speed. Our method could

be generalized to density functional theory and hybrid models in a straightforward way.

Each step in our self-consistent solver is well defined, and this makes the parallelization

of our solver is feasible. In Chapter 4, we present the algorithms and numerical results

of our linear scaling method.

In Hartree-Fock and density functional theory solvers, molecular orbitals and or-

bital wavefunctions are solved by the Euler-Lagrange equation of the total energy func-

tional. In order to establish whether that extremum is a maximizer, minimizer, or saddle

point, the second functional derivative must be analyzed. We successfully proposed

xiii



and numerically implemented a systematic way to study stability condition of Hartree-

Fock and density functional theory models. We generated a few bifurcation figures for

Hartree-Fock and density functional theory. Hessian analysis have also been conducted

on extremums of Hartree-Fock and density functional theory models. A weakly bounded

state is found when the nuclear charge of the two-electron atom gets really close to 1. It

is a powerful tool to understand the stability of different solutions of Hartree-Fock and

density functional theory models. In Chapter 5, we show a systematic way of stability

study by Hessian matrix analysis.

xiv



Chapter 1

Introduction

Interdisciplinary research is research activities that applies knowledge and

methodology from more than one academic discipline to solve an essential problem. In

recent decades, the growth of science and technology has prompted scientists to address

complex problems and create new methods by crossing boundaries with deep knowledge

from different perspectives. A glance across today’s hot topics reveals how many are

interdisciplinary: neuroscience, bioinformatics, nanotechnology, quantum information,

etc. All those require the contributions from two or more disciplines [108].

Computational science is an interdisciplinary approach to solve scientific prob-

lems that use knowledge and methods from applied discipline, mathematics and com-

puter science. Computational science takes advantage of not only the improvements in

computer hardware, but probably more importantly, the improvements in computer al-

gorithms and mathematical techniques. Computational models in an applied discipline

are constructed based on theory and experimental results. Computation is conducted on

theses models and allows us to make predictions of experimental results. We could use

computational science to predict what cannot be tested in laboratory, such as models to

explain the origin of our universe. Computational science can also be used to give peo-

ple some initial predictions to reduce the number of experiments, such as computational

drug design [108].

Figure 1.1 is straightforward for people to understand the concept of compu-

tational science. An applied discipline in Figure 1.1 is physics. Many fundamental

physics models, such as heat conduction, hydrodynamics, electrodynamics and quan-

1
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Figure 1.1: Discription of Computational Science

tum physics, are partial differential equations. After deriving the fundamental models,

people need mathematical techniques to analyze the properties of them. Numerical ap-

proximations and algorithms are provided to discrete and solve partial differential equa-

tions, where we need to conduct approximation analysis and convergence analysis. We

need to keep comparing the predicted results with current experiment results, which is

a motivation to revise an old model or develop a new model if predicted results are not

consistent with experimental results.

Computational physics is broad and there is a corresponding computational

branch for almost every major field in physics, for example computational astrophysics,

computational fluid dynamics, computational solid mechanics, computational particle

physics, computational electrodynamics, etc. We feel interested in computational solid

state physics, which is a very important field related to material science. People also call

computational solid state physics as computational chemistry.
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Figure 1.2: Methods of Computational Chemsitry

Currently, there are three major ways to investigate materials as shown in Fig-

ure 1.2. Quantum methods, derived from the quantum mechanics, use different types

of approximations to solve the Schrödinger equation. Quantum methods can only solve

small-sized systems as a result of expensive computational cost; however, it has best

accuracy comparing with other methods. In order to allow for the simulations of sys-

tems of larger size, semi-empirical methods are proposed with further approximations,

where some parameters are neglected or given by experimental results. Semi-empirical

methods demand less computational cost than quantum methods, while they are less

rigorous than quantum methods. Finally, molecular mechanics uses classical physics to

explain and interpret the behaviors of molecules. Molecular mechanics can solve very

large systems with the least computational cost [85].

In order to compute large-scale systems with precise results, we could combine

these three methods sequentially or in parallel. The parameters of a coarse model could

be precomputed on the basis of quantum methods applied on subsystems, such as, fit-

ting of pseudopotentials for large-scale calculations. Also, we can divide the system

into pieces that are modeled at different levels in parallel, as for quantum mechanic-

s/molecular mechanics calculations. Our research is mainly on the basis of quantum

methods.

Figure 1.3 gives us an overview of quantum methods. The most commonly used

quantum methods are the wavefunction method [129] and density functional method

[66, 81]. Wavefunction method is based on obtaining the wavefunction of the system.
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Density functional method studies the properties of the system through its electronic

density.

The simplest wavefunction method is Hartree-Fock (HF) theory [129]. There

are two types of Hartree-Fock theory: restricted Hartree-Fock (RHF) and unre-

stricted Hartree-Fock (UHF). Restricted Hartree-Fock is used for closed shell atoms

or molecules, which have an even number of electrons. Each spatial orbital is occupied

by two electrons, one spin-up and one spin-down. Unrestricted Hartree-Fock is used for

atoms or molecules with an even or odd number of electrons. It assumes spatial orbitals

for spin-up and spin-down electrons are different.

There have been a large number of methods developed to improve Hartree-Fock

results, which are called post-Hartree-Fock (Post-HF) methods. Several common post-

Hartree-Fock methods are configuration interaction (CI) [139], coupled cluster (CC)

[29] and the second order Moller-Plesset perturbation theory (MP2) [103].

Configuration interaction is a variational method that accounts for the correlation

energy using a variational wavefunction, which is a linear combination of determinants

or configuration state functions built from spin orbitals. If the expansion includes all

possible configurations of the appropriate symmetry, it is a full configuration interaction

(FCI) [44] procedure.

Coupled cluster takes the molecular orbitals from Hartree-Fock theory to con-

struct the multi-electron wavefunction, then uses the exponential cluster to account for

electron correlation energy missing in Hartree-Fock calculation. The cluster operator

is written in the form of a summation, where the first term is the operator of all single

excitations, the second term is the operator of all double excitations and so forth. The

coupled method including only the first and the second term is CCSD [138]. The most

famous application of CCSD that provides an estimate of connected triples is CCSDT

[138].

Moller-Plesset perturbation theory (MP) is a special case of Rayleigh-

Schrödinger (RS) perturbation theory. In Rayleigh-Schrödinger perturbation theory, one

considers an unperturbed Hamiltonian operator with a small perturbation added, which

accounts for the missing electron correlation energy. Usually we use first order MP

theory , second order MP theory, third order MP theory and fourth order MP theory.
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Density functional theory (DFT) considers electronic density as the basic vari-

able instead of the wave function. Density functional theory offers a practical com-

putational scheme, which is similar to Hartree-Fock method. The most widely used

approximations are the local density approximation (LDA) [81] and local spin density

approximation (LSDA) [81], where the functionals depend only on the density at the co-

ordinate where the functional is evaluated. Generalized gradient approximation (GGA)

[118, 83, 10, 86, 123, 117, 119] are proposed, which take into account of the gradient of

the density. Potentially more accurate meta generalized gradient approximation (Meta-

GGA) [116, 156, 9, 33, 127, 121, 149] includes higher order derivative of the electron

density, and it is a natural development from generalized gradient approximation.

Hybrid models [12, 120, 78, 145, 10, 86, 157, 11, 65] are combinations of density

functional theory and Hartree-Fock theory, which generate accurate results and have

been widely applied in computational chemistry.

We include semi-empirical quantum methods [85] in Figure 1.3, because semi-

empirical quantum methods represent a bridge between quantum methods and molecular

mechanics, and it tries to overcome the obstacles of both slow speed and low accuracy.

Figure 1.4 shows all the approximations made on quantum methods in order to

solve the problem theoretically and numerically, and our research areas are marked as

purple paint. The first approximation is made to avoid calculations on many-electron

Hamiltonian. The approximate models, including Hartree-Fock method, density func-

tional method and hybrid method, are proposed, which solve the effective one-electron

Hamiltonian instead of many-electron Hamiltonian.

The singular nuclear charges could be approximated by Gaussian charges [38,

87, 38]. The nuclear potential could be smoothed by the pseudopotential approximation

[63, 56, 58, 124]. The pseudopotetial approximation replaces the collective system of

nuclei and core electrons with an effective, smoother potential, and reproduces well

the true potential of the valence wavefunction in the interstitial region. This method

significantly reduces the number of bases set needed in the calculation.

Approximations are also made during the discretization of partial differential

equations with chosen basis sets. There is a trade-off between accuracy and calculation

time, which depends on the size of basis sets. For a chosen basis set, we also need to
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Figure 1.3: Quantum Methods
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Figure 1.4: Theoretical and Numerical Approximations

choose numerical quadrature rules to assembly the stiffness matrix of partial differential

equations. Certain order of numerical quadrature rules are needed in order to maintain

the accuracy.

Although Hartree-Fock and density functional theory have been studied many

years, only a small number of papers [92, 90, 3, 46, 84, 146] discuss the mathematical

properties of these models, such as the existence of a minimizer, the convergence of

finite element approximation, the convergence of finite element approximation with nu-

merical quadratures and the convergence with pseudopotential approximation. In Chap-

ter 3, we present the mathematical proofs of the mathematical properties of these models

[67].

After well-defined physics models are proposed, numerical methods are needed

to discretize and solve these problems. The development of systematically improvable
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and scalable real-space techniques for electronic structure calculations has received sig-

nificant attention over the past decade [8, 143, 26, 23, 48, 15, 141, 102]. Among the

real-space methods, finite element method [160, 151, 152, 153, 113, 114, 115, 166, 22,

87, 146, 91, 36, 6, 105, 104, 96, 132, 27] has the advantages of significantly greater

flexibility in the construction of the mesh and the scalability on parallel computing plat-

forms. Difficulties arise when finite element method is used to solve a model with exact

exchange energy, such as Hartree-Fock method. Because exact exchange energy opera-

tor is non-local and finite element method needs a large number of bases comparing with

atomic-orbital type basis sets and Gaussian basis sets. The stiffness matrix of the ex-

act exchange energy operator will be dense, and the time cost of solving the eigenvalue

problem will become huge.

We developed a general linear scaling method with finite element bases to cal-

culate electronic properties of materials, which could be applied to all kinds of Hartree-

Fock, density functional theory and hybrid models [71]. Our linear scaling method will

guarantee both the linear time cost and linear memory cost. In Chapter 4, we present the

algorithms and numerical results of our linear scaling method.

In Hartree-Fock and density functional theory solvers, molecular orbitals and

orbital wavefunctions are solved by the Euler-Lagrange equation of the total energy

functional. In order to establish whether that extremum is a maximizer, minimizer, or

saddle point, the second functional derivative must be analyzed. Few papers [74, 136,

110, 140] discussed the stability of Hartree-Fock and density functional theory results.

In Chapter 5, we show a systematic way of stability study by Hessian matrix analysis

[72].

The remainder of the thesis is organized as follows. In Chapter 2, the descrip-

tions of the Hartree-Fock and density functional theory formulations are presented. In

Chapter 3, we present the mathematical proofs on the existence of a minimizer, con-

vergence of finite element approximation, convergence of finite element approxima-

tion with numerical quadratures and convergence of pseudopotential approximation for

Hartree-Fock and density functional theory [67]. In Chapter 4, we present algorithms

and numerical examples of a linear scaling finite element method to solve Hartree-Fock

model with exact exchange [71]. In Chapter 5, we present formulations and numerical
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results of stability analysis on numerical solutions of Hartree-Fock and density func-

tional theory [72]. In Chapter 6, a summary of my Ph. D. work is presented. In appendix

A, my Ph. D. work [70] in Dr. Zhaowei Liu group during 2009-2010 is attached.



Chapter 2

Mathematical Models of Electronic

Structure

A lot of models have been proposed to study the properties of materials in the last

century. These approaches include precise quantum methods, semi-empirical methods

and rough molecular mechanics [85]. In quantum methods, the calculation of com-

plex many electrons-nucleus Hamiltonian is very important , but extremely hard and

time-consuming. Effective one-electron Hamiltonian models have been proposed to

overcome this problem. Two famous models are Hartree-Fock theory [129] and density

functional theory [66, 81]. The only difference between Hartree-Fock theory and den-

sity functional theory is the exchange and correlation energy term. Hartree-Fock theory

has exact exchange energy, but ignores correlation energy completely due to the mean

field approximation. Thus it works well for some weakly correlated systems. Density

functional theory considers exchange and correlation energy as a whole term, and makes

assumptions on this term as a functional of electron density.

Although Hartree-Fock and density functional theory models have been studied

many years, but few papers [3, 46, 84, 146] discuss the mathematical properties of these

models, such as the existence of a minimizer, the convergence of finite element approx-

imation, the convergence of finite element approximation with numerical quadratures

and the convergence with pseudopotential approximation. In this chapter, we will give a

clear and precise description of the Hartree-Fock and density functional theory formula-

tions. In the next chapter, we will present the mathematical proofs of the mathematical

10
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properties of these models.

This chapter is organized as follows. Section 2.1 gives an introduction to quan-

tum mechanics. Section 2.2 describes the mathematical formulations for Hartree-Fock

theory. Section 2.3 describes the mathematical formulations for density functional the-

ory. Section 2.4 introduces the Self-consistent methods, which are used to solve Hartree-

Fock and density functional theory numerically.

2.1 Elementary Quantum Mechanics

The section follows Chapter 1 and Chapter 2 of Parr and Yang’s book [112]. We

will introduce the Schrödinger equation in Section 2.1.1, which is the most fundamental

knowledge in quantum mechanics. Density matrices will be discussed in Section 2.1.2.

Since electronic density is the only basic variable in density functional theory, that’s

why density matrices are very important.

2.1.1 The Schrödinger Equation

This section reviews elementary quantum theory [112, 165, 131, 88, 111, 98,

148]. Schrödinger equation covers all the problems in the electronic structure of matter

including the time. In most cases, people are interested in atoms and molecules without

time dependent interactions. Thus we will focus on the time independent Schrödinger’s

equation. For an isolated N -electron system, this is given by

ĤΥ = EΥ, (2.1.1)

where E is the electronic energy, Υ = Υ(~r1, ~r2, . . . , ~rN) is the wave function, and the

Ĥ is the Hamiltonian operator,

Ĥ =
N∑
µ=1

−1

2
O2
µ +

N∑
µ=1

Vext(~r
µ) +

1

2

N∑
µ 6=ν,µν=1

1

|~xµ − ~xν |
., (2.1.2)

where ~r comprise ~x and s stands for space coordinates and spin coordinates respectively,

and the superscript µ labels for the µth electron.

(2.1.1) must be solved subject to appropriate boundary conditions. Zero at infin-

ity is an appropriate boundary condition for an atom or a molecule. Periodic boundary
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conditions might be good for a regular infinite solid. |Υ|2 is a probability distribution

function in the sense that|Υ(~rN)|2d~rN is the probability of finding electrons with posi-

tion coordinates between ~xN and ~xN + d~xN and spin coordinates equal to sN . Here are

some coordinate notations:

d~rN = d~r1d~r2 . . . d~rN , (2.1.3)

d~ri = d~xidsi (2.1.4)

d~xN = d~x1d~x2 . . . d~xN , (2.1.5)

~xN =
(
~x1, ~x2, . . . , ~xN

)
, (2.1.6)

sN =
(
s1, s2, . . . , sN

)
. (2.1.7)

The spatial coordinates ~xN are continuous. The spin coordinates sN are discrete. Be-

cause of Pauli exclusion principle, Υ needs to be antisymmetric with respect to inter-

change of any two electrons’ coordinates.

For a given system, there are multiple solutions of (2.1.1). Each solution will

include eigenfunctions Υk and their corresponding energy eigenvalues Ek. Because the

set Υk is complete and the physics properties are unchanged under a unitary transfor-

mation, we could always choose orthogonal and normalized Υk,∫
Υ∗kΥld~rN = 〈Υk|Υl〉 = δkl. (2.1.8)

For a Hermitian operator Â, its expectation value is given by

〈Â〉 =

∫
Υ∗ÂΥd~rN∫
Υ∗Υd~rN

=
〈Υ|Â|Υ〉
〈Υ|Υ〉

. (2.1.9)

The Hamiltonian operator Ĥ is hermitian, and expectation values of the elec-

tronic energy is given by

E(Υ) = 〈Ĥ〉 =

∫
Υ∗ĤΥd~rN∫
Υ∗Υd~rN

=
〈Υ|Ĥ|Υ〉
〈Υ|Υ〉

. (2.1.10)

We denote the ground-state wave function and energy by Υ0 and E0, and we

have

E(Υ) ≥ E0. (2.1.11)
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The ground state energy E0 is a lower bound to the energy computed from a guessed Υ.

The real ground state Υ0 and energy E(Υ0) = E0 is given by the minimization of the

functional E(Υ),

E0 = min
Υ
E(Υ). (2.1.12)

Every eigenstate Υ is an extremum of the functional E(Υ). By variational prin-

ciple, we could replace the Schrödinger’s equation (2.1.1) by

δE(Υ) = 0. (2.1.13)

It is convenient to restate (2.1.13) in a way that will guarantee that the final Υ

will be normalized. By the method of Lagrange multipliers, extremization of 〈Υ|Ĥ|Υ〉
subject to the constant 〈Υ|Υ〉 = 1 is equivalent to making

[
〈Υ|Ĥ|Υ〉 − E〈Υ|Υ〉

]
sta-

tionary without constraint, where E is the Lagrange multiplier. This gives

δ
[
〈Υ|Ĥ|Υ〉 − E〈Υ|Υ〉

]
= 0 (2.1.14)

The electron density is defined by

ρ(~x) = N

∫
· · ·
∫
|Υ(~r, ~r2, . . . ~rN)|2dsd~r2 · · · d~rN , (2.1.15)

2.1.2 Density Matrices

We will introduce density matrices in this section [112, 32, 99, 148, 159]. A

general description of a quantum state could be described as

Υ(~r1, ~r2, . . . , ~rN)Υ∗(~r1, ~r2, . . . , ~rN) (2.1.16)

is the probability distribution associated with a solution of the Schrödinger equation

(2.1.1).

We can define a more general quantity as

γN(~r1′ , ~r2′ , . . . , ~rN
′
, ~r1, ~r2, . . . , ~rN) = Υ(~r1′ , ~r2′ , . . . , ~rN

′
)Υ∗(~r1, ~r2, . . . , ~rN).

(2.1.17)

The two sets of coordinates ~r1′ , ~r2′ , . . . ~rN
′ and ~r1, ~r2, . . . ~rN are two sets of indices that

give (2.1.17) a numerical value. We therefore might consider (2.1.17) as an element of
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a matrix, and we call this matrix density matrix. If we set ~ri = ~ri
′ for all i, we get a

diagonal element of the density matrix as the original (2.1.16). We can also consider

(2.1.17) as the coordinate representation of the density operator,

γ̂N = |Υ〉〈Υ|. (2.1.18)

For an operator Â, we can also get

〈Â〉 = tr(γ̂N Â) = tr(Âγ̂N). (2.1.19)

A pure state could be described by a wave function, and a mixed state cannot

be described by a wave function. We only discussed the pure state above, and we will

discuss the mixed state below. A mixed state can be characterized by a probability

distribution over all the possible pure states, described by the ensemble density operator

as a generalization of the density operator of (2.1.18). Here is the definition of the

ensemble density operator:

Γ̂N =
∑
i

pi|Υi〉〈Υi|, (2.1.20)

where pi is the probability being found in the state |Υi〉, and the sum is over all possible

pure states. Since the |Υi〉 are orthonormal and the probability pi are positive, we have

pi ≥ 0,
∑
i

pi = 1. (2.1.21)

For a mixed state, the expectation value for the observable Â can be defined similarly as

(2.1.19)

〈Â〉 = tr(Γ̂N Â) =
∑
i

pi〈Υi|Â|Υi〉. (2.1.22)

The Hamiltonian operator of (2.1.2) is the sum of two symmetric one-electron

operators and a symmetric two-electron operator, which does not depend on spin. Sim-

ilarly, operators corresponding to other physical observables are always one-electron or

two-electron type and often are spin free. We therefore could simplify the expectation

value formulas (2.1.19) and (2.1.22) by integrating over N − 2 of its variables, and the

concepts of reduced density matrix will be introduced.
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We call (2.1.17) the density matrix of order N for a pure state of an N -electron

system. Then we define the pth order reduced density matrix by

γp(~r
1′ , . . . ~rp

′
, ~r1, . . . ~rp)

= Cp
N

∫
· · ·
∫
γN(~r1′ , . . . , ~rp

′
, ~rp+1, . . . , ~rN , ~r1, . . . , ~rp, ~rp+1, . . . , ~rN)d~rp+1 · · · d~xN ,

(2.1.23)

where Cp
N is the binomial coefficient. In particular, the second order reduced density

matrix is

γ2(~r1′ , ~r2′ , ~r1, ~r2)

=
N(N − 1)

2

∫
· · ·
∫

Υ(~r1′ , ~r2′ , ~r3, . . . , ~rN)Υ∗(~r1, ~r2, ~r3, . . . , ~rN)d~r3 · · · d~rN ,

(2.1.24)

and the first order reduced density matrix is

γ1(~r1′ , ~r1) = N

∫
· · ·
∫

Υ(~r1′ , ~r2, . . . , ~rN)Υ∗(~r1, ~r2, . . . , ~rN)d~r2 · · · d~rN . (2.1.25)

For a mixed state, the reduced density matrices and operators could be defined

correspondingly, and the same properties all hold. We denote (2.1.20) as the N th-order

density operator. Then the pth-order mixed state density matrix is defined as

Γp(~r
1′ , . . . ~rp

′
, ~r1, . . . ~rp)

= Cp
N

∫
· · ·
∫

ΓN(~r1′ , . . . , ~rp
′
, ~rp+1, . . . , ~rN , ~r1, . . . , ~rp, ~rp+1, . . . , ~rN)d~rp+1 · · · d~rN .

(2.1.26)

Most of formulas below hold for mixed states as well as pure states, but we will

not discuss them separately.

For an antisymmetric N -body wavefunction Υ, the expectation value of a one-

electron operator

Â1 =
N∑
i=1

A1(~ri, ~ri
′
). (2.1.27)

We have

〈Â1〉 = tr(Â1γ̂N) =

∫
A1(~x1, ~x1′)γ1(~r1′ , ~r1)d~r1d~r1′ . (2.1.28)
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All one-electron operators of interest are local, conventionally we write down

only the diagonal part as

Â1 =
N∑
i=1

A1(~ri), (2.1.29)

and the corresponding expectation-value could be described as

〈Â1〉 =

∫
[A1(~r1)γ1(~r1′ , ~r1)]~r1′=~r1d~r

1. (2.1.30)

As most two-electron operators in molecular physics are local, so we may also

denote the operators by their diagonal part, which is

Â2 =
1

2

N∑
i 6=j,ij=1

A2(~ri, ~rj), (2.1.31)

and its corresponding expectation value is

〈Â2〉 =

∫ ∫
[A2(~r1, ~r2)γ2(~r1′ , ~r2′ , ~r1, ~r2)]~r1′=~r1,~r2′=~r2d~r

1d~r2. (2.1.32)

Many operators that concern us do not involve spin coordinates, for instance

the Hamiltonian operators for atoms or molecules. We therefore could make further

reduction of the density matrices by summation over the spin coordinates. We denote

the pth order spinless density matrices by

ρp(~x
1 . . . ~xp) =

∫
· · ·
∫
γp(~r

1′ , . . . , ~rp
′
, ~r1, . . . , ~rp)|~r1′=~r1,...,~xp′=~xpds1 · · · dsp. (2.1.33)

and

ρ(~x1) = ρ1(~x1) (2.1.34)

The total energy (2.1.16) becomes

E =

∫
[(−1

2
O2

1 + Vext(~x
1))ρ1(~x1′ , ~x1)]~x1′=~x1d~x

1 +

∫ ∫
1

|~x1 − ~x2|
ρ2(~x1, ~x2)d~x1d~x2.

(2.1.35)

We can rewrite ρ2(~x1, ~x2) as

ρ2(~x1, ~x2) =
1

2
ρ(~x1)ρ(~x2)[1 + h(~x1, ~x2)]. (2.1.36)

Integrate ~x2, we find

N − 1

2
ρ(~x1) =

1

2
ρ(~x1)[N +

∫
ρ(~x2)h(~x1, ~x2)d~x2]. (2.1.37)
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We have ∫
ρ(~x2)h(~x1, ~x2)d~x2 = −1, (2.1.38)

which holds for all ~x1. If we denote the exchange-correlation hole of an electron at x1

by

ρxc(~x
1, ~x2) = ρ(~x2)h(~x1, ~x2), (2.1.39)

then we have ∫
ρxc(~x

1, ~x2)d~x2 = −1, (2.1.40)

which is a unit charge opposite to that of the electron. The electron interaction term

could be expressed in terms of ρxc,∫ ∫
1

|~x1 − ~x2|
ρ2(~x1, ~x2)d~x1d~x2 =

1

2

∫ ∫
1

|~x1 − ~x2|
ρ(~x1)ρ(~x2)d~x1d~x2

+
1

2

∫ ∫
1

|~x1 − ~x2|
ρ(~x1)ρxc(~x

1, ~x2)d~x1d~x2

(2.1.41)

2.1.3 A Table of Models

We will pick up a few most important models, and study the mathematical prop-

erties of these models in Chapter 2 and Chapter 3. For your convenience, Tabel (2.1) is

a list of these models, which will be discussed carefully later.

As shown in Tabel 2.1, Hartree-Fock method includes restricted Hartree-Fock

method and unrestricted Hartree-Fock method, and density functional theory includes

local spin density approximation, generalized gradient approximation, meta generalized

gradient approximation and generalized density functional theory models.

2.2 Hartree-Fock

The section follows Roothaan’s paper [129], and introduces Hartree-Fock

method . Given an N -electron system, Hartree-Fock method assigns each electron a

wavefunction depending on the space coordinates and spin coordinates, called a molec-

ular spinorbital (MSO):

ψµκ = ψκ(~x
µ, sµ), (2.2.1)
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Table 2.1: A List of Models in Chapter 2 and Chapter 3

Category Model

Hartree-Fock (HF)
Restricted Hartree-Fock (RHF)

Unrestricted Hartree-Fock (UHF)

Density Functional Theory (DFT)

Local Spin Density Approximation (LSDA)

Generalized Gradient Approximation (GGA)

Meta Generalized Gradient Approximation

(Meta-GGA)

Generalized Density Functional Theory

Models

where ~x and s stands for space coordinates and spin coordinates respectively, the su-

perscript µ labels for the µth electron, and the subscript κ labels different molecular

spinorbitals.

The total N -electron wave function can be approximated by a single Slater de-

terminant of N molecular spinorbitals [50].

Υ = (N !)−
1
2

∣∣∣∣∣∣∣∣∣∣∣

ψ1
1 ψ1

2 . . . ψ1
N

ψ2
1 ψ2

2 . . . ψ2
N

. . . . . . . . . . . .

ψN1 ψN2 . . . ψNN

∣∣∣∣∣∣∣∣∣∣∣
. (2.2.2)

Since we neglect spin-orbital interaction, each molecular spinorbital factors into

a molecular orbital (MO) and a spin function:

ψµκ = φi(κ)(~x
µ)ηκ(s

µ) = φµi(κ)η
µ
κ (2.2.3)

where φµi(κ) is a molecular orbital and ηµκ is the spin factor. We denote the spin factors

by:

ηµκ =

{
αµ

βµ
, (2.2.4)

where α stands for spin-up and β stands for spin-down.
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We denote the set of molecular spinorbitals ψκ by a row vector Ψ:

Ψ = (ψ1ψ2 . . . ψN) . (2.2.5)

The Pauli exclusion principle guarantees that all the molecular spinorbitals must be lin-

early independent.The physical property of Ψ is same under a unitary transformation:

Ψ
′
= ΨDet(A), (2.2.6)

with AA∗ = A∗A = I, I being the identity matrix.

We could choose the transformation matrix A such that molecular spinorbitals

Ψ′ are orthonomal. Thus we might always assume that molecular spinorbitals are or-

thonormal: ∫
ψ∗κ(~x)ψλ(~x)d~x = δκλ, κ, λ = 1, . . . , N, (2.2.7)

without loss of generality.

It is straightforward to show N -electron wave function (2.2.2) is normalized,

that is: ∫
Υ∗(~xN)Υ(~xN)d~xN = 1. (2.2.8)

When and electronic state is approximated by a Slater determinant Υ (2.2.2), the

total electronic energy is given by:

E =

∫
Υ∗(~xN)ĤΥ(~xN)d~xN , (2.2.9)

where the total Hamiltonian operator Ĥ is defined by

Ĥ =
N∑
µ=1

Hµ +
1

2

N∑
µ 6=ν,µν=1

1

|~xµ − ~xν |
, (2.2.10)

=
N∑
µ=1

[
−1

2
O2
µ + Vext(~x

µ)

]
+

1

2

N∑
µ6=ν,µν=1

1

|~xµ − ~xν |
, (2.2.11)

where Hµ is the Hamiltonian operator for the µth electron moving in the external field.

The exact wave function for a system of many interacting electrons is never

a single determinant or a simple combination of a few determinants. The calculation

of the error in energy by Hartree-Fock is called correlation energy. There has been

a vast amount of work and much progress has been made on calculating correlation
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energy. The methods employed include the linear mixing of many determinants called

configuration interaction [148] and many-body perturbation techniques [148]. You can

also find more details in comprehensive reviews [73, 162].

We will introduce restricted Hartree-Fock method and unrestricted Hartree-Fock

method in Section 2.2.1 and Section 2.2.2 separately.

2.2.1 Restricted Hartree-Fock

Restricted Hartree-Fock method assumes each occupied molecular spinorbital is

occupied by two electrons with opposite spins. Suppose the electronic system has 2n

electrons and n fully occupied molecular orbitals, we can denote the molecular spinor-

bitals by:

Ψ = {ψ1ψ2 . . . ψ2n}, (2.2.12)

and molecular orbitals by:

Φ = {φ1φ2 . . . φn}. (2.2.13)

The relationship among molecular spinorbitals and molecular orbital are given by:

ψ2i−1 = φiα, i = 1, . . . , n, (2.2.14)

ψ2i = φiβ, i = 1, . . . , n. (2.2.15)

Because (2.2.7) and the orthonormality of spin factors, we can obtain:∫
φ∗i (~x)φj(~x)d~x = δij, i, j = 1, . . . , n. (2.2.16)
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The 2n-electron wave function is given by

Υ = [(2n)!]−
1
2

∣∣∣∣∣∣∣∣∣∣∣

ψ1
1 ψ1

2 . . . ψ1
2n

ψ2
1 ψ2

2 . . . ψ2
2n

. . . . . . . . . . . .

ψ2n
1 ψ2n

2 . . . ψ2n
2n

∣∣∣∣∣∣∣∣∣∣∣
,

= [(2n)!]−
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(φ1α)1 (φ1β)1 . . . (φnα)1 (φnβ)1

(φ1α)2 (φ1β)2 . . . (φnα)2 (φnβ)2

. . . . . . . . . . . . . . .

(φ1α)2n−1 (φ1β)2n−1 . . . (φnα)2n−1 (φnβ)2n−1

(φ1α)2n (φ1β)2n . . . (φnα)2n (φnβ)2n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Substituting this wavefunction into the expression (2.2.9), we find the total energy is:

E = T (Ψ) + V (Ψ) + J(Ψ) +K(Ψ). (2.2.17)

The first term is the kinetic energy of the non-interacting electrons,

T (Ψ) = 2
n∑
i=1

Ti = −
n∑
i=1

∫
φ∗i (~x)O2φi(~x)d~x. (2.2.18)

The second term is the electronic energy between electrons and the external field Vext(~x),

V (Ψ) = 2
n∑
i=1

Vi = 2
n∑
i=1

∫
φ∗i (~x)Vext(~x)φi(~x)d~x. (2.2.19)

The third term is the electrostatic interaction energy among electrons,

J(Ψ) = 2
n∑

i,j=1

Jij = 2
n∑

i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φi(~x)φj(~x
′)

|~x− ~x′|
d~xd~x′. (2.2.20)

The last term is the exact exchange energy of electrons,

K(Ψ) = −
n∑

i,j=1

Kij = −
n∑

i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′. (2.2.21)

When each molecular orbital φi is varied by an infinitesimal amount δφi, the
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variation of the energy becomes

δE = 2
n∑
i=1

(δTi + δVi) +
∑
i,j=1

(2Jij −Kij) ,

= 2
n∑
i=1

(δφ∗i )

{
T̂i + V̂i +

n∑
j=1

(2Ĵj − K̂j)

}
φid~x

+2
n∑
i=1

(δφi)

{
T̂i
∗

+ V̂i
∗

+
n∑
j=1

(2Ĵj
∗
− K̂j

∗
)

}
φ∗i d~x, (2.2.22)

where T̂i, V̂i, Ĵj, K̂j are defined as

T̂i = −1

2
O2,

V̂i = Vext(~x),

Ĵjφi(~x) =

∫
φ∗j(~x

′)φj(~x
′)

|~x− ~x′|
d~x′φi(~x),

K̂jφi(~x) =

∫
φ∗j(~x

′)φi(~x
′)

|~x− ~x′|
d~x′φj(~x). (2.2.23)

The resulting restrictions on the variation δφi, obtained by varying (2.2.16), are as fol-

lows: ∫
(δ(φi)

∗(~x))φj(~x)d~x+

∫
(δφj)(~x))φ∗i (~x)d~x = 0. (2.2.24)

By the method of the Lagrange multiplier, we multiply each (2.2.24) by the

Lagrange multiplier −2εji and add the resulting equations together, we obtain

δE = 2
n∑
i=1

(δφ∗i )

[
{T̂i + V̂i +

n∑
j=1

(2Ĵj − K̂j)}φi −
n∑
j=1

φjεji

]
d~x

+2
n∑
i=1

(δφi)

[
{T̂i
∗

+ V̂i
∗

+
n∑
j=1

(2Ĵj
∗
− K̂j

∗
)}φ∗i −

n∑
j=1

φ∗jεij

]
d~x,

(2.2.25)

The conditions for δE = 0 will give

{T̂i + V̂i +
n∑
j=1

(2Ĵj − K̂j)}φi =
n∑
j=1

φjεji, (2.2.26)

{T̂i
∗

+ V̂i
∗

+
n∑
j=1

(2Ĵj
∗
− K̂j

∗
)}φ∗i =

n∑
j=1

φ∗jεij. (2.2.27)
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Take the complex conjugate of (2.2.27), and subtract it from the (2.2.26). We get
n∑
j=1

φj(εji − ε∗ij) = 0. (2.2.28)

Since φj are linearly independent, it follows that

εji = ε∗ij, (2.2.29)

which shows the matrix ε is Hermitian. Thus (2.2.26) and (2.2.27) are equivalent, and

(2.2.26) could be written as

F̂ φi =
n∑
j=1

φjεji, (2.2.30)

where

F̂ = T̂i + V̂i +
n∑
j=1

(2Ĵj − K̂j). (2.2.31)

we could express (2.2.30) in matrix form as

F̂ φ = φε. (2.2.32)

Now let us subject molecular orbitals and their corresponding matrix ε to a unitary trans-

formation

φ
′
= φB,

ε
′
= B∗εB, (2.2.33)

where B is a unitary matrix. It follows that

F̂ ′φ = φε. (2.2.34)

We have
n∑
i=1

φ∗
′

i φ
′

i =
n∑

j,k=1

φ∗jφk

n∑
i=1

B∗jiBki =
n∑

j,k=1

φ∗jφkδjk =
n∑
j=1

φ∗jφj, (2.2.35)

from this equality we could get that
n∑
i=1

Ĵ
′
j =

n∑
i=1

Ĵj, (2.2.36)

n∑
i=1

K̂
′
j =

n∑
i=1

K̂j. (2.2.37)



24

Thus, we have

F̂ ′ = F̂ . (2.2.38)

Since the matrix ε is Hermitian, there exists an unitary matrix B such that ε′ is a

real diagonal matrix. Therefore, we can replace (2.2.30) by the eigenvalue problem

F̂ φi = εiφi, i = 1, 2, . . . , n, (2.2.39)

without any loss of generality.

2.2.2 Unrestricted Hartree-Fock

Unrestricted Hartree-Fock method is the most common molecular orbital

method. You could consider restricted Hartree-Fock as a special case of unrestricted

Hartree-Fock. In unrestricted Hartree-Fock method, it assumes the spatial orbitals for

spin-up α and spin-down electrons β are different. Suppose the electronic system has

nα spin-up electrons and nβ spin-down electrons, we denote the molecular spinorbitals

by:

Ψ = {ψ1ψ2 . . . ψnα+nβ}, (2.2.40)

and molecular orbitals by

Φ = {φ1φ2 . . . φnα+nβ}. (2.2.41)

The (nα + nβ)-electron wave function is given by

Υ = C

∣∣∣∣∣∣∣∣∣∣∣

ψ1
1 ψ1

2 . . . ψ1
nα+nβ

ψ2
1 ψ2

2 . . . ψ2
nα+nβ

. . . . . . . . . . . .

ψ
nα+nβ
1 ψ

nα+nβ
2 . . . ψ

nα+nβ
nα+nβ

∣∣∣∣∣∣∣∣∣∣∣
,

= C

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(φ1α)1 . . . (φnαα)1 (φnα+1β)1 . . . (φnα+nββ)1

(φ1α)2 . . . (φnαα)2 (φnα+1β)2 . . . (φnα+nββ)2

. . . . . . . . . . . . . . . . . .

(φ1α)nα . . . (φnαα)nα (φnα+1β)nα . . . (φnα+nββ)nα

(φ1α)nα+1 . . . (φnαα)nα+1 (φnα+1β)nα+1 . . . (φnα+nββ)nα+1

. . . . . . . . . . . . . . . . . .

(φ1α)nα+nβ . . . (φnαα)nα+nβ (φnα+1β)nα+nβ . . . (φnα+nββ)nα+nβ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

(2.2.42)



25

where C is [(nα + nβ)!]−
1
2 .

Substituting this wavefunction into the expression (2.2.9), we find the total en-

ergy is:

E = T (Ψ) + V (Ψ) + J(Ψ) +K(Ψ),

=

nα+nβ∑
i=1

Ti +

nα+nβ∑
i=1

Vi +
1

2

nα+nβ∑
i,j=1

Jij −
1

2

[
nα∑
i,j=1

+

nα+nβ∑
i,j=nα+1

]
Kij, (2.2.43)

where the kinetic energy of the non-interacting electrons Ti, the electronic energy be-

tween electrons and the external field Vi, the electrostatic interaction energy among

electrons Jij and the exact exchange energy of electrons Kij are defined by (2.2.18),

(2.2.19), (2.2.20) and (2.2.21).

By the method of the Lagrange multiplier and similar process in restricted

Hartree-Fock, we obtain eigenvalue equation for spin-up electrons

F̂αφi = {T̂i + V̂i +

nα+nβ∑
j=1

Ĵj −
nα∑
j=1

K̂j}φi,

= εiφi, i = 1, . . . , nα, (2.2.44)

and eigenvalue equation for spin-down electrons

F̂βφi = {T̂i + V̂i +

nα+nβ∑
j=1

Ĵj −
nα+nβ∑
j=nα+1

K̂j}φi,

= εiφi, i = nα + 1, . . . , nα + nβ. (2.2.45)

2.3 Density Functional Theory

This section follows Chapter 3 of Parr and Yang’s book [112], and reviews den-

sity functional theory methods. Density functional theory replaces the complicated N -

electron wave function by the much simpler electron density ρ. It has a long history. In

the 1920s, Thomas and Fermi [150, 39, 40, 41, 95] realize that the distribution of elec-

trons in an atom could be approximated by statistical methods. The assumptions stated

by Thomas [150] are that “Electrons are distributed uniformly in the six-dimensional

phase space for the motion of an electron at the rate of two for each h3 of volume,” and
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that there is an effective potential field that “is itself determined by the nuclear charge

and this distribution of electrons.” The formulations of Thomas-Fermi model for elec-

tron density could be derived from these assumptions. We will give a derivation of

Thomas-Fermi theory below.

The space could be divided into many small cubes. Each cube with side l and

volume4V = l3 contains4N electrons. We assume that the electrons in each cell are

fermions independent of electrons in the other cells, at the temperature 0K.

The energy levels of a particle in a three-dimensional infinite well are given by

ε(nx, ny, nz) =
1

8l2
(n2

x + n2
y + n2

z) =
1

8l2
R2, (2.3.1)

where nx, ny, nz are positive integers. Then we could get the number of energy levels

between ε and ε+ δε, that is:

g(ε)4ε =
π

4
(8l2)3/2ε1/2δε+O((δε)2). (2.3.2)

The probability for the occupied state with energy ε is the Fermi-Dirac distribu-

tion f(ε),

f(ε) =
1

1 + eβ(ε−µ)
. (2.3.3)

f(ε) will become a step function at 0 K:

f(ε) =

{
1, ε < εF

0, ε > εF
, (2.3.4)

where εF is the so-called Fermi energy. The states with energy smaller than εF are

occupied. The states with energy greater than εF are unoccupied. The Fermi energy εF
is the chemical potential µ at the temperature 0K.

The total energy of the electrons could be calculated by summing the contribu-

tions from all the energy states:

4E = 2

∫
εf(ε)g(ε)dε =

8π

5
(2l2)3/2ε

5/2
F . (2.3.5)

Because each energy level is occupied by two electrons, we have the factor 2 in (2.3.5).

We could integrate the product of energy level density g(ε) and the Fermi-Dirac distri-

bution f(ε) to get the number of electrons4N in the cell, that is:

4N = 2

∫
f(ε)g(ε)dε =

8π

3
(2l2)3/2ε

3/2
F . (2.3.6)
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From (2.3.5) and (2.3.6), we obtain

4E =
3

5
4NεF =

3

10

(
3l2

8π

2/3
)(
4N
l3

)5/3

(2.3.7)

(2.3.7) gives us a relationship between total kinetic energy and the electron den-

sity ρ = 4N/l3 = 4N/4V for each cell. We could get the total kinetic energy by

summing the contributions from all cells,

T (ρ) = CF

∫
ρ5/3(~x)d~x, (2.3.8)

where

CF =
3

10
(3π2)2/3. (2.3.9)

If we neglect the exchange and correlation energy, the total energy functional can be

written as:

E = CF

∫
ρ5/3(~x)d~x+

∫
ρ(~x)Vext(~x)d~x+

1

2

∫ ∫
ρ(~x)ρ(~x′)

|~x− ~x′|
d~xd~x′, (2.3.10)

which is in terms of electron density ρ alone, and this is the energy functional of the

Thomas-Fermi theory.

People try to modify and improve the Thomas-Fermi theory over the years, but

it cannot give accurate enough results as other methods. Thus Thomas-Fermi theory is

viewed as an oversimplified model.

However, the situation changed as the paper by Hohenberg and Kohn [66] got

published. They showed that the Thomas-Fermi model can be considered as an approx-

imation to an exact theory, density functional theory. Density functional theory includes

precise kinetic energy and an approximate exchange and correlation energy term.

For an N -electron Hamiltonian (2.1.2), the minimization of the energy func-

tional (2.1.16) will determine both the ground-state energy and the ground-state wave

functions. The external potential Vext, which defines the whole nuclear frame, com-

pletely fixes the Hamiltonian. Thus the number of electronsN and the external potential

Vext will fix all properties for the ground state.

Theorem 2.3.1 will show a one-to-one relationship between the ground state

electron density ρ and external potential Vext. Also the number of electrons N is de-

termined by simple quadrature of ρ. It follows that we could use of electron density ρ
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as basic variable in place of N and Vext. Theorem 2.3.2 shows the energy variational

principle, which uses electron density ρ as basic variable.

Theorem 2.3.1 ([66]). (The first Hohemberg-Kohn theorem) The external potential Vext

is determined, within a trivial additive constant, by the electron density ρ.

Proof. Consider the electron density ρ for for the ground state electron density of some

N -electron system. If there are two external potentials Vext and V ′ext, and they are dif-

ferent by more than a constant. Suppose two external potentials give the same ρ for

its ground sate, then we have two Hamiltonians Ĥ and Ĥ ′ with the same ground-state

densities, but different normalized N -electron wave functions Υ and Υ
′ . We could take

Υ
′ as a trial function for the Ĥ , that is:

E0 < 〈Υ
′|Ĥ|Υ′〉 = 〈Υ′|Ĥ ′|Υ′〉+ 〈Υ′ |Ĥ − Ĥ ′|Υ′〉

= E
′

0 +

∫
ρ(~x)[Vext(~x)− V ′ext(~x)]d~x, (2.3.11)

where E0 and E ′0 are the ground-state energies for Ĥ and Ĥ ′ respectively. We can also

take Υ as a trial function for the Ĥ ′ problem, that is:

E
′

0 < 〈Υ|Ĥ
′|Υ〉 = 〈Υ|Ĥ|Υ〉+ 〈Υ|Ĥ ′ − Ĥ|Υ〉

= E0 −
∫
ρ(~x)[Vext(~x)− V ′ext(~x)]d~x. (2.3.12)

Adding (2.3.11) and (2.3.12), we get the contradiction E0 + E
′
0 < E0 + E

′
0, so there

cannot be two different Vext that give the same ρ for their ground states.

It follows that ρ also determines Vext, within a trivial additive constant.

Theorem 2.3.2 ([66]). (The second Hohemberg-Kohn theorem) For a trial density ρ
′
,

such that ρ
′ ≥ 0 and

∫
ρ
′
(~x)d~x = N , then

E0 ≤ E[ρ
′
]. (2.3.13)

Proof. The Hamiltonian Ĥ has its own ground-state density ρ and ground-state wave

function Υ. By the first Hohemberg-Kohn theorem, ρ′ determines its own V ′ext, Hamil-

tonian Ĥ ′ and ground-state wave function Υ
′ . Thus, ρ′ will be just a trivial function for

the Ĥ and we could take it as a trial function for the Ĥ , that is:

E[ρ
′
] = 〈Υ′|Ĥ|Υ′〉 ≥ 〈Υ|Ĥ|Υ〉 = E0, (2.3.14)

which is (2.3.13).
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Theorem 2.3.1 and Theorem 2.3.2 show the existence of a one-to-one relation-

ship between the ground state electron density and the ground state wavefunction. Den-

sity functional theory replaced the complicated N -electron wave function Υ (2.2.2) by

the much simper electron densityρ, and electron densityρ determines all properties of

the ground energy state.

We will discuss the formulations of density functional theory below. For the

sake of clarity and notational simplicity, we denote electrons’ spinorbital wavefunctions

(SOW) and orbital wavefunctions (OW) by ψ and φ, which are similar notations as

molecular spinorbitals and molecular orbitals in Hartree-Fock method. Suppose the

electronic system has nα spin-up electrons and nβ spin-down electrons, the vector of

spinorbital wavefunctions and orbital wavefunctions are given by:

Ψ = {ψ1ψ2 . . . ψnα+nβ}, (2.3.15)

Φ = {φ1φ2 . . . φnα+nβ}, (2.3.16)

where the subscripts label different electrons. The relationship among spinorbital wave-

functions and orbital wavefunctions are given by:

ψi = φiα, i = 1, . . . , nα, (2.3.17)

ψi = φiβ, i = nα + 1, . . . , nα + nβ. (2.3.18)

The electron density are given by:

ρα(~x) =
nα∑
i=1

φ∗i (~x)φi(~x) =
nα∑
i=1

|φi(~x)|2, (2.3.19)

ρβ(~x) =

nα+nβ∑
i=nα+1

φ∗i (~x)φi(~x) =

nα+nβ∑
i=nα+1

|φi(~x)|2, (2.3.20)

ρ(~x) = ρα(~x) + ρβ(~x). (2.3.21)

Spinorbital wavefunctions and orbital wavefunctions are orthonormal, thereby

satisfying the relation:∫
ψ∗i (~x)ψj(~x)d~x = δij, i, j = 1, . . . , nα + nβ, (2.3.22)∫
φ∗i (~x)φj(~x)d~x = δij, i, j = 1, . . . , nα, (2.3.23)∫
φ∗i (~x)φj(~x)d~x = δij, i, j = nα + 1, . . . , nα + nβ. (2.3.24)
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Also the system requires the conservation of charge:∫
ρα(~x)d~x = nα, (2.3.25)∫
ρβ(~x)d~x = nβ, (2.3.26)∫
ρ(~x)d~x = nα + nβ. (2.3.27)

The total electronic energy of an (nα + nβ)-electron system is given by:

E = T (ρ) + V (ρ) + J(ρ) +K(ρ). (2.3.28)

The first term is the kinetic energy of the non-interacting electrons,

T (ρ) = −1

2

nα+nβ∑
i=1

∫
φ∗i (~x)O2φi(~x)d~x. (2.3.29)

The second term is the elctronic energy between electrons and external field, where

Vext(~x) is the external field,

V (ρ) =

∫
ρ(~x)Vext(~x)d~x. (2.3.30)

The third term is the electrostatic interaction energy among the electrons,

J(ρ) =
1

2

∫ ∫
ρ(~x)ρ(~x′)

|~x− ~x′|
d~xd~x′. (2.3.31)

The last term is the electron exchange and correlation energy term,

K(ρ) =

∫
k(ρ(~x))d~x. (2.3.32)

The first three terms in (2.3.28) are always fixed. The only difference among

different density functional theory models is K(ρ). Numerous approaches have been

proposed to approximate electron exchange and correlation energy term K(ρ).

Section 2.3.1 introduces local spin density approximation. Section 2.3.2 intro-

duces generalized gradient approximation. Meta generalized gradient approximation

and generalized density functional theory models are discussed in Section 2.3.3 and

Section 2.3.4.
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2.3.1 Local Spin Density Approximation

If we assume K(ρ) is only a function of ρ itself, which is right if the electron

gas is uniform, (2.3.28) becomes local spin density approximation model [81]. The

exchange and correlation energy K(ρ) of local spin density approximation can be sep-

arated into individual contributions from the exchange part Kx(ρ) and the correlation

part Kc(ρ),

K(ρ) = Kx(ρ) +Kc(ρ), (2.3.33)

where

Kx(ρ) = −3

4

(
6

π

)1/3 ∫
(ρ3/4
α (~x) + ρ

3/4
β )(~x)d~x, (2.3.34)

and

Kc(ρ) =

∫
kc(ρ(~x))d~x. (2.3.35)

People always use the parameterization of [122] fitted to accurate Monte Carlo simula-

tions carried out by [24] to approximate Kc(ρ).

Local spin density approximation is very accurate for solids, and it is still widely

used in condensed matter physics. It is less useful for atoms and molecules, which have

a nonuniform electron gas.

By the method of the Lagrange multiplier, we multiply each (2.3.22) by the

Lagrangian multiplier −εji and add to the equation (2.3.28). By the similar process in

restricted Hartree-Fock, we obtain eigenvalue equation for spin-up electrons

F̂αφi = {T̂i + V̂i +

nα+nβ∑
j=1

Ĵj + K̂i,α}φi,

= εiφi, i = 1, . . . , nα, (2.3.36)

and eigenvalue equation for spin-down electrons

F̂βφi = {T̂i + V̂i +

nα+nβ∑
j=1

Ĵj + K̂i,β}φi,

= εiφi, i = nα + 1, . . . , nα + nβ, (2.3.37)
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where T̂i, V̂i, Ĵj have been defined in (2.2.23) and

K̂i,α =
∂k(ρ)

∂ρα
,

K̂i,β =
∂k(ρ)

∂ρβ
, (2.3.38)

2.3.2 Generalized Gradient Approximation

Although many generalizations of the local spin density approximation were

proposed, the first practical one was the generalized gradient approximation [118, 83,

10, 86, 123, 117, 119], which introduces Oρ as additional local ingredients of K(ρ).

Thus,

K(ρ,Oρ) =

∫
Ω

k(ρ,Oρ)d~x. (2.3.39)

The original motivation of generalized gradient approximation is the second-

order gradient expansion approximation (GEA). The expression of the second-order

gradient expansion approximation is:

K(ρ,Oρ) =

∫ [
ρ4/3
α (~x) + ρ

4/3
β (~x) + Cαα

(Oρα(~x))2

ρ
4/3
α (~x)

+Cββ
(Oρβ(~x))2

ρ
4/3
β (~x)

+ Cαβ
Oρα(~x)Oρβ(~x)

ρ
2/3
α (~x)ρ

2/3
β (~x)

]
d~x. (2.3.40)

The second-order gradient expansion approximation is valid for slowly varying densi-

ties. The coefficients are derived in the hope that gradient expansion approximation

could improve local spin density approximation for real solids and even for molecules.

We can decompose exchange-correlation hole ρxc in (2.1.39) into exchange and

correlation contributions, then

ρxc(~x1, ~x2) = ρx(~x1, ~x2) + ρc(~x1, ~x2). (2.3.41)

From the definition of the exact exchange energy functional (2.2.21), we can define the

exchange hole as

ρx(~x1, ~x2) = −1

2

|ρ1(~x1, ~x1)|2

ρ(~x1)
. (2.3.42)

Thus, the exchange hole satisfies∫
ρx(~x1, ~x2)d~x2 = −1, (2.3.43)
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and the correlation hold satisfies ∫
ρc(~x1, ~x2)d~x2 = 0, (2.3.44)

PBE-GGA [118] is another widely used non-empirical generalized gradient ap-

proximation model, which satisfies (2.3.43) and (2.3.44). K(ρ,Oρ) includes exchange

energy part Kx(ρ,Oρ) and correlation energy part Kc(ρ,Oρ). The expressions are:

Kx(ρ,Oρ) =

∫
ρεunifX (ρ)FX(s)d~x, (2.3.45)

where

FX(s) = 1 + κ− κ

1 + µs2/κ
. (2.3.46)

Kc(ρ,Oρ) =

∫
ρ[εunifC (rs, ζ) +H(rs, ζ, t)]d~x, (2.3.47)

where

H =
γφ3

a0

ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
. (2.3.48)

All the parameters and explicit expressions could be found in [118].

By the method of the Lagrange multiplier and similar process in local spin den-

sity approximation, we obtain eigenvalue equation for spin-up electrons

F̂αφi = {T̂i + V̂i +

nα+nβ∑
j=1

Ĵj + K̂i,α}φi,

= εiφi, i = 1, . . . , nα, (2.3.49)

and eigenvalue equation for spin-down electrons

F̂βφi = {T̂i + V̂i +

nα+nβ∑
j=1

Ĵj + K̂i,β}φi,

= εiφi, i = nα + 1, . . . , nα + nβ, (2.3.50)

where T̂i, V̂i, Ĵj have been defined in (2.2.23) and

K̂i,α =
∂k(ρ,Oρ)

∂ρα
− O

(
∂k(ρ,Oρ)

∂Oρα

)
,

K̂i,β =
∂k(ρ,Oρ)

∂ρβ
− O

(
∂k(ρ,Oρ)

∂Oρβ

)
. (2.3.51)
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2.3.3 Meta Generalized Gradient Approximation

Meta generalized gradient approximation [116, 156, 9, 33, 127, 121, 149] as-

sumes K(ρ) is a function of ρ, Oρ, O2ρ and τ = 1
2

∑
|Oψi|2. Thus,

K(ρ,Oρ,O2ρ, τ) =

∫
Ω

k(ρ,Oρ,O2ρ, τ)d~x, (2.3.52)

The Laplacians O2ρ seem like the more natural next step, since they appear in

the fourth-order gradient expansion. τ appears in the Taylor expansion of the exchange

hole density about |~x′ − ~x| = 0.

The most famous meta generalized gradient approximation model is TPSS-

Meta-GGA [149], where the exchange energy part is:

Kx(ρ,Oρ,O
2ρ, τ) =

∫
Ω

ρεunifX (ρ)FX(p, z)d~x, (2.3.53)

and the correlation energy part is:

Kc(ρ,Oρ,O
2ρ, τ) =

∫
Ω

ρεrevPKZBc [1 + dεrevPKZBc (τW/τ)3]d~x. (2.3.54)

All the parameters and explicit expressions could be found in [149].

2.3.4 Generalized Density Functional Theory Models

For more general models, K(ρ) is considered as a functional of ρ,Oρ, . . . ,Okρ.

Thus

K(ρ,Oρ,O2ρ, . . . ,Okρ) =

∫
Ω

k(ρ,Oρ,O2ρ, . . . ,Okρ)d~x. (2.3.55)

This is natural to introduce higher order derivatives of ρ into K(ρ).

2.4 Self-Consistent Method

Both Hartree-Fock method and density functional theory are solved by Self-

consistent iterative methods. Section 2.4.1 and Section 2.4.2 will give an introduction

to Self-consistent iterative methods, and how they are applied to Hartree-Fock method

and density functional theory.
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2.4.1 Hartree-Fock

The general procedure for solving (2.2.39), (2.2.44) and (2.2.45) is Self-

consistent method [129]. One begins with initial guesses on φi’s, and solves correspond-

ing effective one-electron eigenvalue equation. Then we get the n lowest eigenvalues

for (2.2.39), nα lowest eigenvalues for (2.2.44) and nβ lowest eigenvalues for (2.2.45).

Calculate the difference between resulting φi’s and φi’s calculated in last step. This

process is then repeated until the difference is smaller than the error threshold.

2.4.2 Density Functional Theory

The general procedure for solving (2.3.36), (2.3.37), (2.3.49) and (2.3.50) are

very similar with Hartree-Fock [81]. One begins with an assumed ρ, and constructs

corresponding Ĵ and K̂. Then solve corresponding effective one-electron eigenvalue

equation, and get the nα lowest eigenvalues for (2.3.36) and (2.3.49) and the nβ lowest

eigenvalues for (2.3.37) and (2.3.50). A new electronic density ρ can be constructed, and

calculate the difference between resulting ρ and ρ calculated in last step. This process is

then repeated until the difference is smaller than the error threshold.



Chapter 3

Analysis of Continuous and Discrete

Electronic Structure Models

This chapter gives a complete mathematical analysis on Hartree-Fock and den-

sity functional theory models [146, 67]. Section 3.1 shows the motivation why we feel

interested in the mathematical properties of these models. The physical system and

some formulations are defined in Section 3.2. The definitions, theorems and notations,

which are used in our proofs, are given in Section 3.3. In Section 3.4, we prove the

existence of a minimizer for these models. In Section 3.5 and Section 3.6, we prove

the convergence of finite element approximation and the convergence of finite element

approximation with numerical quadratures. The convergence of pseudopotential ap-

proximation is shown in Section 3.7. Section 3.8 is our conclusion.

The paper of Suryanarayana et al. [146] presented the existence of a minimizer,

the convergence of finite element approximation, the convergence of finite element ap-

proximation with numerical quadratures and the convergence of pseudopotential ap-

proximation for local spin density approximation model. We generalize the proofs of

Suryanarayana et al. [146] to restricted Hartree-Fock, unrestricted Hartree-Fock, gener-

alized gradient approximation model, meta generalized gradient approximation model

and generalized density functional theory models [67].

36
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3.1 Motivation

Though countless papers have been published in solving Hartree-Fock and den-

sity functional theory problems, only few papers [3, 46, 84, 146] discuss the mathemat-

ical properties of these models, such as the existence of a minimizer, the convergence of

finite element approximation, and the convergence of numerical method.

We generalize the work of Suryanarayana et al. [146] on local spin density ap-

proximation model, and develop a mathematical framework for Hartree-Fock models

and density functional theory models. Under certain conditions, we show the existence

of the solution, and the convergence of finite element approximations including nu-

merical quadratures and pseudopotential approximations [67]. We view this work as a

fundamental and important step to analyze these models from a mathematical point of

view and it will also have great value for future physics models and numerical methods

design.

3.2 Physical System and Formulation

We will introduce the external field Vext in Section 3.2.1 [146, 67]. We assume

the nuclear charge is uniformly distributed in a small ball in Section 3.2.2 [146, 67]. We

also rewrite some equations in Chapter 2 in Section 3.2.3 [146, 67].

3.2.1 External Field

Suppose electrons are moving in the external field generated by M nuclei, and

the external field is given by:

Vext(~x) =
M∑
i=1

zi
|~x− ~xzi |

, (3.2.1)

where zi represents the nuclear charge magnitude of the ith nucleus and ~xzi represents

the nuclear postion of the ith nucleus.

The repulsive energy among the nuclei is:

B =
1

2

M∑
i,j=1

zizj
|~xzi − ~xzj |

, (3.2.2)
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which is an inconsequential constant depending only on the nuclear charges.

3.2.2 Ball Approximation for Singularity

We follow the work of Suryanarayana et al. [146] and use a small ball approx-

imation b(x) to smooth the singularities of nucleus. The external potential could be

rewritten as:

Vext =

∫
b(~x′)

|~x− ~x′|
d~x′, (3.2.3)

where

b(~x) = −
M∑
i=1

ziδ~xzi (~x). (3.2.4)

Here zi is the nuclear charge magnitude at ~xzi , −ziδ~xzi (~x) has a compact support in a

neighborhood around ~xzi and total charge −zi.
The repulsive energy among the nuclei (3.2.2) is:

B =
1

2

∫ ∫
b(~x)b(~x′)

|~x− ~x′|
d~xd~x′, (3.2.5)

3.2.3 Formulation

In order to simplify the notations and proofs, we follow Section 2 of Surya-

narayana et al. paper [146] and rewrite some equations in Chapter 2 [67].

Restricted Hartree-Fock

The electron density can be defined similarly as density functional theory:

ρ(~x) =
2n∑
i=1

φ∗i (~x)φi(~x) =
2n∑
i=1

|φi(~x)|2, (3.2.6)

where

φn+i = φi, i = 1, 2, . . . , n (3.2.7)

Because of the orthonormality of spin factors, (2.2.18), (2.2.19), (2.2.20),

(2.2.21) can be written as:

T (Φ) = 2
n∑
i=1

Ti =
n∑
i=1

∫
φ∗i (~x)O2φi(~x)d~x =

1

2

2n∑
i=1

∫
φ∗i (~x)O2φi(~x)d~x. (3.2.8)
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V (Φ) = 2
n∑
i=1

Vi = 2
n∑
i=1

∫
φ∗i (~x)Vext(~x)φi(~x)d~x,

=
2n∑
i=1

∫
φ∗i (~x)Vext(~x)φi(~x)d~x =

∫ ∫
ρ(~x)b(~x′)

|~x− ~x′|
d~xd~x′. (3.2.9)

J(Φ) = 2
n∑

i,j=1

Jij = 2
n∑

i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φi(~x)φj(~x
′)

|~x− ~x′|
d~xd~x′,

=
1

2

2n∑
i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φi(~x)φj(~x
′)

|~x− ~x′|
d~xd~x′,

=
1

2

∫ ∫
ρ(~x)ρ(~x′)

|~x− ~x′|
d~xd~x′. (3.2.10)

K(Φ) = −
n∑

i,j=1

Kij = −
n∑

i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′,

= −1

4

2n∑
i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′. (3.2.11)

Following the Equation (17) of Suryanarayana et al. paper [146], we have

V (Φ) + J(Φ) +B,

=

∫ ∫
ρ(~x)b(~x′)

|~x− ~x′|
d~xd~x′ +

1

2

∫ ∫
ρ(~x)ρ(~x′)

|~x− ~x′|
d~xd~x′ +

1

2

∫ ∫
b(~x)b(~x′)

|~x− ~x′|
d~xd~x′,

= − inf
ϕ

{
1

8π

∫
|Oϕ(~x)|2d~x−

∫
(ρ(~x) + b(~x))ϕ(~x)d~x

}
, (3.2.12)

where

ϕ(x) =

∫
ρ(~x′)

|~x− ~x′|
dx′ +

∫
b(~x′)

|~x− ~x′|
d~x′ = Vρ(~x) + Vext(~x). (3.2.13)

Also the exact exchange energy term (3.2.11) can be written as:

K(Φ) = −1

4

2n∑
i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′,

= −1

4

2n∑
i,j=1

∫
φ∗i (~x)φj(~x)

∫
φi(~x

′)φ∗j(~x
′)

|~x− ~x′|
d~x′d~x. (3.2.14)
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If we define ϕKij(~x) as:

ϕKij(~x) =

∫
φi(~x

′)φ∗j(~x
′)

|~x− ~x′|
d~x′, (3.2.15)

then

− 1

4π
O2ϕKij(~x) = φi(~x)φ∗j(~x), (3.2.16)

and we have:

K(Φ) =
1

2

2n∑
i,j=1

min
ϕKij

{∫
[

1

8π
(OϕKij(~x))2 − φ∗i (~x)∗φj(~x)ϕKij(~x)]dx

}
. (3.2.17)

The total energy functional E can be written in the following form:

E(Φ) = T (Φ) + J (Φ) +K(Φ), (3.2.18)

where

J (Φ) = −min
ϕ

{
1

8π

∫
|Oϕ(~x)|2d~x−

∫
(ρ(~x) + b(~x))ϕ(~x)d~x

}
. (3.2.19)

Unrestricted Hartree-Fock

The electron density can be defined similarly as previously in density functional

theory:

ρ(~x) =

nα+nβ∑
i=1

φ∗i (~x)φi(~x) =

nα+nβ∑
i=1

|φi(~x)|2 (3.2.20)

Total energy (2.2.43) can be rewritten similarly as done in restricted Hartree-

Fock:

E = T (Φ) + J (Φ) +K(Φ), (3.2.21)

where

T (Φ) =
1

2

nα+nβ∑
i=1

∫
φ∗i (~x)O2φi(~x)d~x, (3.2.22)

K(Φ) = −1

2

[
nα∑
i,j=1

+

nα+nβ∑
i,j=nα+1

]∫ ∫
φ∗i (~x)φ∗j(~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′, (3.2.23)

and J (Φ) (3.2.19).
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We can rewrite the exchange energy term (3.2.23) similarly as done in restricted

Hartree-Fock:

K(Φ) =
1

2

[
nα∑
i,j=1

+

nα+nβ∑
i,j=nα+1

]
min
ϕKij

{∫
[

1

8π
(OϕKij(~x))2 − φ∗i (~x)φj(~x)ϕKij(~x)]dx

}
,

(3.2.24)

where

ϕKij(~x) =

∫
φi(~x

′)φ∗j(~x
′)

|~x− ~x′|
d~x′. (3.2.25)

Density Functional Theory

Total energy functional E (2.3.28) can be written as:

E(ρ) = T (ρ) + J (ρ) +K(ρ), (3.2.26)

where

J (ρ) = −min
ϕ

{
1

8π

∫
|Oϕ(~x)|2d~x−

∫
(ρ(~x) + b(~x))ϕ(~x)d~x

}
, (3.2.27)

ϕ (3.2.13), T (ρ) (2.3.29) and K(ρ) (2.3.32).

3.3 Definition and Theorem

Definitions and theorems are presented in Section 3.3.1 and Section 3.3.2, and

Section 3.3.3 gives us function space notations [1, 35, 144, 31, 16, 49, 76, 28]. All the

definitions, theorems and notations in this section are highly correlated with the proofs

in this chapter.

3.3.1 Definition

Euclidean n-space is called Cartesian space, which is the space of all n-turples

of real numbers. A Banach space is a complete normed vector space. A functional is

a real-valued function on a normed vector space. Euclidean space, Banach space and

nonlinear functional notations are given in Definition 3.3.1.
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Definition 3.3.1 ([1, 35]).

Rn denotes n-dimensional real Euclidean space.

R̄ = R ∪ {+∞,−∞}.

R+ = {x ∈ R|x > 0}.

U, V denote subsets of Rn.

Z denotes a Banach space, and Y is a subset of Z.

F : Y → R̄ is a generally nonlinear functional.

A function space is a topological vector space, consisting of a set of functions

satisfied certain properties. The notations of function spaces are defined in Defini-

tion 3.3.2.

Definition 3.3.2 ([1, 35]). Function spaces :

C(U) = {u : U → R|u is continuous}.

Ck(U) = {u : U → R|u is k-times continuously differentiable}

C∞(U) = {u : U → R|u is infinitely differentiable}.

Cc(U), Ck
c (U), etc. denote these functions in C(U), Ck(U), etc. with compact support.

Lp(U) = {u : U → R|u is Lebesgue measurable, ‖u‖Lp(U) < +∞}.

where ‖u‖Lp(U) =


(∫

U
|u|pd~x

) 1
p , (1 ≤ p < +∞),

ess supU |u|, (p = +∞), ess sup means essential supremum.

Lploc(U) = {u : U → R|u ∈ Lp(V ) for each V ⊂⊂ U},

where V ⊂⊂ U means V is compactly contained in U.

A weak derivative is a generalization of the derivative concept of functions,

which are not differentiable, but only integrable. Definition 3.3.3 gives the definition

of weak derivation.

Definition 3.3.3 ([1, 35]). (Weak Derivatives). Suppose u, v ∈ L1
loc(U) and α is a

multiindex. We say that v is αth-weak partial derivative of u, written

Dαu = v, (3.3.1)
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provided ∫
U

uDαϑd~x = (−1)|α|
∫
U

vϑd~x (3.3.2)

for all test functions ϑ ∈ C∞c (U).

In partial differential equation theory, as it is hard to prove the solutions we

construct belong to some well-behavioral space, we need to define some other kinds

of spaces for less smooth functions. We design Sobolev spaces, consisting of func-

tions with some, but not great smooth properties. A Sobolev space, defined in Defini-

tion 3.3.4, is a vector space of functions with a norm that is a combination of Lp norms

of the function itself as well as its derivatives.

Definition 3.3.4 ([1, 35]). (Sobolev Spaces). Let 1 ≤ p ≤ +∞ and k be a nonnegative

integer. The Sobolev space

W k,p(U) (3.3.3)

consists of all locally summable functions u : U → R such that for each multiindex α

with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(U).

If p = 2, we usually write

Hk(U) = W k,2(U). (3.3.4)

Norms with derivatives are nature extensions of Lp norms, which is used by

Sobolev space, and it needs more strict conditions than Lp norms. The norms of Sobolev

spaces are defined in Definition 3.3.5 and Definition 3.3.6,

Definition 3.3.5 ([1, 35]). Let Φ = (φi)
N
i=1 ∈ (W k,p(U))N . We define

‖Φ‖Wk,p(U) =

(
N∑
i=1

‖φi‖pWk,p(U)

) 1
p

. (3.3.5)

Definition 3.3.6 ([1, 35]). If u ∈ W k,p(U), we define its norm to be

‖u‖Wk,p(U) =


(∑

|α|≤k
∫
U
|Dαu|pd~x

) 1
p
, (1 ≤ p < +∞),∑

|α|≤k ess supU |Dαu|, (p = +∞).
(3.3.6)

For optimization problems, we always design the convex objective functionals,

or we need to transform a non-convex functional to a convex functional by adding some

constraints. The definition of a convex functional is in Definition 3.3.7,
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Definition 3.3.7 ([144, 35]). ∀u, v ∈ Y and α ∈ [0, 1], if

F (αu+ (1− α)v) ≤ αF (u) + (1− α)F (v) (3.3.7)

satisfied, then F is convex.

A sequence is said to be convergent if it approaches some limit. Definition 3.3.8

shows how the convergence of a function sequence is defined in a function space.

Definition 3.3.8 ([144, 35]). We say a sequence {uj} ∈ Y converges to u ∈ Y , written

uj → u, (3.3.8)

when ∀ε > 0, if there exists N , then ‖u− uj‖Y < ε satisfied for all j > N .

Semi-continuity is a generalized property of continuity, which allows a more

general class of functionals. Semi-continuity is weaker than continuity, and it is defined

in Definition 3.3.9.

Definition 3.3.9 ([144, 35]). ∀ sequence {uj} ∈ Y and uj → u, if

F (u) ≤ lim inf
j−>∞

F (uj) (3.3.9)

satisfied, then F is lower semi-continuous.

Coercivity is a class of functionals, which are bounded by below. Defini-

tion 3.3.10 defines the coercivity of a functional.

Definition 3.3.10 ([144, 35]). ∀u ∈ Y , if

F (u) ≥ C0‖u‖2
Y − C1, (3.3.10)

where C0 and C1 are constants, then F is coercive in Y .

The dual space of a function space is a collection of functionals, and the weak

topology is defined using the dual space. The definitions of a bounded linear operator

and dual space are given in Definition 3.3.11.

Definition 3.3.11 ([144, 35]). A bounded linear operator u∗ : Y → R is called a

bounded linear functionals on Y . We write Y ∗ to denote the collection of all bounded

linear functionals on Y ; Y ∗ is the dual space of Y .
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Weak convergence is the convergence of a sequence in the weak topology of a

space. Every strongly convergent sequence is also weakly convergent. Definition 3.3.12

shows the definition of weak convergence in a function space.

Definition 3.3.12 ([144, 35]). We say a sequence {uj} ∈ Y converges weakly to u ∈ Y ,

written

uj ⇀ u, (3.3.11)

when ∀f ∈ Y ∗, f(uj)→ f(u).

Weakly lower semi-continuity is lower semi-continuity in the weak topology

of a space. Contrary to weak convergence, weakly lower semi-continuity is a stronger

condition than lower semi-continuity, which means every weakly lower semi-continuous

sequence is also lower semi-continuous. Definition 3.3.13 gives us the definition of

weakly lower semi-continuity.

Definition 3.3.13 ([144, 35]). ∀ sequence {uj} ∈ Y and uj ⇀ u, if

F (u) ≤ lim inf
j−>∞

F (uj) (3.3.12)

satisfied, then F is weakly lower semi-continuous.

Weak coercivity is the coercivity in the weak topology of a space, and it is a

weaker condition than strong coercivity, which is defined in Definition 3.3.14.

Definition 3.3.14 ([31]). If Y is reflective. ∀u ∈ Y, F (u) tends to +∞ as‖u‖Y tends to

+∞, then F is coercive in the weak topology of Y .

Among variational convergences, Γ-convergence plays an important role for its

compactness properties and the large number of results concerning Γ-limits of inte-

gral functionals. Also we can express all other variational convergence easily in the

language of Γ-convergence. Γ-convergence of a sequence of a functions is defined in

Definition 3.3.15.

Definition 3.3.15 ([31, 16]). The sequence (Fh) Γ-converges to a functional F in Y , if

for any sequence (uh) → u in Y , we have lim infh→0 Fh(uh) ≥ F (u) and a recovery

sequence can be constructed.
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Equi-coercive sequence is an important assumption in Γ-convergence analysis.

Definition 3.3.16 defines weak equi-coercive sequence.

Definition 3.3.16 ([31, 16]). The sequence (Fh) is equi-coercive in the weak topology

of Y , if there exits a weakly coercive function Λ : Y → R̄ independent of h such that

Fh ≥ Λ on Y for every h.

3.3.2 Theorem

Weak lower semi-continuity is a stronger condition than lower semi-continuity,

and Theorem 3.3.17 shows how we could get weakly lower semi-continuity of a func-

tional from lower semi-continuity.

Theorem 3.3.17 ([144]). If F is convex and lower semi-continous, then F is weakly

lower semi-continuous.

Theorem 3.3.18 is an inequality, which connects the first order derivative of a

function and the first order derivative of the absolute value of this function. It will be

used to bound the kinetic energy term.

Theorem 3.3.18 ([49]). |O|φi|| ≤ |Oφi|, if φi ∈ H1
0 (Ω).

Theorem 3.3.19 gives inclusions among Lp spaces, and inequalities among

norms of Lp spaces.

Theorem 3.3.19 ([76]). Let U be a finite bounded domain and 1 ≤ p < q ≤ +∞. For

any function f , if f ∈ Lp(U), Lq(U), then

‖f‖Lp(U) ≤ C‖f‖Lq(U), (3.3.13)

Lq(U) ⊂ Lp(U), (3.3.14)

where C is a positive constant.

Theorem 3.3.20 shows the properties between function spaces, where one func-

tion space is compactly embedded in the other function space.

Theorem 3.3.20 ([1]). If Y ⊂⊂ Z, then ‖u‖Z ≤ C‖u‖Y for a constant C, and each

bounded sequence in Z is precompact in Y .
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Theorem 3.3.21 shows the error associated with n-th numerical quadrature,

which is our starting point to prove the convergence of finite element convergence with

numerical quadratures.

Theorem 3.3.21 ([28]). Suppose F =
∫
f(~x)d~x. If the quadrature rule is n-th order,

then the error associated with numerical quadrature F̃ is given by

|F̃ − F | ≤ Cn+1

∫
|Dn+1f(~x)|d~x. (3.3.15)

Young’s Inequality, Hölder inequality and Poincaré inequality are standard tools

in our proofs, and they are described carefully in Theorem 3.3.22, Theorem 3.3.23 and

Theorem 3.3.24.

Theorem 3.3.22 ([1, 35]). (Young’s Inequality). Let 1 < p, q < +∞, 1
p

+ 1
q

= 1. Then

ab ≤ ap

p
+
bq

q
, (a, b > 0). (3.3.16)

Theorem 3.3.23 ([1, 35]). (Hölder Inequality). Assume 1 ≤ p, q ≤ +∞, 1
p

+ 1
q

= 1.

Then if u ∈ Lp(U), v ∈ Lq(U), we have∫
U

|uv|d~x ≤ ‖u‖Lp(U)‖v‖Lq(U). (3.3.17)

Theorem 3.3.24 ([1, 35]). (Poincaré Inequality). Assume that 1 ≤ p ≤ +∞ and U is

bounded with a Lipchitz boundary. Then there exists a constant C depending only on U

and p, such that for every function u in the Sobolev Space W 1,p(U),

‖u‖Lp(U) ≤ C‖Ou‖Lp(U). (3.3.18)

Inverse inequality relates the norms of functions in finite element approximate

spaces, which is useful in finite element analysis. Theorem 3.3.25 gives a clear descrip-

tion of inverse inequality.

Theorem 3.3.25 ([28]). (Inverse Inequality). Let Th be a family of triangulations of

mesh size 0 < h ≤ 1. Assume that Yh is a finite dimensional subspace of Y consisting

of functions whose restriction to every cell in Th is a polynomial, and Yh is a subspace

of W l,p and Wm,q, where 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞ and 0 ≤ m ≤ l. Then there

exists a constant C = C(l, p, q, n, Y ) such that for all u ∈ Yh.

‖u‖W l,p ≤ Chm−l+n/p−n/q‖Ou‖Wm,q . (3.3.19)
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Sobolev embedding theorem gives inclusions between certain Sobolev spaces,

and shows that Sobolev spaces are compactly embedded in others under stronger condi-

tions.

Theorem 3.3.26 ([1, 35]). (Sobolev Embedding Theorem). Let j ≥ 0, m ≥ 1, 1 ≤ p <

+∞ and j,m, p, q be integers. Let n be the dimension of U .

If n > mp, then

W j+m,p(U) ⊂ W j,q(U), (1 ≤ q ≤ +∞)

W j+m,p(U) ⊂⊂ W j,q(U), (1 ≤ q < +∞) (3.3.20)

If n = mp, then

W j+m,p(U) ⊂ W j,q(U), (1 ≤ q < +∞)

W j+m,p(U) ⊂⊂ W j,q(U), (1 ≤ q < +∞) (3.3.21)

If 0 < n−mp < n, then

W j+m,p(U) ⊂ W j,q(U), (1 ≤ q ≤ p∗ =
np

n−mp
)

W j+m,p(U) ⊂⊂ W j,q(U), (1 ≤ q < p∗ =
np

n−mp
) (3.3.22)

Theorem 3.3.27 shows is a basic property of Sobolev spaces. The Banach space

is reflexive if the map from it to its second dual space is surjective.

Theorem 3.3.27 ([144, 35]). Sobolev spaces are reflexive Banach spaces.

Theorem 3.3.28 concerns the continuity of a functional, where the integrand is

bounded by polynomials. Theorem 3.3.30 concerns the existence of a minimizer from

coercivity and lower semi-continuity.

Theorem 3.3.28 ([16]). If f is continuous and satisfies a growth condition of the form

|f(~x)| ≤ C(1+ |~x|p), where C is a constant. Then F =
∫
U
fd~x is continuous on Lp(U).

Theorem 3.3.29 ([31, 16]). Assume that the function F : Y → R̄ is coercive and lower

semi-continuous. Then F has a minimizer in Y .
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Theorem 3.3.30 concerns the convergence of the minimizers of an equi-coercive

sequence of functions. Theorem 3.3.31 shows a sum property of Γ-limit. Both of them

are used to prove the convergence of finite element approximation and finite element

approximation with numerical quadratures.

Theorem 3.3.30 ([31, 16]). Suppose that (Fh) is a sequence of functionals, which are

equi-coercive in Y . And if (Fh) Γ-converges to a functional F in Y , then F is coercive

and

min
u∈Y

F (u) = lim
h→0

inf
u∈Y

Fh(u). (3.3.23)

Theorem 3.3.31 ([31, 16]). Suppose that (Fh) and (Gh) are sequences of functionals.

If (Fh) Γ-converges to F and (Gh) is continuously convergent to G, then (Fh + Gh)

Γ-converges to F +G.

3.3.3 Function Space Notation

Let Ω ⊂ R3 be a finite bounded Lipchitz domain and the electronic system be

restricted in this domain. In our analysis, we use standard notations for Sobolev spaces

and their norms defined in (3.3.3) and (3.3.4) [1, 35]. We denote the space of m-times

weakly differentiable functions in L2(Ω) and Lp(Ω) by Hk(Ω) and W k,p(Ω) , and the

subspace ofHk(Ω) andW k,p(Ω) with zero boundary conditions byHk
0 (Ω) andW k,p

0 (Ω).

We denote by X the solution space.

3.4 Existence of a Minimizer

The Section 3.2 of Suryanarayana et al. paper [146] presented the existence of

a minimizer for the local spin density approximation model. We generalize the proofs

of Suryanarayana et al. [146] to restricted Hartree-Fock, unrestricted Hartree-Fock,

generalized gradient approximation models, meta generalized gradient approximation

models and generalized density functional theory models [67].

The existence of a minimizer is the prerequisite for the ground state energy cal-

culation. We use Theorem 3.3.29 to show the existence of a minimizer. The coercivity
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is easier to be satisfied if we have more converging sequences, while the lower semi-

continuity is easier to verify if we have less converging sequences. And the number of

converging sequences is determined by the choice of topology on X . In the following

proof, we choose weak topology of X for the proof.

Section 3.4.1 shows the proofs of Hartree-Fock methods. Section 3.4.2 shows

the proof of density functional theory models.

3.4.1 Hartree-Fock

The proofs of restricted Hartree-Fock and unrestricted Hartree-Fock will be dis-

cussed in this section [67].

Restricted Hartree-Fock

The total energy functional E has been defined in (3.2.18). Suppose the solution

space is [67]:

XRHF =

{
Φ = (φi)

2n
i=1 ∈ (H1

0 (Ω))2n|〈φi, φj〉(L2(Ω),L2(Ω)) = δij;

ϕKij ∈ H1
0 (Ω), ϕ ∈ H1

0 (Ω), i, j = 1, 2, . . . , 2n.

}
. (3.4.1)

The well-defined property shows the total energy functional E will not be infinite

in a given function space, and Lemma 3.4.1 shows E is well-defined in XRHF .

Lemma 3.4.1 ([67]). E is well-defined in XRHF .

Proof. By the definitions (3.2.8), (3.2.17), (3.2.19) and Hölder Inequality, we can have

E ≤ C
{
‖Φ‖2

H1(Ω) + ‖ϕ‖2
H1(Ω) + ‖ρ‖L2(Ω)‖ϕ‖L2(Ω) + ‖ϕ‖L1(Ω)

+
∑2n

i,j=1

(
‖ϕKij‖2

H1(Ω) + ‖ϕKij‖L2(Ω)‖φi‖L4(Ω)‖φj‖L4(Ω)

)}
, (3.4.2)

where C is a positive constant and ρ is defined in (3.2.6). It is also straightforward to

show:

‖ρ‖L2(Ω) = ‖Φ‖2
L4(Ω) (3.4.3)

By Sobolev Embedding Theorem, we have H1
0 (Ω) compactly embedded in

L1(Ω), L2(Ω) and L4(Ω). Then (3.4.1) and Theorem 3.3.20 show E is well-defined

in XRHF . Lemma 3.4.1
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XRHF is a subspace of (H1
0 (Ω))2n. XRHF is closed if every sequence in XRHF

that converge in (H1
0 (Ω))2n, will converge to a function in XRHF . Lemma 3.4.2 proves

the XRHF is closed in the weak topology of (H1
0 (Ω))2n, which will be used to show the

lower semi-continuity and coercivity of E in the weak topology of XRHF .

Lemma 3.4.2 ([146, 67]). XRHF is closed in the weak topology of (H1
0 (Ω))2n.

Proof. The proof is exactly same as Lemma 1 of Suryanarayana et al. paper [146].

Consider an arbitrary sequence {Φl} ⊂ XRHF with Φl ⇀ Φ in H1
0 (Ω). By Sobolev

Embedding Theorem and Theorem 3.3.20, H1
0 (Ω) has a compact embedding into

L2(Ω), which means {Φl} has a subsequence Φ′l ⇀ Φ′ from which it follows that

δij = 〈φ′i,l, φ′j,l〉(L2(Ω),L2(Ω)) = 〈φi, φj〉(L2(Ω),L2(Ω)) for i, j = 1, 2, . . . , 2n as l → +∞.

Therefore Φ ∈ XRHF , which implied that XRHF is closed in the weak topology of

(H1
0 (Ω))2n.

Lemma 3.4.3 shows the lower semi-continuity of the kinetic energy functional

T (Φ). Since T (Φ) is a part of EΦ), Lemma 3.4.3 will be used to show the lower semi-

continuity of EΦ).

Lemma 3.4.3 ([67]). T (Φ) is lower semi-continuous if Φ ∈ XRHF .

Proof. The proof is exactly same as Node (d) in Section 3.2 of The paper of Surya-

narayana et al. [146]. As
∑2n

i=1

∫
φ∗i (~x)O2φi(~x)d~x is continuous in the strong topology

of H1
0 (Ω) and convex, it follows that

∑2n
i=1

∫
φ∗i (~x)O2φi(~x)d~x is lower semi-continuous

in the weak topology of H1
0 (Ω) by Theorem 3.3.17.

Lemma 3.4.4 and Lemma 3.4.5 prove the continuous property of J (Φ) and

K(Φ), which are the preconditions of weakly lower semi-continuity.

Lemma 3.4.4 ([67]). J (Φ) is continuous if Φ ∈ (L4(Ω))2n.

Proof. [45, Lemma 2]. If ϕu denote the minimizer of J (Φu, ρ = ρu) (3.2.19), then

1

4π

∫
Ω

OϕuOχd~x =

∫
Ω

(ρu + b)χd~x, ∀χ ∈ H1
0 (Ω). (3.4.4)

For every ρu, ρv, we have

1

4π

∫
Ω

O(ϕu − ϕv)Oχd~x =

∫
Ω

(ρu − ρv)χd~x, ∀χ ∈ H1
0 (Ω). (3.4.5)
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By Hölder Inequality and Poincaré Inequality, it is immediate that

‖ϕu − ϕv‖H1
0 (Ω) ≤ C‖ρu − ρv‖L2(Ω), (3.4.6)

where C is a positive constant. By (3.4.3), it shows ρ is continuous in L2(Ω) if Φ ∈
(L4(Ω))2n. Therefore,

|J (Φu)− J (Φv)| ≤ ‖O(ϕu − ϕv)‖L2(Ω)‖O(ϕu + ϕv)‖L2(Ω)

+‖ρu − ρv‖L2(Ω)‖ϕu‖L2(Ω) + ‖ρv‖L2(Ω)‖ϕu − ϕv‖L2(Ω)

+‖ϕu − ϕv‖L2(Ω)‖b‖L2(Ω) (3.4.7)

By (3.2.19) and (3.4.6), J (Φ) is continuous if Φ ∈ (L4(Ω))2n.

Lemma 3.4.5 ([67]). K(Φ) is continuous if Φ ∈ (L4(Ω))2n.

Proof. From (3.2.17), we have

K(Φ) = −
2n∑
i,j=1

Kij(Φ) =
1

2

2n∑
i,j=1

min
ϕKij

{∫
[

1

8π
(OϕKij(~x))2 − φ∗i (~x)φj(~x)ϕKij(~x)]d~x

}
.

(3.4.8)

If ϕKij ,Φu denote the minimizer of −Kij(Φu), then

1

4π

∫
Ω

OϕKijOχd~x =

∫
Ω

φiφ
∗
jχd~x, ∀χ ∈ H1

0 (Ω). (3.4.9)

For every Φu,Φv, we have

1

4π

∫
Ω

O(ϕKij ,Φu−ϕKij ,Φv)Oχd~x =

∫
Ω

(φi,uφ
∗
j,u−φi,vφ∗j,v)χd~x, ∀χ ∈ H1

0 (Ω). (3.4.10)

By Hölder Inequality and Poincaré Inequality, it is immediate that,

1

4π
‖ϕKij ,Φu − ϕKij ,Φv‖H1

0 (Ω) ≤ C‖φi,uφ∗j,u − φi,vφ∗j,v‖L2(Ω), (3.4.11)

where C is a positive constant. Thus,

|K(Φu)−K(Φv)|

≤ C
2n∑
i,j=1

{
‖O(ϕKij ,Φu − ϕKij ,Φv)‖L2(Ω)‖O(ϕKij ,Φu + ϕKij ,Φv)‖L2(Ω)

+‖(φi,uφ∗j,u − φi,vφ∗j,v)‖L2(Ω)‖ϕKij ,Φu‖L2(Ω)

+‖φi,vφ∗j,v‖L2(Ω)‖ϕKij ,Φu − ϕKij ,Φv‖L2(Ω)

}
. (3.4.12)

Then by (3.4.1) and (3.4.11), K(Φ) is continuous if Φ ∈ (L4(Ω))2n.
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Lemma 3.4.6 is used to show the weakly lower semi-continuity of J (Φ) and

K(Φ) from their continuous property shown in Lemma 3.4.4 and Lemma 3.4.5.

Lemma 3.4.6 ([67]). Y and Z are two topological spaces. If a functional F is continu-

ous in the strong topology of Z, and Y is compactly embedded in Z (Y ⊂⊂ Z), then F

is lower semi-continuous in the weak topology of Y .

Proof. Consider an arbitrary sequence (φn) ⊂ Y with φn ⇀ φ in Y . If F (φn) ≤ a for

all n and a is a real number, then we can find a subsequence (φnj) ⊂ Y with φnj → φ

in Z by Theorem 3.3.20. Because F is continuous in the strong topology of Z, we have

F (φ) = limnj→∞ F (φnj) ≤ a, which means {φ ∈ Y |F (φ) ≤ a} is weakly closed

in X , and this is another definition of weakly lower semi-continuity. Thus, F is lower

semi-continuous in the weak topology of Y .

Lemma 3.4.7 shows the weakly lower semi-continuity of E , and it is a precondi-

tion of the existence of a minimizer.

Lemma 3.4.7 ([67]). E is lower semi-continuous in the weak topology of XRHF .

Proof. From Lemma 3.4.4 and Lemma 3.4.5, K(Φ) and J (Φ) are continuous in

(L4(Ω))2n. Because H1
0 (Ω) ⊂⊂ L4(Ω) and Lemma 3.4.6, K(Φ) and J (Φ) are lower

semi-continuous in the weak topology of XRHF .T (Φ) is also lower semi-continuous in

the weak topology of XRHF by Lemma 3.4.3.Therefore, E is lower semi-continuous in

the weak topology of XRHF .

Lemma 3.4.8 shows the weak coercivity of E , and it is another precondition of

the existence of a minimizer.

Lemma 3.4.8 ([67]). E is coercive in the weak topology of XRHF .

Proof. Suppose η(~x, ~x′) = φi(~x)φj(~x
′)− φj(~x)φi(~x

′), then∫ ∫
η∗(~x, ~x′)η(~x, ~x′)

|~x− ~x′|
d~xd~x′

=

∫ ∫
φ∗i (~x)φ∗j(~x

′)φi(~x)φj(~x
′)

|~x− ~x′|
d~xd~x′ −

∫ ∫
φ∗i (~x)φ∗j(~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′

−
∫ ∫

φ∗j(~x)φ∗i (~x
′)φi(~x)φj(~x

′)

|~x− ~x′|
d~xd~x′ +

∫ ∫
φ∗j(~x)φ∗i (~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′

= 2(Jij −Kij) ≥ 0. (3.4.13)
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From (3.2.10), (3.2.11) and (3.4.13), we have

J(Φ) +K(Φ) ≥ 0. (3.4.14)

We point out that Vext(~x) is poinwise bounded and it holdes |Vext(~x)| ≤ C almost ev-

erywhere in Ω and some constant C. Therefore, |V (Φ)| ≤ C
∫

Ω
ρdx = 2nC. Similarly,

you can have |B| ≤ C. Also T (Φ) = 1
2
‖OΦ‖2

L2(Ω). Thus,

E ≥ C1‖Φ‖2
H1

0 (Ω) + C2, (3.4.15)

where C1 and C2 are positive constants. This ensures E → +∞ as ‖Φ‖H1
0 (Ω) → +∞.

This is the coercivity of E in the weak topology of XRHF .

Theorem 3.4.9 shows the existence of a minimizer for the restricted Hartree-

Fock model.

Theorem 3.4.9 ([67]). E has a minimizer in XRHF .

Proof. This is an immediate result of Lemma 3.4.7, Lemma 3.4.8. and Theorem 3.3.29.

Unrestricted Hartree-Fock

The total energy functional E has been defined in (3.2.21). Suppose the solution

space is [67]:

XUHF =

{
Φ = (φi)

nα+nβ
i=1 ∈ (H1

0 (Ω))nα+nβ |〈φi, φj〉(L2(Ω),L2(Ω)) = δij,

ϕKij ∈ H1
0 (Ω), ϕ ∈ H1

0 (Ω), i, j = 1, 2, . . . , nα + nβ

}
. (3.4.16)

Theorem 3.4.10 shows the existence of a minimizer for the unrestricted Hartree-

Fock model.

Theorem 3.4.10 ([67]). E has a minimizer in XUHF .

Proof. The only difference between restricted Hartree-Fock and unrestricted Hartree-

Fock is the number of spin-up electrons and spin-down electrons. The proof is exactly

the same as Section restricted Hartree-Fock.
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3.4.2 Density Functional Theory

We discuss the existence of a minimizer of density functional theory models in

this section, including local spin density approximation, generalized gradient approx-

imation, meta generalized gradient approximation, and generalized density functional

theory models [67].

Local Spin Density Approximation

The existence of a minimizer of local spin density approximation has been care-

fully studied in the Section 3.2 of Suryanarayana et al. paper [146]. More to the local

spin density approximation, we will discuss other density functional theory models be-

low [67].

Generalized Gradient Approximation

Suppose the exchange and correlation energy K(ρ,Oρ) can be written as:

K(ρ,Oρ) =

∫
Ω

k(ρ,Oρ)d~x. (3.4.17)

Suppose the solution space is [67]:

XGGA =

{
Φ = (φi)

nα+nβ
i=1 ∈ (H1

0 (Ω))nα+nβ |〈φi, φj〉(L2(Ω),L2(Ω)) = δij,

ϕ ∈ H1
0 (Ω), i, j = 1, 2, . . . , nα + nβ

}
. (3.4.18)

We make the following hypothesis on k(ρ,Oρ) [67]:

(A1) The density k(ρ,Oρ) is convex and continuous in R+.

(A2) The growth condition

k(ρ,Oρ) =
∑
α,β

kα,β, |kα,β| ≤ c1(α,β)|ρ|α|Oρ|β + c2(α,β), (3.4.19)

holds for positive constants c1(α,β), c2(α,β) and exponents satisfy:
1 < k1(α,β), k2(α,β), k3(α,β) <∞, 1/k1(α,β) + 1/k2(α,β) + 1/k3(α,β) = 1;

1 ≤ 2k1(α,β)α, k2(α,β)β < 3;

1 ≤ k3(α,β)β < 2.

(3.4.20)
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The number of (α, β) pairs is finite.

Lemma 3.4.11 is an inequality, and it will be used to analyze the complex ex-

change and correlation functional.

Lemma 3.4.11 ([67]). If ai ≥ 0, i = 1, 2, . . . , N and q > 0, there exists constant C

such that (
N∑
i=1

ai

)q

≤ C

(
N∑
i=1

aqi

)
.

Proof. Suppose ai0 = max(ai), i = 1, . . . , N , then(
N∑
i=1

ai

)q

≤ (Nai0)q ≤ N qaqi0 ≤ N q

N∑
i=1

aqi . (3.4.21)

Therefore, we can choose C = N q.

Lemma 3.4.12 shows the exchange and correlation functional K(ρ,Oρ) is well-

defined. K(ρ,Oρ) is a part of E , and Lemma 3.4.12 will be used to show E is well-

defined.

Lemma 3.4.12 ([67]). Let (A1), (A2) hold, K(ρ,Oρ) is well-defined in XGGA.

Proof. By Lemma 3.4.11, Theorem 3.3.18 and Young’s Inequality, we have:

kα,β(ρ,Oρ) ≤ c1(α,β)|ρ|α|Oρ|β + c2(α,β)

≤ c1

nα+nβ∑
i=1

(
|φi|2k1(α,β)α + |φi|k2(α,β)β + |Oφi|k3(α,β)β

)
+ c2,

(3.4.22)

which yields

Kα,β(ρ,Oρ) ≤ c1

[
‖Φ‖2k1(α,β)α

L
2k1(α,β)α(Ω)

+ ‖Φ‖k2(α,β)β
L
k2(α,β)β(Ω)

+ ‖OΦ‖k3β
L
k3(α,β)β(Ω)

]
+ c2,

(3.4.23)

where c1 and c2 are two positive constants, and they don’t need to be same in the proof.

Because 1 ≤ k3(α,β)β < 2, Ω is a finite bounded domain and Theorem 3.3.19, we have

Kα,β(ρ,Oρ) ≤ c1

[
‖Φ‖2k1(α,β)α

L
2k1(α,β)α(Ω)

+ ‖Φ‖k2(α,β)β
L
k2(α,β)β(Ω)

+ ‖OΦ‖2
L2(Ω)

]
+ c2, (3.4.24)
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By (A2) and Sobolev Embedding Theorem, H1
0 (Ω) is compactly embedded in

L2k1(α,β)α(Ω), Lk2(α,β)β(Ω), which meansKα,β(ρ,Oρ) is well-defined. Because the num-

ber of (α, β) pairs is finite, K(ρ,Oρ) is well-defined.

Lemma 3.4.13 shows the total energy functional E of generalized gradient ap-

proximation models are well-defined in XGGA.

Lemma 3.4.13 ([67]). Let (A1), (A2) hold, E is well-defined in XGGA.

Proof. By (A2), Lemma 3.4.1 and Lemma 3.4.12, it is immediate that the total energy

E is well-defined.

Lemma 3.4.14 shows the XGGA is weakly closed of (H1
0 (Ω))nα+nβ , which will

be used to show the weakly lower semi-continuity and weak coercivity of E .

Lemma 3.4.14 ([67, 146]). Let (A1), (A2) hold, XGGA is weakly closed of

(H1
0 (Ω))nα+nβ

Proof. The proof is exact same as Lemma 3.4.2, which follows Lemma 1 of Surya-

narayana et al. paper [146].

Lemma 3.4.15 shows the weakly lower semi-continuity of K(ρ,Oρ), which is

the major different part between generalized gradient approximation model and Hartree-

Fock models.

Lemma 3.4.15 ([67]). Let (A1), (A2) hold, K(ρ,Oρ) is lower semi-continuous in the

weak topology of XGGA.

Proof. From (3.4.22), we have

kα,β(ρ,Oρ) ≤ c1

nα+nβ∑
i=1

(
|φi|2k1(α,β)α + |φi|k2(α,β)β + |Oφi|k3(α,β)β

)
+ c2,

By Theorem 3.3.28, The three terms of Kα,β(ρ,Oρ) is strongly continuous in L2k1α(Ω),

Lk2β(Ω) and W 1,k3β
0 (Ω) correspondingly. By Theorem 3.3.19 and Sobolev Embedding

Theorem, H1
0 (Ω) is a subset of L2k1α(Ω), Lk2β(Ω) and W 1,k3β

0 (Ω). Therefore, K(ρ,Oρ)

is continuous and lower semi-continuous in the strong topology of (H1
0 (Ω))nα+nβ . By

(A1), K(ρ,Oρ) is convex. Thus, K(ρ,Oρ) is weakly lower semi-continuous in
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(H1
0 (Ω))nα+nβ , and as XGGA ⊂ (H1

0 (Ω))nα+nβ and weakly closed, the claimed lower

semi-continuity in the weak topology of XGGA follows.

Lemma 3.4.16 shows E is lower semi-continuous in the weak topology ofXGGA,

and it is a precondition to show the existence of a minimizer.

Lemma 3.4.16 ([67]). Let (A1), (A2) hold, E is lower semi-continuous in the weak

topology of XGGA.

Proof. Lemma 3.4.7 shows the weakly lower semi-continuity of T (ρ) and J (ρ).

Lemma 3.4.15 shows the weakly lower semi-continuity of K(ρ,Oρ). Thus, E is lower

semi-continuous in the weak topology of XGGA.

Lemma 3.4.17 shows an inequality that (T (ρ) + J (ρ)) satisfied, and it will be

used to show the weak coercivity of T (ρ) + J (ρ).

Lemma 3.4.17 ([67, 146]).

T (ρ) + J (ρ) ≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω) − c3, (3.4.25)

where c0, c1, c2 and c3 are positive constants.

Proof. The proof is exactly same as Lemma 3 of Suryanarayana et al. paper [146]. J (ρ)

can be rewritten as

J (ρ) = J(ρ) + V (ρ) +B, (3.4.26)

where Jρ is the electrostatic interaction energy among electrons, Vρ is the electronic

energy between electrons and the external field and B is the repulsive energy among the

nuclei.

J(ρ) = − min
ϕρ∈H1

0 (Ω)

{
1

8π

∫
|Oϕρ(~x)|2d~x−

∫
ρ(~x)ϕρ(~x)d~x

}
. (3.4.27)

J(ρ) is super-linear, we can have

J(ρ) = J(

nα+nβ∑
i=1

|φi|2) ≥
nα+nβ∑
i=1

J(|φi|2)

≥
nα+nβ∑
i=1

[
max

ϕρ∈H1
0 (Ω)

{∫
|φi(~x)|2ϕi,ρ(~x)d~x− 1

8π

∫
|Oϕi,ρ(~x)|2d~x

}]
.

(3.4.28)
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We use ϕi,ρ = c0|φi| as test functions and constant c0 can be determined later. Therefore,

J(ρ) ≥ c0‖Φ‖3
L3(Ω) −

c0

8π
‖OΦ‖2

L2(Ω). (3.4.29)

Becuase external potential Vext is pointwise bounded, we conclude

J (ρ) ≥ c0‖Φ‖3
L3(Ω) −

c0

8π
‖OΦ‖2

L2(Ω) − c1‖Φ‖2
L2(Ω) − c2. (3.4.30)

If we choose c0 < 4π, then 1
2
− c0

8π
= c′0 > 0. We end up with

T (ρ) + J (ρ) ≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω) − c3, (3.4.31)

where c0, c1, c2 and c3 are positive constants.

Lemma 3.4.18 shows E is coercive in the weak topology of XGGA, and it is a

precondition to show the existence of a minimizer.

Lemma 3.4.18 ([67]). Let (A1), (A2) hold, E is coercive in the weak topology of XGGA.

Proof. By Lemma 3.9., (3.4.22) and (3.4.23), we have

E = T (Φ) + J(ρ) +K(ρ,Oρ)

≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω)

−c3

∑
α,β

[
‖Φ‖2k1(α,β)α

L
2k1(α,β)α(Ω)

+ ‖Φ‖k2(α,β)β
L
k2(α,β)β(Ω)

+ ‖OΦ‖k3β
L
k3(α,β)β(Ω)

]
− c4,

(3.4.32)

where c0, c1, c2, c3 and c4 are positive constants. From (A2), 2k1(α,β)α, k2(α,β)β ≤ 3 and

k3(α,β)β ≤ 2, we have E → +∞ as ‖Φ‖H1
0 (Ω) → +∞, thus E is coercive in the weak

topology of XGGA.

Theorem 3.4.19 shows total energy functional E of generalized gradient approx-

imation models have minimizers in XGGA.

Theorem 3.4.19 ([67]). Let (A1), (A2) hold, E possesses a minimizer in XGGA.

Proof. This is an immediate result of Lemma 3.4.16, Lemma 3.4.18. and Theo-

rem 3.3.29.
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Meta Generalized Gradient Approximation

The exchange-correlation energy K(ρ,Oρ,O2ρ, τ) of meta generalized gradient

approximation models could be written as:

K(ρ,Oρ,O2ρ, τ) =

∫
Ω

k(ρ,Oρ,O2ρ, τ)d~x, (3.4.33)

where τ = 1
2

∑
i |Oφi|2.

Suppose the solution space is [67]:

XMeta−GGA =



Φ = (φi)
N
i=1 = (φ1i)

nα+nβ
i=1 + i(φ2i)

nα+nβ
i=1 ;

Z = (ζi)
2nα+2nβ
i=1 = ((φ1i)

nα+nβ
i=1 , (φ2i)

nα+nβ
i=1 );

Z ∈ (Wm,p
0 (Ω))2nα+nβ ;

ρ =
∑nα+nβ

i=1 |φi|2 =
∑2nα+2nβ

i=1 ζ2
i ;

〈φi, φj〉(L2(Ω),L2(Ω)) = δij, φ ∈ H1
0 (Ω), i, j = 1, 2, . . . , nα + nβ.


.

(3.4.34)

We make the following hypothesis on K(ρ,Oρ,O2ρ, τ) [67]:

(B1) The density K(ρ,Oρ,O2ρ, τ) is continuous in R+.

(B2) The growth condition

k(ρ,Oρ,O2ρ, τ) =
∑
α,β

kα,β, |kα,β| ≤ c1(α,β)|ρ|α0|Oρ|α1|O2ρ|α2|τ |β + c2(α,β),

(3.4.35)

holds for positive c1(α,β), c2(α,β) and exponents satisfy
1 < k1(α,β), k2(α,β), . . . , k7(α,β) <∞,

∑7
i=1 1/ki(α,β) = 1;

Wm,p
0 (Ω) ⊂⊂ L2k1α0(Ω),Wm,p

0 (Ω) ⊂⊂ Lk2α1(Ω),Wm,p
0 (Ω) ⊂⊂ Lk4k6α2(Ω);

Wm,p
0 (Ω) ⊂⊂ L2k4α2(Ω),Wm,p

0 (Ω) ⊂⊂ L4(Ω),Wm,p
0 (Ω) ⊂⊂ W 1,k3α1(Ω);

Wm,p
0 (Ω) ⊂⊂ W 1,2k5β(Ω),Wm,p

0 (Ω) ⊂⊂ W 2,k4k7α2(Ω),Wm,p
0 (Ω) ⊂ H1

0 (Ω).

(3.4.36)

The number of (α, β) pairs is finite.

(B3) E is coercive in the weak topology of XMeta−GGA.
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Lemma 3.4.20 shows the total energy functional E of meta generalized gradient

approximation models are well-defined in XMeta−GGA.

Lemma 3.4.20 ([67]). Let (B1), (B2) hold, E is well-defined in XMeta−GGA.

Proof. By Lemma 3.4.11, Theorem 3.3.18 and Young’s Inequality, we have:

kα,β ≤ C

2nα+2nβ∑
i=1

(|ζi|2k1(α,β)α0 + |ζi|k2(α,β)α1 + |ζi|k4(α,β)k6α2 + |ζi|2k4(α,β)α2

+|Oζi|k3(α,β)α1 + |Oζi|2k5(α,β)β + |O2ζi|k4(α,β)k7(α,β)α2). (3.4.37)

From (B2), we can get K(ρ,Oρ,O2ρ, τ) well-defined. Also Wm,p
0 (Ω) ⊂ H1

0 (Ω), which

means other terms in E is well-defined. Thus, E is well-defined in XMeta−GGA.

Lemma 3.4.21 proves XMeta−GGA is weakly closed of (Wm,p
0 (Ω))2nα+2nβ , and

it will be used to show the weakly lower semi-continuity of E .

Lemma 3.4.21 ([67]). Let (B1), (B2) hold, XMeta−GGA is weakly closed of

(Wm,p
0 (Ω))2nα+2nβ .

Proof. Because L2(Ω) ⊂⊂ Wm,p
0 (Ω), the proof is exact same as Lemma 3.4.2, which

follows Lemma 1 of The paper of Suryanarayana et al. [146].

Lemma 3.4.22 proves E is lower semi-continuous in the weak topology of

XMeta−GGA, and it is a precondition of existence of a minimizer.

Lemma 3.4.22 ([67]). Let (B1), (B2) hold, E is lower semi-continuous in the weak

topology of XMeta−GGA.

Proof. As a result of (3.4.37), K(ρ,Oρ,O2ρ, τ) is lower semi-continuous in the weak

topology of XMeta−GGA by Theorem 3.3.28 and Lemma 3.4.6. Because Wm,p
0 (Ω) ⊂⊂

L4(Ω), Wm,p
0 (Ω) ⊂ H1

0 (Ω), Lemma 3.4.3 and Lemma 3.4.6, T (ρ) and J (ρ) are lower

semi-continuous in the weak topology of XMeta−GGA. Therefore, E is lower semi-

continuous in the weak topology of XMeta−GGA.

Theorem 3.4.23 shows the total energy functional E of meta generalized gradient

approximation models have minimizers.
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Theorem 3.4.23 ([67]). Let (B1)- (B3) hold, E possesses a minimizer in XMeta−GGA.

Proof. Therefore, it is an immediate result of Lemma 3.4.2, (B3). and Theorem 3.3.29.

Generalized Density Functional Theory Models

The exchange-correlation energy K(ρ,Oρ,O2ρ, . . . ,Ojρ) could be written as:

K(ρ,Oρ,O2ρ, . . . ,Ojρ) =

∫
Ω

k(ρ,Oρ,O2ρ, . . . ,Ojρ)d~x. (3.4.38)

Suppose the solution space is [67]:

XG−DFT =


Φ = (φi)

N
i=1 = (φ1i)

nα+nβ
i=1 + i(φ2i)

nα+nβ
i=1 ;

Z = (ζi)
2nα+2nβ
i=1 = ((φ1i)

nα+nβ
i=1 , (φ2i)

nα+nβ
i=1 ) ∈ (Wm,p

0 (Ω))2nα+nβ ;

ρ =
∑nα+nβ

i=1 |φi|2 =
∑2nα+2nβ

i=1 ζ2
i ;

〈φi, φj〉(L2(Ω),L2(Ω)) = δij, φ ∈ H1
0 (Ω), i, j = 1, 2, . . . , nα + nβ.


.

(3.4.39)

We make the following hypothesis on k(ρ,Oρ,O2ρ, . . . ,Ojρ) [67]:

(C1) The density k(ρ,Oρ,O2ρ, . . . ,Ojρ) is continuous in R+.

(C2) The growth condition

k(ρ,Oρ,O2ρ, . . . ,Ojρ) =
∑
α

kα,

|kα| ≤ c1(α)|ρ|α0|Oρ|α1|O2ρ|α2 · · · |Ojρ|αj + c2(α)

holds for positive c1(α), c2(α) and exponents satisfy

1 < k0(α), k1(α), . . . , kj(α) <∞,
∑j

i=1 1/ki(α) = 1;

1 < ks,i−s(α) <∞, s = 0, . . . , i and i = 0, . . . , j;

1/ks,i−s(α) + 1/ki−s,s(α) = 1, if s 6= i− s;
1/ks,s(α) + 1/k′s,s(α) = 1, if s = i− s;
Wm,p

0 (Ω) ⊂⊂ ∩ji=0 ∩is=0 W
s,ks,i−s(α)αiki(Ω);

Wm,p
0 (Ω) ⊂ H1

0 (Ω).

The number of k(α) terms is finite.
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(C3) E is coercive in the weak topology of XG−DFT .

Theorem 3.4.24 shows the total energy functional E of generalized density func-

tional theory models have minimizers.

Theorem 3.4.24 ([67]). Let (C1)-(C3) hold, E possesses a minimizer in XG−DFT .

Proof. The proof is very similar with the section meta generalized gradient approxima-

tion. By Lemma 3.4.11, Theorem 3.3.18 and Young’s Inequality, we can get

kα ≤
j∑
i=0

i∑
s=0

[
2nα+2nβ∑
t=1

|Osζt|ks,i−s(α)αiki(α)
]
. (3.4.40)

Combined with (C2) Theorem 3.3.28 and Lemma 3.4.6, we can show E is lower semi-

continuous in the weak topology of XG−DFT . Finally, E possesses a minimizer in

XG−DFT by (C3) and Theorem 3.3.29.

3.5 Convergence of Finite Element Approximation

The Section 3.3 of Suryanarayana et al. paper [146] presented the convergence

of the finite element approximation for local spin density approximation model. We gen-

eralize the proofs of Suryanarayana et al. [146] to restricted Hartree-Fock, unrestricted

Hartree-Fock, generalized gradient approximation model, meta generalized gradient ap-

proximation model, and generalized density functional theory models [67].

Finite element approximation is an important method to discretize the continu-

ous partial differential equation into matrix. In this section, we will show the conver-

gence of the ground state energy of a system computed with a finite element approxi-

mation for Hartree-Fock and density functional theory models.

We use Theorem 3.3.30 to prove the convergnce of finite element approxima-

tion. Weak topology is choosen to satisfy both the equi-coercivity and Γ-convergence

property.

Let h be the size of triangulation mesh Th of Ω. Let Xh be the corresponding

sequence of subspaces of X consisting of functions whose restriction to every cell in Th
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is a polynomial. By Pk we denote the ring of polynomials of non-negative degree less

than or equal to k for some fixed k ≥ 1.

Section 3.5.1 shows the proofs of Hartree-Fock methods. Section 3.5.2 shows

the proofs of density functional theory models.

3.5.1 Hartree-Fock

The convergence of finite element approximation of restricted Hartree-Fock and

unrestricted Hartree-Fock models will be discussed in this section [67].

Restricted Hartree-Fock

Suppose finite elment approximate space Xh is [67]:

Xh,RHF =


Φh = (φh,i)

2n
i=1 ∈ (H1

0 (Ω))2n|〈φh,i, φh,j〉(L2(Ω),L2(Ω)) = δij;

ϕh,Kij ∈ H1
0 (Ω), ϕh ∈ H1

0 (Ω), i, j = 1, 2, . . . , 2n;

(φh,i)
2n
i=1, ϕh,Kij , ϕh ∈ Pk for every cell in Th.

 . (3.5.1)

We define the discrete energy functional (3.2.18) with a finite element approxi-

mation as [146, 67]

Eh(Φ) =

{
T (Φ) + Jh(Φ) +Kh(Φ), if Φ ∈ Xh,RHF ,

+∞, if Φ ∈ X\Xh,RHF ,
(3.5.2)

where

Jh(Φ) = − min
ϕ∈H1

0 (Ω)
Ih(Φ, ϕ), (3.5.3)

Kh(Φ) = min
ϕKij∈H

1
0 (Ω)

Lh(Φ, ϕKij), (3.5.4)

where

Ih(Φ, ϕ) =

{
I(Φ, ϕ), if Φ, ϕ ∈ Xh,RHF ,

+∞, otherwise,
(3.5.5)

Lh(Φ, ϕKij) =

{
L(Φ, ϕKij), if Φ, ϕKij ∈ Xh−RHF ,

+∞, otherwise,
(3.5.6)

I(Φ, ϕ) =
1

8π

∫
Ω

|Oϕ(~x)|2d~x−
∫

Ω

(ρ(~x) + b(~x))ϕ(~x)d~x, (3.5.7)
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L(Φ, ϕKij) =
1

2

2n∑
i,j=1

{∫
Ω

[
1

8π
(OϕKij(~x))2 − φ∗i (~x)φj(~x)ϕKij(~x)]d~x

}
. (3.5.8)

Lemma 3.5.1 and Lemma 3.5.2 shows limh→0 Jh(Φh) = J (Φ) and

limh→0Kh(Φh) = K(Φ), and they will be used to show the weakly Γ-convergence and

weak equi-coercivity.

Lemma 3.5.1 ([45, 67]). If (Φh) ∈ (Xh,RHF ) is a sequecnce such that Φh → Φ in

(L4(Ω))2n, then

lim
h→0
Jh(Φh) = J (Φ). (3.5.9)

Proof. The proof is exactly same as Theorem 9 of Gavinni’s paper [45]. We will show

Γ-convergence property of Ih in part (1) of the proof and equi-coercivity of Ih in part

(2) of the proof.

(1) Consider a sequence ϕh ⇀ ϕ in XRHF . If there is no subsequence ϕhk ∈ Xhk,RHF ,

then

+∞ = lim inf
k→∞

Ihk(ϕhk) ≥ I(ϕ). (3.5.10)

Otherwise,

lim
k→∞

∫
Ω

(ρhk(~x) + b(~x))ϕhk(~x)d~x = lim
k→∞

∫
Ω

(ρhk(~x) + b(~x))ϕ(~x)d~x

=

∫
Ω

(ρ(~x) + b(~x))ϕ(~x)d~x. (3.5.11)

Because Φh → Φ in (L4(Ω))2n, we have ρh → ρ in L2(Ω), the first equality in (3.5.11)

is from the definition of weak convergence, and we can also get the second equality in

(3.5.11) by Hölder inequality easily. Combined with the weakly lower semi-continuity

of 1
8π

∫
Ω
|Oϕ(~x)|2d~x, we have:

lim inf
k→∞

Ihk(ϕhk) ≥ I(ϕ). (3.5.12)

Also a recovery sequence (ϕh) can be constructed from interpolated function, it follows

that limh→0 Ih(ϕh) = I(ϕ). Thus, we have Ih(ϕh)→ I(ϕ) (in the Γ-sense) in the weak

topology of XRHF .

(2) If ϕ 6∈ XRHF , then Ih(ϕ) = +∞.

Otherwise, by Hölder inequality we have:

Ih(ϕ) ≥ c0‖ϕ‖2
H1

0 (Ω) − c1‖ρh + b‖L2(Ω)‖ϕ‖L2(Ω), (3.5.13)
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where c0 and c1 are positive constants. Because ρh ∈ L2(Ω) and b is pointwise bounded,

Ih(ϕ) ≥ c0‖ϕ‖2
H1

0 (Ω) − c1‖ϕ‖L2(Ω). (3.5.14)

The right side in (3.5.14) is coercive in the weak topology of XRHF .

Based on (1), (2) and Theorem 3.3.30, we have (3.5.9).

Lemma 3.5.2 ([67]). If (Φh) ∈ (Xh,RHF ) is a sequecnce such that Φh → Φ in

(L4(Ω))2n, then

lim
h→0

Kh(Φh) = K(Φ). (3.5.15)

Proof. We will show Γ-convergence property of Kh in part (1) of the proof and equi-

coercivity of Kh in part (2) of the proof.

(1) Consider a sequence ϕh,Kij ⇀ ϕKij in XRHF . If there is no subsequence ϕhk,Kij ∈
Xhk,RHF , then

+∞ = lim inf
k→∞

Lhk(ϕhk,Kij) ≥ L(ϕ). (3.5.16)

Otherwise,

lim
k→∞

∫
Ω

φ∗hk,i(~x)φhk,j(~x)ϕhk,Kij(~x)d~x = lim
k→∞

∫
Ω

φ∗hk,i(~x)φhk,j(~x)ϕKij(~x)d~x

= lim
k→∞

∫
Ω

φ∗i (~x)φj(~x)ϕKij(~x)d~x. (3.5.17)

Because Φh → Φ in (L4(Ω))2n, the first equality in (3.5.17) is from the definition of

weak convergence, we can also get the second equality in (3.5.17) by Hölder inequality

easily. Combined with the weakly lower semi-continuity of 1
8π

∫
Ω
|Oϕhk,Kij(~x)|2d~x, we

have:

lim inf
k→∞

Lhk(ϕhk,Kij) ≥ L(ϕ). (3.5.18)

Also a recovery sequence (ϕh,Kij) can be constructed from interpolated function, it fol-

lows that limh→0 Lh(ϕh,Kij) = L(ϕKij). Thus, we have Lh(ϕh,Kij) → L(ϕKij) (in the

Γ-sense) in the weak topology of XRHF .

(2) If ϕKij 6∈ XRHF , then Lh(ϕKij) = +∞.

Otherwise, by Hölder inequality we have:

Lh(ϕKij) ≥ c0

2n∑
i,j=1

‖ϕKij‖2
H1

0 (Ω) − c1

2n∑
i,j=1

‖φh,i‖L4(Ω)‖φh,j‖L4(Ω)‖ϕKij‖L2(Ω), (3.5.19)
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where c0 and c1 are positive constants. Because Φh ∈ L4(Ω), we have

Lh(ϕKij) ≥ c0

2n∑
i,j=1

‖ϕKij‖2
H1

0 (Ω) − c1

2n∑
i,j=1

‖ϕKij‖L2(Ω). (3.5.20)

The right side in (3.5.20) is coercive in the weak topology of XRHF . Lh is equi-coercive

in the weak topology of XRHF .

Based on (1), (2) and Theorem 3.3.30, we have (3.5.15).

Lemma 3.5.3 proves Eh → E (in the Γ-sense) in the weak topology of XRHF ,

and it is a precondition to show the convergence of finite element approximation.

Lemma 3.5.3 ([67]). Eh → E (in the Γ-sense) in the weak topology of XRHF .

Proof. Γ-convergence needs to satisfy two conditions: (1). the lim inf inequality, (2)

construct a recovery sequence.

(1). Consider a sequence Φh ⇀ Φ in XRHF .

(1a). There is no subsequence Φhk ∈ Xhk,RHF , then

+∞ = lim inf
k→∞
Ehk(Φhk) ≥ E(Φ). (3.5.21)

(1b). There is a subsequence Φhk ∈ Xhk,RHF , then

lim inf
k→∞
Ehk,RHartree−Fock(Φhk) ≥ lim inf

k→∞

{
1

2
‖OΦhk‖2

L2(Ω) + Jhk(Φhk) +K(Φhk)

}
.

(3.5.22)
1
2
‖OΦhk‖2

L2(Ω) is lower semi-continuous in the weak topology of XRHF . And because

of XRHF ⊂⊂ L4, Lemma 3.5.1 and Lemma 3.5.2, we have limk→∞ Jhk(Φhk) = J (Φ)

and limk→∞Khk(Φhk) = K(Φ). This shows that

lim inf
k→∞
Ehk(Φhk) ≥ E(Φ). (3.5.23)

This is the lim inf inequality.

(2) construct a recovery sequence.

We can always construct the interpolation functions of successive triangulations such

that Φh → Φ, it follows that limh→0 Eh(Φh) = E(Φ) by Lemma 3.5.1, Lemma 3.5.2 and

continuity of T (Φ).

By (1) and (2), we can have Eh → E (in the Γ-sense) in the weak topology ofXRHF .
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Lemma 3.5.4 proves (Eh) is equi-coercive in the weak topology of XRHF , and it

is a precondition to show the convergence of finite element approximation.

Lemma 3.5.4 ([67]). (Eh) is equi-coercive in the weak topology of XRHF .

Proof. (1) If Φ 6∈ XRHF , then

Eh(Φ) = +∞. (3.5.24)

(2) If Φ ∈ XRHF , then by the coercive property of E in Lemma 3.4.8, we can show

Eh(Φ) ≥ 1

2
‖OΦ‖2

L2(Ω) + Jh(Φ) +Kh(Φ)

≥ C1‖Φ‖2
H1

0 (Ω) + C2. (3.5.25)

Because the right side of (3.5.25) is a lower semi-continuous coercive functional

in the weak topology ofXRHF , it follows that (Eh) is equi-coercive in the weak topology

of XRHF .

Theorem 3.5.5 shows the convergence of finite element approximation for the

restricted Hartree-Fock model.

Theorem 3.5.5 ([67]).

lim
h→0

inf
XRHF

Eh = min
XRHF

E . (3.5.26)

Proof. This is an immediate result of Lemma 3.5.3, Lemma 3.5.4 and Theorem 3.3.30.

Unrestricted Hartree-Fock

Theorem 3.5.6 shows the convergence of finite element approximation for the

unrestricted Hartree-Fock model.

Theorem 3.5.6 ([67]).

lim
h→0

inf
XUHF

Eh = min
XUHF

E . (3.5.27)

Proof. The only difference between restricted Hartree-Fock and unrestricted Hartree-

Fock is the number of spin-up electrons and spin-down electrons. The proof is exactly

the same as Section restricted Hartree-Fock.



69

3.5.2 Density Functional Theory

In this section, we discuss the convergence of finite element approximation of

density functional theory models, including local spin density approximation, general-

ized gradient approximation, meta generalized gradient approximation and generalized

density functional theory models.

Local Spin Density Approximation

The convergence of the finite element approximation of local spin density ap-

proximation has been carefully studied in the Section 3.3 of Suryanarayana et al. paper

[146]. More to the local spin density approximation, we will discuss other density func-

tional theory models below [67].

Generalized Gradient Approximation

Suppose finite element approximate space Xh is [67]:

Xh,GGA =


Φ = (φi)

nα+nβ
i=1 ∈ (H1

0 (Ω))nα+nβ |〈φi, φj〉(L2(Ω),L2(Ω)) = δij;

ϕ ∈ H1
0 (Ω), i, j = 1, 2, . . . , nα + nβ;

(φh,i)
nα+nβ
i=1 , ϕh ∈ Pk for every cell in Th.

 .

(3.5.28)

We define the discrete energy functional (3.2.26) with a finite element approxi-

mation as [67]

Eh(ρ) =

{
T (ρ) + Jh(ρ) +K(ρ), if Φ ∈ Xh,GGA,

+∞, if Φ ∈ X\Xh,GGA,
(3.5.29)

where Jh(ρ) is defined in (3.5.3).

Theorem 3.5.7 shows the convergence of finite element approximation for gen-

eralized gradient approximation models.

Theorem 3.5.7 ([67]). Let (A1), (A2) hold, then

lim
h→0

inf
XGGA

Eh = min
XGGA

E. (3.5.30)
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Proof. We will show Γ-convergence property of Eh in part (1) of the proof and equi-

coercivity of Eh in part (2) of the proof.

(1) Consider a sequence Φh ⇀ Φ in XGGA. If there is no subsequence Φhk ∈ Xhk,GGA,

then

+∞ = lim inf
k→∞
Ehk(ρhk) ≥ E(ρ). (3.5.31)

If there is a subsequence Φhk ∈ Xhk,GGA, by (3.5.3) we have:

lim inf
k→∞
Ehk(ρhk) ≥ lim inf

k→∞

{
1

2
‖OΦhk‖2

L2(Ω) + Jhk(ρhk) +K(ρhk)

}
. (3.5.32)

Lemma 3.4.7 and Lemma 3.4.15 show the weakly lower semi-continuity of
1
2
‖OΦhk‖2

L2(Ω) and K(ρhk). And because XGGA(Ω) ⊂⊂ L4(Ω), we have

lim infk→∞ Jhk(ρhk) = J (ρ) by Lemma 3.5.1. This shows

lim inf
k→∞
Ehk(ρhk) ≥ E(ρ). (3.5.33)

The interpolation functions of successive triangulations can also be constructed to be a

recovery sequence. By continuity of each individual term in Eh(ρ), we have

limh→0 Eh = E . Thus, we get the Γ-convergence property.

(2) If Φ 6∈ Xh,GGA, then Eh = +∞.

Otherwise, by (3.4.32) we have:

Eh(ρ) ≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω)

−c3

[
‖Φ‖2k1α

L2k1α(Ω)
+ ‖Φ‖k2β

Lk2β(Ω)
+ ‖OΦ‖k3β

Lk3β(Ω)

]
− c4.

(3.5.34)

where c0, c1, c2, c3 and c4 are positive constants. Because the right side of (3.5.34) is a

coercive function in the weak topology of XGGA independent of h, it follows that Eh is

equi-coercive in the weak topology of XGGA.

Based on (1), (2) and Theorem 3.3.30, we have (3.5.30).
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Meta Generalized Gradient Approximation

Suppose Xh is [67]:

Xh,Meta−GGA =



Φh = (φh,i)
N
i=1 = (φh,1i)

nα+nβ
i=1 + i(φh,2i)

nα+nβ
i=1 ;

Zh = (ζh,i)
2nα+2nβ
i=1 = ((φh,1i)

nα+nβ
i=1 , (φh,2i)

nα+nβ
i=1 );

Zh ∈ (Wm,p
0 (Ω))2nα+nβ ;

ρh =
∑nα+nβ

i=1 |φh,i|2 =
∑2nα+2nβ

i=1 ζ2
h,i;

〈φh,i, φh,j〉(L2(Ω),L2(Ω)) = δij, i, j = 1, . . . , nα + nβ;

ϕh ∈ H1
0 (Ω),


. (3.5.35)

We define the discrete energy functional (3.2.26) with a finite element approxi-

mation as [67]

Eh(ρ) =

{
T (ρ) + Jh(ρ) +K(ρ), if Φ ∈ Xh,Meta−GGA,

+∞, if Φ ∈ X\Xh,Meta−GGA,
(3.5.36)

where Jh(ρ) is defined in (3.5.3).

Theorem 3.5.8 shows the convergence of finite element approximation for meta

generalized gradient approximation models.

Theorem 3.5.8 ([67]). Let (B1)-(B3) hold, then

lim
h→0

inf
XMeta−GGA

Eh = min
XMeta−GGA

E . (3.5.37)

Proof. We will show Γ-convergence property of Eh in part (1) of the proof and equi-

coercivity of Eh in part (2) of the proof.

1) Consider a sequence Φh ⇀ Φ in XMeta−GGA. If there is no subsequence Φhk ∈
Xhk,Meta−GGA, then

+∞ = lim inf
k→∞
Ehk(ρhk) ≥ E(ρ). (3.5.38)

If there is a subsequence Φhk ∈ Xhk,Meta−GGA, by (3.5.3) we have:

lim inf
k→∞
Ehk(ρhk) ≥ lim inf

k→∞

{
1

2
‖OΦhk‖2

L2(Ω) + Jhk(ρhk) +K(ρhk)

}
. (3.5.39)

Lemma 3.4.22 shows the weakly lower semi-continuity of 1
2
‖OΦhk‖2

L2(Ω) and K(ρhk).

And because XMeta−GGA(Ω) ⊂⊂ L4(Ω), we have lim infk→∞ Jhk(ρhk) = J (ρ) by

Lemma 3.5.1. This shows

lim inf
k→∞
Ehk(ρhk) ≥ E(ρ). (3.5.40)



72

The interpolation functions of successive triangulations can also be constructed to be a

recovery sequence. By continuity of each individual term in Eh(ρ), we have

limh→0 Eh = E . Thus, we get the Γ-convergence property.

(2) If Φ 6∈ Xh,GGA, then Eh = +∞.

Otherwise,

Eh(ρ) ≥ E . (3.5.41)

By (B3), E is a coercive function in the weak topology of XMeta−GGA independent of h,

it follows that Eh is equi-coercive in the weak topology of XMeta−GGA.

Based on (1), (2) and Theorem 3.3.30, we have (3.5.37).

Generalized Density Functional Theory Models

Suppose finite element approximate spaceXh is [67]:

Xh,G−DFT =



Φh = (φh,i)
N
i=1 = (φh,1i)

nα+nβ
i=1 + i(φh,2i)

nα+nβ
i=1 ;

Zh = (ζh,i)
2nα+2nβ
i=1 = ((φh,1i)

nα+nβ
i=1 , (φh,2i)

nα+nβ
i=1 )

Zh ∈ (Wm,p
0 (Ω))2nα+nβ ;

ρh =
∑nα+nβ

i=1 |φh,i|2 =
∑2nα+2nβ

i=1 ζ2
h,i;

〈φh,i, φh,j〉(L2(Ω),L2(Ω)) = δij, i, j = 1, . . . , nα + nβ;

ϕh ∈ H1
0 (Ω),


. (3.5.42)

We define the discrete energy functional (3.2.26) with a finite element approxi-

mation as [67]

Eh(ρ) =

{
T (ρ) + Jh(ρ) +K(ρ), if Φ ∈ Xh,G−DFT ,

+∞, if Φ ∈ X\Xh,G−DFT ,
(3.5.43)

where Jh(ρ) is defined in (3.5.3).

Theorem 3.5.9 shows the convergence of finite element approximation for meta

generalized gradient approximation models.

Theorem 3.5.9 ([67]). Let (C1)-(C3) hold, then

lim
h→0

inf
XG−DFT

Eh = min
XG−DFT

E . (3.5.44)

Proof. The proof is almost same as the proof of Theorem 3.5.8. By Theorem 3.3.30,

(3.4.40) and (C3), we get (3.5.44).
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3.6 Convergence of Finite Element Approximation with

Numerical Quadratures

The Section 3.4 of Suryanarayana et al. paper [146] presented the convergence

of the finite element approximation with numerical quadratures for local spin density

approximation model. We generalize the proofs of Suryanarayana et al. [146] to re-

stricted Hartree-Fock, unrestricted Hartree-Fock, generalized gradient approximation

model, meta generalized gradient approximation model and generalized density func-

tional theory models [67].

Coeffient matrix of finite element approximation needs to be calculated by nu-

merical quadratures. In this section, we will discuss the conditions which need to be

satisfied in order to have the convergence of the finite element approximation with nu-

merical quadrature.

Suppose we use a m-th order quadrature method. Let Ẽ and Q{E} denote a m-th order

quadrature of E . Let k denote the degree of the polynomial used in the finite element

approximation.

Theorem 3.3.30 is used to prove the convergence of the finite element approx-

imation with numerical quadratures, which needs to satisfy both Γ-convergence and

equi-coercivity.

Section 3.6.1 shows the proof of Hartree-Fock methods [67]. Section 3.6.2

shows the proof of density functional theory models [67].

3.6.1 Hartree-Fock

The convergence of finite element approximation with numerical quadratures of

restricted Hartree-Fock and unrestricted Hartree-Fock models will be discussed in this

section [67].

Restricted Hartree-Fock

By the finite element approximation with numerical quadratures, we define the

total energy functional Ẽh, coulomb energy functional J̃h and electrons exact exchange
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energy K̃h as [146, 67]

Ẽh(Φ) =

{
T̃ (Φ) + J̃h(Φ) + K̃h(Φ), if Φ ∈ Xh,RHF ;

+∞, if Φ ∈ X\Xh,RHF ,
(3.6.1)

where

J̃h(Φ) = − min
φ∈H1

0 (Ω)
Ĩh(Φ, ϕ), (3.6.2)

K̃h(Φ) = min
ϕKij∈H

1
0 (Ω)

L̃h(Φ, ϕKij), (3.6.3)

where

Ĩh(Φ, ϕ) =

{
Ĩ(Φ, ϕ), if Φ, ϕ ∈ Xh,RHF ,

+∞, otherwise,
(3.6.4)

L̃h(Φ, ϕKij) =

{
L̃(Φ, ϕKij), if Φ, ϕKij ∈ Xh,RHF ,

+∞, otherwise,
(3.6.5)

where I(Φ, ϕ) and L(Φ, ϕKij) have been defined in (3.5.7) and (3.5.8).

Lemma 3.6.1 and Lemma 3.6.2 prove limh→0 J̃h(Φh) = J (Φ) and

limh→0 K̃h(Φh) = K(Φ), and they will be used to show the weakly Γ-convergence and

weak equi-coercivity of Ẽh.

Lemma 3.6.1 ([67]). If (Φh) ∈ (Xh,RHF ) is a sequence such that Φh ⇀ Φ in XRHF

and m− 2k + 3 > 0, then

lim
h→0
J̃h(Φh) = J (Φ). (3.6.6)

Proof. [45, Theorem 16]. We define4Ih as

4Ih(Φ, ϕ) = Ĩh(Φ, ϕ)− Ih(Φ, ϕ)

=

{
Ĩ(Φ, ϕ)− I(Φ, ϕ) if Φ, ϕ ∈ Xh,RHF ,

0, otherwise.
(3.6.7)

As a result of Theorem 3.3.21, we have

|4Ih(Φ, ϕ)| ≤ Chm+1

∫
Ω

∣∣Dm+1
[
(Oϕ(~x))2 − (ρ(~x) + b(~x))ϕ(~x)

]∣∣ d~x. (3.6.8)
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If m− 2k + 3 > 0, Dm+1|(Oϕ)2| = 0. Therefore,

|4Ih(Φ, ϕ)| ≤ C0h
m+1

∫
Ω

∣∣Dm+1 [(ρ(~x) + b(~x))ϕ(~x)]
∣∣ d~x,

≤ C0h

∫
Ω

|D [(ρ(~x) + b(~x))ϕ(~x)]| d~x,

≤ C0h
2n∑
i=1

{
‖Dφi‖L2(Ω)‖φi‖L4(Ω)‖ϕ‖L4(Ω)

+(‖φi‖L4(Ω)‖φi‖L4(Ω) + C1)‖Dϕ‖L2(Ω)

}
, (3.6.9)

where C0 and C1 are positive constants, which don’t need to be same everywhere in the

proof. The second inequality in (3.6.9) is by Inverse Inequality. The third inequality in

(3.6.9) is by Hölder inequality and pointwise bounded b.

We will show Γ-convergence property of Ĩh in part (1) of the proof and equi-coercivity

of Ĩh in part (2) of the proof.

(1) If (Φh) ∈ (Xh,RHF ) is a sequence such that Φh ⇀ Φ in XRHF . If ϕ 6∈ Xh,RHF ,

4Ih(Φh, ϕ) = 0. Otherwise,

|4Ih(Φh, ϕ)| ≤ C0h
2n∑
i=1

{
‖Dφh,i‖L2(Ω)‖φh,i‖L4(Ω)‖ϕ‖L4(Ω)

+(‖φh,i‖L4(Ω)‖φh,i‖L4(Ω) + C1)‖Dϕ‖L2(Ω)

}
. (3.6.10)

By the definition of XRHF , all the norms on the right side of (3.6.10) are uniformly

bounded. Hence, it follows4Ih(Φh, ϕ) is continuously convergent to the zero function.

Because

Ĩh(Φh, ϕ) = Ih(Φh, ϕ) +4Ih(Φh, ϕ), (3.6.11)

Lemma 3.5.1 and Theorem 3.3.31, it follows that Ĩh Γ-converges to I in the weak topol-

ogy of XRHF .

(2) If ϕ ∈ XRHF , from (3.6.9),

Ĩh(Φ, ϕ) ≥ Ih(Φh, ϕ)− C0h

2n∑
i=1

{
‖Dφi‖L2(Ω)‖φi‖L4(Ω)‖ϕ‖L4(Ω)

+(‖φi‖L4(Ω)‖φi‖L4(Ω) + C1)‖Dϕ‖L2(Ω)

}
,

≥ C1‖ϕ‖2
H1

0 (Ω) − C2h‖Oϕ‖L2(Ω) − C3h‖ϕ‖L4(Ω),

≥ C1‖ϕ‖2
H1

0 (Ω) − C2h‖Oϕ‖L2(Ω) − C3h
1
4‖ϕ‖L2(Ω),

(3.6.12)
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where C1, C2, C3 are postive constants. The third inequality in (3.6.12) is by Inverse

Inequality. If ϕ 6∈ XRHF , Ĩh = +∞. Thus, we have (3.6.12) satisfied. Because the

right side in (3.6.12) is coercive in the weak toplogy of XRHF , Ĩh is equi-coercive in the

weak toplogy of XRHF .

Based on (1), (2) and Theorem 3.3.30, we have (3.6.6).

Lemma 3.6.2 ([67]). If (Φh) ∈ (Xh,RHF ) is a sequence such that Φh ⇀ Φ in XRHF

and m− 2k + 3 > 0, then

lim
h→0

K̃h(Φh) = K(Φ). (3.6.13)

Proof. We define4Lh as

4Lh(Φ, ϕKij) = L̃h(Φ, ϕKij)− Lh(Φ, ϕKij)

=

{
L̃(Φ, ϕKij)− L(Φ, ϕKij), if Φh, ϕKij ∈ Xh,RHF ,

0, otherwise.
(3.6.14)

As a result of Theorem 3.3.21, we have

|4Lh(Φ, ϕKij)| ≤ Chm+1

2n∑
i,j=1

∫
Ω

∣∣Dm+1
[
(OϕKij)

2 − φ∗iφjϕKij)
]∣∣ dx. (3.6.15)

If m− 2k + 3 > 0, Dm+1|(OϕKij)2| = 0. Therefore,

|4Lh(Φ, ϕKij)| ≤ Chm+1

2n∑
i,j=1

∫
Ω

∣∣Dn+1(φ∗iφjϕKij)
∣∣ d~x,

≤ Ch

∫
Ω

2n∑
i,j=1

∣∣D(φ∗iφjϕKij)
∣∣ dx,

≤ Ch

2n∑
i,j=1

{
‖Oφi‖L2(Ω)‖φj‖L4(Ω)‖ϕKij‖L4(Ω)

+‖φi‖L4(Ω)‖Oφj‖L2(Ω)‖ϕKij‖L4(Ω)

+‖φi‖L4(Ω)‖φj‖L4(Ω)‖OϕKij‖L2(Ω)

}
, (3.6.16)

where C is a positive constant, which don’t need to be same everywhere in the proof.

The second inequality in (3.6.16) is by Inverse Inequality. The third inequality in

(3.6.16) is by Hölder inequality.

We will show Γ-convergence property of L̃h in part (1) of the proof and equi-coercivity
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of L̃h in part (2) of the proof.

(1)If (Φh) ∈ (Xh,RHF ) is a sequence such that Φh ⇀ Φ in XRHF . If ϕKij 6∈ Xh,RHF ,

then4Lh(Φh, ϕKij) = 0. Otherwise,

|4Lh(Φh, ϕKij)| ≤ Ch

2n∑
i,j=1

{
‖Oφh,i‖L2(Ω)‖φh,j‖L4(Ω)‖ϕKij‖L4(Ω)

+‖φh,i‖L4(Ω)‖Oφh,j‖L2(Ω)‖ϕKij‖L4(Ω)

+‖φh,i‖L4(Ω)‖φh,j‖L4(Ω)‖OϕKij‖L2(Ω)

}
(3.6.17)

By the definition of XRHF , all the norms on the right side of (3.6.17) are uniformly

bounded. Hence, it follows4Lh(Φh, ϕKij) is continuously convergent to the zero func-

tion. Because

L̃h(Φh, ϕKij) = Lh(Φh, ϕKij) +4Lh(Φh, ϕKij), (3.6.18)

Lemma 3.5.1 and Theorem 3.3.31, it follows that L̃h Γ-converges to L in the weak

topology of XRHF .

(2) If ϕKij ∈ XRHF , from (3.6.17),

L̃h(Φ, ϕKij) ≥ Lh(Φh, ϕKij)− Ch
2n∑
i,j=1

{
‖Oφh,i‖L2(Ω)‖φh,j‖L4(Ω)‖ϕKij‖L4(Ω)

+‖φh,i‖L4(Ω)‖Oφh,j‖L2(Ω)‖ϕKij‖L4(Ω)

+‖φh,i‖L4(Ω)‖φh,j‖L4(Ω)‖OϕKij‖L2(Ω)

}
≥

2n∑
i,j=1

{
C1‖ϕKij‖2

H1
0 (Ω) − C2h‖OϕKij‖L2(Ω) − C3h‖ϕKij‖L4(Ω)

}
,

≥
2n∑
i,j=1

{
C1‖ϕKij‖2

H1
0 (Ω) − C2h‖OϕKij‖L2(Ω) − C3h

1
4‖ϕKij‖L2(Ω)

}
,

(3.6.19)

where C1, C2, C3 are postive constants. The third inequality in (3.6.19) is by Inverse

Inequality. If ϕKij 6∈ XRHF , then L̃h = +∞. Thus, we have (3.6.19) satisfied. Because

the right side in (3.6.19) is coercive in the weak toplogy of XRHF , L̃h is equi-coercive

in the weak toplogy of XRHF .

Based on (1), (2) and Theorem 3.3.30, we have (3.6.13).

Lemma 3.6.3 will be used to show the convergence of finite element approxima-

tion with numerical quadratures.
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Lemma 3.6.3 ([67]). If (Φh) ∈ (Xh,RHF ) is a sequence such that Φh ⇀ Φ in XRHF

and m− 2k + 3 > 0, then

lim
h→0
{Ẽh,RHF (Φh)− Eh,RHF (Φh)} = 0. (3.6.20)

Proof. We know

|Ẽh(Φh)− Eh(Φh)| ≤ Chm+1

∫
Ω

∣∣∣∣∣Dm+1(
2n∑
i=1

|Oφh,i|2)

∣∣∣∣∣ dx+ |J̃h(Φh)− Jh(Φh)|

+|K̃h(Φh)−Kh(Φh)|. (3.6.21)

Due tom−2k+3 > 0, the first term in (3.6.21) is zero. And as a result of Lemma 3.5.1,

Lemma 3.5.2, Lemma 3.6.1 and Lemma 3.6.2, the last two terms in (3.6.21) is zero as h

goes to zero. Hence, we can get (3.6.20).

Theorem 3.6.4 shows the convergence of finite element approximation with nu-

merical quadratures for the restricted Hartree-Fock model.

Theorem 3.6.4 ([67]). If m− 2k + 3 > 0, then

lim
h→0

inf
XRHF

Ẽh = min
XRHF

E . (3.6.22)

Proof. We will show Γ-convergence property of Ẽh in part (1) of the proof and equi-

coercivity of Ẽh in part (2) of the proof.

(1) Let (Φh) be a sequence and Φh ⇀ Φ in XRHF . If there is no subsequence Φhk ∈
Xhk,RHF , then

+∞ = lim inf
k→∞
Ehk(Φhk) ≥ E(Φ). (3.6.23)

If there is a subsequence Φhk ∈ Xhk,RHF , then

lim inf
k→∞
Ẽhk(Φhk) ≥ lim inf

k→∞
(Ẽhk(Φhk)− Ehk(Φhk)) + lim inf

k→∞
Ehk(Φhk)

≥ lim inf
k→∞
Ehk(Φhk)

≥ E(Φ) (3.6.24)

The second inequality in (3.6.24) is by Lemma 3.6.1 and the third inequality in (3.6.24)

is by Lemma 3.5.3. Thus, we have the liminf property.
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The recovery sequence is also from the interpolated functions of successive triangula-

tions. Thus, we can get Ẽh Γ-converges to E in the weak topology of XRHF .

(2) Due to Lemma 3.5.4,

Eh(Φ) ≥ C1‖OΦ‖2
L2(Ω) + C2, (3.6.25)

where C1 and C2 are positive constants. Then by (3.6.21),

Ẽh(Φ) ≥ C1‖OΦ‖2
L2(Ω) + C2 − |J̃h(Φ)− Jh(Φ)| − |K̃h(Φ)−Kh(Φ)|. (3.6.26)

By Lemma 3.5.1, Lemma 3.5.2, Lemma 3.6.1 and Lemma 3.6.2, there exists a bound h0

such that for all h < h0, we have

Ẽh(Φ) ≥ C1‖OΦ‖2
L2(Ω) + C2, (3.6.27)

where C1 and C2 are positive constants independent of h. Because the right side of

(3.6.27) is a weakly coercive lower semi-continuous functional, we have Ẽh(Φ) is equi-

coercive in the weak topology of XRHF .

Based on (1), (2) and Theorem 4.3., we have (3.6.22).

Unrestricted Hartree-Fock

Theorem 3.6.5 shows the convergence of finite element approximation with nu-

merical quadratures for the unrestricted Hartree-Fock model.

Theorem 3.6.5 ([67]).

lim
h→0

inf
XUHF

Ẽh = min
XUHF

E . (3.6.28)

Proof. The only difference between restricted Hartree-Fock and unrestricted Hartree-

Fock is the number of spin-up electrons and spin-down electrons. The proof is exactly

the same as Section restricted Hartree-Fock.

3.6.2 Density Functional Theory

In this section, we discuss the convergence of finite element approximation with

numerial quadratures of density functional theory models, including local spin density

approximation, generalized gradient approximation, meta generalized gradient approx-

imation and generalized density functional theory models [67].
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Local Spin Density Approximation

The convergence of the finite element approximation of local spin density ap-

proximation has been carefully studied in Section 3.4 of Suryanarayana et al. paper

[146]. More to the local spin density approximation, we will discuss other density func-

tional theory models below [67].

Generalized Gradient Approximation

We define the total energy functional with a finite element approximation where

all integrations are performed with numerical quadratures as [67]

Ẽh(ρ) =

{
T̃ (ρ) + J̃h(ρ) + K̃(ρ), if Φ ∈ Xh,GGA;

+∞, if Φ 6∈ Xh,GGA,
(3.6.29)

where Jh(ρ) is defined in (3.5.3).

Theorem 3.6.6 shows the convergence of finite element approximation with nu-

merical quadratures for generalized gradient approximation models.

Theorem 3.6.6 ([67]). Let (A1), (A2) hold, m− 2k + 3 > 0 and ‖Ok‖L1(Ω) is bounded

independently of h, then

lim
h→0

inf
XGGA

Ẽh = min
XGGA

E . (3.6.30)

Proof. We will show Γ-convergence property of Ẽh in part (1) of the proof and equi-

coercivity of Ẽh in part (2) of the proof.

(1) If (Φh) ∈ (Xh,GGA) is a sequence such that Φh ⇀ Φ in XGGA, then

|Ẽh(ρh)− Eh(ρh)|

≤ C0h
m+1

∫
Ω

∣∣∣∣∣Dm+1(

nα+nβ∑
i=1

|Oφh,i|2 + k(ρ))

∣∣∣∣∣ d~x+ |J̃h(ρh)− Jh(ρh)|

≤ C0h
m+1

∫
Ω

∣∣∣∣∣Dm+1(

nα+nβ∑
i=1

|Oφh,i|2)

∣∣∣∣∣ d~x+ |J̃h(ρh)− Jh(ρh)|+ C1h‖Ok‖L1(Ω).

(3.6.31)

Due to m− 2k+ 3 > 0, the first term in (3.6.31) is zero. Because ‖Ok‖L1(Ω) is bounded

independently of h and Lemma 3.6.1,

lim
h→0
{Ẽh(ρh)− Eh(ρh)} = 0. (3.6.32)
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Let (Φh) be a sequence and Φh ⇀ Φ in XGGA. If there is no subsequence Φhk ∈
Xhk,GGA, then

+∞ = lim inf
k→∞
Ehk(ρhk) ≥ E(ρ). (3.6.33)

If there is a subsequence ρhk ∈ Xhk,GGA, then

lim inf
k→∞
Ẽhk(ρhk) ≥ lim inf

k→∞
(Ẽhk(ρhk)− Ehk(ρhk)) + lim inf

k→∞
Ehk(ρhk)

≥ lim inf
k→∞
Ehk(ρhk)

≥ E(ρ) (3.6.34)

The second inequality in (3.6.34) is by (3.6.33) and the third inequality in (3.6.34) is

by Theorem 3.5.7. Thus, we have the liminf property. The interpolation functions of

successive triangulations can also be constructed to be a recovery sequence. We have

lim
h→0
Ẽh = lim

h→0
Eh = E . (3.6.35)

Thus, Ẽh Γ-converges to E in the weak topology of XGGA.

(2) Due to Theorem 3.6.31, we have

Eh(ρ) ≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω)

−c3

[
‖Φ‖2k1α

L2k1α(Ω)
+ ‖Φ‖k2β

Lk2β(Ω)
+ ‖OΦ‖k3β

Lk3β(Ω)

]
− c4. (3.6.36)

Then by (3.6.31),

Ẽh(ρ) ≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω)

−c3

[
‖Φ‖2k1α

L2k1α(Ω)
+ ‖Φ‖k2β

Lk2β(Ω)
+ ‖OΦ‖k3β

Lk3β(Ω)

]
− c4

−|J̃h(ρh)− Jh(ρh)| − c5h‖Ok‖L1(Ω), (3.6.37)

where c1, c2, c3, c4, c5 are positive constants. There exists a bound h0 such that for all

h < h0, we have

Ẽh(ρ) ≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω)

−c3

[
‖Φ‖2k1α

L2k1α(Ω)
+ ‖Φ‖k2β

Lk2β(Ω)
+ ‖OΦ‖k3β

Lk3β(Ω)

]
− c4. (3.6.38)

where c1, c2, c3, c4, c5 are positive constants independent of h. Because the right side of

(3.6.38) is coercive in the weak topology of XGGA, Ẽh(ρ) is equi-coercive in the weak

topology of XGGA.

Based on (1), (2) and Theorem 4.3., we have (3.6.30).
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Meta Generalized Gradient Approximation

We define the total energy functional with a finite element approximation where

all integrations are performed with numerical quadratures as [67]

Ẽh(ρ) =

{
T̃ (ρ) + J̃h(ρ) + K̃(ρ), if Φ ∈ Xh,Meta−GGA,

+∞, if Φ 6∈ Xh,Meta−GGA,
(3.6.39)

where Jh(ρ) is defined in (3.5.3).

Theorem 3.6.7 shows the convergence of finite element approximation with nu-

merical quadratures for meta generalized gradient approximation models.

Theorem 3.6.7 ([67]). Let (B1)-(B3) hold, m− 2k + 3 > 0 and ‖Ok‖L1(Ω) is bounded

independently of h, then

lim
h→0

inf
XMeta−GGA

Ẽh = min
XMeta−GGA

E . (3.6.40)

Proof. We will show Γ-convergence property of Ẽh in part (1) of the proof and equi-

coercivity of Ẽh in part (2) of the proof.

(1) Theorem 3.5.8 shows Eh Γ-converges to E in the weak topology of XMeta−GGA. The

rest of the proof is almost same with part (1) of Theorem 3.6.6.

(2) There exists a bound h0 such that for all h < h0, we have

Ẽh(ρ) ≥ Eh(ρ)− C, (3.6.41)

where C is a positive constant. By equi-coercivity of Eh(ρ) in Theorem 3.5.8, Ẽh is equi-

coercive in the weak topology of XMeta−GGA.

Based on (1), (2) and Theorem 4.3., we have (3.6.40).

Generalized Density Functional Theory Models

We define the total energy functional with a finite element approximation where

all integrations are performed with numerical quadratures Ẽh as [67]

Ẽh(ρ) =

{
T̃ (ρ) + J̃h(ρ) + K̃(ρ), if Φ ∈ Xh,G−DFT ,

+∞, if Φ 6∈ Xh,G−DFT ,
(3.6.42)

where Jh(ρ) is defined in (3.5.3).
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Theorem 3.6.8 shows the convergence of finite element approximation with nu-

merical quadratures for generalized density functional theory models.

Theorem 3.6.8 ([67]). Let (C1)-(C3) hold, m− 2k + 3 > 0 and ‖Ok‖L1(Ω) is bounded

independently of h, then

lim
h→0

inf
XG−DFT

Ẽh = min
XG−DFT

E . (3.6.43)

Proof. The proof is the same as the proof of Theorem 3.6.7.

3.7 Convergence of Pseudopotential Approximation

The Section 3.5 of Suryanarayana et al. paper [146] presented the convergence

of pseudopotential approximation for local spin density approximation model. We gen-

eralize the proofs of Suryanarayana et al. [146] to restricted Hartree-Fock, unrestricted

Hartree-Fock, generalized gradient approximation model, meta generalized gradient ap-

proximation model and generalized density functional theory models [67].

Pseudopotential approximation is commonly used to smooth the nuclear elec-

trons coulomb interaction, and it can be broadly classified as local and non-local.

A local pseudopotential is an explicit function V PS
ext with ‖V PS

ext ‖L∞(Ω) < C,

where C is a positive constant. The local pseudopotential approximation can be inco-

porated into our problem by replacing b by bPS = −CO2V PS
ext . All the results presented

in the previous sections are applicable and hence existence of a minimizer, convergence

of the finite element appoximation and convergence of fthe inite-element appoximation

with numerical quadratures follow.

For non-local pseudopotential, we can write total energy functional as [146, 67]:

EPS = E + P, (3.7.1)

P =
N∑
i=1

M∑
J=1

∑
l,t

1

GJ
l,t

∣∣∣∣∫
Ω

f(~x, ~xJ)φi(~x)d~x

∣∣∣∣2 . (3.7.2)

Where l is the azimuthal quantum number, t is the magnetic quantum number, J is the

atom number, N is the total number of electrons after the pseudopotential approxima-

tion and GJ
l,t is a nonzero constant. In our proof below, we only consider non-local

pseudopotential.
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Section 3.7.1 shows the proof of Hartree-Fock methods [67]. Section 3.7.2

shows the proof of density functional theory models [67].

3.7.1 Hartree-Fock

The convergence of pseudopotential approximation of restricted Hartree-Fock

and unrestricted Hartree-Fock models will be discussed in this section [67].

Restricted Hartree-Fock

Theorem 3.7.1 shows the convergence of pseudopotential approximation for the

restricted Hartree-Fock model.

Theorem 3.7.1 ([67]). Let m − 2k + 3 > 0, and f ∈ H1
0 (Ω). Then EPS possesses a

minimizer in XRHF , and

lim
h→0

inf
XRHF

EPSh = min
XRHF

E . (3.7.3)

lim
h→0

inf
XRHF

ẼPSh = min
XRHF

E . (3.7.4)

Proof. By f ∈ H1
0 (Ω) and Hölder inequality, P (Φ) is continuous in (L2(Ω))2n, and

P (Φ) ≥ −C‖Φ‖2
L2(Ω), (3.7.5)

where C is a positive constant dependent on f,GJ
l,t. By (3.4.13), we have

1

2
J(Φ) +K(Φ) ≥ 0. (3.7.6)

By (3.4.30), we have

J (Φ) ≥ c0‖Φ‖3
L3(Ω) −

c0

8π
‖OΦ‖2

L2(Ω) − c1‖Φ‖2
L2(Ω) − c2. (3.7.7)

If we choose c0 < 4π, then 1
2
− c0

8π
= c′0 > 0. We end up with

E(Φ) = T (Φ) + J (Φ) +K(Φ),

≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω) − c3, (3.7.8)
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where c0, c1, c2 and c3 are positive constants, which don’t need to be same in the proof.

Thus,

EPS(Φ) = E(Φ) + P (Φ),

≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω) − c3, (3.7.9)

(1) Because P (Φ) is continuous in (L2(Ω))2n and Lemma 3.4.7, EPS(Φ) is lower semi-

continuous in the weak topology ofXRHF . (3.7.8) shows EPS(Φ) is coercive in the weak

topology of XRHF . Thus, EPS possesses a minimizer in XRHF by Theorem 3.3.29.

(2) The Γ-convergence property of EPSh in the weak topology of XRHF follows from

continuous property of P (Φ) and the process in Lemma 3.5.3. The equi-coercivity of

EPSh in the weak topology ofXRHF follows from (3.7.8) and the process in Lemma 3.5.4.

Hence, we can get (3.7.3) by Theorem 3.5.5.

(3) The error of P (Φ) due to numerical quadrature is

|P (Φ)− P̃h(Φ)| ≤ Chm+1

2n∑
i=1

M∑
J=1

∑
l,t

∣∣∣∣∫
Ω

Dm+1(f(~x, ~xJ)φi(~x))d~x

∣∣∣∣2 ,
≤ Ch

2n∑
i=1

M∑
J=1

∑
l,t

[
‖Of‖L2(Ω)‖φi‖L2(Ω) + ‖f‖L2(Ω)‖Oφi‖L2(Ω)

]
,

(3.7.10)

whereC is a positive constant. The second inequality in (3.7.10) is by Inverse Inequality.

Because f ∈ H1
0 (Ω) and (3.7.10), we have limh→0 |P (Φ) − P̃h(Φ)| = 0. By the same

process in Theorem 3.6.4, we can get (3.7.4).

Unrestricted Hartree-Fock

Theorem 3.7.2 shows the convergence of pseudopotential approximation for the

unrestricted Hartree-Fock model.

Theorem 3.7.2 ([67]). Let m− 2k+ 3 > 0, and f ∈ H1
0 (Ω). If P (Φ) is lower bounded,

EPS possesses a minimizer in XUHF , and

lim
h→0

inf
XUHF

EPSh = min
XUHF

E . (3.7.11)

lim
h→0

inf
XUHF

ẼPSh = min
XUHF

E . (3.7.12)
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Proof. Because P (Φ) is lower bounded and (3.4.15), we have

E ≥ C1‖Φ‖2
H1

0 (Ω) − C2, (3.7.13)

where C1 and C2 are positive constants.

All the proof left is the same as Part (1), Part (2) and Part (3) of Theorem 3.7.1.

3.7.2 Density Functional Theory

In this section, we discuss the convergence of pseudopotential approximation of

density functional theory models, including local spin density approximation, general-

ized gradient approximation, meta generalized gradient approximation and generalized

density functional theory models.

Local Spin Density Approximation

The convergence of the finite element approximation of local spin density ap-

proximation model has been carefully studied in Section 3.5 of Suryanarayana et al.

paper [146]. More to the local spin density approximation, we will discuss other density

functional theory models below [67].

Generalized Gradient Approximation

Theorem 3.7.3 shows the convergence of pseudopotential approximation for

generalized gradient approximation models.

Theorem 3.7.3 ([67]). Let (A1), (A2) hold, m − 2k + 3 > 0, ‖Ok‖L1(Ω) is bounded

independently of h, and f ∈ H1
0 (Ω). Then EPS possesses a minimizer in XGGA, and

lim
h→0

inf
XGGA

EPSh = min
XGGA

E . (3.7.14)

lim
h→0

inf
XGGA

ẼPSh = min
XGGA

E . (3.7.15)
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Proof. By (3.4.32) and (3.7.5)

EPS ≥ c0‖OΦ‖2
L2(Ω) + c1‖Φ‖3

L3(Ω) − c2‖Φ‖2
L2(Ω)

−c3

∑
α,β

[
‖Φ‖2k1(α,β)α

L
2k1(α,β)α(Ω)

+ ‖Φ‖k2(α,β)β
L
k2(α,β)β(Ω)

+ ‖OΦ‖k3β
L
k3(α,β)β(Ω)

]
− c4,

(3.7.16)

(1) Because P (Φ) is continuous in (L2(Ω))2n and Lemma 3.4.18, EPS is lower semi-

continuous in the weak topology of XGGA. (3.7.16) shows EPS is coercive in the weak

topology of XGGA. Thus, EPS possesses a minimizer in XGGA by Theorem 3.3.29.

(2) We can get (3.7.14) by the process in Theorem 3.5.7.

(3) We can get (3.7.15) by (3.7.10) and the process in Theorem 3.6.6.

Meta Generalized Gradient Approximation

Theorem 3.7.4 shows the convergence of pseudopotential approximation for

meta generalized gradient approximation models.

Theorem 3.7.4 ([67]). Let (B1)-(B3) hold, m−2k+3 > 0, ‖Ok‖L1(Ω) is bounded inde-

pendently of h, and f ∈ H1
0 (Ω). If EPS is coercive in the weak topology of XMeta−GGA,

EPS possesses a minimizer in XMeta−GGA, and

lim
h→0

inf
XMeta−GGA

EPSh = min
XMeta−GGA

E . (3.7.17)

lim
h→0

inf
XMeta−GGA

ẼPSh = min
XMeta−GGA

E . (3.7.18)

Proof. (1) Because P (Φ) is continuous in (L2(Ω))2n and Lemma 3.4.22, EPS(Φ) is

lower semi-continuous in the weak topology of XMeta−GGA. Also, EPS is coercive in

the weak topology of XMeta−GGA. Thus, EPS possesses a minimizer in XMeta−GGA by

Theorem 3.3.29.

(2) We can get (3.7.14) by the process in Theorem 3.5.8.

(3) We can get (3.7.15) by (3.7.10) and the process in Theorem 3.6.7.

Generalized Density Functional Theory Models

Theorem 3.7.5 shows the convergence of pseudopotential approximation for

generalized density functional theory models.
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Theorem 3.7.5 ([67]). Let (C1)-(C3) hold, m − 2k + 3 > 0, ‖Ok‖L1(Ω) is bounded

independently of h, and f ∈ H1
0 (Ω). Then EPS possesses a minimizer in XG−DFT , and

lim
h→0

inf
XG−DFT

EPSh = min
XG−DFT

E . (3.7.19)

lim
h→0

inf
XG−DFT

ẼPSh = min
XG−DFT

E . (3.7.20)

Proof. 1) Because P (Φ) is continuous in (L2(Ω))2n and Lemma 3.4.24, EPS(Φ) is lower

semi-continuous in the weak topology of XG−DFT . Also, EPS is coercive in the weak

topology ofXG−DFT . Thus, EPS possesses a minimizer inXG−DFT by Theorem 3.3.29.

(2) We can get (3.7.19) by the process in Theorem 3.5.9.

(3) We can get (3.7.20) by (3.7.10) and the process in Theorem 3.6.8.

3.8 Conclusion

We construct a mathematical framework for Hartree-Fock and density functional

theory models, including restricted Hartree-Fock, unrestricted Hartree-Fock, local spin

density approximation, generalized gradient approximation, meta generalized gradient

approximation and more generalized density functional theory models [67]. The well-

posedness of these models, such as the existence of the minimizers, the convergence

of finite element approximation, the convergence of finite element approximation with

numerical quadratures, and the well-posedness of the pseudopotential approximation

have been proved. It will be a great tool and extremely helpful for the development of

Hartree-Fock and density functional theory models.

Chapter 3, is currently begin prepared for submission for publication of the mate-

rial. Holst, M., Hu, H., and Zhu, Y. The dissertation author was the primary investigator

and author of this material.



Chapter 4

New Linear Scaling Methods for Exact

Exchange

We describe an efficient numerical algorithm to solve the Hartree-Fock equation

[71]. The Hartree-Fock equation is discretized by the finite element method. Priori

adaptive mesh is adopted to optimize the efficiency of the algorithm. The conjugate

gradient method with an algebraic multigrid preconditioner is employed to solve the

Poisson and bound-state Helmholtz equations. The computational cost scales linearly

with the number of bases. A variety of numerical experiments for atoms and molecules

demonstrate reliable precision and speed.

Section 4.1 shows the motivation to develop the linear scaling method. Section

4.2 discusses the algorithm of our method. Section 4.3 shows several numerical exam-

ples. Section 4.4 is our conclusion.

4.1 Motivation

Various approaches have been developed to investigate materials in the last cen-

tury. Quantum methods, solving the Schrödinger equation with different types of ap-

proximations, have best accuracy comparing with other methods. The most commonly

used quantum methods are wavefunction method [129] and density functional method

[66, 81]. Wavefunction method is based on obtaining the wavefunction of the system.

Density functional method studies the properties of the system through its electronic

89
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density. A great deal of effort has been devoted to solve quantum models numerically.

The plane-wave basis [82, 137, 51] is one of most-widely used basis for studying mate-

rials systems. The plane-wave basis functions form a complete and orthonormal set, and

compute electrostatic interactions efficiently through Fourier transformations. However,

there are still some notable disadvantages for the plane-wave basis. The plane-wave ba-

sis calculations are restricted to periodic boundary conditions and cannot handle most

realistic systems with complicated boundary. Further, the uniform spatial resolution

provided by the plane-wave basis is very inefficient to solve the non-periodic systems,

where we need to concentrate the bases for some regions and provides low resolution

elsewhere. Moreover, the scalability of computations on parallel computation is affected

by the huge data flow during the orthogonalization process. Atomic-orbital type basis

such as Gaussian basis [57, 161, 75] is another popular basis used. Atomic-orbital type

basis includes important physics properties in the basis sets, and this reduces the amount

of basis sets needed in the calculation dramatically. However, the self-consistent solver

of this approach is difficult to get convergent due to the ill-conditioned matrices as the

number of nonorthogonal basis functions increased. Furthermore, it is not flexible for

complex geometries and boundary conditions, and it is not scalable on parallel comput-

ing platfomrs.

In order to avoid these drawbacks, much effort has been devoted to develop scal-

able real-space methods [8, 143, 26, 23, 48, 15, 141, 102] over the past decade, such as

finite difference method, wavelet method, and finite element method. These real-space

calculations are performed on meshes, and systematic convergence can be achieved.

Among real-space methods, finite element method [160, 151, 152, 153, 113, 114, 115,

166, 22, 87, 146, 91, 36, 6, 105, 104, 96, 132, 27] is flexible for unstructured mesh,

which allows for consideration of complex geometries and boundary conditions. Also

finite element method has very good scalability on parallel computing platforms. Fur-

thermore, a lot of numerical algorithms and existing software implemented by the finite

element method such as FEniCS [34] could be used. The flexibility of mesh generation

is helpful in Hartree-Fock and density functional theory calculations. The electronic

wave functions have rapid variations near singular regions of the atomic center and de-

cay quickly away from the atomic center. Thus, we need to provide high resolution for
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regions with high electron density and a coarser resolution elsewhere. The mesh adap-

tion technique is proposed to overcome this problem. Priori mesh adaption technique

have been studied in [105, 104, 22, 87, 146, 36, 89, 128]. Most of them use exist-

ing knowledge of atomic wavefunction as a criterior to construct adaptive mesh, while

some work [105, 104] proposed to use the error function of finite element approxima-

tion to generate adaptive function. Posteriori mesh adaption technique is also applied to

density functional theory recently in papers [166, 6, 27].

Difficulties arise when finite element method is used to solve a model with exact

exchange energy, such as Hartree-Fock model. Because exact exchange energy operator

is non-local and finite element method needs more bases comparing with atomic-orbital

type basis, the evaluation of exact exchange energy becomes a major computational bot-

tleneck. However, exact exchange energy is included in most modern hybrid functionals

[12, 120, 78, 145, 10, 86, 157, 11, 65]. Thus an efficient way to solve the exact exchange

energy problem with finite element method needs to be developed. A few examples by

assuming an exponential asymptotic behavior in the density matrix are proposed for

solving Hartree-Fock exchange in the Gaussian bases [133, 135, 134]. Several algo-

rithms have been developed to only solve the one dimensional Hartree-Fock equation in

radial direction by the symmetry [42, 43, 59, 61, 60], but these algorithms are limited

to small symmetrical systems. A recent Hartree-Fock method [2] implementation using

finite element basis introduces an acceleration technique for the exact exchange energy

which uses an approximate X-α formulation. Another interesting approach to evaluate

the Hartree-Fock exact exchange energy used multiresolution self-consistent method

[55, 164], which employs a fast integral convolution method with some approximations.

In this paper, we described a general linear scaling method with finite element

basis to solve Hartree-Fock model. The linear scaling method will guarantee both the

linear time cost and linear memory cost. This method could be easily generalized to

density functional theory, and hybrid models [71], but we will focus only on the Hartree-

Fock model in this paper.
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4.2 Formulation

The formulations presented below is only for restricted Hartree-Fock, and they

can be generalized to unrestricted Hartree-Fock by a straightforward way. This section

follows Section 2.2 very closely. Section 4.2.1 introduces the Hartree-Fock equations

[129]. Equivalent formulations of Hartree-Fock equations are described in Section 4.2.2,

which are used in our linear scaling finite element solver [67]. Section 4.2.3 shows the

finite element discretization of Hartree-Fock equations.

4.2.1 Hartree-Fock Equations

Restricted Hartree-Fock method assumes each occupied molecular spinorbital is

occupied by two electrons with opposite spins. Suppose the electronic system has 2n

electrons and n fully occupied molecular orbitals, we can denote the molecular spinor-

bitals by [129, 71]:

Ψ = {ψ1ψ2 . . . ψ2n}, (4.2.1)

and molecular orbitals by [129, 71]:

Φ = {φ1φ2 . . . φn}. (4.2.2)

The relationship among molecular spinorbitals and molecular orbital are given by [129,

71]:

ψ2i−1 = φiα, i = 1, . . . , n, (4.2.3)

ψ2i = φiβ, i = 1, . . . , n. (4.2.4)

And we have the orthonormality relationships [129, 71]:∫
φ∗i (~x)φj(~x)d~x = δij, i, j = 1, . . . , n. (4.2.5)

The total energy functional of restricted Hartree-Fock is [129, 71]:

E = T (Ψ) + V (Ψ) + J(Ψ) +K(Ψ). (4.2.6)

The first term is the kinetic energy of the non-interacting electrons,

T (Ψ) = 2
n∑
i=1

Ti = −
n∑
i=1

∫
φ∗i (~x)O2φi(~x)d~x. (4.2.7)
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The second term is the electronic energy between electrons and the external field Vext(~x),

V (Ψ) = 2
n∑
i=1

Vi = 2
n∑
i=1

∫
φ∗i (~x)Vext(~x)φi(~x)d~x. (4.2.8)

The third term is the electrostatic interaction energy among electrons,

J(Ψ) = 2
n∑

i,j=1

Jij = 2
n∑

i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φi(~x)φj(~x
′)

|~x− ~x′|
d~xd~x′. (4.2.9)

The last term is the exact exchange energy of electrons,

K(Ψ) = −
n∑

i,j=1

Kij = −
n∑

i,j=1

∫ ∫
φ∗i (~x)φ∗j(~x

′)φj(~x)φi(~x
′)

|~x− ~x′|
d~xd~x′. (4.2.10)

By the method of the Lagrange multiplier, we have the diagonal effective one-

electron eigenvalue equation [129, 71]:

{T̂i + V̂i +
n∑
j=1

(2Ĵj − K̂j)}φi = εiφi, i = 1, . . . , n, (4.2.11)

where εj Lagrange multipliers, and

T̂i = −1

2
O2,

V̂i = Vext(~x),

Ĵjφi(~x) =

∫
φ∗j(~x

′)φj(~x
′)

|~x− ~x′|
d~x′φi(~x),

K̂jφi(~x) =

∫
φ∗j(~x

′)φi(~x
′)

|~x− ~x′|
d~x′φj(~x). (4.2.12)

Self-consistent iterative method is conducted to solve effective one-electron

eigenvalue equation (4.2.11), and the ground state energy is achieved when the self-

consistent solver gets convergent.

4.2.2 Equivalent Hartree-Fock Equations

Effective one-electron eigenvalue equation (4.2.11) could be rewritten as [55,

164, 71]

{T̂i − εi}φi = {−V̂i −
n∑
j=1

(2Ĵj + K̂j)}φi, i = 1, . . . , n, (4.2.13)
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where we move the exact exchange operator K̂j to the right side of the effective one-

electron equation, and we will treat this term as known in each step of Self-consistent

solver, which will save the computational cost greatly.

Effective one-electron equation (4.2.13) will be the core equation in our linear

scaling method, and the time cost of solving (4.2.13) will be discussed carefully in

Section 4.3.

4.2.3 The Finite Element Discretization

Suppose m is the number of basis functions, and {χα}mα=1 are the finite element

basis functions. Then each molecular orbital could be written as [71]

φi =
m∑
α=1

ciαχα, i = 1, . . . , n. (4.2.14)

The finite element discretization of (4.2.13) is [71]

Hici = vi. (4.2.15)

ci = {ci1, . . . , cim} are the coefficients of molecular orbital in the expansions of finite

element basis. Hi is the stiffness matrix of operator (T̂i − εi), and the element of the

stiffness matrix Hi is:

(Hi)α,β =

∫
Ω

{
1

2
OχαOχβ − εiχαχβ

}
dΩ, α, β = 1, . . . , n. (4.2.16)

vi is a constant vector, which could be calculated from the results of the Self-consistent

solver in last step. The element of vi is

(vi)α =

∫
Ω

χα

{
−V̂iφi −

n∑
j=1

(2Ĵj + K̂j)φi

}
dΩ, α = 1, . . . , n. (4.2.17)

The Helmholtz equation (4.2.15) could be solved in O(m), and it will be ana-

lyzed in Section 4.3.

4.3 Algorithm

The algorithm [71] presented below is for restricted Hartree-Fock. Unrestricted

Hartree-Fock models could be solved by the same process, except that we need to con-

sider the spin-up and spin-down electrons separately.
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Figure 4.1: The V-cycle Multigrid Method

We introduce multigrid method in Section 4.2.1. The linear time cost analysis of

solving equivalent Hartree-Fock equations is shown in Section 4.2.2, and the linear time

cost of exact Fock matrix diagonalization step and energy correction step are discussed

in Section 4.2.3. Section 4.2.4 shows the Self-consistent iteration process of our method.

4.3.1 Multigrid Method

Elliptic boundary value problems could be solved by multigrid method [5, 18,

54, 17, 21, 97]. The computational work of multigrid method is O(m), where m is

the number of bases. The approximate solution achieved by full multigrid method have

comparable error bounds to theoretical error bounds in the finite element method. There

are two main important steps of the multigrid method. One step is the smoothing step,

which will reduce the high frequency part of the error. Then the smooth part of the resid-

ual error in the smoothing step will be corrected on the coarse mesh by the restriction

step. Figure 4.1 [71] illustrates the V-cycle multigrid method. The V-cycle multigrid

method only directly solves the problem in the most coarse mesh.

Consider the nested sequence of finite-element spaces V1 ⊂ V2 ⊂ · · · ⊂ Vn.

The prolongation operator Ik−1
k defines the mapping from Vk−1 to Vk, and the restriction

operator Ikk−1 defines the mapping from Vk to Vk−1. We denote by Rk the smoothing
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operator. For the linear problemAu = f , an approximate coarse linear problemAkuk =

fk needs to be constructed. Suppose MG(k, u, f) is the approximate solution of the

equation Aku = f . Algorithm 1 [71] introduces the multigrid algorithm to solve the

linear problem Au = f .

Algorithm 1 MG(k, u, f)

MG(k, u, f) is the approximate solution of the equation Aku = f .

Input uk,0 is the initial guess for k step, TOL is the threshold for the smoothing step.

m1 and m2 are the number of presmoothing steps and postsmoothing steps to reach

the threshold TOL;

if k = 1 then

Direct solve: u1 = A−1
1 f1 ;

else

Presmoothing: uk,i = uk,i−1 +RT
k (fk − Akuk,i−1), for i = 1, . . . ,m1;

Error Correction: uk,m1+2 = uk,m1+1 + Ikk−1MG(k − 1, 0, Ik−1
k [fk − Akuk,m1+1]);

Postsmoothing: uk,i = uk,i +Rk(fk − Akuk,i), for i = m1 + 2, . . . ,m1 +m2 + 1;

Output uk = uk,m1+m2+1 is the solution of the kth level iteration.

Algebraic multigrid [20, 19, 97, 30] was introduced to solve linear systems based

on multigrid principles, but only depends on the coefficients in the underlying matrix and

needs no geometry knowledge of the problem. The matrix elements is the sole factor to

determine coarse mesh, restriction and prolongation operators, and coarse mesh equa-

tions. Algebraic multigrid is a more general approach to algebraically enforce the vari-

ational conditions the variational conditions Ak−1 = Ik−1
k AkI

k
k−1 and Ik−1

k = (Ikk−1)T .

Algebraic multigrid can be used as a preconditioner, and combined with accel-

eration methods such as conjugate gradient method. It is more robust and efficient to

use algebraic multigrid as a preconditioner, comparing to use it as a stand-alone solver.

Algebraic multigrid method is used in our linear scaling finite element solver. The

Helmholtz equation (4.2.15) in our Self-consistent solver are solved by conjugate gradi-

ent method with algebraic multigrid preconditioner. Also the Coulomb potentials Ĵj and

exchange potentials K̂j could be calculated by conjugate gradient method with algebraic

multigrid preconditioner.
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4.3.2 Equivalent Hartree-Fock Equations

In the Self-consistent solver, (4.2.13) could be rewritten as [71]

(−1

2
O2 − ε(k−1)

i )φ
(k)
i (~x)

=
n∑
j=1

[
2V

(k−1)
jj (~x)φ

(k−1)
i (~x)− V (k−1)

ij (~x)φ
(k−1)
j (~x)

]
+ Vext(~x)φ

(k−1)
i (~x)

= fk−1
i (~x), (4.3.1)

where {V (k)
ij (~x)}ni,j=1 could be calculated by solving Poisson equations,

− 1

4π
O2V

(k)
ij (~x) = φ

∗(k−1)
i (~x)φ

(k−1)
j (~x), (4.3.2)

where k, (k − 1) mean the kth, (k − 1)th step of our self-consistent solver.

Because the bounded states energies {εi}ni=1 are always negative and −O2 are

positive definite, these make the operator −1
2
O2 − ε(k−1)

i is always positive definite. In

our linear scaling finite element solver [71], (4.3.1) and (4.3.2) are solved by conjugate

gradient method with algebraic multigrid preconditioner in O(m).

4.3.3 Exact Fock Matrix Diagonalization and Energy Correction

We only update molecular orbitals in (4.3.1) and (4.3.2). In order to update en-

ergies, we need to include exact Fock matrix diagonalization step and energy correction

step in the self-consistent solver. Harrison’s paper [55] mentioned exact Fock matrix

diagonalization step, and we will give a clear description of exact Fock matrix diago-

nalization step. The formulations of energy correction step followed Harrison’s paper

[55].

Exact Fock Matrix Diagonalization

Exact Fock matrix diagonalization is to diagonalize the Fock matrix in the space

of occupied orbitals. Suppose updated molecular orbitals from last step is {φ(k−1)
i }ni=1,
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and the Fock matrix (F (k−1))n∗n element is given [71]

F
(k−1)
ij =

(
φ

(k−1)
i (~x),−1

2
O2φ

(k−1)
j (~x) + Vext(~x)φ

(k−1)
j (~x)

m∑
µ=1

[
2

∫
φ
∗(k−1)
µ (~x′)φ

(k−1)
µ (~x′)

|~x− ~x′|
d~x′φ

(k−1)
j (~x)

−
∫
φ
∗(k−1)
µ (~x′)φ

(k−1)
j (~x′)

|~x− ~x′|
d~x′φ(k−1)

µ (~x)

])
,

=

(
φ

(k−1)
i (~x),−1

2
42φ

(k−1)
j (~x) +

m∑
µ=1

[
2V (k−1)

µµ (~x)φ
(k−1)
j (~x)

−V (k−1)
jµ (~x)φ(k−1)

µ (~x) + Vext(~x)φ
(k−1)
j (~x)

])
, (4.3.3)

where

− 1

4π
O2V

(k−1)
jµ (~x) = φ∗(k−1)

µ (~x)φ
(k−1)
j (~x). (4.3.4)

All the potentials {V (k−1)
jµ (~x)}nj,µ=1 are calculated by conjugate gradient method

with algebraic multigrid preconditioner in O(m). Vext is the nuclear potential. As a

result of m� n, the time cost to get n2 elements of Fock matrix is still O(m).

After the diagonalization process of Fock matrix F , we get updated molecular

orbitals {φ(k)
i }ni=1 and their corresponding energies ε(k)

i , which satisfy

φ
(k)
i (~x) =

n∑
j=1

c
(k−1)
ij φ

(k−1)
j (~x), (4.3.5)

n∑
µ=1

c
(k−1)
iµ c

(k−1)
jµ = δij. (4.3.6)

By the orthonormality of the occupied orbitals {φ(k−1)
i }ni=1, we have [71]∫

φ
(k)
i (~x)φ

(k)
j (~x)d~x =

n∑
ν,µ=1

c
(k−1)
iν c

(k−1)
jµ

∫
φ(k−1)
ν (~x)φ(k−1)

µ (~x)d~x

=
n∑
µ=1

c
(k−1)
iµ c

(k−1)
jµ = δij, (4.3.7)

which means {φ(k)
i }ni=1 is orthonormalized.
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Energy Correction

Suppose the error between precise energy εi and calculated energy ε(k−1)
i in (k−

1)th step is δε(k−1)
i . By (4.3.1), we have [55, 71]

φ
(k)
i (~x) = −(−1

2
O2 − ε(k−1)

i − δε(k−1)
i )−1f

(k−1)
i (~x). (4.3.8)

We expand the operator in a Taylor series and obtain [55, 71]

φ
(k)
i (~x) = −(−1

2
O2 − ε(k−1)

i )−1f
(k−1)
i (~x)− δε(k−1)

i (−1

2
O2 − ε(k−1)

i )−2f
(k−1)
i (~x)

+O((δε
(k−1)
i )2). (4.3.9)

Left projection with V ψ and rearrangement yield the following update for the energy:

δε
(k−1)
i = −〈f

(k−1)
i (~x)|φ(k−1)

i (~x)− φ̃(k−1)
i (~x)〉

‖φ̃(k−1)
i (~x)‖2

, (4.3.10)

where

φ̃
(k−1)
i (~x) = −(−1

2
O2 − ε(k−1)

i )−1f
(k−1)
i (~x). (4.3.11)

The time cost to calculate (4.3.10) and (4.3.11) is obviously O(m). The updated

process is [55, 71]

ψk = ψ̃(k−1),

ε(k) = ε(k−1) + δε(k−1). (4.3.12)

4.3.4 Self-consistent Iteration

The time cost analysis in Section 4.3.2 and Section 4.3.3 shows the linear scal-

ing O(m) time cost of our algorithm. Because we never need to form a dense stiffness

matrix for exact exchange operator, the memory cost is also linear [71]. During the

numerical implementation, we use energy correction step in self-consistent solver to

update the molecular orbitals for small systems, and we use exact Fock matrix diagonal-

ization step in self-consistent solver to update the molecular orbitals for large systems

[71]. In order to get the self-consistent solver convergent for large systems, we updated
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molecular orbital energies only when the small difference is reached in two consecutive

self-consistent iterations [71]. Algorithm 2 [71] shows the process of the self-consistent

solver. An initial guess (φ
(0)
i , ε

(0)
i ), i = 1, . . . , n is given to start the self-consistent

solver. The self-consistent solver will stop when the total energy difference in two con-

secutive iterations is smaller than the tolerance TOL.

Algorithm 2 The Self-consistent Iteration

Input (φ
(0)
i , ε

(0)
i ), i = 1, . . . , n, TOL;

while ‖ε(k)
total − ε

(k−1)
total ‖ >TOL do

Evaluate potentials V (k)
ij , i, j = 1, . . . , n in (4.3.2);

Evaluate f (k)
i (~x), i = 1, . . . , n in (4.3.1);

Solve Helmholtz equation, and get updated {φ(k+1)
i , i = 1, . . . , n};

Exact Fock matrix diagonalization step/energy correction step, and get updated

{ε(k+1)
i , i = 1, . . . , n};

k++;

Output (φi, εi), i = 1, . . . , n.

4.4 Numerical Results

Our numerical implementations [71] are built based on Python FEniCS [34]

package, which is a collection of free software with an extensive list of features for

automated, efficient solution of differential equations. The source code of our linear

scaling finite element solver [71] can be found [69]. Our calculation domain is a box,

and we try to maintain precision independent of the size of the box. Because molecular

orbitals decay exponentially from the position of the nucleus, we apply zero boundary

condition to the molecular orbitals. The initial guess for the molecular orbitals are STO-

3G molecular orbitals generated with NWChem [154, 77]. The singularities of nuclei

potential are avoided by adding a small positive constant in the denominator.

We show in Section 4.4.1 the priori adaptive mesh constructed for calculation.

Section 4.4.2 shows Hartree-Fock numerical results of He and Be atom. Section 4.4.3

shows Hartree-Fock numerical results of H2, C2 and BeF molecules. H2 molecule
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singlet/tripet are discussed in Section 4.4.4. Section 4.4.5 gives a simple example of

numerical implementation of our linear scaling method on density functional theory

models.

4.4.1 Priori Adaptive Mesh

We first construct a coarse triangulation mesh, with the nodes positioned at a

high coarsening rate in the radial direction away from the nuclei. Then we increase

the triangulations by successive uniform subdivisons. Figure 4.4 [71] is an example of

priori adptive mesh for a single atom. In a multi-atom system, finite element method

is flexible to give different amount of mesh to different atoms according to their nuclei

potential decay rates. Figure 4.3 [71] is an example to show the mesh distribution for a

two-atom system, which gives more mesh to the left nucleus than the right nucleus.

4.4.2 Hartree-Fock: Be, He

We use Be atom as an example to demonstrate the properties of our solver. Fig-

ure 4.4 [71] shows the convergence of self consistent solver for Be atom. Figure 4.5

[71] shows the convergence as a function of the number of subdivisions for Be atom

. In order to verify convergence with respect to mesh size, we first construct a coarse

priori adaptive triangulation mesh, and repeat the calculations on increasingly finer tri-

angulations obtained by successive uniform subdivisons. Figure 4.6 [71] shows the

computational cost scales linearly with the number of bases, which is consistent with

the analysis in Section 4.3.2 and 4.3.3.

The calculated ground state energy of our Hartree-Fock solver performed upon

the neural atomsHe, Be are listed in Table 4.1 [71]. The accuracies of the total energies

could reach 0.002 a.u. for He atom and 0.02 a.u. for Be atom.

4.4.3 Hartree-Fock: H2, C2, BeF

Ground state energy Hartree-Fock calculations are performed upon several

molecules H2 , C2 and BeF are listed in Table 4.2 [71]. The bond length we used for

H2 , C2 and BeF are 1.4 a.u., 2.358 a.u., and 2.386 a.u. [55]. The accuracies of the
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Figure 4.2: Priori Adaptive Mesh

Table 4.1: Hartree-Fock Ground State Energies (a.u.) for Be, He

Atom Calculated total energy Reference [80]

He -2.859 -2.861

Be -14.553 -14.573
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Figure 4.3: Priori Adaptive Mesh on a Two-atom System

Figure 4.4: Convergence of Self Consistent Solver (Hartree-Fock: Be atom)
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Figure 4.5: Convergence with respect to Mesh Size ( Hartree-Fock: Be atom)

Figure 4.6: Linear Scaling Method (Hartree-Fock: Be atom)
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Table 4.2: Hartree-Fock Ground State Energies (a.u.) for H2, C2, BeF

Molecule Calculated total energy Reference

H2 -1.132 -1.134 [101]

C2 -75.406 -75.407 [109]

BeF -124.06 -124.17 [101]

Figure 4.7: Hartree-Fock Ground State Energy of C2 as a Function of Interatomic
Distance

ground state energies could reach 0.002 a.u. for H2, 0.001 a.u. for C2 and 0.01 a.u. for

BeF . We also studied the ground state energies of C2 at various interatomic distances.

Figure 4.7 [71] shows our solver has a smooth energy curve, and our calculated bond

length for C2 is consistent with the reference [55].

4.4.4 Hartree-Fock: H2 Singlet/Triplet

H2 molecular triplet has exact exchange energy, thus it is a great example to

apply our linear scaling method on the H2 molecular triplet study. The interatomic dis-
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Figure 4.8: Convergence of Self Consistent Solver (H2, bond length=2.8 a.u.)

tance in this study is chosen as 2.8 a.u., which is twice larger than the real H2 molecular

bond length. The large bond length will give different solutions for unrestricted Hartree-

Fock singlet and restricted Hartree-Fock models single, which is a very interesting phe-

nomenon and will be discussed very carefully in Chapter 5 [72]. Figure 4.8 [71] shows

the convergence of self consistent solver for singlet restricted Hartree-Fock, singlet un-

restricted Hartree-Fock (two electrons with same spin) and triplet unrestricted Hartree-

Fock (two electrons with opposite spins) forH2 with bond length 2.8 a.u.. The results in

Figure 4.8 [71] is reasonable. Triplet unrestricted Hartree-Fock has the highest ground

state energy, because two electrons have same spin and one electron has to occupy a

relative high energy level molecular spinorbital. Singlet unrestricted Hartree-Fock (two

electrons with same spin) has lower energy than singlet restricted Hartree-Fock, because

the localized unrestricted solution is only local critical point.
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Figure 4.9: Convergence of LSDA Self Consistent Solver (H2, bond length=1.4 a.u.)

4.4.5 Density Functional Theory: H2

Local spin density approximation has been implemented numerically with our

linear scaling method. Figure 4.9 [71] shows a simple example of H2. I didn’t include

the correlation energy term in the numerical implementation. The correlation energy

is a small term and will not influence the convergence result of our solver. Figure 4.9

[71] examines the convergence behavior of our method. This shows our linear scaling

method could also be applied to density functional theory models and hybrid models..

4.5 Conclusion

We successfully proposed and numerically implemented a linear time cost and

memory cost method [71] with finite element basis, which could handle exact exchange

operator. Our package is built based on Python FEniCS [34] package. The algebraic

multigrid method is used in our algorithm in order to achieve linear scaling. The priori

adaptive mesh is introduced to improve our solver. Several numerical experiments of
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atoms and molecules have been conducted using our solver, and pretty good accuracies

could be reached. The development of our method makes finite element basis become

competitive in models with exact exchange energy. Our method could be generalized to

density functional theory and hybrid models in a straightforward way. Each step in our

self-consistent solver is well defined, and this makes the parallelization of our solver is

feasible.

Chapter 4, is currently begin prepared for submission for publication of the mate-

rial. Hu, H., Song, D., Weare, J., and Holst, M. The dissertation author was the primary

investigator and author of this material.



Chapter 5

Stability Analysis of the Electronic

Structure Models

This chapter introduces a systematic way to study the stability condition of

Hartree-Fock and density functional theory models [72]. Section 5.1 shows the mo-

tivation to develop the method. Section 5.2 introduces the major theorem to analyze the

stability condition. Section 5.3 shows the Hessian matrix derivations for Hartree-Fock

and density functional theory models. Section 5.4 gives some details of numerical im-

plementations. Section 5.5 shows some numerical results. Section 5.6 is our conclusion.

5.1 Motivation

Consider the zero set {(a, x) : f(a, x) = 0}. For a given parameter value a,

if there are more than one solution in (a, x)-space, we call it bifurcation. Figure 5.1

gives an example of a bifurcation curve. If Oa,xf(a, x) 6= 0, the Implicit Function

Theorem guarantees that the system can be written as a smooth function of a. Otherwise,

bifurcations can happen.

In Hartree-Fock and density functional theory solvers, molecular orbitals and

orbital wavefunctions are solved by the Euler-Lagrange equation of the total energy

functional. The Euler-Lagrange equation can be considered as f(a, x) discussed above,

where a can be interatomic distance R or nuclear charge Z, and x are molecular orbitals

in Hartree-Fock and orbital wavefunctions in Density Functional Theory. We will show

109
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Figure 5.1: Bifurcation Curve

a few bifurcation figures below.

The solutions of the Euler-Lagrange equations are extremums. In order to es-

tablish whether that extremum is a maximizer, minimizer, or saddle point, shown in

Figure 5.2, the second functional derivative must be analyzed. Few papers [74, 136,

110, 140] discussed the stability of Hartree-Fock and density functional theory results.

In Chapter 6, we show a systematic way of stability study by Hessian matrix analysis

[72].

5.2 Theorem

We will introduce the major theorem we use to analyze the stability condition in

this section. Suppose the functional we want to minimize isE(u), and let the constraints

are

V = {u : gj(u) = 0, j = 1, . . . , k} (5.2.1)
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Figure 5.2: Minimum,Maximum, and Saddle Point

Let’s define

L(u, λ) = E(u) +
m∑
j=1

λjgj(u), (5.2.2)

L′(u, λ) = E ′(u) +
m∑
j=1

λjg
′
j(u), (5.2.3)

L′′(u, λ) = E ′′(u) +
m∑
j=1

λjg
′′
j (u). (5.2.4)

Then Theorem 5.2.1 holds.

Theorem 5.2.1 ([100, 155, 47]). Suppose that (u∗, λ∗) satisfies L′(u∗, λ∗) = 0, and

< L′′(u∗, λ∗)h, h > > 0 for all h satisfying < g′j(u
∗), h >= 0 for every j = 1, . . . , k.

Then (u∗, λ∗) is a local minimizer of E.

We call the vector space

Vcons = {h :< g′j(u
∗), h >= 0, j = 1, . . . , k} (5.2.5)

constraint manifold. If the eigenvalues λi on the constraint manifold are all positive, then

u∗ represents a local minimum. Correspondingly, if λi on the constraint manifold are all
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negative, then u∗ represents a local maximum. In the intermediate case of eigenvalues

of mixed sign, we conclude that u∗ corresponds to a saddle point of the functional.

Establishing whether a particular extremum is a global, rather than local, mini-

mum or maximum is a more difficult problem in optimization theory that remains un-

solved for arbitratry E(u).

5.3 Formulation (Two-electrons’ System – Hessian Ma-

trix)

This section shows the Hessian matrix derivations for Hartree-Fock and density

functional theory models. Section 5.3.1 and Section 5.3.2 show the formulations of

restricted Hartree-Fock and unrestricted Hartree-Fock models. Section 5.3.3 and Sec-

tion 5.3.4 show the formulations of restricted density functional theory and unrestricted

density functional theory models.

People always choose molecular orbitals to be real-valued vectors, which means

molecular orbital φ and its complex conjugate φ̄ are same. In our Hessian analysis, it

will be equivalent if 1) we consider φ is a real-valued vector and the only variable; 2) φ

and its complex conjugate φ̄ are two variables, but they need to satisfy φ = φ̄. Thus, we

assume molecular orbitals are real-valued vectors in our following analysis without any

loss of generality.

5.3.1 Restricted Hartree-Fock

The restricted Hartree-Fock model for two-electrons’ system has only one

molecular orbital φ. Total energy functional is E(φ) is [72]

E(φ) =

∫
|Oφ(~x)|2d~x+

∫
2Vext(~x)|φ(~x)|2d~x+

∫ ∫
|φ(~x′)|2|φ(~x)|2

|~x− ~x′|
d~x′d~x, (5.3.1)

where Vext is the nuclear potential. Since we only study two electrons in our system, we

don’t have exchange potential term. We also have the constraint on φ∫
|φ(~x)2|d~x = 1 (5.3.2)
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By Lagrange multiplier method, we have [72]

L(φ, ε) =

∫
|Oφ(~x)|2d~x+

∫
2Vext(~x)|φ(~x)|2d~x

+

∫ ∫
|φ(~x′)|2|φ(~x)|2

|~x− ~x′|
d~x′d~x− ε(

∫
|φ(~x)2|d~x− 1), (5.3.3)

where ε is the Lagrange multiplier.

In order to calculate the extremum of L(φ, ε), the Euler-Lagrange equation of

the total energy functional (5.3.3) with the constraint, which is the effective one-electron

eigenvalue problem, is [72]

δL(φ, ε)

δφ
= F (φ, ε) =

(
−1

2
O2 + Vext(~x) +

∫
φ(~x′)2

|~x− ~x′|
d~x′
)
φ(~x)− εφ(~x) = 0,

(5.3.4)

where φ needs to satisfy the constraint (5.3.2).

In order to establish whether that extremum is a maximizer, minimizer, or sad-

dle point, the second order functional derivative (Hessian matrix) must be analyzed.

Suppose the extremum (φ∗, ε∗) satisfy both (5.3.4) and (5.3.2). The Hessian analysis

involves the solution of the eigenvalue problem [72]

Hwi(~x′) =

∫
δL(φ, ε)

δφ(~x)δφ(~x′)
wi(~x

′)d~x′
∣∣∣∣
(φ,ε)=(φ∗,ε∗)

= λiwi(~x)

= DF (φ, ε)wi =
d

dt
F (φ+ twi)|t=0

= −1

2
O2wi + Vext(~x)wi +

∫
2φ∗(~x′)wi(~x

′)

|~x− ~x′|
d~x′φ(~x)

+

∫
φ∗(~x′)2

|~x− ~x′|
d~x′wi(~x)− ε∗wi(~x),

(5.3.5)

which includes the nonlocal exchange term. wi needs to satisfy the constraint [72]∫
φ∗(~x)wi(~x)d~x = 0, (5.3.6)

which means wi are orthonormal to φ∗(~x).
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5.3.2 Unrestricted Hartree-Fock

Suppose (φ1, φ2) are the molecular orbitals for the unrestricted Hartree-Fock

model. Total energy functional is E(φ) is [72]

E(φ1, φ2) = −1

2

∫
|Oφ1(~x)|2d~x− 1

2

∫
|Oφ2(~x)|2d~x+

∫
Vext(~x)|φ1(~x)|2d~x

+

∫
Vext(~x)|φ2(~x)|2d~x+

∫ ∫
|φ1(~x′)2||φ2(~x)|2

|~x− ~x′|
d~x′d~x, (5.3.7)

where Vext is the nuclear potential. (φ1, φ2) also need to satisfy the constraints∫
|φi(~x)2|d~x = 1, i = 1, 2. (5.3.8)

By Lagrange multiplier method, we have [72]

L(φ1, φ2, ε1, ε2) = −1

2

∫
|Oφ1(~x)|2d~x− 1

2

∫
|Oφ2(~x)|2d~x+

∫
Vext(~x)|φ1(~x)|2d~x

+

∫
Vext(~x)|φ2(~x)|2d~x+

∫ ∫
|φ1(~x′)2||φ2(~x)|2

|~x− ~x′|
d~x′d~x

−ε1(

∫
|φ1(~x)2|d~x− 1)− ε2(

∫
|φ2(~x)2|d~x− 1), (5.3.9)

where (ε1, ε2) are the Lagrange multipliers.

Suppose (ε1, ε2) are corresponding eigenvalues of molecular orbitals, and they

are also the Lagrange multipliers. By the Euler-Lagrange equation of the total energy

functional (5.3.9) with the constraints (5.3.8), we have the effective one-electron eigen-

value equations [72](
−1

2
O2 + Vext(~x) +

∫
φ2(~x′)2

|~x− ~x′|
d~x′
)
φ1(~x)− ε1φ1(~x) = 0,(

−1

2
O2 + Vext(~x) +

∫
φ1(~x′)2

|~x− ~x′|
d~x′
)
φ2(~x)− ε2φ2(~x) = 0, (5.3.10)

where (φ1, φ2) need to satisfy the constraints (5.3.8).

Suppose the extremum (φ∗1, φ
∗
2) and (ε∗1, ε

∗
2) satisfy both (5.3.8) and (5.3.10).

We could get the Hessian matrix for unrestricted Hartree-Fock similarly as restricted

Hartree-Fock [72],

H =

 −1
2
O2 + Vext +

∫ φ∗2(~x′)2

|~x−~x′| d~x
′ − ε∗1

∫ 2φ∗2(~x′)·
|~x−~x′| d~x

′φ∗1(~x)∫ 2φ∗1(~x′)·
|~x−~x′| d~x

′φ∗2(~x) −1
2
O2 + Vext +

∫ φ∗1(~x′)2

|~x−~x′| d~x
′ − ε∗2

 .

(5.3.11)
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Suppose the finite element bases {χα}mα=1 and the eigenvectors of H are {wi}2m
i=1. We

could assume ci is the coefficient of wi(~x) expanded in the finite element bases. We can

rewrite wi as (w1i, w2i), where [72]

w1i =
m∑
j=1

ci,jχj,

w2i =
2m∑

j=m+1

ci,jχj−m, (5.3.12)

and they need to satisfy [72] ∫
φ∗1i(~x)w1i(~x)d~x = 0,∫
φ∗2i(~x)w2i(~x)d~x = 0. (5.3.13)

5.3.3 Restricted Density Functional Theory

The restricted density functional theory for two-electrons’ system has only one

orbital wavefunction φ. The model we discussed below is local spin density approxima-

tion without correlation energy functional. Total energy functional is E(φ) is [72]

E(φ) =

∫
|Oφ(~x)|2d~x+

∫
2Vext(~x)|φ(~x)|2d~x+

∫ ∫
2|φ(~x′)|2|φ(~x)|2

|~x− ~x′|
d~x′d~x,

−3

2

(
6

π

)1/3 ∫
|φ(~x)|8/3d~x (5.3.14)

where Vext is the nuclear potential. The constraint on φ is∫
|φ(~x)2|d~x = 1 (5.3.15)

By Lagrange multiplier method, we have [72]

L(φ, ε) =

∫
|Oφ(~x)|2d~x+

∫
2Vext(~x)|φ(~x)|2d~x+

∫ ∫
2|φ(~x′)|2|φ(~x)|2

|~x− ~x′|
d~x′d~x

−3

2

(
6

π

)1/3 ∫
|φ(~x)|8/3d~x− ε(

∫
|φ(~x)2|d~x− 1), (5.3.16)

where ε is the Lagrange multiplier.
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The Euler-Lagrange equation of the total energy functional (5.3.16) with the

constraint, which is the effective one-electron eigenvalue problem, is [72](
−1

2
O2 + Vext(~x) +

∫
2φ(~x′)2

|~x− ~x′|
d~x′ −

(
6

π

)1/3

(φ(~x))2/3

)
φ(~x)− εφ(~x) = 0.

(5.3.17)

Suppose the extremum (φ∗, ε∗) satisfy both (5.3.17) and (5.3.15). The Hessian

analysis, similar to the restricted Hartree-Fock analysis, involves the solution of the

eigenvalue problem [72]

Hwi(~x′) = −1

2
O2wi + Vext(~x)wi +

∫
2φ∗(~x′)wi(~x

′)

|~x− ~x′|
d~x′φ∗(~x)

+

∫
φ∗(~x′)2

|~x− ~x′|
d~x′wi(~x)− 5

3

(
6

π

)1/3

(φ∗(~x))2/3wi(~x)− ε∗wi(~x),

(5.3.18)

and wi needs to satisfy the constraint [72]∫
φ∗(~x)wi(~x)d~x = 0, (5.3.19)

which means wi are orthonormal to φ∗(~x).

5.3.4 Unrestricted Density Funtional Theory

The unrestricted density functional theory for two-electrons’ system has two or-

bital wavefunctions (φ1, φ2). The model we discussed below is local spin density ap-

proximation without correlation energy functional. Total energy functional is E(φ) is

[72]

E(φ) =
1

2

∫
|Oφ1(~x)|2d~x+

1

2

∫
|Oφ2(~x)|2d~x,

+

∫
Vext(~x)(|φ1(~x)|2 + |φ2(~x)|2)d~x,

+
1

2

∫ ∫
(|φ1(~x)|2 + |φ2(~x)|2)(|φ1(~x′)|2 + |φ2(~x′)|2)

|~x− ~x′|
d~x′d~x,

−3

4

(
6

π

)1/3 ∫
|φ1(~x)|8/3d~x− 3

4

(
6

π

)1/3 ∫
|φ2(~x)|8/3d~x (5.3.20)
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where Vext is the nuclear potential. The constraints on (φ1, φ2) are∫
|φi(~x)2|d~x = 1, i = 1, 2 (5.3.21)

By Lagrange multiplier method, we have [72]

L(φ1, φ2, ε1, ε2) =
1

2

∫
(|Oφ1(~x)|2 + |Oφ2(~x)|2)d~x

+

∫
Vext(~x)(|φ1(~x)|2 + |φ2(~x)|2)d~x

+
1

2

∫ ∫
(|φ1(~x)|2 + |φ2(~x)|2)(|φ1(~x′)|2 + |φ2(~x′)|2)

|~x− ~x′|
d~x′d~x,

−3

4

(
6

π

)1/3 ∫
|φ1(~x)|8/3d~x− 3

4

(
6

π

)1/3 ∫
|φ2(~x)|8/3d~x,

−ε1(

∫
|φ1(~x)2|d~x− 1)− ε2(

∫
|φ2(~x)2|d~x− 1), (5.3.22)

, where (ε1, ε2) are the Lagrange multipliers.

The Euler-Lagrange equation of the total energy functional (5.3.22) with the

constraint, which are the effective one-electron eigenvalue problems, are [72](
−1

2
O2 + Vext(~x) +

∫
(φ1(~x′)2 + φ2(~x′)2)

|~x− ~x′|
d~x′ −

(
6

π

)1/3

(φi(~x))2/3

)
φi(~x)

= εiφi(~x), i = 1, 2, (5.3.23)

where (φ1, φ2) need to satisfy the constraint (5.3.21).

Suppose the extremum (φ∗1, φ
∗
2) and (ε∗1, ε

∗
2) satisfy both (5.3.21) and (5.3.23).

The Hessian analysis, similar to the unrestricted Hartree-Fock analysis, involves the

solution of the eigenvalue problem [72]

H =

 H11

∫ 2φ∗2(~x′)·
|~x−~x′| d~x

′φ∗1(~x)∫ 2φ∗1(~x′)·
|~x−~x′| d~x

′φ∗2(~x) H22

 , (5.3.24)

where

H11 = −1

2
O2 + Vext +

∫
φ∗2(~x′)2

|~x− ~x′|
d~x′ − 5

3

(
6

π

)1/3

(φ∗1(~x))2/3 − ε∗1,

H22 = −1

2
O2 + Vext +

∫
φ∗1(~x′)2

|~x− ~x′|
d~x′ − 5

3

(
6

π

)1/3

(φ∗2(~x))2/3 − ε∗2.

(5.3.25)
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Suppose the finite element bases {χα}mα=1 and the eigenvectors of H are {wi}2m
i=1. We

could assume ci is the coefficient of wi(~x) expanded in the finite element bases. We can

rewrite wi as (w1i, w2i), where [72]

w1i =
m∑
j=1

ci,jχj,

w2i =
2m∑

j=m+1

ci,jχj−m, (5.3.26)

and they need to satisfy [72] ∫
φ∗1i(~x)w1i(~x)d~x = 0,∫
φ∗2i(~x)w2i(~x)d~x = 0. (5.3.27)

5.4 Numerical Implementation

This section describes describes how we implement it numerically. The most

difficult part is the non-local exact exchange operator. Section 5.4.1 introduces the ex-

act exchange operator. Section 5.4.2 gives some details on how we construct stiffness

matrix of exact exchange operator and Hessian operator. Section 5.4.3 shows the general

eigenvalue equations of Hartree-Fock and density functional theory Hessian analysis.

5.4.1 Exact Exchange Operator

Our analysis below is for the exact exchange operator of restricted Hartree-Fock

model, and it could be generalized to other models in a straightforward way. Suppose

the extremum (φ∗, ε∗) satisfy both (5.3.4) and (5.3.2), and {χα}mα=1 are the finite element

basis sets, then molecular orbital could be written as

φ∗ =
m∑
α=1

cαχα (5.4.1)

The exchange operator K can be expressed as [72]:

Kφ(~x) =

(∫
φ∗j(~x

′)φ(~x′)

|~x− ~x′|
d~x′
)
φ∗j(~x). (5.4.2)
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The element of exact exchange operator coefficient matrix is [72]:

Kαβ =

∫
χα(~x)

(∫
φ∗j(~x

′)χβ(~x′)

|~x− ~x′|
d~x′
)
φ∗j(~x)d~x

=
m∑

µ,ν=1

∫
χα(~x)

(∫
[cµχµ(~x′)]χβ(~x′)

|~x− ~x′|
d~x′
)

[cνχν(~x
′)]d~x

=
∑
β′,α′

[cβ′cα′ ]

∫
χα(~x)

(∫
χβ′(~x

′)χβ(~x′)

|~x− ~x′|
d~x′
)
χα′(~x)d~x. (5.4.3)

where χβ′ , χα′ are the basis functions, which have some overlap with χβ , χα. The

summation
∑

β′,α′ have O(1) term.

From (5.4.3), we could see exact exchange operator is a non-local operator. The

stiffness matrix of the exact exchange operator will be dense and the time cost of solving

the eigenvalue problem will be huge.

5.4.2 Constructing Stiffness Matrix of Hessian Operator

We construct stiffness matrix of Hessian operator based on Python FEniCS [34]

package, which is a collection of free software with an extensive list of features for

automated, efficient solution of differential equations. Here are the steps in our code

[72]:

Step 1. Use FEniCS to generate adaptive mesh and form the stiffness matrix of

all local operators.

Step 2. Write a subroutine to construct the stiffness matrix of the nonlocal oper-

ator.

Step 3. Combine the generated stiffness matrix in Step 1 and Step 2, and use

scipy linalg module to get the spectrum of Hessian matrix.

Here are more details for Step 2. We consider the restricted Hartree-Fock model

of two-electrons’ system as an example.

Suppose (φ∗, ε∗) is the solution of the Euler-Lagrange equation, and {χα}mα=1

are the finite element bases. We assume φ∗ could be written as

φ∗ =
m∑
α=1

cαχα (5.4.4)
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The element of the stiffness matrix for exchange operator [72]:

Ki,j = 2

∫
χi(~x)

(∫
φ∗(~x′)χj(~x

′)

|~x− ~x′|
d~x′
)
φ∗(~x)d~x. (5.4.5)

Let T be a collection of finite elements: T = {Ek}NTk=1. Ki,j could be rewritten

as [72]

Ki,j = 2

NT∑
k,k′=1

∫
Ek

χi(~x)

(∫
Ek′

φ∗(~x′)χj(~x
′)

|~x− ~x′|
d~x′

)
φ∗(~x)d~x. (5.4.6)

We make an approximation to |~x − ~x′| is R + δ, where Rk,k′ is the distance

between the center of element Ek and Ek′ and δ is a small positive constant to avoid the

singular condition. Then [72]

Ki,j = 2

NT∑
k,k′=1

1

Rk,k′ + δ

∫
Ek

χi(~x)φ∗(~x)d~x

∫
Ek′

χj(~x
′)φ∗(~x′)d~x′,

= 2

NT∑
k,k′=1

M∑
α,β=1

CαCβ
Rk,k′ + δ

∫
Ek

χi(~x)χα(~x)d~x

∫
Ek′

χj(~x
′)χβ(~x′)d~x′

(5.4.7)

Suppose {k1, k2, k3, k4} and {k′1, k′2, k′3, k′4} are four vertices of element Ek and

Ek′ . Then [72]

Ki,j = 2

NT∑
k,k′=1

∑
α={k1,k2,k3,k4}
β={k′1,k′2,k′3,k′4}

CαCβ
Rk,k′ + δ

∫
Ek

χi(~x)χα(~x)d~x

∫
Ek′

χj(~x
′)χβ(~x′)d~x′ (5.4.8)

Algorithm 3 [72] describes the process to assemble exact exchange operator.

5.4.3 Generalized Eigenvalue Problem

This section shows the formulations of generalized eigenvalue problem for

Hartree-Fock and density functional theory models.

Restricted Hartree-Fock/Restricted Density Functional Theory

The formulations of generalized eigenvalue problems for restricted Hartree-Fock

and restricted density functional theory model are straightforward. We could discretize
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Algorithm 3 Stiffness Matrix Assembly on Exact Exchange Operator
for Ek in T do

for Ek′ in T do

for i in {k1, k2, k3, k4} do

for j in {k′1, k′2, k′3, k′4} do

for α in {k1, k2, k3, k4} do

for β in {k′1, k′2, k′3, k′4} do

Ki,j+ = 2
CαCβ
Rk,k′+δ

∫
Ek
χi(~x)χα(~x)d~x

∫
Ek′

χj(~x
′)χβ(~x′)d~x′

the eigenvalue problem [72]

Hwi(~x′) = λiwi(~x), i = 1, . . . ,m, (5.4.9)

with the finite element bases {χα}mα=1. We will get following generalized eigenvalue

problem [72]

Hci = λiMci, i = 1, . . . ,m, (5.4.10)

where the matrices H and M are

Hα,β = (χα,Hχβ), α, β = 1, . . . ,m,

Mα,β = (χα, χβ), α, β = 1, . . . ,m, (5.4.11)

and ci is the coefficient of wi(~x) expanded in the finite element bases {χα}mα=1, and it

satisfies

wi(~x) = ci,jχj, i, j = 1, . . . ,m, (5.4.12)

Unrestricted Hartree-Fock/Unrestricted Density Functional Theory

The formulations of generalized eigenvalue problems for unrestricted Hartree-

Fock and unrestricted density functional theory model are not trivial. The dimension of

Hessian matrix H is 2m, which is twice larger than the number of finite element basis

sets m. Thus we need to increase the size of our basis sets twice, and new basis sets

{ηα}2m
α=1 are [72] {(χ1

0

)
, · · · ,

(χm
0

)
,

(
0

χ1

)
, · · · ,

(
0

χm

)}
. (5.4.13)
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We could discretize the eigenvalue problem

Hwi(~x′) = λiwi(~x), i = 1, . . . , 2m, (5.4.14)

with the new finite element bases in (5.4.13), and we will get following generalized

eigenvalue problem

Hci = λiMci, i = 1, . . . , 2m, (5.4.15)

where the matrices H and M are [72]

Hα,β = (ηα,Hηβ), α, β = 1, . . . , 2m,

Mα,β = (ηα, ηβ), α, β = 1, . . . , 2m, (5.4.16)

and ci is the coefficient of wi(~x) expanded in the finite element bases {ηα}mα=1, and it

satisfies

wi(~x) = ci,jηj, i, j = 1, . . . , 2m, (5.4.17)

5.5 Numerical Results

The source code of our numerical implementation [72] could be found [68]. We

show in Section 5.5.1 the bifurcation figure of H2 restricted Hartree-Fock and unre-

stricted Hartree-Fock models, and Hessian analysis results of extremums of restricted

Hartree-Fock and unrestricted Hartree-Fock models at different bond lengths. Section

5.5.2 shows the bifurcation figure of H2 restricted density functional theory and un-

restricted density functional theory models. Section 5.5.3 shows the solutions of the

restricted Hartree-Fock and unrestricted Hartree-Fock models of Two-electron atom.

5.5.1 Hartree-Fock: H2

Figure 5.3 [72] shows the bifurcation figure of H2 restricted Hartree-Fock and

H2 unrestricted Hartree-Fock. The y-axis is the total energy of Self-consistent solver,

and the x-axis is the interatomic distance. From Figure 5.3, you could observe a thresh-

old around 2.5 a.u.. If interatomic distance is smaller than the threshold, both H2 re-

stricted Hartree-Fock andH2 unrestricted Hartree-Fock generate same delocalized solu-

tions. If interatomic distance is larger than the threshold, H2 unrestricted Hartree-Fock
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Figure 5.3: Bifurcation Figure of H2 RHF and H2 UHF

generate localized solutions and H2 restricted Hartree-Fock still generate delocalized

solutions. The H2 unrestricted Hartree-Fock localized solutions is smaller than the H2

restricted Hartree-Fock delocalized solutions.

Table 5.1 [72] shows restricted Hartree-Fock solutions are local minimizers

when we consider them on the energy landscape of restricted Hartree-Fock.

Table 5.2 [72] shows delocalized unrestricted Hartree-Fock solutions are local

minimizers, if the bond length is small. Localized unrestricted Hartree-Fock solutions

are still local minimiers, but delocalized unrestricted Hartree-Fock solutions are saddle

Table 5.1: Hessian Analysis on RHF

Bond Length Result Details

1.4 a.u. Local Minimizer all evs on the constraint manifold are positive.

2.8 a.u. Local Minimizer all evs on the constraint manifold are positive.

5.6 a.u. Local Minimizer all evs on the constraint manifold are positive.
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Table 5.2: Hessian Analysis on UHF

Bond Length Solution Result Details

1.4 a.u.
delocalized

solution
Local Minimizer

all evs on the constraint

manifold are positive.

2.8 a.u.
delocalized

solution
Saddle Point

1 ev on the constraint

manifold is negative.

5.6 a.u.
delocalized

solution
Saddle Point

1 ev on the constraint

manifold is negative.

2.8 a.u. localized solution Local Minimizer
all evs on the constraint

manifold are positive.

5.6 a.u. localized solution Local Minimizer
all evs on the constraint

manifold are positive.

points, if the bond length is large.

5.5.2 Density Functional Theory: H2

Figure 5.4 [72] shows the bifurcation figure of H2 restricted local spin density

approximation model and H2 unrestricted local spin density approximation model. The

y-axis is the total energy of Self-consistent solver, and the x-axis is the interatomic dis-

tance. We didn’t include the correlation energy term in the numerical implementation.

We could observe a threshold around 3.0 a.u.. If interatomic distance is smaller than the

threshold, both H2 restricted local spin density approximation and H2 unrestricted local

spin density approximation generate same delocalized solutions. If interatomic distance

is larger than the threshold, H2 unrestricted local spin density approximation gener-

ate localized solutions and H2 restricted local spin density approximation still generate

delocalized solutions. The H2 unrestricted local spin density approximation localized

solutions is smaller than the H2 restricted local spin density approximation delocalized

solutions.

Table 5.3 [72] shows solutions of restricted local spin density approximation

model are local minimizers when we consider them on the energy landscape of restricted
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Figure 5.4: Bifurcation Figure of H2 RLSDA and H2 ULSDA
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Table 5.3: Hessian Analysis on RLSDA

Bond Length Result Details

1.4 a.u. Local Minimizer all evs on the constraint manifold are positive.

5.6 a.u. Local Minimizer all evs on the constraint manifold are positive.

7.2 a.u. Local Minimizer all evs on the constraint manifold are positive.

Table 5.4: Hessian Analysis on ULSDA

Bond Length Solution Result Details

1.4 a.u.
delocalized

solution
Local Minimizer

all evs on the constraint

manifold are positive.

5.6 a.u.
delocalized

solution
Saddle Point

1 ev on the constraint

manifold is negative.

7.2 a.u.
delocalized

solution
Saddle Point

1 ev on the constraint

manifold is negative.

5.6 a.u. localized solution Local Minimizer
all evs on the constraint

manifold are positive.

7.2 a.u. localized solution Local Minimizer
all evs on the constraint

manifold are positive.

local spin density approximation model.

Table 5.4 [72] shows delocalized unrestricted local spin density approximation

solutions are local minimizers, if the bond length is small. Localized unrestricted local

spin density approximation solutions are still local minimiers, but delocalized unre-

stricted local spin density approximation solutions are saddle points, if the bond length

is large.

5.5.3 Hartree Fock: Two-electron atom

Figure 5.5 [72] shows the relationship between the total energy of a two-electron

atom’s unrestricted Hartree-Fock system and the nuclear charge of the system. If Z ≤
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Figure 5.5: Two-electron Atom UHF Energy vs Nuclear Charge Z

1.03, restricted Hartree-Fock can’t get convergent, and only unrestricted Hartree-Fock

can get solutions. If Z ≥ 1.05, both restricted Hartree-Fock and unrestricted Hartree-

Fock generate same solutions.

From Table 5.5 [72], we find a threshold between 1.03 < Z < 1.05 for unre-

stricted Hartree-Fock. IfZ ≤ 1.03, the first unrestricted Hartree-Fock orbital is a weakly

bounded state that is close to H atom ground state energy, and the second unrestricted

Hartree-Fock orbital is a bounded state. If Z ≥ 1.05, the first unrestricted Hartree-Fock

orbital is the same as the second unrestricted Hartree-Fock orbital.

5.6 Conclusion

We successfully proposed and numerically implemented a systematic way to

study stability condition of Hartree-Fock and density functional theory models [72].

We generated a few bifurcation figures for Hartree-Fock and density functional theory.
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Table 5.5: Two-electron Atom UHF Orbitals vs Nuclear Charge Z

Z 1st Orbital Energy 2nd Orbital Energy Total Energy

1.02 -0.0048 a.u. -0.2725 a.u. -0.5155 a.u.

1.03 -0.0135 a.u. -0.1888 a.u. -0.5285 a.u.

1.05 -0.0688 a.u. -0.0688 a.u. -0.5569 a.u.

1.1 -0.0911 a.u. -0.0911 a.u. -0.6323 a.u.

Hessian analysis have also been conducted on extremums of Hartree-Fock and density

functional theory models. A weakly bounded state is found when the nuclear charge

of the two-electron atom gets really close to 1. It is a powerful tool to understand the

stability of different solutions of Hartree-Fock and density functional theory models.

Chapter 5, is currently begin prepared for submission for publication of the ma-

terial. Hu, H., Marzuola, J., Lu, J., Song, D., Weare, J., and Holst, M. The dissertation

author was the primary investigator and author of this material.



Chapter 6

Conclusion

We developed finite-element formulations for Hartree-Fock and density func-

tional theory models, including restricted Hartree-Fock, unrestricted Hartree-Fock, lo-

cal spin density approximation, generalized gradient approximation, meta generalized

gradient approximation and more generalized density functional theory models [67].

We probed the well-posedness, and the existence of minimizers for these models in

a finite calculation domain for both the all-electron problem and pseudopotential ap-

proximations. We also established the convergence of the finite-element approximation,

and the convergence of finite element approximation with numerical quadratures by Γ-

convergence for both the all-electron problem and pseudopotential approximations. It

will be useful for the development of studying Hartree-Fock and density functional the-

ory models numerically by finite element method.

In order to handle exact exchange operator, we successfully proposed and nu-

merically implemented a linear time cost and memory cost method [71] with finite ele-

ment bases. Multigrid method is used in our algorithm in order to achieve linear scaling.

A variety of numerical experiments for atoms and molecules demonstrate reliable pre-

cision and speed. Our method could be applied to all kinds of Hartree-Fock, density

functional theory, hybrid models. The development of this method make finite element

method become a competitive method in models with exact exchange energy.

Also we successfully proposed and numerically implemented a systematic way
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to study stability condition of Hartree-Fock and density functional theory models [72].

We generated a few bifurcation figures for Hartree-Fock and density functional theory.

Hessian analysis have also been conducted on extremums of Hartree-Fock and density

functional theory models. A weakly bounded state is found when the nuclear charge

of the two-electron atom gets really close to 1. It is a powerful tool to understand the

stability of different solutions of Hartree-Fock and density functional theory models.



Appendix A

Plasmonic Dark Field Microscopy
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This is my Ph. D. work [70] in another group during 2009-2010.

A.1 Abstract

We propose plasmonic dark field microscopy, which utilizes a chip-scale inte-

grated plasmonic multilayered structure to substitute the bulky and expensive conven-

tional condenser optics. Experimental results show that we can get high contrast image

using the compact, low-cost and alignment free plasmonic dark field microscopy.

A.2 Content

The rapid progress in nanoscale science and technology demands new mi-

croscopy techniques that possess both high resolution and high contrast capabilities.

Many techniques have been developed to improve resolution such as near-field scan-

ning optical microscopy (NSOM),[147, 107, 125, 14, 106] stimulated emission deple-

tion (STED) microscopy,[62, 79] photoactivated localization microscopy (PALM),[13,

64] stochastic optical reconstruction microscopy (STORM),[130] randomly adsorbed

molecule microscopy (RAM),[163] the superlens,[37, 93] and hyperlens,,[94, 142]

structured illumination microscopy (SIM),[53, 52] etc. Few techniques, however, have

been developed for high contrast imaging. Dark field (DF) microscopy is widely used

to view the object that has low contrast in bright-field microscopy.

In the conventional DF microscopy, the central part of the illumination light

which ordinarily passes through and around the sample is blocked by a light stop, al-

lowing only oblique rays to strike the sample on the microscope slide, as shown in

Figure (A.1)(a). This is of great help when the objects have refractive indices very close

to those of their surroundings and are difficult to image in the conventional bright field

microscopy. While the conventional DF microscopy can achieve high contrast imaging,

its resolution may also be improved using a high numerical aperture (NA) configura-

tion of the condenser/objective pair. However, the NA of the objective can not be larger

than that of the condenser to avoid oblique illuminating rays entering the objective.

Also the high NA condensers, such as the cardioid condenser,[126] are very sensitive
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to alignment and thus must be accurately positioned and aligned to the very sharp cone

of illumination, making it very hard to use. In addition, the illumination light in such a

high NA arrangement must be very strong due to the sharp illumination cone, which is

wasteful of energy. Thus conventional DF microscopy is instrumentally complex, costly

and bulky.

In order to resolve the aforementioned limitations associated with conventional

DF microscopy, we propose another DF technology. The proposed technology utilizes

a chip-scale integrated plasmonic multilayered structure as the substitute of the bulky

and expensive conventional condenser optics. We term this integrated structure as a

plasmonic condenser (PC) and this imaging technology as plasmonic dark field (PDF)

microscopy. The PDF microscopy is schematically shown in Figure (A.1)(b). The PC is

the critical element in PDF microscopy, which uses surface plasmons (SPs) to illuminate

the sample. The effective NA of the PC is the ratio of the wavevetors (k-vectors) of the

SPs to the photons in free space. Because the SPs, which are surface electromagnetic

waves formed by collective oscillation of electrons at a metal-dielectric interface, may

possess k-vectors much higher than those of the free-space photons at the same frequen-

cies, large effective NAs can be achieved by the PCs. In addition, the SPs are evanescent

on the metal-dielectric interface and do not propagate to the far field, so they can not

be detected by an objective lens in the far field. When objects are brought to the vicin-

ity of the metal surface, the SPs can be converted into free-space photons, which can

propagate to the far field where they can be detected. Meanwhile the SPs will remain

evanescent in the areas without the objects. Therefore, a high contrast DF image of the

samples in the far field can be formed. The essential feature of the PC is the integration

of a thin layer of metal with a SP excitation mechanism in the very proximity of the

metal to excite SPs using the near field coupling. The SP excitation mechanisms can be

quantum dots, photoluminescent and electroluminescent materials, etc. In this work, we

design and demonstrate the PDF concept using a chip-scale integrated active PC with

fluorescent Rhodamine 6G as the active material.

The active PC is schematically shown in Figure (A.1)(c). It is a three-layer

structure, i.e., an active layer of the mixture of polymethyl methacrylate (PMMA) and

Rhodamine 6G molecules sandwiched between a glass substrate and a thin layer of sil-
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Figure A.1: Schematic configurations of (a) conventional dark field microscopy, (b)
plasmonic dark field microscopy and (c) plasmonic condenser.

ver. When the Rhodamine 6G molecules are illuminated by the incident light from the

glass side, the emitted fluorescence will excite the SPs on the silver-air interface by near

field coupling. This active PC can be easily fabricated using standard microfabrication

techniques. The Rhodamine 6G molecules was first mixed with PMMA at the concen-

tration around 10-4 mol/L. Then the mixture was spincoated on a cover glass substrate.

After a 2 minutes soft bake process, a 200-nm thick layer mixture as the active layer was

obtained. Finally, a 60-nm thick silver film was deposited on top of the PMMA using

the E-beam evaporation method.

To verify the PDF idea, we tested the fabricated fluorescent active PC using ag-

gregations of 2-m diameter polystyrene beads. A two-dimensional (2D) hexagonally

close packed lattice of the polystyrene beads was fabricated on top of the silver film us-

ing a self-assembly method. The sample was first examined by using a standard optical

microscope dark field objective (EC Epiplan-Neofluar, 50X, NA = 0.8). The reflection

mode dark field image is shown in Figure (A.2)(a) with a green filter (56010 nm, band-

pass) added in the light path. As a comparison, the same sample was examined by PDF

microscopy and the image is shown in Figure (A.2)(b). Note that the same objective

was used for both techniques, however, in the PDF microscopy, a pair of band pass fil-

ters were used for the excitation (53010 nm, bandpass) and detection light (56010 nm,
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Figure A.2: Images of the monolayer polystyrene bead lattice, obtained using (a) the
conventional dark field microscopy and (b) the plasmonic dark field microscopy.

bandpass), respectively, based on the properties of the dye. The images obtained using

the conventional DF microscopy and the PDF microscopy are shown in Figures (A.2)(a)

and (b), respectively. It can be seen from Figure (A.2) that the contrast of the PDF mi-

croscopy is better than that of the conventional DF microscopy. This is especially true

for the contrast between the center parts and the boundaries of the polystyrene beads, as

marked by the arrows.

Because the illumination of PDF microscopy only exists at the interface of the

PC in the form of SPs, the depth of field and the sensitivity of the PDF microscopy along

the direction normal to the surface of the PC are solely determined by the decay property

of the SPs. Due to the differences between the SPs and the conventional illumination

light, the image information obtained using PDF microscopy and conventional DF mi-

croscopy are significantly different. The sample was examined using another standard

optical microscope dark field objective (EC Epiplan-Neofluar, 20X, NA = 0.22). Figures

(A.3)(a) and (b) show the images of the sample, which is two layers of 2-m polystyrene

beads, obtained using conventional DF microscopy and PDF microscopy, respectively. It

can be seen that conventional DF microscopy mainly provides contrast at the top layer;

while PDF image reveals the bottom layer with much improved contrast. Notice the

additional layer of particles doesnt affect the image quality much in PDF microscopy.

As shown above, we have experimentally demonstrated the PDF concept for high

contrast imaging. The image quality of PDF microscopy is strongly related to the near
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Figure A.3: Images of the dual-layer polystyrene bead lattice (diameter 2 um), ob-
tained using (a) the conventional dark field microscopy and (b) the plasmonic dark field
microscopy.
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field coupling between the active medium and the SPs on the metal-insulator interfaces

in the PC; this has been intensively investigated.[25, 7, 158] One of the well-known

models is to study the coupling of a dipole in the vicinity of a metallic interface to SPs,

as the fluorescent dyes can be modeled as dipoles with isotropic orientations. When the

thickness of the silver film is 60 nm, about 40% of the energy can be transferred to the

SPs.[7, 158] The remaining 60% of the light is attenuated by the 60-nm silver layer, thus

resulting in very low transmission. So in the far field only the free-space photons arising

from SP scattering by the object can be detected. The surface roughness, in addition

to the object, can also scatter the SPs into free space photons, thus contributing to the

background. In the demonstrated PC, the surface roughness is less than 2 nm in terms of

root mean square (RMS). Therefore, the scattered light from the random roughness of

such a smooth interface is very weak, resulting in the high contrast as shown in Figure

(A.2)(b).

In conclusion, we have demonstrated the PDF microscopy concept using a chip-

scale integrated multilayered fluorescent active PC. It can be easily extended to other

types of PCs as mentioned above. The PDF microscopy idea can also be applied to flu-

orescence microscopy, which is similar to the extension of total internal reflection (TIR)

microscopy to total internal reflection fluorescence (TIRF) microscopy.[4] Because the

PCs can have large effective NA, high resolution beyond the diffraction limit may be ob-

tained with the compact and low-cost PDF microscopy. It is worth noting that the field

of view of the PDF microscopy may be large, because it is dependent on the planar area

of the PC, rather than the relatively short propagation length of the SPs. The proposed

PDF technology shows better contrast imaging capabilities for thin samples than the

conventional DF microscopy. Finally, because the PCs are planar, the PDF microscopy

does not require very sensitive alignment as in the conventional DF.

Appendix A, in full, is a reprint of the material as it appears in Applied Physics

Letter 2010. Hu, H., Ma, C., and Liu Z. The dissertation author was the primary inves-

tigator and author of this material.
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