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Caffeine Prevents Transcription Inhibition and P-TEFb/
7SK Dissociation Following UV-Induced DNA Damage
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Darzacq3, Olivier Bensaude3, Barbara Majello1*, Luigi Lania1,2*

1 Department of Structural and Functional Biology, University of Naples Federico II, Naples, Italy, 2 Naples Oncogenomic Center (NOGEC), Naples, Italy, 3 Institut de

Biologie de l’Ecole Normale Supérieure (IBENS), CNRS UMR 8197, Paris, France

Abstract

Background: The mechanisms by which DNA damage triggers suppression of transcription of a large number of genes are
poorly understood. DNA damage rapidly induces a release of the positive transcription elongation factor b (P-TEFb) from
the large inactive multisubunit 7SK snRNP complex. P-TEFb is required for transcription of most class II genes through
stimulation of RNA polymerase II elongation and cotranscriptional pre-mRNA processing.

Methodology/Principal Findings: We show here that caffeine prevents UV-induced dissociation of P-TEFb as well as
transcription inhibition. The caffeine-effect does not involve PI3-kinase-related protein kinases, because inhibition of
phosphatidylinositol 3-kinase family members (ATM, ATR and DNA-PK) neither prevents P-TEFb dissociation nor
transcription inhibition. Finally, caffeine prevention of transcription inhibition is independent from DNA damage.

Conclusion/Significance: Pharmacological prevention of P-TEFb/7SK snRNP dissociation and transcription inhibition
following UV-induced DNA damage is correlated.
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Introduction

In mammalian cells DNA-damage response (DDR) induces a

variety of cellular processes, including DNA repair, cell cycle arrest

and apoptosis. At transcriptional level the DDR induces a global

reprogramming of gene expression with the vast majority of genes

being repressed [1–3].

The DDR-mediated mechanisms underlying the transcrip-

tional reprogramming following DNA damage are largely

unknown. A common feature of the cellular response to DNA-

damaging radiation such as X-ray, gamma rays, ultraviolet

irradiation (UV) and drug-induced DNA damage is the

induction of a high phosphorylation degree of the largest

subunit (Rpb1) of Pol II and proteasome-dependent degradation

of Rpb1 [4–6]. The carboxyl-terminal-domain (CTD) of Rpb1

serves as a scaffold for the interaction of a wide range of factors

that orchestrate transcription and co-transcriptional processes

[6]. Recruitment of transcription and processing factors is closely

linked to CTD phosphorylation at Ser-5 and Ser-2 positions,

which is concurrent with transition of the Pol II complex from

initial promoter clearance to productive elongation. Thus, it is

not of a surprise that changes in the phosphorylation state of

Rbp1-CTD have a striking effect on gene expression. Several

kinases contribute to CTD phosphorylation, in particular, Ser-2

phosphorylation is mediated by CDK9, which is required for the

Pol II complex to enter the mode of productive elongation.

CDK9 is the catalytic subunit of the positive transcription

elongation factor b (P-TEFb), which consists of a complex

between CDK9 and its cyclin T partner. Moreover, P-TEFb

integrates mRNA synthesis with histone modification, pre-

mRNA processing, and mRNA export [7–11]. P-TEFb is found

within a cell in two forms referred to as large (LC) and free

small (SC) complexes. The kinase active SC complex contains

CDK9 and cyclin T1, which is the predominantly associated

cyclin. In the LC inactive complex P-TEFb is associated with

the 7SK snRNP that contains HEXIM1 or 2 and the 7SK

RNA-interacting BCDIN3 and LARP7 proteins [12–16]. The

dynamic partitioning of P-TEFb between the complexes

constitutes a functional equilibrium that can be perturbed by

transcription arrest, and hypertrophic signals, and loss of

LARP7 function shifts the P-TEFb equilibrium toward

the active state and causes P-TEFb-dependent malignant

epithelial transformation [17]. Most importantly a variety of

DNA-damaging agents induce a rapid release of the P-TEFb LC

complex with a concomitant accumulation of the active

P-TEFb complex.

In this study we found that caffeine prevents disruption of P-TEFb

LC, and transcription following DNA damage induced by UV.
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Results

Caffeine prevents dissociation of the large inactive P-
TEFb complex following UV irradiation

Initiation of DDR by agents such as UV, Camptothecin,

Actinomycin D causes a rapid release of P-TEFb from the LC,

which is concurrent with Rbp1-CTD hyper-phosphorylation and

transcription repression [12,13,18].

DDR involves activation of the PIKK-family protein kinases,

ATM, ATR and DNA-PK; as these kinases impinge on many

processes including transcription, we sought to evaluate the

putative relationship between P-TEFb LC disruption and DDR

activated kinases. To investigate this possibility, we treated cells

with the broad PIKK inhibitors caffeine. The drug was added to

cells 2 hrs prior to UV treatments and the large and free forms of

P-TEFb were analyzed after different times (hrs) of recovery

following UV treatment in the presence or absence of caffeine

(Fig. 1 A and B). The ratio between P-TEFb SC and LC forms was

analyzed in a semi-quantitative manner with a protein extraction

protocol based on differential salt extractability of the two

complexes [18,19]. Cells were lysed with the low salt buffer to

generate cytosolic extracts CE (containing the large form of P-

TEFb) and a nuclear pellet NE (containing the free form of P-

TEFb). Both CE and NE extracts were analyzed by western

blotting for the presence of CDK9 ad CYCT1. The percent of P-

TEFb in large complex (low salt or CE) was calculated as a

fraction of total amount of P-TEFb (both in CE and NE). Shortly

after UV irradiation (1 hr) P-TEFb LC disruption was found.

However, exposure to caffeine effectively prevented UV-mediated

dissociation of LC P-TEFb.

P-TEFb dissociation after UV treatment could be detected only

after 609 of recovery, and the protective effect of caffeine was

evident after 609 of recovery (Figure S1) Moreover, caffeine alone

did not significantly modulated P-TEFb equilibrium (Figure 1 C

and D and Figure S1).

To further validate the protective effect of caffeine, P-TEFb

equilibrium was evaluated by glycerol gradient fractionation of

cell lysates from samples treated with UV in the presence or

absence of caffeine (Fig. 1D). Accordingly with the findings

observed with the differential salt extractability protocol, caffeine

effectively prevented UV-induced P-TEFb LC dissociation.

Moreover, a similar protective effect of caffeine treatment on P-

TEFb LC dissociation was seen in U2OS and in p532/2 H1299

cells (data not shown).

Because caffeine is a large spectrum PIKK inhibitor we tested

more specific kinase inhibitors such as the specific ATM inhibitor

(KU55933), wortmannin, and DNA-PK inhibitor (NU7026). In

addition, the Akt inhibitor (LY294002) and the Jak inhibitor

(AG490) were also included in our studies because previous works

showed that Akt and Jak-dependent pathways might be involved

in the control of P-TEFb equilibrium [20,21]. Of the different

inhibitors used only caffeine prevented P-TEFb LC dissociation

(Fig. 1E).

Because Rpb1-CTD is a major substrate of P-TEFb activity we

look at the phosphorylation status of Rpb1 after UV damage in the

presence or absence of caffeine. As shown in Fig. 1, panel F, UV

induced hyperphosphorylation of Rbp1, conversely caffeine

pretreatment restored, at least in part, the cellular content of

Rpb1 isoforms, suggesting that prevention of P-TEFb release from

LC reduces the UV-induced hyperphosphorylation of Rbp1-

CTD, while caffeine alone did not significantly affect the

phopshorylation status of Rbp1-CTD. Collectively these findings

demonstrated that caffeine effectively prevents P-TEFb LC

dissociation following UV DNA damage.

Caffeine prevents UV-induced transcriptional repression
As any treatment that results in an arrest in transcription leads

to P-TEFb LC dissociation, we sought to determine the functional

consequences of caffeine treatment on DNA damage induced

transcriptional arrest. To this end we used a U2OS Tet-on cell line

(U2OS/pTet-globin-Luc-CFP-24MS2, named 5BCP9F cells) har-

boring a stable integration at a single locus of approximately 30

repeats of a gene cassette each containing tetracycline-inducible

promoter driving the synthesis of a transcript with the beta-globin

first exon placed before the Luc cDNA followed by a 24 MS2

repeats in its 39 untranslated region. Reverse tet transactivator

(rtTA), in the presence of doxycycline, drives gene expression from

the minimal CMV promoter that can be monitored by Luciferase

measurements or by RNA FISH with antisense MS2 probe (Ruda

V. et al. in preparation). We found that UV treatment of 5BCP9F

cells, repressed Luciferase expression about 10 fold compared to

untreated cells (Fig. 2A). Interestingly, pretreatment with caffeine

prevented the drop in luciferase activity in UV treated cells,

indicating that caffeine-mediated prevention of P-TEFb dissocia-

tion correlates with a decreased UV-induced transcriptional

repression (Fig. 2A).

Caffeine is a relatively unselective drug and it has been shown

to inhibit multiple DDR activation of the multiple PIKK-family

protein kinases, such as ATM, ATR and DNA-PK. Further

analysis aimed at examining the involvement of ATM and/or

ATR pathways showed that a specific ATM inhibitor

(KU55933), as well as specific siRNA silencing of ATR failed

to prevent the UV-induced decrease in pTet-on-CMV—globin-

Luc-24MS2 expression (Fig. 2 panels A, B). Moreover,

pretreatment with additional pharmacological inhibitors such

as LY294002, NU7026 and Wortmannin did not protect

Luciferase activity following DNA damage (Fig. 2A). These data

indicate that the DDR activation of the PIKK-family protein

kinases is not responsible for the caffeine-mediated protection of

transcription.

To further correlate P-TEFb dissociation and transcriptional

gene repression we looked at cellular genes that are repressed

following DNA-damage such as CDK1 and CYCB1. In

agreement with previous reports both CYCB1 and CDK1 were

rapidly down-regulated by UV treatment [22], however caffeine

pretreatment prevented CDK1 as well as CYCB1 transcription

inhibition (Fig 2 C).

Finally, we sought to address the effect of caffeine on

transcription at chromosomal level of the single integrated gene

cassette of the Luc cassette. To this end RNA-FISH experiments

were performed using MS2-labelled anti-RNA probe in cells after

UV-damage in the presence or absence of caffeine (Fig. 2 panel D).

The RNA-FISH data validated the protective effect of caffeine in

UV induced transcription arrest. It is important to note that

caffeine effect is not fully sufficient to protect transcription levels

comparable to that in untreated cells (Fig. 2), suggesting that

caffeine-independent mechanisms contribute to DNA damage

transcription arrest.

It has been recently shown that UV light induces release of P-

TEFb from the large complex by cooperative action of calcium

protein phosphatase 2B (PP2B) protein phosphatase 1 (PP1a), and

treatment with PP2B inhibitors FK506 and cyclosporine A (CsA)

prevented UV-mediated dissociation of LC P-TEFb [23]. Because

caffeine is known to affect Ca2+ signaling [24] we sought to

determine the effect of FK506 and cyclosporine A (CsA) on

transcription following UV exposure. We found that both

pharmacological treatments prevented transcription inhibition

(Fig. 2 panels E and F). However, unlike caffeine high

concentrations of both drugs were required for such effects.

P-TEFb and DNA Damage
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Figure 1. Caffeine prevents dissociation of the large inactive P-TEFb complex following UV irradiation. A) HeLa cells were irradiated
with UV (40J/m2) and at the indicate times (hours) after irradiation cellular proteins were extracted with different buffers as described in the text, and
immunoblotting was performed on low cytosolic extracts (CE) and high-salt nuclear extracts (NE) to detect the percentage of CDK9 and CYCT1 in the

P-TEFb and DNA Damage
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Caffeine does not attenuate UV-induced c-H2AX foci
We sought to determine whether the property of caffeine to

prevent P-TEFb LC release and prevents transcription inhibition

could be due to a general protective effect of this drug in DNA

damaged cells. However, as described above, we found that

pharmacological inhibition of DNA damaging signal-regulated

kinases do not prevent P-TEFb LC release nor rescue transcrip-

tion, suggesting that UV-activated kinases such as DNA-PK or

ATR/ATM, do not significantly contribute to regulation of

equilibrium of the SL and LC P-TEFb complexes (Fig. 1D and

2A). To further elucidate the transcriptional protective function of

caffeine in UV irradiated cells, we sought to determine the

presence of DNA damage signature in caffeine pretreated cells

after UV irradiation. As largely expected induction of c-H2AX

foci, a marker of DNA damage, was detected upon UV

irradiation. However, as shown in Fig 3 (A and B) caffeine

treatment did not influence the induction of c-H2AX in UV-

treated cells, suggesting that the protective transcriptional effects

exerted by caffeine in UV-treated cells occurs in the presence of

DNA damage. To further substantiate such hypothesis we

performed RNA FISH analysis in caffeine treated cells after UV

irradiation. As shown in Figure 3C, we found that caffeine

pretreatment prevents transcription inhibition, and most impor-

tantly, fluorescence microscopy analysis performed in caffeine

treated cells after UV irradiation demonstrated that the RNA

FISH signals colocalize with c-H2AX foci. These results suggest

that caffeine prevents transcription inhibition in UV irradiated

cells independently from DNA damage.

Caffeine prevents UV-induced repression of Pol II
elongation

Previous works have shown that UV induces alteration of Pol II

distribution along chromatin of repressed genes. A recent report

demonstrated that UV triggers a DDR that inhibits Pol II

elongation in vivo [25]. Inhibition of Pol II elongation is fully

compatible with the P-TEFb dissociation induced by UV. Since

caffeine prevents P-TEFb dissociation we sought to determine the

Pol II distribution following UV irradiation in the presence or

absence of caffeine. We performed quantitative chromatin

immunoprecipitation (qChIP) to test for the occupancy of total

Pol II at the single chromatin locus of the pTet-globin-Luc-CFP-

24MS2 in 5BCP9F cells. qChIP experiments were carried out

using chromatin prepared from untreated, UV treated cells in the

presence or absence of caffeine, and the relative occupancy of Pol

II was determined by qChIP analysis on upstream (US),

transcription start site (TSS, proximal), coding region (CD) and

39-end region (distal) (Fig. 4). To assess the effects of UV +/2

caffeine on Pol II elongation, we used a recent described approach

looking at total Pol II distribution and in agreement with a recent

report [25] we found that UV treatment causes a decrease in the

amounts of Pol II at the pTet-globin-Luc-CFP-24MS2 region, and

caffeine partially attenuates this effect. Moreover, as discussed by

Munoz et al, [25] if we normalize the 2UV, +UV and +UV/

caffeine ChIP enrichments to 100% at the TSS (proximal), the Pol

II distribution on pTet-globin-Luc-CFP-24MS2 locus in UV-

treated cells shows an accumulation toward the TSS proximal

region, consistent with an elongation defect. In the presence of

caffeine recruitment of Pol II is partially maintained, and most

importantly the ratio proximal/distal Pol II recruitment is similar

to the untreated samples, suggesting that caffeine prevents, at least

in part, inhibition of transcription elongation. In parallel, we

performed qChIP to test the chromatin occupancy of P-TEFb,

using an anti-CYCT1 antibody, and found that CYCT1

recruitment at the TSS, CR and 39-end regions decreased (3–4

fold) after UV. Caffeine partially maintained the relative amounts

of CYCT1 on gene chromatin following UV.

Discussion

To sustain UV-induced DNA damage mammalian cells

impinge a global reprogramming of gene transcription. Unlike

transcription activation the molecular basis of transcriptional

repression after DNA damage have not been established fully. UV

treatment triggers a rapid disruption of the LC P-TEFb.

Concurrently, Rpb1-CTD becomes hyper-phosphorylated and

transcription is largely repressed. Our findings showed that

caffeine pretreatment of UV-irradiated cells, prevents P-TEFb

LC dissociation. Remarkably, caffeine treatment prevents UV-

induced Rpb1-CTD hyperphosphorylation and transcription

inhibition.

Release of P-TEFb LC complex is a common feature of the

DDR induced by a variety of agents: P-TEFb dissociation has

been found after UV, drug-induced DNA damage such as ActD

and Camptothecin, H2O2 and albeit transiently, after treatment

with the differentiation agent HMBA [13,18,21,24,26,27]. The

protective effect of caffeine was seen only after UV-induced DNA

damage and not after Camptothecin treatment (data not shown),

suggesting the presence of different pathways that control

transcription in response to different genotoxic insults.

The DDR activated PIKK-kinases, such as ATM, ATR and

DNA-PK do not play a significant role in the protective effect by

caffeine, because pharmacological inhibition of ATM (KU55933

inhibitor) or DNA-PK (NU7026 inhibitor) as well as ATR mRNA

silencing have no effect of P-TEFb dissociation neither rescue

free and large form of P-TEFb complex as indicated. On the left a graph reports the relative quantification of the immunoblots as percentage of large
P-TEFb complex, graphs are representative of at least four independent experiments, error bars represent standard deviation from the mean (n = 3–4).
The percent of P-TEFb in large complex (low salt or CE) was calculated as a fraction of total amount of P-TEFb (both in CE and NE). On the right
western blots from a single experiment are shown. B) Carrier dimethyl sulfoxide (control, C), or caffeine (2mM), were added to HeLa cells 120 min
prior UV irradiation, cells extracts were prepared after different times (hours) of recovery and processed as in A. The relative quantification of the
percentage of large P-TEFb is shown on the left, graphs are representative of at least four independent experiments, error bars represent standard
deviation from the mean (n = 3–4). On the right western blots from a single experiment are shown. C) HeLa cells were treated with caffeine for 2 hrs
and, as indicated were irradiated with UV (40J/m2) and cell extracts were prepared after 1 hr of recovery and immunoblots with anti-CDK9 were
performed. D) Whole cell lysates of Hela cells untreated (C) or UV irradiated in the presence or absence of caffeine (2mM, added to cells 120 min prior
UV irradiation), or treated with caffeine alone (2mM 2 hrs of treatment), were subjected to glycerol gradient sedimentation (5%–45%), and the
fractions analyzed by immunoblotting with CDK9 antibody, the relative position of small complex (SC) and large (LC) are indicated, (P) pellet. Whole
cell extract from irradiate cells were prepared after 1 hr. of recovery. E) Carrier dimethyl sulfoxide (control, C), or caffeine (2mM), LY294002 (10mM),
AG490 (100mM), KU55933 (20mM), wortmannin (50mM), NU7026 (20mM) were added to HeLa cells 120 min prior UV irradiation, after 1 hr of recovery
the percent of P-TEFb in large complex (low salt or CE) was calculated as a fraction of total amount of P-TEFb (both in CE and NE). These experiments
were repeated 3–4 times and quantification of data (mean 6 SD) is shown. F) UV induces RNAPII hyperphosphoryation which is prevented by
caffeine. Western blotting analyses of RNAPII in HeLa cells irradiated with UV (40J/m2) in the presence or absence of caffeine (2 hr of pretreatment)
with 1 hr of recovery, or treated with caffeine alone were analyzed with RNAPII 8WG16 antibody.
doi:10.1371/journal.pone.0011245.g001

P-TEFb and DNA Damage
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transcription. Moreover, we found that the caffeine rescues

transcription in UV irradiate cells independently from DNA

damage.

Caffeine has a broad inhibitory function of cellular kinases and

phosphatases and it also regulates Ca2-signaling pathway involved

in cell cycle progression and development [23]. It has been shown

that treatment with UV or HMBA implicates the calcium-

dependent protein phosphatases 2B and 1a, in a process causing

the release of P-TEFb from the 7SK ribonucleoprotein complex

[24]. It is attractive to hypothesize that caffeine may interfere with

UV-induced Ca2-dependent activation of calcineurin. According-

ly, we found that the calcineurin inhibitors FK506 and

cyclosporine A, both able to prevent P-TEFb LC dissociation

[24], reduce transcription inhibition in UV-damaged cells.

As we mentioned above, pretreatment with caffeine did not

prevent Campthotecin from disrupting the P-TEFb LC. Thus, a

Figure 3. Caffeine prevents transcription inhibition independently from DNA damage. 5BCP9F cells were pre-treated (2hr) with caffeine
and exposed to UV 40J/m2); after 1 hour of recovery cells were then analyzed by immunofluorescence (A) or immunoblotting (B) with the H2AX and
c-H2AX antibodies, as indicated. C) Doxycycline was added to 5BCP9F cells and left for 2 hours. Caffeine was then added to the same doxycycline
containing medium and left for additional 2 hours. Cell were fixed 1 hour after UV irradiation and hybridized with fluorescent (Cy3) MS2 DNA probe
(MS2, red) and subjected to immunofluorescence with the c-H2AX antibody (green) and stained with DAPI. The merge signals (red vs green) from
two different experiments are shown.
doi:10.1371/journal.pone.0011245.g003

Figure 2. Caffeine prevents UV-induced transcriptional repression. A) 5BCP9F cells were pre-treated with control vehicle (C) or caffeine
(2mM) for 120 min. Cells were then irradiated with UV light and subsequently doxycycline was added at the final concentration of 2mg/ml. Luciferase
assays were performed after 4 hours. In siRNA experiments ATRsi and Ctrsi RNAs were transfected into 5BCP9F cells 48 hr before treatments. Cells
were subjected to UV light and doxycycline was added. Luciferase activities were determined 4 hours after DNA damage. Graphs are representative
of at least four independent experiments, error bars represent standard deviation from the mean (n = 3–4). B) 5BCP9F cells were transfected with
control (Ctr) or ATR siRNAs for 48h and then treated with UV as indicated; RNA was extracted and subjected to qRT-PCR using primers for ATR mRNA.
C) Real-time RT-PCR analysis of gene expression in response to UV irradiation in the presence or absence of caffeine. Cells were harvested at the
indicated time after UV treatment, total RNA was isolated, and qRT-PCR was performed with primers specific for the indicated mRNAs. Values were
normalized to those of GUS mRNA and are expressed as fold reduction over untreated cells. Results shown are the average of two different
experiments performed with triplicate PCRs along with SD (n = 2). D) 5BCP9F cells were treated with doxycycline for 3 hours, caffeine (2mM) was
added to the same doxycycline-containing medium and left for additional 2 hours before UV irradiation. After 1 hour of recovery cells were fixed and
hybridized with fluorescent (Cy3) MS2 DNA probe and stained with DAPI. The percentage of MS2 positive cells (from 3 independent experiments) is
reported along with the standard deviation from the mean. E) 5BCP9F cells were pre-treated with control vehicle (C) or FK506 (3mg/ml) or CsA (10mM)
for 120 min as indicated. Cells were then irradiated with UV light and subsequently doxycycline was added at the final concentration of 2mg/ml.
Luciferase assays were performed after 4 hours. F) 5BCP9F cells were treated with doxycycline for 3 hours, FK506 (6mg/ml) or CsA (10mM) was added
to the same doxycycline-containing medium and left for additional 2 hours before UV irradiation. After 1 hour of recovery cells were fixed and
hybridized with fluorescent (Cy3) MS2 DNA probe and stained with DAPI.
doi:10.1371/journal.pone.0011245.g002

P-TEFb and DNA Damage
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different DDR pathway is involved in this process. Accordingly,

several signal transduction pathways appear to control P-TEFb

equilibrium. It has been reported that HMBA activates the PI3K/

Akt pathway through phosphorylation of HEXIM1 and dissoci-

ation of P-TEFb LC [21]. In cardiomyocytes, blockage of Jak/

STAT signaling by AG490 prevents release of CLP1 (the mouse

HEXIM1 homolog) from P-TEFb [20]. The phosphatase PPM1A

and the related PPM1B regulates phosphorylation of CDK9 Thr-

186 [28], required for the association and stabilization of the P-

TEFb LC complex [29]. Partitioning of active and inactive P-

TEFb was also shown by acetylation of cyclinT1 [30]. Finally, it

has been suggested that upon transcription arrest 7SK RNA may

shuttle between the P-TEFb LC to hnRNPs with a concomitant

dissociation of P-TEFb LC [31,32]. Nevertheless, P-TEFb

dissociation is a common response to perturbation of cellular

homeostasis by genotoxic stress and which pathway operates is

likely dependent on the type of DNA damage inflicted.

It is important to note that caffeine is not fully sufficient to

protect transcription at levels comparable to that in untreated cells,

suggesting that additional transcriptional regulatory mechanisms

are involved in DNA damage transcription arrest. Recent works

have indicated that different changes in histone modifications are

rapidly induced in response to DNA damage. H3-T11 phosphor-

ylation and H3K9 and K56 acetylation are reduced in response to

DNA damage [22,33]. Moreover, it has been recently reported

that UV affects cotranscriptional processing as well as induction of

alternative splicing through inhibition of transcription elongation

[23]. Interestingly, in a recent report it has been shown that

disruption of P-TEFb LC promotes alternative splicing via the

transcriptional active P-TEFb [34].

The relative contribution of P-TEFb, histone modifications and

mRNA processing following UV-induced DNA damage arrest will be

an important issue to decipher the molecular mechanisms underlying

the reprogramming of gene expression following DNA damage.

Materials and Methods

Cell cultures and drug treatments
HeLa cells were grown in high glucose DMEM with 10% FBS

[18]. U2OS/pTet-globin-Luc-CFP-24MS2 cells (internal refer-

Figure 4. Levels of chromatin bound Pol II and P-TEFb. 5BCP9F cells were treated with doxycycline for 4 hrs to induce expression of Luc gene,
then cells were exposed to UV in the presence or absence of caffeine (2 hours pretreatment), after 1 hr of recovery following DNA damage chromatin
was prepared and subjected to chromatin immunoprecipitation. Levels of total RNAPII were analyzed by qChIP using the anti-Pol II (8WG16)
antibody. Amplicons correspond to sequences upstream of the transcription start site (US 2605), transcription start site (TSS 221) and coding regions
CR (+1664) and 39-end (+5411). On the right is reported the ratio of ChIP enrichments relative to TSS amplicon (proximal) and 39-end (distal). In the
bottom panel is reported a similar qChIP analysis with anti-CYCT1 antibody. The ACHR promoter amplicon was used as negative control in all
experiments. The values reported were calculated as fold percentage of amount of immunoprecipitated DNA relative to that present in total input
chromatin. Error bars indicate the standard deviation from the mean (n = 3).
doi:10.1371/journal.pone.0011245.g004

P-TEFb and DNA Damage
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ence 5BCP9F) were grown in low glucose DMEM with 10% FBS.

The 5BCP9F cells were derived from the U2OS Tet-on cells

(Clontech) that were co-transfected with pBABE-puro carrying the

puromycin resistance gene and pTet-globin-Luc-CFP-24MS2 by

standard calcium phosphate procedure. Individual colonies were

selected in culture medium containing puromycin (10mg/ml),

screened for Luciferase expression after doxycycline induction and

subcloned. The pTet-globin-Luc-CFP-24MS2 vector was gener-

ated by inserting the PCR amplified Luc gene at the BstXI site of

the original pTet-globin-CFP-18MS2-2 construct, harboring 24

MS2 repeats [35]. For UV treatment, exponentially growing cells

were irradiated with 254-nm UV light at 40J/m2. Pre-treatments

with the following inhibitors were added to cells 2 hours before

UV treatment, caffeine (2mM), LY294002 (10mM), AG490

(100mM), KU55933 (20mM), wortmannin (50mM) and NU7026

(20mM). In co-treatments experiments cells were first incubated

with caffeine, then DRB (50mM) was added to the medium. In

luciferase assays 5BCP9F cells were irradiated with UV light and

subsequently doxycycline was added at the final concentration of

2mg/ml. Luciferase assays were performed after 4 hours and

Luciferase activities were normalized to the cellular protein

contents.

Separation of large and free forms of P-TEFb
HeLa cells were treated with the indicated compounds and

glycerol gradient fractionation of cell lysates were carried out as

described. Fractions were analyzed by immunoblotting with anti-

CDK9. Differential salt extraction of large and free forms of P-

TEFb was performed as recently described [18,19]. Briefly,

cytosolic extracts were prepared by resuspending the cells in

Buffer A (10 mM KCl, 10 mM MgCl2, 10 mM HEPES, 1 mM

EDTA, 1 mM DTT, 0.1% PMSF and protease inhibitor cocktail,

Roche) with 0.5% NP-40 for 10 minutes on ice. The nuclei were

spun down and the supernatant was saved as the cytosolic extract

(CE). The nuclei were washed and resuspended in Buffer B

(450 mM NaCl, 1.5 mM MgCl2, 20 mM HEPES, 0.5 mM

EDTA, 1 mM DTT, 0.1% PMSF), lysates were clarified by

centrifugation, and the supernatant was saved as the nuclear

extract (NE). Samples were analyzed by immunoblotting. The

antibodies used for western blotting were: anti-CYCT1 and anti-

CDK9 (both from, Santa Cruz), Glycerol gradients were

performed as previously described [25].

siRNA treatments
siRNA experiments in 5BCP9F cells were carried out using

MicroPorator Digital Bio Technology. Indicated siRNA were

introduced into each 36106 dissociated cells in 100 ml volume

according to manufacturer’s instructions. After 48 hrs of

recovery, doxycycline was added and the cells were irradiated

with UV as indicated in the text. For siRNA treatments, ON-

TARGETplus SMARTpool ATR; (L-003282-00-0005) and ON-

TARGETplus Non-targeting pool (D-001810-10-5) were ob-

tained from Dharmacon. 100 nM, final concentration of the

pools was used for each transfection. Expression of siRNA target

genes was evaluated by qRT-PCR and proteins levels were

determined by western blot.

qRT-PCR and Quantitative Chromatin
Immunoprecipitation (qChIP)

cDNA was prepared from total RNA with Quantitect Reverse

Transcription Kit (Qiagen) according to manufactory instruc-

tions. Each sample was assayed in triplicate, and the qRT-PCR

data were normalized to the expression of the housekeeping beta-

glucuronidase (GUS). qChIP experiments were performed

essentially as described [36]. Antibodies used in these experi-

ments were as follow: anti-CYCT1 (T-18, Santa Cruz) anti-Pol II

(8WG16, Covance). For qPCR 3ml out of 150ml immunoprecip-

itated DNA was used with primers upstream (US -605),

transcription start site (TSS, 221, proximal), coding region

(CD +1664) and 39-end region (+5411 distal). The ACHR

promoter amplicon was used as negative control in all

experiments, primer sequences are available on request. Normal

serum and input DNA values were used to subtract/normalize

the values from qChIP samples. All qChIP data derived from at

least three independent experiments.

Fluorescence In Situ Hybridization (FISH) and
immunofluorescence

Immunofluorescence and FISH were performed as described

previously on paraformaldehyde-fixed cells. MS2 oligodeoxynu-

cleotide containing 5-amino-allyl thymidines (Eurogentec) was

labeled with Cy3 (GE Healthcare).

Supporting Information

Figure S1 Panels A and B: HeLa cells were irradiated with UV

(40J/m2), and at the indicated times (mins) in the absence (A) or

presence of caffeine 2hr of pretreament (panel B) after irradiation,

cellular proteins were extracted with different buffers as described

in the text, and immunoblotting was performed on low cytosolic

extracts (CE) and high-salt nuclear extracts (NE). On the left, a

graph reports the relative quantification of the immunoblots as a

percentage of large P-TEFb complex. Graphs are representative of

at least four independent experiments; error bars represent

standard deviation from the mean (n = 3). The percent of P-TEFb

in large complex (low salt or CE) was calculated as a fraction of

total amount of P-TEFb (both in CE and NE). On the right,

western blots from a single experiment are shown. Panel C: HeLa

cells were treated with caffeine (2mM) for different times (209 60

and 1209), and the on the left, a graph reports the relative

quantification of the immunoblots as percentage of large P-TEFb

complex. Graphs are representative of at least four independent

experiments; error bars represent standard deviation from the

mean (n = 2). On the right, western blots from a single experiment

are shown.

Found at: doi:10.1371/journal.pone.0011245.s001 (1.44 MB TIF)
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