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Sensitivity of the South Asian monsoon to
elevated and non-elevated heating
William R. Boos1 & Zhiming Kuang2

1Department of Geology and Geophysics, Yale University, New Haven, Connecticut, USA, 2Department of Earth and Planetary
Sciences, and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.

Elevated heating by the Tibetan Plateau was long thought to drive the South Asian summer monsoon, but
recent work showed this monsoon was largely unaffected by removal of the plateau in a climate model,
provided the narrow orography of adjacent mountain ranges was preserved. There is debate about whether
those mountain ranges generate a strong monsoon by insulating the thermal maximum from cold and dry
extratropical air or by providing a source of elevated heating. Here we show that the strength of the monsoon
in a climate model is more sensitive to changes in surface heat fluxes from non-elevated parts of India than it
is to changes in heat fluxes from adjacent elevated terrain. This result is consistent with the hypothesis that
orography creates a strong monsoon by serving as a thermal insulator, and suggests that monsoons respond
most strongly to heat sources coincident with the thermal maximum.

E
levated heating by the Tibetan Plateau was long thought to drive the South Asian summer monsoon1–3.
However, we recently showed that eliminating the Tibetan Plateau in a climate model produced little
change in this monsoon, provided the comparatively thin wall of the Himalayas and adjacent mountain

ranges was preserved (Boos and Kuang4, hereafter BK10). This model result is consistent with the hypothesis that
topography creates a strong South Asian monsoon by preventing the intrusion of cold and dry extratropical air
into the warm and moist thermal maximum of the monsoon, a hypothesis motivated by the fact that observed
near-surface entropies (or equivalent potential temperatures) exhibit sharp gradients coincident with the moun-
tain ranges just south and west of the Tibetan Plateau (see also refs. 5 and 6).

Wu et al.7 (hereafter Wu12) argued that surface heat fluxes on the slopes of the Himalayas instead provide a
dominant forcing for the South Asian monsoon via a ‘‘sensible-heat-driven air-pump’’. In their proposed mech-
anism, sensible heat fluxes from mountain slopes produce rising motion that draws surrounding air toward the
mountains, converging moisture which then condenses and heats the atmosphere in a positive feedback8. We
show here that surface heat fluxes from mountain slopes are no more important for the South Asian summer
monsoon than heat fluxes from nearby non-elevated surfaces. We explain why this is so through use of a
convective quasi-equilibrium (QE) framework for monsoon dynamics that has been used in theoretical stud-
ies9–12 and has been shown to be consistent with multiple observed monsoons13. In this framework, deep precip-
itating convection maintains the off-equatorial, free-tropospheric temperature maximum of the thermally direct
monsoon circulation in approximate equilibrium with the maximum equivalent potential temperature of air
below the base of cumulus clouds, heb. Surface fluxes of both sensible and latent heat that are distributed vertically
by moist convection thus become important in altering heb, free-tropospheric temperature, and the associated
monsoon flow.

Results
A climate model with the same topographic modification used by BK10 and Wu12 is integrated as a control. This
model retains the relatively narrow topography of the Himalayas and adjacent mountain ranges over South Asia,
but the Tibetan Plateau and other elevated topography north of those ranges has been removed (Fig. 1). South
Asian summer precipitation and winds in this model differ little from a model with full, standard topography that
includes the Tibetan Plateau, a result of BK10 that was confirmed by Wu12.

We conducted two integrations in which surface sensible heat fluxes in select regions were not allowed to warm
the atmosphere, both using the same topography as the control run. When surface sensible heat fluxes are
suppressed over South Asian topography higher than 500 m, precipitation over the elevated terrain decreases
and low-level monsoon westerlies weaken, showing that these surface heat fluxes do contribute to the intensity of
the South Asian summer monsoon (Fig. 2a, b). When surface sensible heat fluxes are suppressed over a similarly
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sized, non-elevated region just south of the Himalayas, a larger
decrease occurs in precipitation and in the strength of the low-level
monsoon westerlies (Fig. 2c, d), even though the horizontally inte-
grated reduction in surface sensible heat flux is smaller (Table 1).
This shows that surface heat fluxes on sloping terrain are less import-
ant for the large-scale South Asian monsoon than heat fluxes from
the non-elevated region of northern India.

This result can be understood by examining distributions of heb

and upper-tropospheric temperature. In the control integration,
maxima of both of these quantities lie over the non-elevated part
of northern India (Fig. 3a). The upper-tropospheric temperature
maximum in this control run is displaced slightly south of its position
in an integration with full topography (not shown), but even in that
full-topography integration it lies over non-elevated parts of north-
ern India, as it does in observations (BK10). Suppressing sensible
heat fluxes over the Himalayas and adjacent elevated terrain
decreases heb and upper-tropospheric temperature poleward of the
monsoon thermal maximum (Fig. 3b) and thus has a relatively weak
effect on both the amplitude of that maximum and the meridional
temperature gradient between that maximum and the equator. In

contrast, suppressing surface heat fluxes in the non-elevated region
directly beneath the maxima of heb and upper-tropospheric temper-
ature reduces the amplitude of these maxima and the associated
meridional temperature gradient (Fig. 3c).

We have thus far emphasized changes in surface sensible heat
fluxes, for consistency with Wu12, but surface latent heat fluxes
are equally important in the QE description of monsoons discussed
above because they also directly influence heb. Surface latent heat
fluxes fell in the regions in which surface sensible heat fluxes were
suppressed because, like Wu12, we prevented sensible heat fluxes
from warming the atmosphere while retaining those heat fluxes in
the land surface energy budget. This amounts to prescribing a heat
sink just above the land surface, which reduces surface temperature
and thus surface evaporation. The reduction in horizontally inte-
grated surface enthalpy (i.e. sensible plus latent heat) flux was 4%
larger in amplitude when sensible heating was suppressed over non-
elevated terrain than when it was suppressed over elevated terrain.
Although it would be surprising if this small difference in surface
enthalpy flux could explain the more than factor of two response in
precipitation (e.g. Table 1), we conducted two additional integrations
in which the surface enthalpy flux was perturbed by increasing land
surface albedo in the same regions of elevated and non-elevated
terrain described above. Qualitatively similar results were obtained,
with the reduction in precipitation and low-level westerlies being
stronger when albedo was increased over the non-elevated region,
even though the change in surface enthalpy flux was slightly smaller
than when albedo was perturbed over elevated terrain (not shown).

The amplitude of the heb and upper-tropospheric temperature
response shown in Fig. 3 is larger for the sensible heat flux perturba-
tion over non-elevated terrain, despite the fact that the change in
surface enthalpy flux was nearly the same as when sensible heat flux
was suppressed over elevated terrain. A larger upper-tropospheric
temperature response is expected when surface heat fluxes are per-
turbed in moist convecting regions near the thermal maximum,
because surface flux perturbations in regions of large-scale subsid-
ence will not be directly coupled to upper-tropospheric temperature
due to the absence of deep convection. Furthermore, the net heb and

Figure 1 | Summer precipitation in control model. May-Sept.

precipitation rate (shading, mm day21), horizontal wind on the 0.867

sigma level (arrows), and surface elevation (black contours, interval 2 km

starting at 0.5 km).

Figure 2 | Response of monsoon to suppression of surface sensible heat flux. Difference between the control model and the model with surface sensible

heat fluxes suppressed over elevated terrain in (a), May-Sept. precipitation rate (shading, mm day21) and horizontal wind on the 0.867 sigma level

(arrows) and (b), May-Sept. surface sensible heat flux (shading, W m22) with the magenta contour surrounding the region in which those heat fluxes were

set to zero. (c, d) Show the same quantities but for the model with surface sensible heat fluxes set to zero over non-elevated terrain in northern India.
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upper-tropospheric temperature response to a surface heat flux per-
turbation could be influenced by feedbacks with other tendencies on
moist static energy, such as radiation and advection.

The Himalayas make up a relatively small fraction of the area in
which surface heat fluxes were modified. Wu12 actually suppressed
sensible heat fluxes over an even broader region of elevated terrain
that stretched across the Iranian Plateau to 30E. We conducted
another integration with surface sensible heat flux suppressed over
that same region, effectively extending the region outlined in Fig. 2b
westward over elevated terrain to 30E. This produced a decrease in
horizontally integrated sensible heat flux roughly twice that shown in
Fig. 2b, but the resulting decreases in precipitation and low-level
zonal wind were only about 20 percent larger with a highly similar
pattern to that displayed in Fig. 2a (not shown).

Discussion
The monsoon thermal maximum is maintained by surface fluxes of
sensible and latent heat, so it is not surprising that a reduction in
proximal surface heat fluxes reduces the strength of this thermal
maximum and the intensity of the associated thermally direct cir-
culation. In an idealized system in which a thermal maximum is
perfectly isolated from a cold region by an insulating barrier, only
changes in heating on the warm side of the barrier will alter the
strength of the thermal maximum. This is analogous to reducing
surface heat fluxes on the southern slopes of the Himalayas or over
northern India: both are on the warm side of the insulating topo-
graphic barrier. The fact that the monsoon is somewhat more sens-
itive to surface heat fluxes over the non-elevated parts of India in the
model used here is expected, since those fluxes are located closer to
the thermal maximum (BK10) and thus provide the strongest cor-
relation between heating and temperature. Nonzero sensitivity to
heat sources on the cold side of the barrier (e.g. poleward of the
Himalayas and Hindu Kush) is expected since the topographic bar-
rier is not a perfect insulator.

The concept of a ‘‘sensible-heat-driven air-pump’’8 invoked by
Wu12 relies on a positive feedback between low-level moisture con-
vergence and precipitation. This sort of positive feedback is often
called Conditional Instability of the Second Kind (CISK) and was
once a central element of theories for tropical atmospheric dyna-
mics14,15. CISK has since been shown to be energetically ill-founded:
moist convection results from a local instability that occurs when heb

becomes sufficiently large, relative to the overlying free-tropospheric
temperature, and convergence of low-level air toward that heb max-
imum can only decrease its amplitude through advection16,17.

In summary, Wu12 is correct that BK10 did not test the possibility
that sensible heat fluxes from the slopes of the Himalayas provide a
dominant forcing for the South Asian monsoon. The observed sub-
cloud entropy distributions shown in BK10 provided no reason to
suppose that heating from topographic slopes would be so import-
ant, and a QE theory that is consistent with observed monsoons does
not assign surface sensible heat fluxes any greater importance than
surface latent heat fluxes. We have shown here that, in a climate
model, the strength of the South Asian monsoon is more sensitive
to surface heat fluxes from non-elevated terrain directly beneath the
thermal maximum than it is to fluxes from sloping terrain poleward
of this maximum. These results are all consistent with off-equatorial
maxima of heb and free-tropospheric temperature being generated by
local surface enthalpy fluxes and insulated from cold and dry extra-
tropical air by topography.

Methods
The Community Earth System Model (CESM) version 1.0.4 of the National Center
for Atmospheric Research (NCAR, http://www.cesm.ucar.edu) was integrated with
fully active and coupled atmosphere, ocean, sea ice, and land components18,19. All
integrations were performed using the finite volume dynamical core at 0.9 3 1.25u
horizontal resolution with 26 vertical levels. Although Wu12 and BK10 both used
climate models with prescribed sea surface temperature (SST), we found that CESM
produced a more realistic climatology of heb and upper tropospheric temperature
when coupled with an interactive ocean model. We repeated all integrations pre-
sented here using a model with prescribed climatological SST and obtained qualita-
tively similar results. Time averages were taken for the last 10 years of 25-year
integrations, and any drift during those 25 years due to ocean equilibration did not
qualitatively alter our results. The control model used topography modified to
eliminate the bulk of the Tibetan Plateau while preserving the mountain ranges west
and south of that plateau, using the exact procedure described in BK10 and repeated

Table 1 | Properties of model runs with suppressed surface sensible heat fluxes

Region in which
sensible heat flux is
suppressed

Average surface
elevation in region

Surface sensible heat flux
change in region

Surface enthalpy flux
change in region

Average low-level zonal
wind change, 50–110uE,

10–35uN

Average precipitation
change, 50–110uE,

10–35uN

Elevated terrain 1.5 km 2130 TW 2225 TW 20.89 m s21 20.47 mm day21

Flat northern India 0.26 km 2116 TW 2234 TW 21.1 m s21 21.2 mm day21

Figure 3 | Thermodynamic response to suppression of surface heat flux.
(a), July mean equivalent potential temperature 30 hPa above the surface

(heb, color shading, contour interval 2K) and upper-tropospheric

temperature (black contours, interval 1 K), both for the control

integration. Difference in heb (color shading, contour interval 2K) and

upper-tropospheric temperature (contours, negative dashed, interval

0.5 K) between the control integration and (b), the integration with

sensible heat flux suppressed over elevated terrain; (c), the integration with

sensible heat flux suppressed over non-elevated northern India.
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in Wu12. This sets surface elevations at each South Asian longitude to zero north of
the point at which elevations reached two-thirds of their maximum at that particular
longitude.

The influence of surface heat fluxes on the monsoon was assessed by setting the
surface sensible heat flux into the atmosphere to zero at each time step in select
regions. The land surface energy budget was not altered (meaning the surface sensible
heat flux was still computed at each time step and allowed to influence land surface
temperature), to match the methodology followed by Wu12. As in Wu12, one
integration was conducted with surface sensible heat fluxes suppressed over sloping
South Asian topography: between 60–110uE and 20–35uN in grid cells with surface
elevations higher than 500 m. Another integration was conducted by suppressing
surface sensible heat fluxes over an adjacent non-elevated region, defined as land
surfaces south of the aforementioned slopes between 60–100uE, 20–35uN in grid cells
with surface elevations less than or equal to 500 m. These two regions are marked in
Figs. 2b and d, are roughly equal in horizontal area, and have roughly the same
horizontally integrated surface sensible heat flux in the control run (Table 1).
Additional integrations were conducted for which detailed results are not illustrated
here, although the outcome is mentioned in the text of the results section. In one
integration, surface sensible heat fluxes were suppressed between 30–110uE and
20–40uN in grid cells with surface elevations higher than 500 m, to more exactly
match the model configuration of Wu12. In another two integrations, land surface
albedo was set to 0.9 in the same regions in which surface sensible heat fluxes were
previously suppressed.

Equivalent potential temperatures were computed on a terrain-following model
level 30 hPa above the surface, using a standard definition of equivalent potential
temperature20. Upper-tropospheric temperatures were calculated as a mass-weighted
vertical average from 175–425 hPa. July climatologies of these thermodynamic
variables are shown for easier comparison with previous studies4,13, while May-Sept.
climatologies of precipitation are shown to capture the effects of changes in the length
of the rainy season.
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