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Abstract
Newcastle disease (ND) is among the most important poultry diseases worldwide. It is the major threat to poultry production 
in Africa and causes major economic losses for both local and commercial chickens. To date, half of ND class II genotypes 
have been reported in Africa (I, IV, V, VI, VII, XI, XIII, XIV, XVII, XVIII, and XXI). The information on the circulating 
NDV genotypes is still scarce despite the endemic nature of ND in most countries on the African continent.A total of 659 
oro-cloacal swabs were collected from local chickens in Mawenzi live bird market located in Morogoro, Tanzania, between 
June 2020 and May 2021. Newcastle disease virus was detected by using reverse transcription real-time polymerase chain 
reaction (RT-qPCR) and conventional PCR followed by sequencing of PCR products. The prevalence of NDV in the sur-
veilled live bird markets was 23.5%. Sequencing and phylogenetic analysis revealed the presence of sub-genotype VII.2. 
The detected sub-genotype VII.2 has phylogenetic links to Zambian NDV strains implying a Southeast dissemination of the 
virus, considering that it was first detected in Mozambique. This study underscores the need of active NDV surveillance to 
determine the distribution of this NDV genotype in the country and monitor its spread and contribution to the emergence 
of new ND viruses.
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Introduction

Newcastle disease virus (NDV) is highly contagious, 
infecting both domestic and wild bird species, and causes 
the most economically and socially important disease of 
domestic poultry in Africa [1]. In susceptible chicken pop-
ulations, velogenic NDV causes mortality up to 100% in 
affected flocks [2]. In villages of low- and middle-income 
countries (LMIC), such as in some rural areas in Tanzania, 
chickens are primarily kept in extensive scavenging systems 
[3], where diseases like ND serve as major constraints to 
poultry production [4–8]. In extensive scavenging systems, 
poultry from different households, ages, and species com-
ingle with each other and sometimes encounter wild birds 
presenting opportunities for pathogen transmission. In these 
settings, some of the birds may be vaccinated against ND, 

while others are not [9, 10]; thereby, the inconsistency of ND 
vaccination can increase the risk of NDV outbreaks among 
village flocks. In Tanzania, indigenous chickens are mainly 
sold through live bird markets (LBMs), because of the lack 
of a cold chain to distribute chilled meat [11]. Most LBMs 
receive chickens, guinea fowl, and ducks from different 
regions of the country, making this environment conducive 
for the emergence and spread of viruses, such as influenza 
A viruses and NDVs [11].

Newcastle disease virus, an Avian Orthoavulavirus type-1 
(AOaV-1) and previously known as avian paramyxovirus 
type-1 (APMV-1) [12], is a single-stranded negative-sense 
RNA (-ssRNA) virus [13]. The genome encodes six proteins 
namely, nucleoprotein (NP), phosphoprotein (P), matrix pro-
tein (M), fusion protein (F), hemagglutinin-neuraminidase 
(HN), and the RNA-dependent RNA polymerase (L) [14, 
15]. All NDV strains belong to a single serotype, but there 
is substantial genetic and antigenic variation across strains 
[16, 17].Responsible Editor: Helena Lage Ferreira
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The NDV fusion (F) gene is commonly targeted for the 
classification of NDV into genotypes [18–20] using both 
partial and complete sequences [21, 22]. AOaV-1 is divided 
into two classes: class I and class II, with class I NDVs pri-
marily encompassing lentogenic viruses commonly found 
in wild birds and less frequently in poultry. Class II NDVs 
consist of lentogenic (low virulence), mesogenic (medium 
virulence), and velogenic (highly virulent) pathotypes [23]. 
These strains are detected in multiple wild birds and domes-
tic poultry species worldwide. Class I viruses have only one 
genotype, while class II viruses have 20 distinct genotypes 
[24]. In addition to genotype, the nucleotide sequence of 
the cleavage site of the F gene determines the pathogenicity 
of NDV [12, 24]. The clinical signs caused by NDV infec-
tion in chickens are variable based on the pathogenicity of 
the strain, and range from none (asymptomatic infection) to 
severe as decreased egg production, depression, diarrhea, 
respiratory distress, and neurological signs [24].

In Africa, a range of NDV genotypes have been reported, 
including genotypes I, II, IV, V, VI, VII, XI, XIII, XIV, XVII, 
XVIII and XXI [1, 24, 25]. In Tanzania, the first isolation and 
pathotyping of NDV was performed by Loretu and Mkaria 
[26]. More recently, researchers in Tanzania have isolated and 
characterized both velogenic and lentogenic NDV strains of 
genotypes V and XX from backyard chickens [27], and geno-
types V and XIII.1.1 from live bird markets [11]. In addition, 
da Silva et al. [20] reported genotypes V, VII.2, and XIII in 
chickens. While NDV is endemic and causes devastating eco-
nomic losses in indigenous chickens in Tanzania, our under-
standing of the diversity of NDV genotypes circulating among 
village poultry and in live bird market settings is still limited. 
Tanzania’s borders, like those of many other countries in the 
region, allow the relatively unrestricted trade in live chickens 
within the sub-region and have resulted in the spread of ND 

across East Africa. This study aimed to identify and molecu-
larly characterize NDV genotypes circulating among local 
chickens obtained from a live bird market serving as a central 
poultry trading hub in Tanzania in 2021 and 2022.

Materials and methods

Study site

The Mawenzi live bird market is in Morogoro municipality 
in the eastern part of Tanzania (Fig. 1). Morogoro is located 
196 km west of Dar es Salaam which is the country’s largest 
city and commercial center, and 260 km east of Dodoma, the 
country’s capital city.

The Mawenzi live bird market is located within the general 
food market. It is an open-air market where various species 
of live poultry (indigenous chickens, ducks, guinea fowl) are 
kept in mixed-species enclosures made of wood and wire 
mesh and stacked on top of each other. Birds are provided 
with maize bran mixed with food leftovers and water. The 
market sells more than 300 birds (mixed species) per week. 
These birds originate from multiple districts within Morogoro 
region and other regions of the country and are transported 
to the market via middlemen to be sold to consumers by live 
bird vendors who are based at the market. The birds are col-
lected and offloaded for sale in the market regardless of their 
vaccination and health status presenting challenges for NDV 
prevention and control. A mini slaughtering and processing 
area is located next to the cages, which does not have a water 
supply or sanitary facilities. In general, biosecurity measures 
are severely lacking further illustrating the potential for dis-
ease emergence and spread among birds housed in the market.

Fig. 1   Tanzania map showing 
the location of Morogoro (blue 
dot), Dodoma (green dot), and 
Dar es Salaam (red dot)
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Collection of Oro‑cloacal swabs

Oro-cloacal swabs were collected from chickens at the live 
bird market during the period from June 2020 to May 2021. 
The samples were collected on a weekly basis from the first 
and sixth chicken from each cage. Samples were collected 
using sterile polyester-tipped plastic swabs (Puritan, USA). 
A swab was inserted in the oral cavity including the choanal 
cleft and back of the throat in circular motions. The same 
swab was then used in a circular motion against the mucosa 
of the cloaca. The swabs were immediately placed into a 
cryovial containing 0.5 mL sterile phosphate-buffered saline 
(PBS) and stored in a cool box before transport to at Sokoine 
University of Agriculture laboratory to be saved at − 80 °C.

RNA extraction and real‑time reverse transcription 
polymerase chain reaction (RT‑qPCR)

Viral RNA was extracted from the swabs using the IndiMag 
Pathogen Kit in an IndiMag automated extraction instrument 
(Indical Bioscience, USA), following manufacturer’s instruc-
tions. Reverse transcription-quantitative polymerase chain 
reaction (RT-qPCR) was performed to detect the presence of 
the NDV, using the primers and probes described by Fuller 
et al. [28] that detects both class I and II AOaV-1 viruses, and 
VetMAX Plus RT-PCR kits (Thermo Fisher Scientific). The 
RT-qPCR cycling conditions consisted of a 53 °C reverse tran-
scription for 45 min followed by one cycle at 95 °C for 15 min, 
and 40 cycles at 95 °C for 10 s, 50 °C for 30 s, and an exten-
sion temperature of 72 °C for 30 s. RT-qPCR was performed 
in a StepOne Plus thermal cycler (Applied Biosystems). Cycle 
threshold (Ct) values < 40 were considered positive.

Conventional RT‑PCR and Sanger DNA sequencing

In 77 samples where the Ct value after RT-qPCR was ≤ 30, a 
1100 bp portion of the NDV genome that spans the 3′ end of the 
M gene and 5′ end of the F gene (including the F0 cleavage site) 
were amplified using primers NDV M610 (forward) and F581 
(reverse) [29]. RT-PCR was also performed with a second set of 
oligonucleotides, Alls (forward) and Alle (reverse) that ampli-
fies a 362 bp region of the F gene spanning the F0 cleavage 
site [30]. RT-PCR products were separated in 1% agarose gel, 
purified (QIAquick PCR Purification Kit, Qiagen), quantified 
with a Nanodrop spectrophotometer, and submitted to Inqaba 
Biotech (Pretoria, South Africa) for Sanger DNA sequencing.

Ion Torrent sequencing and analysis

Transcriptomic libraries were prepared using the Sigma 
Whole Transcriptome Amplification Kit (Sigma, Germany), 

according to the manufacturer’s recommendation. DNA librar-
ies were shipped on ice packs to the Stellenbosch University 
Central Analytical Facility (Stellenbosch, South Africa) for Ion 
Torrent sequencing. Ion Torrent reads were assembled in the 
CLC genomics workbench software v.22. Multiple sequence 
alignments of complete or partial consensus genomes were 
performed in MAFFT v.7. Reference partial and full NDV F 
gene sequences were used for classification [24] and phylog-
eny, including relevant sequences on the analysis. RAxML 
phylogenetic trees were constructed in Geneious Prime 
2023.1.2 (Biomatters Ltd) using the GTR GAMMA I nucleo-
tide model with the rapid bootstrapping and search for best 
scoring maximum likely hood tree algorithm using 1000 boot-
strap replicates, a parsimony random seed of 456, and starting 
with a complete random tree [31]. The obtained sequences 
were uploaded to NCBI sequence read archive and can be 
accessed at the BioProject accession number PRJNA987660.

Results

Six hundred and fifty-nine chicken samples were collected 
from the live bird market. A total of 155 (23.5%) chickens 
tested positive for the presence of NDV-specific RNA by 
RT-qPCR. Of the positive samples, 77 had cycle thresh-
old (Ct) values less than 30 and were suitable for further 
genetic characterization. Using the Alls/Alle primers [30], 
we obtained 42 amplicons that matched the 362 bp expected 
fragment size. DNA was extracted from the gel and purified 
with the QIAquick Gel Extraction kit (Qiagen, USA), and 
37 PCR amplicons were of sufficient DNA concentration 
for Sanger sequencing. Sequences were obtained from 27 
samples; however, 18 were non-specific bacterial DNA. The 
nine remaining sequences were all characterized as NDV 
genotype VII.2 with a velogenic F0 cleavage site sequence 
of RRRKRF. Whole transcriptome libraries were prepared 
from these nine samples and submitted for Ion Torrent 
sequencing. Sequencing results are summarized in Table 1.

Partial NDV genomes recovered from the swab samples 
varied up to 94.5% coverage. One of the issues encountered 
was the fragmentation of the recovered reads affecting 
sequencing depth and coverage. Recovery of over 30% of the 
F gene sequence was accomplished in four out of the nine 
samples. These sequences were included in the phylogenetic 
tree with a 598 bp segment of the F gene for comparison 
with previous NDVs detected in Tanzania, new relevant 
NDV sequences, and other genotype VII.2 references (Sup-
plementary figure 1). The viruses from 2020 to 2021 cluster 
together, sharing a recent common ancestor with previously 
reported Tanzanian and Mozambique strains, as well as 
strains from Zambia and Zimbabwe from 2015 and 2013, 
respectively, although the bootstrap values are low.
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To confirm the results of the phylogenetic tree recon-
structed with a partial F gene sequence, we prepared a sec-
ond tree using a 1687 bp segment of the F gene. Figure 2 
confirms the phylogenetic grouping with strains from Tan-
zania, Zambia, Zimbabwe, and Mozambique. The genotype 
VII strain recovered from Mwanza maintains its relationship 
with our strains considering a larger gene sequence.

Discussion

This study detected NDV sub-genotype VII.2 and confirmed 
the continued circulation of the NDV sub-genotype VII.2 
in Tanzanian chickens in 2020–2021. While our sequences 
showed fragmentation and poor depth due to the direct 
sequences obtained from swabs rather than isolates, they 
allowed us to clearly genotype the NDV-infecting chickens 
in the Mawenzi market in Morogoro.

The molecular epidemiology of NDV genotype VII.2 
in Africa was first investigated in 2017 [32]. At that time, 
the phylogenetic link of these strains with isolates obtained 
from Zambia was detected. The source of sub-genotype 
VII.2 to the African continent is thought to be the move-
ment of infected poultry, poultry products, or fomites from 
Southeast Asia through Mozambique [32–34]. The other 
possible ways in which sub-genotype VII.2 has spread 
from its source in Indonesia and Malaysia to other Asian 
countries and to the African continent could be through the 
movement of wild birds [35]. Since its detection in Africa, 
sub-genotype VII.2 has been reported in Namibia [36], 
South Africa, Zimbabwe, Mozambique, Malawi, Zambia, 
Botswana [34], Tanzania [20], The Democratic Republic 
of Congo [37], and Angola [38]. Our previous report of a 
VII.2 strain [20] is phylogenetically linked to strains from 
Mozambique, Zambia, Zimbabwe, and groups in the same 
genotype as our current detections. Moreover, Kibasa (2020) 
reported the isolation of NDV genotype VII from chickens 

in Iringa, Tanzania, which is located at the Southern high-
land. The NDV obtained was 98% homologous to the virus 
obtained in Mozambique further confirming the porosity of 
the borders. These countries are near Tanzania suggesting 
the virus spread due to proximity. Sequences from Botswana 
and Yunnan (China) are recent additions to GenBank and 
help explain the potential distribution of these viruses not 
only in Africa but also in Asia. A meta-analysis reported 
by Mngumi et al. [1] categorizes sub-genotype VII.2 as a 
widespread NDV genotype in Africa with reports in East, 
West, South, and Central African countries. In Tanzania, 
vaccination of chickens against ND is the key to fighting the 
Newcastle disease as in many other countries worldwide. 
The vaccination practices in local indigenous chickens are 
low and irregular as compared to the commercial chickens 
which partly results from limited access to veterinary ser-
vices contributing to the emergence and maintenance of 
viruses in the poultry populations [39]. In addition, the mix 
of poultry species and population and movement through 
the live bird markets perpetuate and maintain the virus [40]. 
Although chickens are vaccinated, sub-genotype VII.2 has 
been implicated to have the ability to cause outbreaks [41]. 
This may happen due to inadequate vaccinations which 
results in inadequate immune responses or concurrent infec-
tion with immunosuppressive agents which compromise the 
mounting of adequate immune response [2].

NDV genotype VII has been of global economic impor-
tance due to its diverse nature and recurrent outbreaks 
in Eastern Europe, the Middle East, and Asia and spo-
radic outbreaks in Africa and South America [21]. This 
genotype is the virus responsible for the fifth NDV pan-
zootic [37, 42–44]. The panzootic nature of sub-genotype 
VII.2 was predicted [21, 45] due to its nature and rapid 
spread from its source in Indonesia, to Pakistan, Israel, 
and Eastern Europe [46]. The isolation of sub-genotype 
VII.2 in Tanzania suggests the spread of this virus from 
neighboring countries and is evidence of the porosity of 

Table 1   NDV direct deep 
sequencing on swab samples 
focusing on the full NDV 
genome and the F gene

1 15192 bp reference sequence; 21662 bp reference sequence; bolded samples were included in the phyloge-
netic analysis. *Avian Orthoavulavirus 1, isolate: Turkey/South Africa/N2057/2013 GenBank accession #: 
KR815908

Sample Complete genome1 (no. reads 
mapped) (% coverage)

F gene2 (no. reads 
mapped) (% coverage)

BLAST result*

J-122 (August, 2020) 9806 (141) [64.5%] 563 (4) [33.9%] Genotype VII.2
J-145 (September, 2020) 11,299 (189) [74.4%] 868 (7) [52.2%] Genotype VII.2
J-156 (September, 2020) 6101 (64) [40.2%] 153 (3) [9.2%] Genotype VII.2
J-168 (September, 2020) 13,220 (302) [87%] 1449 (22) [87.2%] Genotype VII.2
J-196 (September, 2020) 0 0
J-219 (October, 2020) 8166 (85) [53.8%] 334 (3) [17.5%] Genotype VII.2
J-403 (January, 2021) 1116 (12) [7.3%] 0 Genotype VII.2
J-489 (March, 2021) 14,349 (1270) [94.5%] 1619 (71) [97.4%] Genotype VII.2
J-578 (April, 2021) 6,884 (64) [45.3%] 116 (1) Genotype VII.2
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the country’s borders. Biosecurity measures at this level 
including but not limited to poultry and poultry product 
import regulations might help reduce the permeability of 
the borders and protect the country’s poultry health status. 
In addition, the live bird market dynamics including the 
long distances traveled by birds to be sold at live bird mar-
kets and the lack of biosecurity along this commute con-
tributes to virus dissemination. Biosecurity improvements 
and continued surveillance would help limit dissemina-
tion and improve our understanding of the geographical 

distribution of this genotype and others. In addition, it will 
inform the establishment of control measures to limit the 
spread and subsequently reduce losses caused by NDV. 
This study contributes to the understanding of the circulat-
ing NDV strains in Tanzania.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s42770-​023-​01159-z.

Author contribution  PM, TK, RG, AM, and HZ conceptualized and 
designed the study; JT collected data; JT, CA, and TP conducted lab 
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