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Abstract

BACKGROUND—Androgen deprivation therapy (ADT) with radiotherapy can benefit patients 

with localized prostate cancer. However, ADT can negatively impact quality of life, and there 

remain no validated predictive models to guide its use.

METHODS—We used digital pathology images from pretreatment prostate tissue and clinical 

data from 5727 patients enrolled in five phase 3 randomized trials, in which treatment was 

radiotherapy with or without ADT, as our data source to develop and validate an artificial 

intelligence (AI)–derived predictive patient-specific model that would determine which patients 

would develop the primary end point of distant metastasis. The model used baseline data to 

provide a binary output that a given patient will likely benefit from ADT or not. After the 

model was locked, validation was performed using data from NRG Oncology/Radiation Therapy 

Oncology Group (RTOG) 9408 (n=1594), a trial that randomly assigned men to radiotherapy 

plus or minus 4 months of ADT. Fine–Gray regression and restricted mean survival times were 

used to assess the interaction between treatment and the predictive model and within predictive 

model–positive, i.e., benefited from ADT, and –negative subgroup treatment effects.

RESULTS—Overall, in the NRG/RTOG 9408 validation cohort (14.9 years of median follow-up), 

ADT significantly improved time to distant metastasis. Of these enrolled patients, 543 (34%) 

were model positive, and ADT significantly reduced the risk of distant metastasis compared with 

radiotherapy alone. Of 1051 patients who were model negative, ADT did not provide benefit.

CONCLUSIONS—Our AI-based predictive model was able to identify patients with a 

predominantly intermediate risk for prostate cancer likely to benefit from short-term ADT.

Introduction

Radiotherapy is a common form of treatment administered with curative intent for 

localized prostate cancer. Trials conducted since the 1980s consistently demonstrate an 

improvement in oncologic outcomes when androgen deprivation therapy (ADT) is added 

to radiotherapy.1–5 However, ADT has well-documented toxicity, including hot flashes, 

declines in libido and erectile function, loss of muscle mass, increase in body fat, 

osteoporosis, and potentially deleterious effects on cardiac and brain health.6

Although consistent oncologic benefits of ADT have been demonstrated, the majority of 

men with localized prostate cancer treated with radiotherapy alone without ADT never 

develop distant metastasis.1,5,7–10 Unfortunately, there remains no validated way to identify 

which men specifically derive benefit from ADT with radiotherapy; current guidelines 

recommend the use of ADT on the basis of prognostic National Comprehensive Cancer 
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Network (NCCN) risk groups or other methods of prognostication.11 Gleason grading 

has modest prognostic ability, and a number of tissue-based gene expression, serum, and 

imaging biomarkers have also been developed to help determine which men may benefit 

from ADT. Although some of these markers have demonstrated prognostic value,12 none 

have been shown to function as predictive biomarkers for ADT use with randomized trial 

validation. An easy and reliable method to guide the individualized use of ADT with 

radiotherapy for men with localized prostate cancer would be of value to such patients.

Digital pathology has been used for years as a method to archive, visualize, and share 

histopathology images.13 More recently, there has been growing interest in leveraging 

artificial intelligence (AI) to assist in the diagnosis and grading of prostate cancer.14–16 

Fundamentally, these efforts restrict AI to predict human interpretable and defined features 

(i.e., Gleason score). In a recent study, a multimodal artificial intelligence (MMAI) system 

leveraging digital histopathology and clinical data from five NRG Oncology phase 3 clinical 

trials, termed the MMAI Prostate Prognostic Model, was used to develop and validate 

prognostic models that consistently outperformed NCCN risk groups to determine which 

men with localized prostate cancer would benefit from ADT.17 In this study, we extend this 

approach by adapting the MMAI Prostate Prognostic Model to develop and test a predictive 

model on the basis of “deep learning” that has the potential to be used to identify which 

patients would benefit from ADT.

In this report, we used extant data from four NRG Oncology North American phase 3 

randomized trials (i.e., NRG 9202, 9413, 9910, and 0126) with long-term follow-up data, 

including pathology images. Data from these trials were acquired and digitized, and they 

were used to train a predictive AI model for the identification of men with localized 

prostate cancer who were likely to derive a differential benefit from the addition of ADT to 

radiotherapy. This predictive model for differential benefit from ADT was then validated 

using data from NRG Oncology/Radiation Therapy Oncology Group (RTOG) 9408, a 

clinical trial that randomly assigned men to treatment with radiotherapy plus or minus 4 

months of ADT; this trial consisted mostly of men with intermediate-risk prostate cancer, 

defined as a Gleason score of 7 or a Gleason score of 6 or less with a prostate-specific 

antigen (PSA) of 10 to 20 ng/ml or clinical stage T2b and not high risk (Supplementary 

Appendix).1,7–10

Methods

ANCILLARY PROJECT AND TRIAL DETAILS

NRG Oncology randomized phase 3 trials conducted in men with localized nonmetastatic 

prostate cancer that enrolled at least a subset of patients with intermediate risk for disease, 

included treatment with radiotherapy alone or with ADT, had long-term follow-up defined 

as a median follow-up greater than 8 years, and had stored histopathology slides in the 

NRG Oncology Biospecimen Bank were eligible for inclusion. Trials testing the use of 

chemotherapy were excluded. Data from five prospective phase 3 randomized trials (NRG/

RTOG 9202, 9413, 9910, 0126, and 9408) were identified and used for the development 

and validation of a predictive model for the use of ADT in patients with localized prostate 

cancer.1,7–10 NRG/RTOG 9408 was used as the validation cohort in this study because 
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it represents one of the largest phase 3 clinical trials evaluating patients who received 

radiotherapy with or without 4 months of ADT. All image data from the remaining trials 

were used for the image feature extraction model, and full image, clinical, and outcome data 

from NRG/RTOG 9910 and 0126 were used for downstream predictive model development.

Details of the eligibility criteria, including the case definitions for intermediate- and high-

risk disease, for each trial and the development and validation cohorts can be found in Tables 

S1 and S2. Briefly, NRG/RTOG 9202 enrolled men with intermediate and high risk prostate 

cancer; patients were randomly assigned to radiotherapy with 4 versus 28 months of ADT. 

NRG/RTOG 9413 enrolled men with intermediate and high risk prostate cancer and was a 

2 × 2 factorial trial with randomizations to 4 months of ADT sequencing and use of pelvic 

nodal radiotherapy. In NRG/RTOG 9910, men with intermediate risk prostate cancer were 

randomly assigned to radiotherapy with 16 weeks of ADT or with 36 weeks of ADT. In 

NRG/RTOG 0126, patients with intermediate risk prostate cancer were randomly assigned 

to lower versus higher doses of radiotherapy without ADT. In NRG/RTOG 9408, men with 

low, intermediate, or high risk prostate cancer were randomly assigned to radiotherapy with 

or without 4 months of ADT. Trials that included the use of ADT consisted of combined 

androgen blockade with a luteinizing hormone-releasing hormone (LHRH) agonist and an 

anti-androgen. Short-term ADT was defined as 4 months of ADT (and the 36 weeks of ADT 

in RTOG 9910 given no difference in outcomes), and long-term ADT was solely used in the 

experimental group of NRG/RTOG 9202 (28 months).

OBJECTIVE AND END POINTS

The primary objective was to develop and validate an AI-based predictive model that 

could identify a differential benefit from the addition of short-term ADT to radiotherapy 

in localized prostate cancer. The primary end point used in the model training and validation 

was the time to distant metastasis measured from the time of randomization until the 

development of distant metastasis or last follow-up. The secondary objective was to evaluate 

the predictive model on a secondary end point: prostate cancer–specific mortality (defined 

in the present study as death in the setting of distant metastasis). Metastasis-free survival 

(MFS; distant metastasis or death from any cause) and overall survival were evaluated as 

exploratory end points.

HISTOPATHOLOGY IMAGE ACQUISITION

Unannotated hematoxylin and eosin–stained histopathology slides in patients with localized 

prostate cancer from the NRG Oncology Biospecimen Bank were independently digitized 

without access to clinical outcomes data. The slides were digitized using a Leica Biosystems 

Aperio AT2 digital pathology scanner at a 20× magnification level.

IMAGE FEATURE EXTRACTION MODEL DEVELOPMENT

The first component of model development was image feature extraction, which was trained 

on images only to recognize defining tissue features and did not evaluate any clinical 

variables or outcomes. For each patient, the tissues across all available digital slides were 

divided into 256 × 256-pixel patches. A Resnet-50 feature extraction model was trained on 

image patches using self-supervised learning.18 We used the Momentum Contrast Version 
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2 (MoVo-v2) training protocol without access to any clinical or outcome data.19 Over 2.5 

million tissue patches across the four trials (NRG/RTOG 9202, 9413, 9910, and 0126) were 

fed through the model 200 times to train this model.

DOWNSTREAM MULTIMODAL PREDICTIVE MODEL DEVELOPMENT

The second component of model development was downstream multimodal predictive 

model development, which evaluated the association between all features — clinical and 

image — with clinical outcomes and included patients from NRG/RTOG 9910 and 0126. 

Because the other two trials (NRG/RTOG 9202 and 9413) included predominantly men 

at high risk, these two were excluded from downstream predictive model development to 

ensure that the development set had a similar patient population as the target population 

for the predictive model (i.e., intermediate-risk prostate cancer). Both NRG/RTOG 9910 

and 0126 were included in downstream multimodal predictive model development because 

each contributed to one treatment type of interest (radiotherapy plus short-term ADT vs. 

radiotherapy only, respectively) (Supplementary Appendix). Then, the model development 

cohort was further stratified by treatment type and randomly split into training (60%) and 

tuning (40%) sets for model training and hyperparameter tuning, respectively.20,21 Clinical 

data, image data, and treatment types were used as inputs to a multimodal predictive model 

architecture (Fig. S1A). The treatment type was used only for model development; treatment 

type was not required for model score generation on the locked model. The image and 

clinical data were preprocessed as specified in the Supplementary Appendix.

The multimodal predictive model optimized the difference in the magnitude of ADT benefit, 

outputting a continuous score “delta” (Fig. S1A). The 67th percentile of the delta scores in 

the development set was selected as the cutoff threshold because it maximized the difference 

between predictive model subgroup treatment effects in the tuning set and would result in 

reasonably sized predictive model subgroups for clinical utility. Patients with a delta score 

greater than the cutoff were classified as predictive model positive, and those below the 

cutoff were classified as predictive model negative (Fig. S1B). Model development was 

performed using the Python programming language (Python Language Reference; version 

3.8.12, Python Software Foundation). After the model was locked, it was provided to 

independent biostatisticians (H.-C.H. and J.Z.) to perform clinical validation of the model in 

NRG/RTOG 9408.

STATISTICAL ANALYSIS

The NRG/RTOG 9408 validation cohort characteristics by predictive model status (positive 

or negative) were reported and compared using the chi-square test or Fisher’s exact test 

in the presence of low cell counts for categorical variables and Wilcoxon’s rank-sum 

test for continuous variables. Time to event was analyzed using the cumulative incidence 

function; for distant metastasis and prostate cancer–specific mortality, death without the 

corresponding event was treated as a competing risk. Fine and Gray regression was also 

performed to estimate the subdistribution hazard ratio and 95% confidence interval (CI) 

for the short-term ADT treatment effect for distant metastasis and prostate cancer–specific 

mortality.22 A test for predictive model–treatment interaction was performed to evaluate 

this predictive model. Treatment effects of the predictive model–positive and –negative 
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subgroups were similarly assessed as the overall validation cohort to measure the relative 

treatment effect between groups. Fifteen-year restricted mean survival times were reported 

to provide alternative estimates given that nonproportional hazards were observed.1

Exploratory subgroup analyses were performed where the primary analysis was reanalyzed 

within patients at NCCN low and intermediate risk. Because of stage and Gleason score 

migration, patients at low risk from NRG/RTOG 9408 are more similar to contemporary 

patients at intermediate risk and were included in the subgroup analyses. Statistical analyses 

were performed using R, version 3.5.1 (R Foundation for Statistical Computing, Vienna). 

No multiplicity adjustments for the secondary and exploratory end points were defined. 

Therefore, only point estimates and 95% CIs are provided. The CIs have not been adjusted 

for multiple comparisons and should not be used to infer definitive treatment effects. 

Differences in percentages may not add up because of rounding.

Results

PATIENT AND MODEL CHARACTERISTICS

Of the 7752 eligible patients enrolled in the five phase 3 randomized trials, 6020 (77.7%) 

patients had available slides at the NRG Biospecimen Bank. Of these patients, 5727 (95.1%) 

had available pretreatment prostate slides. Pretreatment slides were not available for 285 

patients, and 8 patients had insufficient tissue. Additionally, 39 patients with transurethral 

resection of the prostate samples were further excluded from the validation cohort (NRG/

RTOG 9408). Details regarding the representativeness of the trial patients are provided in 

Table S3.23

The development cohort for the downstream predictive model for differential benefit from 

ADT had 2024 patients with a median follow-up of 10.6 years; 1050 (52%) patients received 

radiotherapy alone, and 974 (48%) patients received radiotherapy with short-term ADT 

(Tables S2 and S4). The median PSA was 9 ng/ml (interquartile range, 6 to 13), 87% had 

an intermediate risk of disease, and the median age was 71 years (interquartile range, 65 to 

74). The final locked model was composed primarily of histopathology features (Gleason 

score and imaging features), contributing to more than 86% of model prediction (Fig. 

S2). Although histopathology features provide a large contribution, the MMAI architecture 

utilizes deep learning and also captures interaction effects, with the model benefiting from 

learning of all features.

The validation set (NRG/RTOG 9408) consisted of 1594 patients with a median follow-up 

of 14.9 years, with the groups reasonably balanced in size (radiotherapy alone, 806 patients; 

radiotherapy plus short-term ADT, 788 patients) (Fig. 1 and Table 1). The median PSA was 

8 ng/ml (interquartile range, 6 to 12), 56% had an intermediate risk of disease, and the 

median age was 71 years (interquartile range, 66 to 74). To evaluate the representativeness 

of the overall trial cohort, baseline characteristics between trial groups, evaluable cohorts, 

and original eligible cohorts for the NRG/RTOG 9408 trial are outlined in Table 1. 

In the validation set, 543 patients (34%) were classified as predictive model positive 

(predicted to benefit most from short-term ADT), and 1051 patients (66%) were predictive 

model negative (predicted to derive lesser or no benefit from short-term ADT). Baseline 
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characteristics were generally well matched between patients who were predictive model 

positive and negative except for Gleason score; 24% of patients who were predictive model 

positive versus 30% of patients who were predictive model negative had a Gleason score of 

7 (Table S5).

SHORT-TERM ADT PREDICTIVE MODEL

In the overall validation cohort, the short-term ADT group had a 15-year distant metastasis 

estimate of 5.9% (95% CI, 4.2 to 7.6%) compared with the 15-year distant metastasis 

estimate in the radiotherapy alone group of 9.8% (95% CI, 7.6 to 11.9%; subdistribution 

hazard ratio, 0.64; 95% CI, 0.45 to 0.90; P=0.01) (Fig. 2A). Applying the locked AI-derived 

model to the validation set, patients identified as predictive model positive with the addition 

of short-term ADT had a 15-year distant metastasis estimate of 4.0% (95% CI, 1.5 to 

6.4%) compared with radiotherapy alone, with a 15-year distant metastasis estimate of 

14.4% (95% CI, 10.0 to 18.8%; subdistribution hazard ratio, 0.34; 95% CI, 0.19 to 0.63; 

P<0.001) (Fig. 2A). In contrast, for the patients identified as predictive model negative, two 

treatment groups had 15-year distant metastasis estimates of 6.9% (95% CI, 4.6 to 9.2%) 

and 7.4% (95% CI, 5.0 to 9.7%), respectively (subdistribution hazard ratio, 0.92; 95% CI, 

0.59 to 1.43; P=0.71) (Fig. 2A). The interactions between treatment and predictive model 

for time to distant metastasis are shown in Figure 3. The absolute benefit of short-term 

ADT, measured as the difference in distant metastasis between treatment groups at 15 

years after randomization, was 10.5 percentage points (95% CI, 5.4 to 15.5%; i.e., 4.0 vs. 

14.4% event estimates) (Figs. 2A and 3) in patients who were predictive model positive. 

In contrast, in patients with predictive model– negative disease, there was a 0.5–percentage 

point (95% CI, −2.8 to 3.7%; 6.9 vs. 7.4%) reduction in 15-year distant metastasis risk from 

the addition of ADT. Similarly, the short-term ADT benefit on distant metastasis measured 

by the restricted mean survival times at 15 years was 0.8 years (95% CI, 0.3 to 1.3) in 

patients who were predictive model positive and 0.1 years (95% CI, −0.1 to 0.4) in patients 

who were predictive model negative.

The secondary end point of prostate cancer–specific mortality was also assessed (Figs. 2B 

and 3). In the overall validation cohort, the short-term ADT group had a 15-year event 

estimate of 4.4% (95% CI, 2.8 to 5.9%), whereas the radiotherapy alone group had a 15-year 

event estimate of 8.6% (95% CI, 6.6 to 10.7%; subdistribution hazard ratio, 0.52; 95% CI, 

0.35 to 0.78) (Fig. 2B). Patients who were predictive model positive had 15-year prostate 

cancer–specific mortality estimates of 2.6% (95% CI, 0.5 to 4.6%) if randomly assigned 

to additional short-term ADT and 12.7% (95% CI, 8.5 to 17.0%) if randomly assigned to 

radiotherapy only (subdistribution hazard ratio, 0.28; 95% CI, 0.14 to 0.57). In contrast, for 

patients who were predictive model negative, 15-year event estimates were 5.3% (95% CI, 

3.2 to 7.4%) for additional ADT and 6.5% (95% CI, 4.3 to 8.7%) for radiotherapy alone 

(subdistribution hazard ratio, 0.74; 95% CI, 0.45 to 1.22) (Fig. 2B). Absolute differences 

in prostate cancer–specific mortality risks at 15 years were 10.2 percentage points (event 

estimates: 2.6 vs. 12.7%) versus 1.2 percentage points (event estimates, 5.3 vs. 6.5%) 

in predictive model–positive and –negative subgroups, respectively. The short-term ADT 

benefits on prostate cancer–specific mortality restricted mean survival times at 15 years 

were 0.7 years (95% CI, 0.3 to 1.1) in patients who were predictive model positive and 
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0.2 years (95% CI, −0.1 to 0.4) in patients who were predictive model negative (Fig. 3). 

On exploratory subset analysis, when restricting the analyses to solely patients at low and 

intermediate risk for disease, the results remained similar (Fig. S3).

We did not observe differential treatment benefits between predictive model subgroups 

on the exploratory end points MFS and overall survival (P interaction=0.31 and 0.23, 

respectively) (Fig. S4). The predictive model effects on distant metastasis and prostate 

cancer–specific mortality were evaluated within each treatment group (Table S6). For distant 

metastasis, within the radiotherapy alone group, the predictive model–positive versus –

negative subgroup subdistribution hazard ratio was 1.93 (95% CI, 1.24 to 2.98), whereas 

within the radiotherapy plus short-term ADT group, the predictive model subdistribution 

hazard ratio was 0.72 (95% CI, 0.39 to 1.34); similar results were found for prostate cancer–

specific mortality as well.

Discussion

The current standard of care for men with intermediate-risk (specifically, unfavorable 

intermediate-risk) localized prostate cancer treated with radiotherapy is the addition of 

short-term ADT. Despite the improvement in outcomes in all-comers, the majority of men 

will not develop distant metastasis with radiotherapy alone, and many will experience side 

effects from ADT. Unfortunately, there are no validated predictive models to guide ADT 

use or duration in these men. Herein, we report our results using novel deep learning 

methodology and leveraging image data from over 5000 patients in five phase 3 randomized 

trials with long-term follow-up to create and validate a predictive model to guide ADT use 

with radiotherapy in men with localized prostate cancer.

As a patient’s prognosis worsens (i.e., going from NCCN low to high risk), the 

recommendations to add ADT to radiotherapy strengthen. This is despite evidence that 

NCCN risk groups are not predictive of ADT benefit.5 To this point, we demonstrate that 

among patients with positive and negative AI model predictions, the baseline PSA, T stage, 

and NCCN risk group distribution were similar; there were small differences in the Gleason 

score. These results confirm that historical categorization of tumor aggressiveness alone is 

insufficient to determine which patients derive differential relative benefit from ADT.

A concern with any model is the possibility of overfitting and failure to validate. This cannot 

be overstated, and independent validation remains necessary to prove the performance of a 

model. In the specific case of predictive models, which aim to identify those patients who 

derive greater or lesser relative benefit, this almost always should be performed within the 

context of a randomized trial of the treatment of interest to avoid confounding and bias 

between groups. Herein, we intentionally selected NRG/RTOG 9408, because it remains the 

largest published trial of radiotherapy with or without short-term ADT with very long-term 

follow-up. Although there was clear benefit of ADT in unselected patients in this trial, the 

majority of patients enrolled had no demonstrable benefit. Our results indicate that over 60% 

of the patients at intermediate risk enrolled in NRG/RTOG 9408 did not derive benefit from 

ADT.
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The primary end point of time to distant metastasis was specifically selected to train the 

short-term ADT predictive model. Other end points, such as biochemical recurrence, MFS, 

and overall survival, all have clinical relevance, but in the context of localized prostate 

cancer model development, they have notable limitations. ADT inhibits PSA production, 

and thus, ADT is expected to delay biochemical recurrence irrespective of subgroup. 

Furthermore, the majority of biochemical recurrence events do not result in metastasis or 

death.24 Therefore, it is a suboptimal end point for model training to determine intrinsic 

tumor-specific benefit from ADT. MFS and overall survival are important end points 

for determining the net effect of a given therapy and are the gold standard for clinical 

trial design because they also capture death from competing causes. However, they are 

suboptimal end points for development of prostate cancer–specific predictive models for 

localized disease. This is because 78% of deaths in the validation cohort were not from 

prostate cancer, and only 12% of events in the MFS end point were from metastatic events. 

Thus, the strongest prediction models for MFS and overall survival would be driven by 

variables associated with death from nonprostate cancer causes (i.e., comorbid conditions). 

Importantly, despite the model being trained for distant metastasis, it showed a clear 

differential impact of ADT by predictive model status for prostate cancer–specific mortality, 

a cancer-driven end point.

As with any model, generalizability is critical. Concerns have been raised from AI models 

derived from a limited number of centers and in cohorts with limited diversity. Because 

of the limitations of the available data, we were unable to fully account for the potential 

confounding effect of factors impacting various aspects of health (e.g., socioeconomic 

status). Fortunately, NRG/RTOG enrolls patients from over 500 centers across primarily 

the United States and Canada from academic, community, and Veterans Affairs centers, 

and 20% of the 1594 patients in the validation cohort were Black; this is higher than the 

proportion of Black men (15.6%) given a diagnosis of localized prostate cancer in the United 

States.25 This important real-world diversity strengthens the generalizability of our findings. 

However, this study was underpowered to further assess the predictive performance of the 

model for Black men, and future studies are needed for evaluation.

The study was limited. Similar to other prognostic and predictive models in active clinical 

use, our short-term ADT predictive model was not developed and validated as part of a de 

novo prospective model dedicated trial. This approach is supported by Simon et al.,26 and 

use of a randomized trial of radiotherapy with or without ADT strengthens the credibility 

and level of evidence of our work. During the era of conduct and follow-up of this trial, 

there was effectively no use of advanced molecular imaging. Grade migration because 

of changes in the Gleason grading system may also have impacted patient stratification 

into NCCN risk groups. However, any potential biases introduced by this are likely 

random and impact both trial groups, and the raw histopathology imagery would not be 

impacted by changes in definitions of grading over time. Information on other prognostic 

clinicopathologic variables, such as the percentage of Gleason pattern 4 or the percentage 

of positive biopsy cores, was not available. Thus, alternative risk classification schemas for 

exploratory analyses were not performed.27,28
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Conclusions

We have developed and independently validated in a completed phase 3 randomized trial 

an AI-based predictive model to guide ADT use with radiotherapy in localized prostate 

cancer using a novel multimodal digital pathology AI-derived platform; details on accessing 

this predictive model are in the Supplementary Appendix. Using this predictive model, we 

showed from the trial data that the majority of patients at intermediate risk did not benefit 

from ADT treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Consolidated Standards of Reporting Trials Flow Diagram for NRG/RTOG 9408 (Validation 

Set).

RT denotes radiotherapy; and ST-ADT, short-term androgen deprivation therapy.
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Figure 2. 
Cumulative Incidence in the Validation Cohort (NRG/RTOG 9408) of Histopathology-

Imaged Patients by Artificial Intelligence–Predictive Model Subgroups for (Panel A) Distant 

Metastasis and (Panel B) Prostate Cancer–Specific Mortality.

CI denotes confidence interval; DM, distant metastasis; Est., estimated; PCSM, prostate 

cancer–specific mortality; RT, radiotherapy; and ST-ADT, short-term androgen deprivation 

therapy. * Denotes P value <0.05.
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Figure 3. 
Forest Plots for All End Points in Positive and Negative Predictive Model Groups of NRG/

RTOG 9408 (Validation Set) for All Patients.

ADT denotes androgen deprivation therapy; CI, confidence interval; DM, distant metastasis; 

N, number of patients; NCCN, National Comprehensive Cancer Network; PCSM, prostate 

cancer–specific mortality; RMST, restricted mean survival time; RT, radiation therapy; ST-

ADT, short-term androgen deprivation therapy; and yr, year. * Denotes P value <0.05.
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Table 1.

Patient Baseline Characteristics for NRG/RTOG 9408.*

NRG/RTOG 9408 Full Cohort (N=1974) NRG/RTOG 9408 Imaged Cohort (n=1594)

Characteristic Overall (N=1974) Imaged (n=1594) Not Available (n=380) RT (n=806) RT + ST-ADT (n=788)

Group

 RT 990 (50.2) 806 (50.6) 184 (48.4) — —

 RT + ST-ADT 984 (49.8) 788 (49.4) 196 (51.6) — —

Age, years

 Median (IQR) 71 (66–74) 71 (66–74) 70 (66–74) 71 (66–74) 70 (66–74)

 Missing 1 0 1 — —

Race

 Black 394 (20.0) 306 (19.2) 88 (23.2) 150 (18.6) 156 (19.8)

 White 1,497 (75.8) 1,220 (76.5) 277 (72.9) 624 (77.4) 596 (75.6)

 Other 80 (4.1) 65 (4.1) 15 (3.9) 31 (3.8) 34 (4.3)

 Unknown 3 (0.2) 3 (0.2) 0 (0.0) 1 (0.1) 2 (0.3)

KPS

 70–80 154 (7.8) 126 (7.9) 28 (7.4) 60 (7.4) 66 (8.4)

 90–100 1819 (92.2) 1468 (92.1) 351 (92.6) 746 (92.6) 722 (91.6)

 Missing 1 0 1 — —

Baseline PSA, ng/ml

 Median (IQR) 8 (6–12) 8 (6–12) 7 (5–10) 8 (6–12) 8 (6–12)

 <4 209 (10.6) 145 (9.1) 64 (16.9) 66 (8.2) 79 (10.0)

 4–10 1089 (55.2) 874 (54.8) 215 (56.7) 448 (55.6) 426 (54.1)

 10–20 669 (33.9) 570 (35.8) 99 (26.1) 288 (35.7) 282 (35.8)

 >20 6 (0.3) 5 (0.3) 1 (0.3) 4 (0.5) 1 (0.1)

 Missing 1 0 1 — —

Tumor stage

 T1 962 (48.8) 775 (48.6) 187 (49.3) 379 (47.0) 396 (50.3)

 T2 1011 (51.2) 819 (51.4) 192 (50.7) 427 (53.0) 392 (49.7)

 Missing 1 0 1 — —

Nodal stage

 N0 80 (4.1) 67 (4.2) 13 (3.4) 33 (4.1) 34 (4.3)

 Nx 1893 (95.9) 1527 (95.8) 366 (96.6) 773 (95.9) 754 (95.7)

 Missing 1 0 1 — —

Gleason score

 <7 1212 (62.9) 969 (62.2) 243 (65.7%) 475 (60.6%) 494 (63.9%)

 7 535 (27.8) 437 (28.1) 98 (26.5%) 233 (29.7%) 204 (26.4%)

 8–10 180 (9.3) 151 (9.7) 29 (7.8) 76 (9.7) 75 (9.7)

 Missing 47 37 10 22 15

Risk group

 High 180 (9.3) 151 (9.7) 29 (7.8) 76 (9.7) 75 (9.7)

 Intermediate 1071 (55.6) 878 (56.4) 193 (52.2) 453 (57.8) 425 (55.0)

NEJM Evid. Author manuscript; available in PMC 2024 June 24.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Spratt et al. Page 17

NRG/RTOG 9408 Full Cohort (N=1974) NRG/RTOG 9408 Imaged Cohort (n=1594)

Characteristic Overall (N=1974) Imaged (n=1594) Not Available (n=380) RT (n=806) RT + ST-ADT (n=788)

 Low 676 (35.) 528 (33.9) 148 (40.0) 255 (32.5) 273 (35.3)

 Missing 47 37 10 22 15

*
Values are presented as No. (%) unless indicated otherwise. Note that some percentages may not add up to 100% because of rounding. Karnofsky 

performance status (KPS) scores range from 0 to 100. A higher score indicates the patient having better ability to carry out daily activities. 
IQR denotes interquartile range; n, number of patients; NRG/RTOG, NRG Oncology/Radiation Therapy Oncology Group; PSA, prostate-specific 
antigen; RT, radiation therapy; and ST-ADT, short-term androgen deprivation therapy.
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