UC Berkeley Energy Use in Buildings Enabling Technologies

Title

Demand Response Enabling Technologies from the Building Side of the Meter

Permalink

https://escholarship.org/uc/item/68p1n8bw

Author

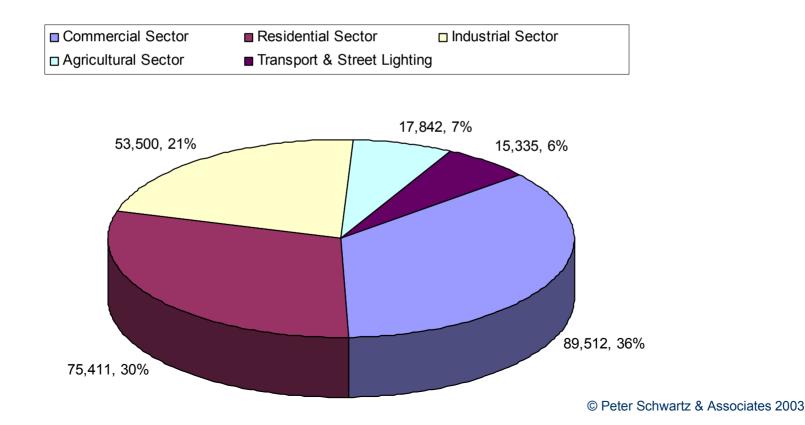
Schwartz, Peter M.

Publication Date 2003

Demand Response Enabling Technologies from the Building Side of the Meter

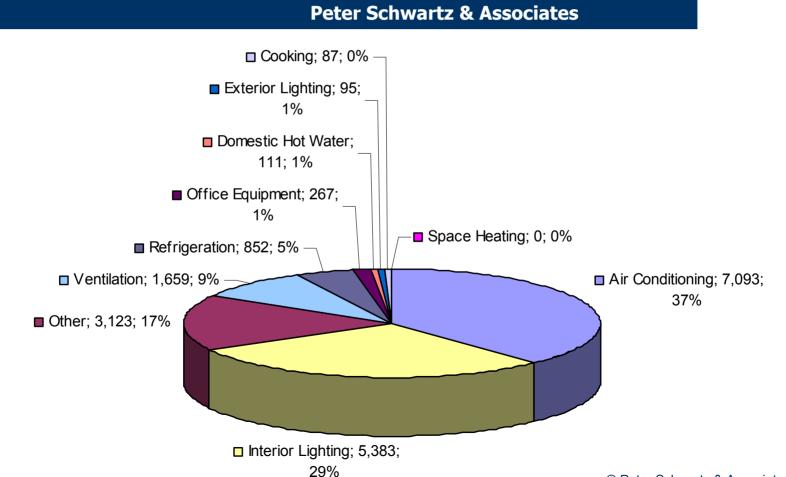
Peter M. Schwartz, Principal Workshop - June 4, 2003

Setting the Context


- Establish electric market characteristics:
 - Energy-efficiency market potential [How much gold is there?]
 - Electric demand, consumption & energy intensity by market segment & end use [Where can you mine the gold cost-effectively?]
- California statewide electric supply and demand balance [Establishing the gold's value]
- How do you create dynamic, demand-responsive buildings? [Mining the gold]
- What are barriers to a demand-responsive market? [What's blocking the gold mining?]

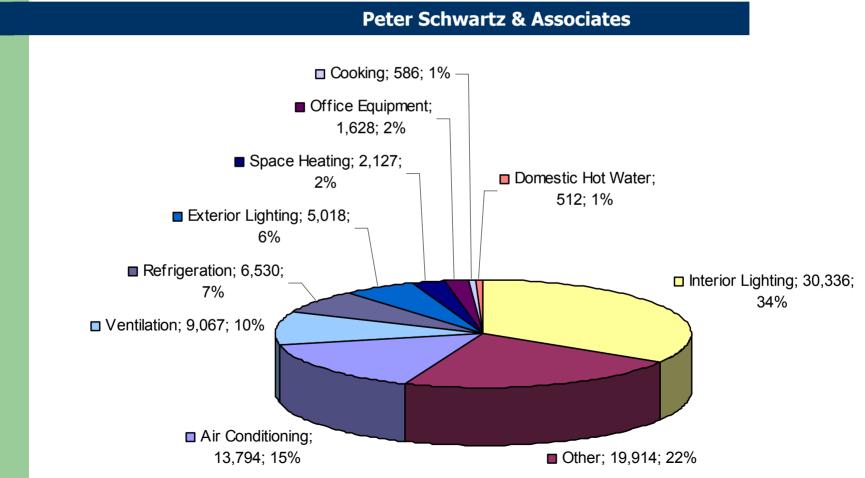
How Much Gold is There?

1999 California Electricity Consumption (GWh/Year)



California Commercial Electricity Consumption and Peak Demand by End Use - YR 1999

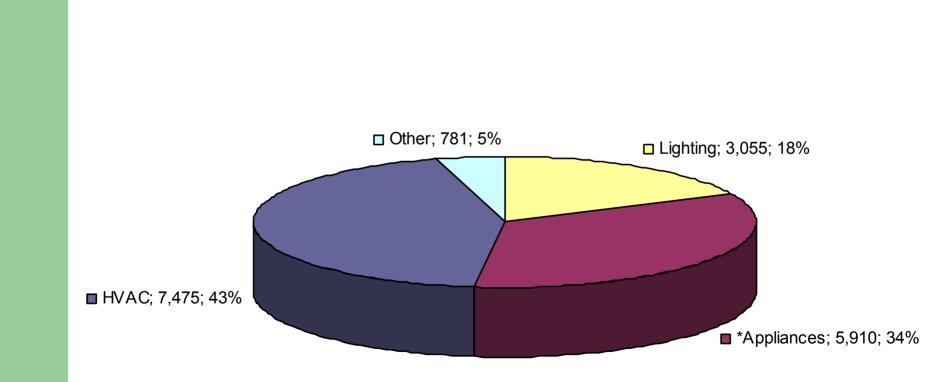
	Peter Schwartz & Associates				
Commercial Sector End Uses	Coincident Peak Load (MW)	% of Total MW	Annual Energy (GWh)	% of Total GWh/Year	
Air Conditioning	7,093	37.99%	13,794	15.41%	
Interior Lighting	5,383	28.83%	30,336	33.89%	
Other	3,123	16.73%	19,914	22.25%	
Ventilation	1,659	8.89%	9,067	10.13%	
Refrigeration	852	4.56%	6,530	7.30%	
Office Equipment	267	1.43%	1,628	1.82%	
Domestic Hot Water	111	0.59%	512	0.57%	
Exterior Lighting	95	0.51%	5,018	5.61%	
Cooking	87	0.47%	586	0.65%	
Space Heating	0	0.00%	2,127	2.38%	
Total - Commercial	18,670	100.00%	89,512	100.00%	



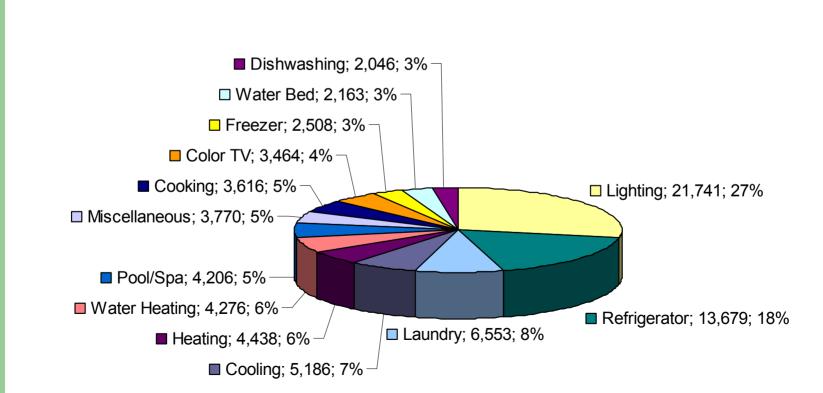
Commercial Coincident Peak Load by End Use - YR 1999 (MW)

California Commercial Electricity Consumption by End Use – YR 1999 (GWh/Year)

[©] Peter Schwartz & Associates 2003

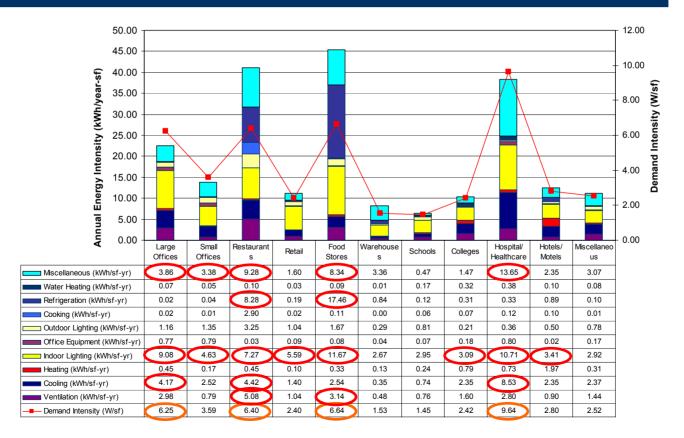

California Residential Electricity Consumption and Peak Demand by End Use - YR 1999

	Peter Schwartz & Associates				
Residential Sector End Uses	Coincident Peak Load (MW)	% of Total MW	Annual Energy (GWh/Yr)	% of Total GWh/Yr	
Air Conditioning	7,475	43.41%	4,790	6.35%	
Lighting & Miscellaneous	3,055	17.74%	24,623	32.65%	
Refrigerator*	1,833	10.64%	13,668	18.12%	
Cooking*	1,221	7.09%	3,569	4.73%	
Dryer*	925	5.37%	5,715	7.58%	
Pools & Spas (Other)	781	4.54%	4,126	5.47%	
Domestic Hot Water*	555	3.22%	4,191	5.56%	
Television*	465	2.70%	3,404	4.51%	
Freezer*	339	1.97%	2,473	3.28%	
Dishwasher*	323	1.88%	1,994	2.64%	
Waterbed Heater*	138	0.80%	2,116	2.81%	
Washer*	111	0.64%	731	0.97%	
Space Heating	0	0.00%	4,011	5.32%	
Total - Residential	17,221	100.00%	75,411	100.00%	


Residential Electric Peak Demand by End Use - YR 1999 (MW)

Peter Schwartz & Associates

Total Annual Residential Electricity Consumption by End Use - YR2000 (GWh/Year)



Where is the Cost-Effective Gold ?

Commercial Market Sector Electricity (kWh/sf-yr) & Demand (W/sf) Intensity by End Use

Commercial Market Sector Electric Demand Intensity by End Use (W/SF)

10.00 9.00 8.00 Demand Intensity (W/sf) 7.00 6.00 5.00 4.00 3.00 2.00 1.00 0.00 Hospital/ Large Small Restaura Food Warehou Hotels/ Miscellan Retail Schools Colleges Healthca Total Offices Offices nts Stores Motels ses eous re 1.55 1.17 2.04 0.65 0.57 0.27 0.57 0.07 0.14 0.34 0.45 0.56 Miscellaneous (W/sf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Water Heating (W/sf) 0.00 0.01 1.13 0.03 2.39 0.12 0.02 0.04 0.04 0.11 0.01 0.16 Refrigeration (W/sf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Cooking (W/sf) 0.04 0.02 Outdoor Lighting (W/sf) 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.13 0.10 0.01 0.02 0.01 0.01 0.01 0.02 0.12 0.00 0.02 0.05 Office Equipment (W/sf) 2.05 1.09 1.17 1.12 1.70 0.56 0.57 0.56 0.44 2.14 0.48 1.08 Indoor Lighting (W/sf) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Heating (W/sf) 0.00 2.75 1.66 1.59 0.95 4.86 1.66 0.74 0.18 0.61 1.47 1.36 1.49 Cooling (W/sf) 0.56 0.15 0.92 0.22 0.40 0.17 0.27 0.52 0.12 0.23 0.30 Ventilation (W/sf) 0.10

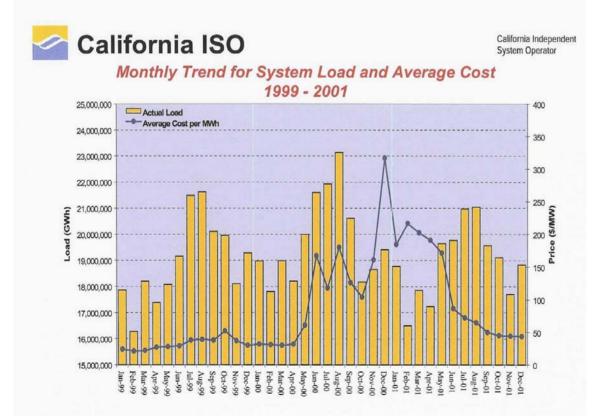
Peter Schwartz & Associates

Commercial Market Sector Floor Area (Millions SF)

Commercial Occupancies	Floor Area (Millions SF)		
Office	1,385.31		
Large Offices	1,024.28		
Small Offices	361.03		
Restaurants	145.17		
Retail	882.35		
Food Stores	230.52		
Warehouses	787.43		
Schools	457.47		
Colleges	270.13		
Hospital/ Healthcare	278.57		
Hotels/ Motels	270.87		
Miscellaneous	992.52		
Total	5,700.34		

- Mapping the demand intensity onto the total floor area:
 - "Bounds" the total target market by occupancy
 - Determines potential DR market impacts

What is the Gold's Value ?


2004-2008 Statewide Supply/Demand Balance (Planning Reserve)

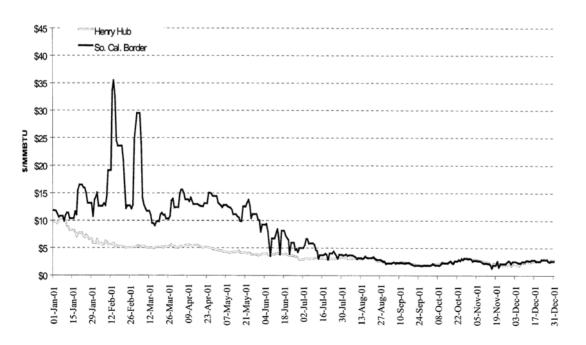
70,000 10.0% 9.0% 60,000 Capacity 8.0% 50.000 7.0% Demand (MW) 40,000 6.0% Percent Reserve 5.0% 30.000 4.0% 20,000 3.0% 10.000 2.0% 0 1.0% (10,000)0.0% Aug 2004 Aug 2005 Aug 2006 Aug 2007 Aug 2008 62.461 64.148 64.422 64.440 64.669 Total Supply (MW) 1-in-10 Summer Temperature (Hot) 57,416 59,137 60,502 61,654 62,914 Demand (MW) 54.749 54.416 56.250 56.424 56.642 Existing Generation (708)0 (916) 0 ٥ Retirements 375 1.834 1.090 218 229 High Probability CA Additions 5.345 5.298 5.098 5.098 Net Firm Imports 5.198 Spot Market Imports 2,700 2,700 2.700 2,700 2.700 9.3% 6.9% 4.8% 3.0% Planning Reserve Margin (1-in-10) 9.0%

Electricity Price Volatility

Peter Schwartz & Associates

6

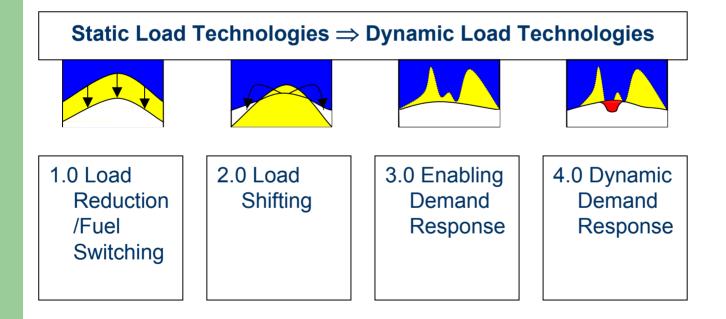
Natural Gas Price Volatility


Peter Schwartz & Associates

California ISO

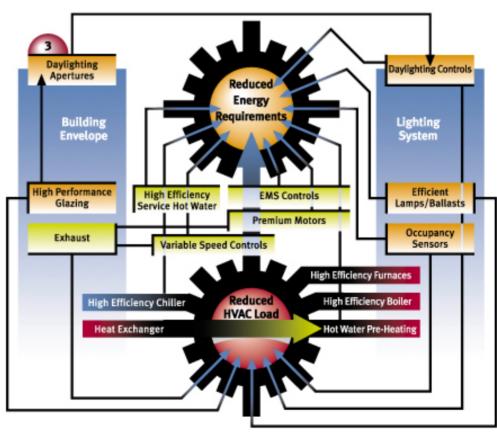
California Independent System Operator

Natural Gas Spot Prices for Jan 2001 Through Present So. Cal. Border and Henry Hub (No Transportation Costs)



Mining the Gold

Four Major Technology Categories:


Key Elements to Success-Demand Response Enabling Technologies

- Installing energy-efficiency measures for permanent load reduction
- Optimize building operation—commissioning
- Installing an enhanced EMS and energy information system (EIS) system including sensors, BCS & advanced interval metering that:
 - 1. Reacts automatically to peaking demand conditions or external signals to reduce load;
 - Provides the gateway for two-way communication between the EIS & EMS;
 - 3. Includes enhanced programming and existing system integration; and
 - 4. Increases the existing system's number of monitoring and control points.
- Changes in organizational policy
- Wide focus vs. compartmentalized view

Energy-Efficiency Strategies

- Need for WHOLE building integrated approach.
- PG&E's *Savings By Design* is an excellent example.
- Need to take technology further.

Demand Response Enabling Technologies

- Building Envelope Control Technologies:
 - > Daylight harvesting strategies
 - > Dynamic fenestration shading controls
 - Natural ventilation & night flushing

Demand Response Enabling Technologies

- Centralized Lighting Control Technologies:
 - Lighting sweep strategies
 - > Override strategies
 - > Demand limiting strategies
 - > Occupancy sensors
 - Dimming capabilities throughout building

Demand Response Enabling Technologies

- HVAC Control Technologies and Strategies:
 - Time & temperature control On/off control; Space temperature control; Combined time and temperature control; Other operating temperature and time control
 - Advanced time & temperature control Shut-off with high limit: Night ventilation; Optimal start
 - Variable capacity control Variable-air-volume (VAV) designs; Variablespeed exhaust systems; Variable-speed cooling tower controls; Variable-speed drives for centrifugal chillers; Variable-speed pumps for condenser water or chilled and hot water pumps
 - Demand-response ventilation Carbon dioxide sensing systems; Occupancy sensing systems; Carbon monoxide sensing systems for garages
 - > **Peak load shifting strategy** Thermal energy storage
 - Chilled-water system control Chilled-water temperature control; Condensing temperature control; Cooling tower/evaporative condenser fan control © Peter Schwartz & Associates 2003

End Goal- Convert buildings into Negawatt power plants

- Create dynamic, demand-responsive buildings that in turn,
- Enable a flexible, demand-responsive electric market

Barriers to Mining the Gold

Demand Response Market Issues

- Systems integration
- Legacy systems
- Capital for infrastructure investments
- Technology gaps
- Transitory market structure
- Regulatory barriers
- Clear market signals:
 - Price increases
 - Capacity constraints
 - Electricity shortages

Customer Challenges to Participating in Demand Response Programs

Peter Schwartz & Associates

- Framework for analysis
 - Load response programs
 - Price response programs
- Overcoming technical challenges

Generic issues:

- Baseline estimation
- > Operating equipment
- Interconnection requirements
- Metering and verification (including net metering)
- Communication
- Load profiling
- Environmental
- Mass Market Issues -- Special circumstances
- Unique Loads and Large Customer Issues

Customer Challenges to Participating in Demand Response Programs (cont.)

Peter Schwartz & Associates

• Overcoming economic challenges

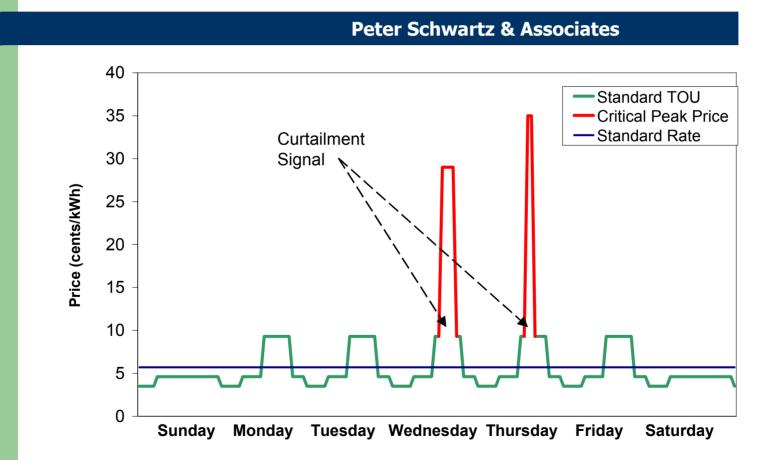
General

- Valuing reliability
- Commodity pricing and price volatility (including price caps)
- > Revenue loss
- Settlements
- Non-economic gaming
- Social values and costs
- Mass market issues
- Unique loads and large customers

Customer Challenges to Participating in Demand Response Programs (cont.)

- Overcoming institutional challenges
 - Distribution organizations
 - Retail marketing organizations
 - Curtailment service providers
 - Generation organizations
 - > ISO/RTO organizations
 - > Equipment and services providers

"If you build it, deregulation will come"


Peter Schwartz & Associates

First, what is IT? An electric market where:

- 1. Regulatory agencies establish fair & level playing field
 - > Electric market with stable rates & tariffs
 - > Rates & tariffs reflect actual, real-time energy costs
 - Negawatt capacity has same (or better) treatment as megawatt capacity
- Market infrastructure provides for seamless, real-time communication of market signals to customers managing & operating buildings
- 3. Buildings incorporate dynamic, demand-responsive technologies

Critical Peak Pricing (CPP)—(Based on Gulf Power tariff)

"If you build it, deregulation will come"

Peter Schwartz & Associates

HOW?

- 1. Establishes link between wholesale cost & retail price
- 2. Enables customers to respond intelligently and costeffectively to market signals
- 3. Encourages investment at all levels of the marketplace:
 - New & upgraded generation
 - Enhanced T&D
 - > Dynamic building technologies
 - Distributed & renewable generation
 - Negawatt capacity

Benefits of Demand Response

- Enhances market efficiency
- Cost reduction
- Enhance system reliability
- Creates opportunities for risk management
- Potential environmental improvements
- Customer service and choice
- Market power mitigation

Indirect Benefits of Nationally Deployed Dynamic Pricing Solution

Peter Schwartz & Associates

- Avoid need for ~250 "peaker" power plants
- Power infrastructure for peaks reduced by 31,000 MW, saving \$16 billion in (onetime) capital costs

- Reduces water used for hydro-electric generation
- Gas demand reduced by 680 bcf/year
- Gas transmission reduced by 2 bcf/day
- Mitigates natural gas price volatility

Note: Assumes 125 MW peaking plant, \$500/kW capital cost, 25% load factor, 10,000 heat rate, 0.9 lb NOx/MWh Source: Department of Energy; EIA Power Annual Volume II; BAEF Report; EIA RECS 1997; McKinsey analysis

Indirect Benefits of Nationally Deployed Dynamic Pricing Solution

Peter Schwartz & Associates

- Enough saved electricity to supply 7 million new homes annually
- Blackouts & resulting lost productivity avoided

• Eliminate 31,000 tons of NO_X emissions annually

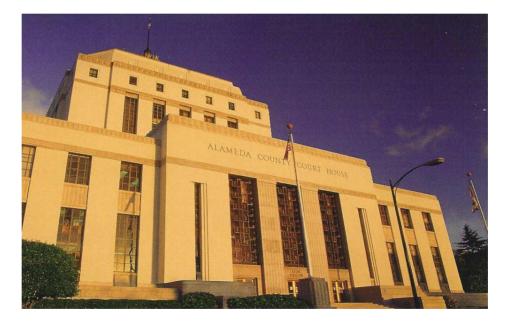
Note: Assumes 125 MW peaking plant, \$500/kW capital cost, 25% load factor, 10,000 heat rate, 0.9 lb NOx/MWh Source: Department of Energy; EIA Power Annual Volume II; BAEF Report; EIA RECS 1997; McKinsey analysis

Indirect Benefits of Nationally Deployed Dynamic Pricing Solution

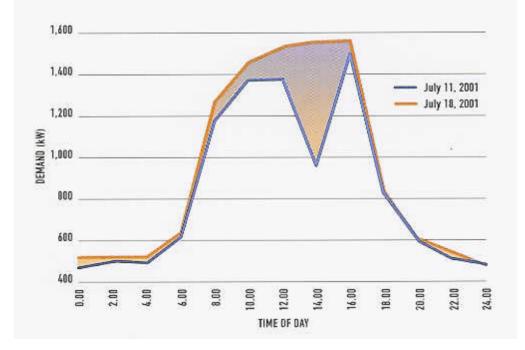
Peter Schwartz & Associates

- Other environmental benefits:
 - Cleaner water
 - Reduced thermal pollution
 - Hydro power impact on ecosystems

- Other system benefits:
 - Avoided transmission & distribution investment
 - Reduced meter reading costs

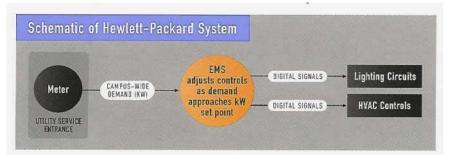

Source: Department of Energy; EIA Power Annual Volume II; BAEF Report; EIA RECS 1997; McKinsey analysis

Peter Schwartz & Associates

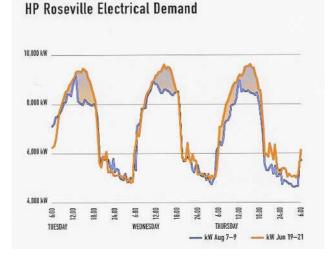

Issues:

- Unpredictable
 energy supply
- Inability to curtail energy use & maintain occupant comfort
- Rising energy costs

Peter Schwartz & Associates


Issues:

- Labor- and timeintensive to shed load
- Inability to curtail energy use & maintain occupant comfort
- Unpredictable
 energy supply



Peter Schwartz & Associates

- Automated demand control ventilation tied to CO₂ sensors to ensure air quality
- Automated lighting controls (multiplexers installed) to shut off pre-determined, nonessential lights
- EMS programmed to gradually close VAV boxes & control valves to reduce chilled H₂O
- VFD's on CWPs reduce circulation until chillers shut off

- Expanded EMS capabilities
- High-speed LAN
- DDC
- Power monitors linked to interval meters

Peter Schwartz & Associates

• Results:

- Cut peak load ~ 12%
- Automated load shedding ~ 1.5 MW curtailable
- Increased occupant comfort
- Targeted HVAC control
- Energy cost savings ~ \$1.5 million annually