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Error-Correcting Codes

by
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Professor Alexander Vardy, Chair

This dissertation is concerned with algebraic list-decoding of error-correcting

codes. During the past decade, significant advances in this are were achieved.

The breakthrough papers of Sudan, Guruswami & Sudan, and Koetter & Vardy

showed that the well-known Reed-Solomon (and other algebraic) codes can cor-

rect many more errors – in the list-decoding sense – than previously thought

possible. Herein, we extend the theory developed in these seminal papers, and

improve upon the results reported therein.

We first extend the bivariate polynomial interpolation method of Guruswami-

Sudan to multivariate interpolation decoding. To this end, we develop a new de-

coding algorithm for Reed-Solomon codes, which decodes some M codewords

together. We show that if the channel errors are synchronized then, with high

probability, our multivariate interpolation decoding algorithm corrects up to

n
(
1− RM)/(M+1)) errors in a Reed-Solomon code of length n and rate R. This is

much higher than the Guruswami-Sudan decoding radius of n
(
1− R1/2).

Next, we consider the case of adversarial errors. We introduce a new family

of codes that have a polynomial-time list-decoder correcting a fraction of 1− ε

adversarial errors for a code of rate Ω
(
ε/log(1/ε)

)
. The best previously known

xii



results required a rate of O(ε2) for the same error-correction radius. In addition

to the transition from bivariate to multivariate interpolation, we also modify

the Reed-Solomon codes in an essential way. Reed-Solomon encoders view a

message as a polynomial f (X), and produce the corresponding codeword by

evaluating f (X) at n distinct elements of Fq. In Chapter 3, given f (X), we com-

pute one or more related polynomials gi(X) and produce the corresponding

codeword by evaluating all these polynomials. The a priori correlation between

f (X) and gi(X) then enables us to recover the encoded message from the output

of the interpolation process.

Finally, we consider soft-decision list-decoding. Koetter & Vardy have shown

that algebraic soft-decision decoding can be achieved by converting symbol

probabilities observed at the channel output into interpolation multiplicities.

Such conversion is known as the multiplicity assignment problem. In Chapter 4,

we first recast the multiplicity assignment problem into a geometric framework,

and use this framework to establish certain properties of the optimal solution.

We then devise a sub-optimal solution based upon optimization of second-order

statistics. Specifically, we minimize the Chebyshev bound on the probability of

failure of the soft-decision decoder. This leads to coding gains of 0.25 dB to

0.75 dB, as compared to the Koetter-Vardy multiplicity assignment algorithm.

It is widely recognized that bivariate (or multivariate) interpolation is the

most computationally intensive step in algebraic list-decoding algorithms. In

Chapter 5, we show that bivariate polynomial interpolation is equivalent to

computing a certain chain product of polynomial matrices. We then derive a

dynamic-programming algorithm to parse this matrix-chain product in an op-

timal way. This leads to a reduction in the computational complexity of the in-

terpolation process by a factor of at least two, as compared to the interpolation

algorithm of Koetter.
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CHAPTER 1

Introduction

“ ... The fundamental problem of communication is that of re-
producing at one point either exactly or approximately a message
selected at another point ... If the channel is noisy it is not in general
possible to reconstruct the original message or the transmitted signal
with certainty by any operation on the received signal E. There are
however, ways of transmitting the information which are optimal in
combating noise. ”

A Mathematical Theory of Communication – C.E. SHANNON

American Heritage dictionary defines communication as the exchange of

thoughts, messages, or information, as by speech, signals, writing, or behavior.

During the act of communicating, unwanted noise usually intervenes between

the source and the destination. For example, during a conversation in a subway,

clatter makes the communication harder than during a conversation in a quiet

room. We speak louder and sometimes repeat a word or a sentence if our audi-

ence doesn’t receive the message. However, sometimes when we miss some of

the words in a sentence during the conversation we are nevertheless able to re-

cover the whole sentence. The spoken language has redundancy. This helps us to

recover parts of a sentence which we might miss during the conversation. Here,

we look at communication in a more abstract setting. Consider the following

scenario.

1
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Noise

TransmitterSource Receiver Destination

Signal Received
   Signal

Figure 1.1: Schematic of a generic communication system

Problem 1.1. Sue makes a sentence out of k words and asks Terry to send the

sentence to Richard, who is waiting at the other end of a line at a bus-stop. Terry

writes an encoded version of the sentence, which has n words, on a piece of paper

and passes it to the next person in line. Each person then passes the paper to

the next person till it gets to Richard. There are t people between Richard and

Terry. It is late afternoon and people in the line are clumsy, so each person might

randomly change one of the words in the sentence to something else.

How should Terry encode Sue’s message, i.e. add redundancy to it so that

Richard can still recover the sentence when t words are changed? How can

Richard decode the message from the corrupted sentence?

Most communication systems can be modeled as the on in Problem 1.1. A

general communication system consists of a source that produces a message,

a transmitter/encoder that maps the message to a signal, a noise source that

corrupts the signal in a specific way, and a receiver/decoder that reconstructs

the message by exploiting the knowledge it has of the encoder and the channel

(see Figure 1.1).

Shannon, in his seminal paper [Sha48], proves that, when k/n is smaller than

a certain value, called channel capacity, there exist encoding and decoding algo-

rithms that transmit the message with probability of error that approaches zero

when k and n tend to infinity. The proof is existential. It just shows that such an

encoder and decoder exist for every channel, but it does not provide a way to
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actually construct the encoder and/or the decoder.

The theory of error-correcting codes dates back to work of Shannon, and

Hamming [Sha48, Ham50] in the early 1950’s. The main challenge of the the-

ory is to invent efficient encoding and decoding algorithms that transmit in-

formation reliably close to channel capacity. Since the 1950’s, many advanced

coding techniques have been introduced using powerful mathematical tools

such as algebra, geometry, probability, and combinatorics. The resulting error-

correcting codes have now diverse applications in computer science, engineering,

bio-informatics, and many other areas.

One of the first classes of codes invented during the early days of coding

theory was Reed-Solomon codes [RS60]. Nowadays, Reed-Solomon codes are

ubiquitous. They have been used in many different applications, ranging from

deep-space communication to computer disk drives and DVD’s. Around the

time of their invention, Peterson [Pet60] and Berlekamp [Ber68] came up with

very efficient algorithms for decoding Reed-Solomon codes up to half of their

minimum distance.

In Problem 1.1, if Terry uses Reed-Solomon codes to encode Sue’s message,

then Richard can recover the message whenever t, the number of words changed,

is smaller than 1/2(n− k). However, Shannon [Sha48] showed, if the people in

line replace the words of Terry’s message with other words in the dictionary

uniformly random then, for large enough k, n and t, there is an encoding that

lets Richard recover the message whenever

k/n 6 1− Hq (t/n) , (1.1)

where Hq(·) is the q-ary entropy function and q is the total number of words in

the dictionary. For large q, we know that Hq(t/n) is roughly equal to t/n, so

Shannon predicts that when t is smaller than about n− k reliable communica-

tion is possible. In other words, we should be able to send the message through

a line that has twice the length of the line wherein a Reed-Solomon code with the

Peterson-Berlekamp-Massey [Pet60, Ber68, Mas69] decoding algorithm is used

for communication.
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For almost 30 years, there were no significant improvements on the Berlekamp-

Massey decoding algorithm for Reed-Solomon codes. In a breakthrough re-

sult, Sudan [Sud97] and Guruswami–Sudan [GS99] showed that we can decode

many more errors with Reed-Solomon codes than previously thought possi-

ble. Using their algorithm, the number of people in the line can be extended

to
⌈
n−√

(k− 1)n
⌉
. Is this the best we can hope for? In Chapter 2, we extend

the algorithm of Guruswami-Sudan to higher dimensions. We show that for a

certain type of Reed-Solomon codes, using an adaptive recovery algorithm, we

can often correct up to

n

⌈
1−

(
k− 1

n

) M
M+1

⌉

errors, where M is a constant. For large M, this bound approaches the Shannon

bound when q, the size of the dictionary, tends to infinity.

However, let’s make communication a little bit harder for Terry and Richard.

Problem 1.2. Suppose that it is April Fool’s day, and people in the line are in-

terested to corrupt the sentence maliciously so that that Richard would have a

hard time to recover Sue’s message. They are aware of the algorithm that Terry

uses for encoding. Also, they have enough computational power and time to

decide which word of the sentence to change, and they can pick any word they

want from the dictionary. In addition, they are free to communicate with each

other. The only restriction is that they are allowed to change at most t words in

the sentence and not more.

The question is how many errors can Richard tolerate in the sentence in this

scenario?

Theorem 1.3. Suppose there are q words in the dictionary. Then Richard can

list-recover the Sue’s message, assuming Terry encodes the message in a the

correct way [Gur05b], if and only if

k/n < 1− Hq (t/n) , (1.2)

where Hq(·) is the q-ary entropy function. Here, list-recovery means that Richard

obtains a small list of sentences and Sue’s message is one of them.
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Amazingly, the bound of (1.2) is very similar to the Shannon bound of (1.1).

The proof is also existential, based on random coding arguments. If Terry uses

Reed-Solomon codes, Richard can still correct up to
⌈
n−√

(k− 1)n
⌉

errors in

this scenario. However, there is some evidence [GR05, BKR05] that the people

in line can come up with a strategy which makes Richard unable to recover

Sue’s message whenever the number of errors is more than
⌈
n −√

(k− 1)n
⌉
.

In Chapter 3, we show that a variant of Reed-Solomon codes, combined with

a modified version of the decoding algorithm of Chapter 2, can get close to the

bound of (1.2) when k/n is small. Later, Guruswami and Rudra [GR06c] showed

that a compressed version of the codes we define in Chapter 3 can get close to

the ultimate bound of n− k for any k/n between zero and one.

1.1 Contributions

This dissertation is concerned with list-decoding of error-correcting codes.

List decoding was introduced by Elias [Eli57] and Wozencraft [Woz58] in the

late 1950’s. Nevertheless, most algebraic decoding algorithms that were known

up to the work of Sudan [Sud97] in 1997 are unique decoding algorithms. These

algorithms can decode up to half the minimum distance of a code, where the

minimum distance is the smallest Hamming distance between two distinct code-

words. Indeed, if we receive a word that is half way between two codewords

that are at the minimum distance from each other, then in order to decode be-

yond the half-the-distance bound we have to output both codewords. Hence,

unique decoding fails in these situations.

On the other hand, list-decoding algorithms make it possible to decode be-

yond the half-the-distance bound. In contrast to unique decoding, list decoders

are allowed to produce a small list of codewords as the output. For Reed-Solomon

codes, we know (cf. [McE03b]) that the list size is one on the average, when de-

coding up to the Johnson bound. Thus, most of the time, a list decoder would

output only a single codeword. However, the difference is that the list decoder

can decode many received words for which unique decoding fails.
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During the past decade, significant advances on in the area of algebraic list-

decoding were achieved. In a series of breakthrough papers, Sudan [Sud97],

Guruswami and Sudan [GS99], and Koetter and Vardy [KV03a] showed that

the well-known Reed-Solomon codes (and other algebraic codes) can correct

many more errors, in the list-decoding sense, than previously thought possible.

In this dissertation, we extend the theory developed in these seminal papers,

and improve upon the results reported therein.

In Chapter 2, we extend the bivariate polynomial interpolation method of

Guruswami-Sudan [GS99] to multivariate interpolation decoding. To this end,

we develop a new decoding algorithm for Reed-Solomon codes, which decodes

some M codewords together, where M is an arbitrary constant. We show that if

the channel errors are synchronized – occur at the same positions in all the M

codewords – then, with high probability, our multivariate interpolation decod-

ing algorithm corrects up to n
(
1−RM)/(M+1)) errors in a Reed-Solomon code of

length n and rate R. This is much higher than the Guruswami-Sudan decoding

radius of n
(
1− R1/2). The results of this chapter have been presented in part at

the 43rd ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL,

AND COMPUTING and in part at the 2006 INTERNATIONAL SYMPOSIUM ON IN-

FORMATION THEORY (ISIT). A journal version is currently in preparation for

submission to the IEEE TRANSACTION FOR INFORMATION THEORY.

In Chapter 3, we consider the case of adversarial errors. We introduce a new

family of error-correcting codes that have a polynomial-time list-decoder cor-

recting a fraction of 1 − ε adversarial errors for a code of rate Ω
(
ε/log(1/ε)

)
.

The best previously known results for polynomial-time list-decoding of adver-

sarial errors required a rate of O(ε2) to achieve the same error-correction radius.

In addition to the transition from bivariate interpolation to multivariate interpo-

lation, our results in Chapter 3 are based on parting ways with Reed-Solomon

codes: rather than devising a better list-decoder for these codes, we devise bet-

ter codes. Reed-Solomon encoders view a message as a polynomial f (X) over

a field Fq, and produce the corresponding codeword by evaluating f (X) at n

distinct elements of Fq. In Chapter 3, given f (X), we first compute one or more
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related polynomials g1(X), g2(X), . . . , gM−1(X) and produce the corresponding

codeword by evaluating all these polynomials. Correlation between f (X) and

gi(X) then provides the information we need to recover the encoded message

from the output of the multivariate interpolation process. Our construction fur-

thermore leads to a class of codes, called folded Reed-Solomon codes, introduced

by Guruswami and Rudra [GR06c] that can be list-decoded up to the radius

of 1− R, which is the ultimate limit for list-decoding of adversarial errors. The

results of Chapter 3 have been presented in part at the 46th ANNUAL IEEE SYM-

POSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS). A journal version

is in preparation for submission to the JOURNAL OF THE ACM (JACM).

Next, we consider soft-decision list-decoding. Koetter and Vardy [KV03a]

have shown that algebraic soft-decision decoding of Reed-Solomon codes can

be achieved by converting symbol probabilities observed at the channel out-

put into interpolation multiplicities in the Guruswami-Sudan algorithm. Such

conversion is known as the multiplicity assignment problem. In Chapter 4, we

first recast the multiplicity assignment problem into a geometric framework

in Euclidean space, and use this framework to establish certain properties of

the optimal solution. We then devise a sub-optimal solution to the multiplic-

ity assignment problem based upon the optimization of second-order statistics.

Specifically, we minimize the Chebyshev bound on the probability of failure of

the soft-decision decoder. Assuming BPSK-modulation over an AWGN chan-

nel, this leads to coding gains of 0.20 dB to 0.75 dB for Reed-Solomon codes of

length 255 and 15, respectively, as compared to the Koetter-Vardy multiplicity

assignment algorithm. We have presented some of these results at the 2003

INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT). A section for

a tutorial monograph on algebraic list decoding of Reed-Solomon codes, based

upon Chapter 4, is in preparation.

It is widely recognized that bivariate (or multivariate) polynomial interpo-

lation is the most computationally intensive step in algebraic list-decoding of

Reed-Solomon codes. Consequently, many different algorithms for bivariate in-

terpolation have been developed in the past decade. In Chapter 5, we show that
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Figure 1.2: q-ary symmetric channel

bivariate polynomial interpolation is equivalent to computing a certain matrix-

chain product of polynomial matrices. We then derive a dynamic-programming

algorithm to parse this matrix-chain product in an optimal way. This leads to a

reduction in the computational complexity of the interpolation process by a fac-

tor of at least two (in most cases, even more), as compared to the iterative inter-

polation algorithm of Koetter. The results of this chapter were presented in part

at the 2004 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT).

1.2 Waiting for a bus in front of a pub

One of the most fundamental and ubiquitous models of a communication

systems is the q-ary symmetric channel. During the transmission over a q-ary

symmetric channel, each symbol is either transmitted as is with probability 1− e

or changed to any other symbol in the dictionary with probability e/(q − 1)

(see Figure 1.2). The communication in Problem 1.1 becomes similar to the q-ary

symmetric channel when the length of the transmitted message is large. The

people in line change the words in the sentence with a certain probability e.

Moreover, they change every word to some other word in the dictionary uni-

formly random. For this channel, our goal is to find how many errors Richard

can correct when Terry uses Reed-Solomon codes for transmission. First, let’s

see how Terry would encode the message using Reed-Solomon codes.
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1.2.1 Reed-Solomon codes

Let q be a power of a prime, and let Fq be the finite field with q elements.

Reed-Solomon codes are obtained by evaluating polynomials of degree less than

k in a set of points D = {x1, x2, . . . , xn} ⊆ Fq, which is known as the locator set

or the evaluation set (cf. [RR00, GV05]) of the code. Specifically, a Reed-Solomon

code Cq(n, k) of length n and dimension k is defined as follows:

Cq(n, k) def=
{
( f (x1), . . . , f (xn)) : x1, x2, . . . , xn ∈D, f (X)∈Fq[X], deg f (X) < k

}

Therefore, in order to encode, Terry first picks a finite field Fq that has as many

elements as the dictionary. Then she maps each word in Sue’s sentence to an

element of this finite field. Let’s say that Sue’s sentence is α1α2 . . .αk, where

α1,α2, . . . ,αk are words in the dictionary. Then Terry maps this sentence into

u1u2 . . . uk, where u1, u2, . . . , uk are the corresponding elements of Fq. The map-

ping between the dictionary and Fq is fixed, and is known also to Richard,

who will use it to eventually recover Sue’s message. Next, Terry constructs

the polynomial f (X) = u1 + u2X + u3X2 + · · · + ukXk−1 and evaluates this

polynomial at n different elements of the finite field to generate the codeword

(c1, c2, . . . , cn)∈Fn
q , where ci = f (xi) for all i. Now, she can use the inverse

of the mapping between the dictionary and Fq to produce the n-word sentence

w1w2 . . . wn from the codeword (c1, c2, . . . , cn).

Observe that one can reconstruct any polynomial of degree < k from its val-

ues at any k points. Thus Terry adds redundancy to Sue’s message by transmit-

ting n− k more evaluations of f (X) than necessary. Hence if at least k out of the

n transmitted symbols reach Richard without error, he can interpolate through

these k symbols and thereby recover Sue’s message. But, in our case, Richard

doesn’t know which symbols have been corrupted during the transmission. He

only knows that with certain probability some of the symbols are corrupted and

some are not. What would be his best strategy in this case?

One possible strategy for Richard would be to find a polynomial of de-

gree < k that passes through as many points of the received word as possible.

The resulting optimization problem was first solved by Peterson [Pet60] in the
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early 1960’s. Later, Berlekamp [Ber68] and Massey [Mas69] developed a much

more efficient algorithm to solve the same problem. All these algorithms can

decode up to 1/2(n − k) errors, and may fail if the number of errors is greater

than 1/2(n− k). The Peterson and the Berlekamp-Massey algorithms are unique

decoding algorithms. One can show that they decode correctly whenever the

number of errors is less than half of the minimum distance of the code; we have

already seen earlier that any unique decoding algorithm may fail if the number

of errors exceeds this bound.

An alternative strategy for Richard becomes possible if he is allowed to re-

cover Sue’s message after a few tries. He looks at the received message and,

based upon the information he has about Terry’s encoding algorithm, gener-

ates several sentences as potential candidates for Sue’s message. The number

of candidates Richard generates is bounded polynomially in the length of the

message. Whenever Sue’s message is included in the list of sentences produced

by Richard, we say that communication is successful.

Some 10 years ago, Sudan [Sud97] and Guruswami-Sudan [GS99] come up

with a new decoding algorithm for Reed-Solomon codes. This algorithm out-

puts a list of possible codewords instead of just a single codeword. This algo-

rithm also makes it possible for Richard to recover Sue’s message even in the

presence of more than 1/2(n− k) errors.

1.2.2 Guruswami-Sudan algorithm

As we have seen, a Reed-Solomon code of Cq(n, k) consists of evaluations of

univariate polynomials f (X) of degree < k at n points of the finite filed Fq. Thus

the codeword that corresponds to f (X) is c = ( f (x1), f (x2), . . . , f (xn)). We can

think of this codeword as a set of zeros of the bivariate polynomial Y − f (X)

over Fq. During transmission, some of the symbols in c get corrupted and we

receive the word y = (y1, y2, . . . , yn). Let us suppose that some t symbols of

y are in error. Using the received word y, we first construct a bivariate poly-

nomial Q(X, Y) that passes through the points {(x1, y1), (x2, y2), . . . , (xn, yn)}
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with multiplicity m. Then Q(X, Y) and Y − f (X) intersect each other m times

at those points where y is not in error – for these points, both Q(xi, yi) and

yi − f (xi) are zero. How can we find Y − f (X) using the fact that Q(X, Y) and

Y− f (X) intersect in at least m(n− t) many points?

Theorem 1.4. [Bézout] Let P(X, Y) and Q(X, Y) be bivariate polynomials of to-

tal degree δ and d, respectively. If P(X, Y) and Q(X, Y) do not have common

factors, then they intersect in exactly δd points, counted with multiplicity.

Thus, if we can find a polynomial Q(X, Y) such that the number of points of

intersection between Q(X, Y) and Y − f (X) is strictly greater than the product

of their degrees, then Y− f (X) and Q(X, Y) must have a common factor. Since

Y − f (X) is an irreducible polynomial, it has to divide Q(X, Y) in this case. It

follows that we can recover Y − f (X) by factoring Q(X, Y). This is the main

idea behind the decoding algorithm of Guruswami and Sudan [GS99].

How can we find such a polynomial Q(X, Y)? First, let us define the (1, k−1)-

weighted degree of a monomial XaYb as

Wdeg XaYb def= a + (k− 1)b

Next, we define the (1, k−1)-weighted degree of a bivariate polynomial as the

maximum of the weighted degrees of its monomials.

Theorem 1.5. There is a bivariate polynomial Q(X, Y) that passes through all

the points {(x1, y1), (x2, y2), . . . , (xn, yn)} with multiplicity m, whose (1, k− 1)-

weighted degree is bounded by

Wdeg Q(X, Y) 6
⌈√

n(k− 1)m(m + 1)
⌉

.

Moreover, given {(x1, y1), (x2, y2), . . . , (xn, yn)} and m, this polynomial Q(X, Y)

can be computed in time that is bounded by a polynomial in m and n.

Now that we have a bound on the weighted degree of Q(X, Y), let us count

the number of intersections between Y − f (X) and Q(X, Y). Let p(X) be the

univariate polynomial Q(X, f (X)). Then, by definition, deg p(X) is at most
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Figure 1.3: Monomials of weighted degree smaller than ∆

Wdeg Q(X, Y). On the other hand, p(X) has at least m(n− t) zeros: for each re-

ceived symbol that is not in error, we have p(xi) = Q(xi, f (xi)) = Q(xi, yi) = 0

with multiplicity m. If the number of zeros of p(X) is larger than its degree, then

by the fundamental theorem of algebra p(X) must be the all-zero polynomial.

It follows that if m(n− t) > Wdeg Q(X, Y) then Y− f (X) divides Q(X, Y). Us-

ing the bound on Wdeg Q(X, Y) given in Theorem 1.5, we can guarantee that

whenever the number of errors is bounded by

t 6
⌈

n

√
k− 1

n

(
1 +

1
m

) ⌉
(1.3)

Y − f (X) will be a factor of Q(X, Y), which means that the Guruswami-Sudan

decoding will be successful.

1.2.3 Multivariate interpolation decoding algorithm

A careful look at the Guruswami-Sudan [GS99] list-decoding algorithm re-

veals that one of the essential elements in deriving the bound (1.3) on the de-

coding radius is the total number of bivariate monomials of weighted-degree

smaller than some constant ∆. In the construction of Q(X, Y), in order to guar-

antee a nonzero solution, we need to have O(n) “available” monomials, where

n is length of the code. As shown in Figure 1.3, the number of monomials

of weighted-degree at most ∆ is proportional to ∆2. If we could “somehow”

have more monomials of weighted-degree at most ∆, we would expect to find
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Figure 1.4: Error-correction radius of trivariate interpolation decoding

an interpolation polynomial with smaller weighted degree and, ultimately, a de-

coding algorithm with a better decoding radius than the Guruswami-Sudan

bound (1.3).

One way to increase the number of monomials with a certain weighted-

degree is to use trivariate, rather than bivariate, monomials. The number of

trivariate monomials with weighted degree at most ∆ is proportional to ∆3,

rather than ∆2 in the bivariate case. Thus, for a given ∆, there are many more

trivariate monomials of weighted degree at most ∆ than bivariate monomials.

However, in order to take advantage of this dimensionality gain,” we need

to construct trivariate interpolation polynomials. Hence, we need to interpolate

through points in a three-dimensional space. To generate three-dimensional in-

terpolation points, we will decode two Reed-Solomon codewords – let’s say the

evaluations of f (X) and g(X) – together, as shown below:
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x1 x2 · · · xn x1 x2 · · · xn

︸ ︷︷ ︸
evaluation of f (X)

⇓
︸ ︷︷ ︸
evaluation of g(X)

⇓
y1 y2 · · · yn z1 z2 · · · zn

where y = (y1, y2, . . . , yn) and z = (z1, z2, . . . , zn) denote the two received vec-

tors. To decode y and z, we construct a trivariate polynomial Q(X, Y, Z) of

least (1, k−1, k−1)-weighted degree that passes through all the received points

(xi, yi, zi) for i = 1, 2, . . . , n, with multiplicity m. We show in Chapter 2 that if

the number of errors is upper bounded by

t 6
⌊

n − n 3

√
R2

(
1 +

1
m

)(
1 +

2
m

)
− 1

m

⌋
m→∞−→ n

(
1− R2/3

)
(1.4)

then the polynomial Q(X, Y, Z) is such that Q
(
X, f (X), g(X)

) ≡ 0. Thus, assum-

ing that f (X) and g(X) can be recovered from the fact that Q(X, f (X), g(X)) ≡ 0,

trivariate interpolation decoding makes it possible to correct up to n
(
1− R2/3)

errors in a block of 2n symbols. This is, in fact, not very much (see Figure 1.4), as

compared to half-the-distance or the Guruswami-Sudan bounds on the decod-

ing radius. However, observe that, if two errors occur in the same position j of

the two transmitted codewords, then both errors affect the same interpolation

point (x j, y j, z j). Following [CS03], we call such errors synchronized. It is not

difficult to see that the combined effect of two synchronized errors is equivalent

to a single error for our decoding algorithm. It follows that, if all the errors are

synchronized, we can correct up to 2n
(
1− R2/3) errors in a block of 2n symbols.

This is much more than the 2n
(
1− R1/2) errors corrected by the Guruswami-

Sudan decoder (see again Figure 1.4).

However, the number of pairs of polynomials f (X), g(X) of degree < k that

satisfy the equation Q(X, f (X), g(X)) ≡ 0 is, in general, super-polynomial (cer-

tainly so if Q(X, Y, Z) is irreducible). Hence, in order to reduce the size of the set

of possible solutions to the equation Q(X, f (X), g(X)) ≡ 0, we will adjoin one
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more equation P(X, f (X), g(X)) ≡ 0, where P(X, Y, Z) is another interpolation

polynomial that passes through all the received points with multiplicity m. We

show in Chapter 2 that whenever the greatest common divisor of Q(X, Y, Z) and

P(X, Y, Z) is in Fq[X], the number of pairs of polynomials f (X) and g(X) that

satisfy Q(X, f (X), g(X)) ≡ P(X, f (X), g(X)) ≡ 0 is bounded by the product of

the degrees of Q(X, Y, Z) and P(X, Y, Z). Thus, if the degrees of Q(X, Y, Z) and

P(X, Y, Z) are small, then the number of possible solutions is also small. This

idea is the basis for the general recovery algorithm, which we will introduce in

Chapter 2.

Note that the argument above easily generalizes from trivariate to M-variate

interpolation decoding. If all the errors are synchronized then M-variate inter-

polation decoding can, in principle, correct up to (M−1)n
(
1 − M

√
RM−1

)
such

errors. This is much higher than the Guruswami-Sudan decoding radius of

n
(
1− R1/2). However, the success of decoding up to (M−1)n

(
1− M

√
RM−1

)
is

not guaranteed. All we can show analytically (cf. Chapter 2) is that such decod-

ing is successful with a very high probability, at least in certain important cases.

1.3 Waiting for a bus on an April Fool’s day

In Section 1.2.3, we observed that decoding Reed-Solomon codes in three

or more dimensions improves substantially upon the 1−√R decoding radius.

However, the approach discussed in that section works only with a certain

(high) probability — it is not guaranteed to work in the worst case. In the worst

case, if the errors are introduced by a malicious adversary rather than by the

q-ary symmetric channel, the list-decoder discussed in Section 1.2.3 decodes ex-

actly the same number of errors as the Guruswami-Sudan [GS99] algorithm. In

fact, numerous prior attempts [BKY03,BMS05,CS03,GI01] at breaking the bound

of 1−√R established by Guruswami and Sudan [GS99] in the worst case — or,

equivalently, for adversarial errors — have been unsuccessful.

So, suppose that on April Fool’s day, Terry encodes Sue’s message into a

sentence for transmission to Richard, but people in the line maliciously corrupt
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Figure 1.5: Error-correction radius of different codes in the worst-case

Terry’s sentence so as to make its recovery as difficult as possible for Richard.

The question we study in Chapter 3 is as follows:

What is the largest fraction of errors Richard can correct, in the worst
case, when Terry uses the best possible encoding?

In this setting, Guruswami [Gur05b] showed that there exist codes decoding

algorithms that enable Richard to decode the message as long as the number of

errors in the sentence is bounded by

t < n
(
1− H−1

q (R)
)

(1.5)

where R is the rate of the code, n is its length, q is the number of words in the

dictionary, and Hq(·) is the q-ary entropy function. Unfortunately, the proof

of this result is existential rather than constructive: we do not know how to

construct such codes in polynomial time, let alone decode them in polynomial

time.
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In Chapter 3, we explicitly construct a class of codes and develop a polyno-

mial-time list decoding algorithm for these codes which exceeds the Guruswami-

Sudan bound of 1 − √R in the worst-case, for adversarial errors. The codes

we construct are a certain highly-structured nonlinear subset of Reed-Solomon

codes. The decoding radius we achieve with these codes is 1 − M+1
√

(MR)M,

where M is a constant. This radius becomes higher than the Guruswami-Sudan

radius of 1−√R for rates R 6 1/16. Recently, Guruswami and Rudra [GR05]

have introduced a further improvement to our codes. With this improvement,

one can decode up to the radius of 1− M+1
√

RM. When M tends to infinity, this

meets the bound of (1.5), for large q.

In the trivariate decoding algorithm presented in Chapter 2, the decoder

needs at least two “independent” interpolation polynomials in order to decode.

It basically constructs a system of polynomial equations with f (X) and g(X)

as the unknowns (recall that a codeword is the evaluation of f (X) and g(X) at

n distinct points of the finite field). For some error patterns, all the interpola-

tion polynomials that the decoder can compute have a common factor, and so

the algorithm fails. To resolve this problem, we “shift” one of the two interpo-

lation polynomials to the encoder. Explicitly, we fix a polynomial T (X, Y, Z)

and only allow the encoder to encode those pairs of polynomials f (X), g(X)

for which T (X, f (X), g(X)) ≡ 0. We choose T (X, Y, Z) to be irreducible of

sufficiently high degree, and hence relatively prime to the interpolation polyno-

mial Q(X, Y, Z). Thus, the decoder can now use both T (X, Y, Z) and the inter-

polation polynomial to decode. Since T (X, Y, Z) and Q(X, Y, Z) are relatively

prime, the number of solutions to the system of equations Q(X, f (X), g(X)) ≡
T (X, f (X), g(X)) ≡ 0 is bounded by the product of the degrees of Q(X, Y, Z)

and T (X, Y, Z).

Of course, there will be a penalty in the rate of the code, since we are not

transmitting all pairs of polynomials f (X), g(X) but only those that satisfy the

equation T (X, f (X), g(X)) ≡ 0. Luckily, the trade-off between rate and decod-

ing radius is in our favor for rates 6 1/16 and the resulting decoder improves

upon the Guruswami-Sudan decoding radius of 1−√R.
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1.4 A new kind of Tic-Tac-Toe with multiplicity

During the bus ride, Terry and Richard decide to play the following game.

The game is played on two identical tables (boards) of size q× n with respect to

a threshold parameter ∆. One of the tables is filled with real numbers between

zero and one. We denote this table by Π. The other table, which we denote by M,

is empty. Each player has to fill out M with real numbers mi, j subject to the con-

straint ∑q
i=1 ∑n

j=1 m2
i, j = 1. The player who achieves a better score wins the game,

where the score is defined as follows. First, let us define a path in the tables Π

and M as an n-tuple ν = (ν1, ν2, . . . , νn) with each νi is between 1 and q. The

elements of Π = [πi, j] that lie on the path ν are πν1 ,1, πν2 ,2, . . . , πνn ,n. Similarly,

the elements of M = [mi, j] on the path ν are mν1 ,1, mν2 ,2, . . . , mνn ,n. Now if

mν1 ,1 + mν2 ,2 + · · ·+ mνn ,n is strictly greater than the threshold ∆, we add the

product πν1 ,1πν2 ,2 · · · πνn ,n to the score. The total score is then the sum of the

scores over all the qn possible paths.

As it happens, this game is closely related to soft-decision decoding of Reed-

Solomon codes. Here, Π is the reliability matrix (πi, j is the probability that sym-

bol αi ∈Fq was transmitted, given the received symbol y j), while M is the inter-

polation multiplicity matrix. For more details on this, see [KV03a].

In the Guruswami-Sudan algorithm, we compute the interpolation polyno-

mial Q(X, Y) that passes through each of the received points with multiplic-

ity m. This corresponds to a single path in the above game. But what if we

require Q(X, Y) to pass not only through the received points, but also through

other points, and moreover allow Q(X, Y) to have different multiplicities at dif-

ferent points. Can this improve the performance of the decoding algorithm? If

so, what is the best assignment of such interpolation multiplicities?

We shall see in Chapter 4 that for large m, the best normalized multiplicities

are precisely the elements of the matrix M which gives the highest possible score

in the game played by Terry and Richard. This multiplicity matrix M with the

highest score would lead to the smallest probability of failure in Sudan-type soft-

decision decoders, at least in the probabilistic model proposed in [KV03a].
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Figure 1.6: Tic-Tac-Toe with multiplicity

Specifically, for a given multiplicity assignment M and reliability matrix Π,

the probability of failure is given by Pr{SM 6 ∆(M)}, where SM is the score

random variable and ∆(M) is a deterministic function of M. Koetter and Vardy

give an algorithm which finds the multiplicity assignment that maximizes the

expected value of SM. They also show that when the length of the code tends to

infinity, the variance of SM tends to zero. Thus, asymptotically, their algorithm

is optimal. However, for finite-length codes, a better multiplicity assignment

can be derived by directly optimizing Pr{SM 6 ∆(M)}. This is a difficult op-

timization problem, and an exact solution to this problem remains unknown

(nobody knows the optimal strategy in the game played by Richard and Terry).

In Chapter 4, we consider the Chebyshev bound on the probability of failure

Pr{SM 6 ∆(M)}, and find the multiplicity assignment that minimizes this

bound. This leads to coding gains of 0.20 dB to 0.75 dB for Reed-Solomon codes

of length 255 and 15, respectively, as compared to the Koetter-Vardy multiplicity

assignment. We also develop in Section 4.3 in Chapter 4 geometric framework

for the multiplicity assignment problem, which “embeds” the required opti-

mization in a high-dimensional Euclidean space. Using this geometric frame-

work, we are able to convert any solution derived for the asymptotic case of

large (infinite) multiplicities to the case of finite multiplicities.
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We observe that the multiplicity assignments we derive using the Chebyshev

bound have been recently improved in [EMH04, EM05, RK05] using better up-

per bounds (such as the Chernoff bound) on the probability of failure. However,

while the multiplicity assignment developed using the Chebyshev bound in

Chapter 4 remains simple to implement, the algorithms of [EMH04,EM05,RK05]

become increasingly complex, and difficult to implement in practice.



CHAPTER 2

Multivariate decoding of

Reed-Solomon codes

We present a new decoding algorithm for Reed-Solomon codes. The al-

gorithm attempts to decode M − 1 transmitted codewords together, using M-

variate polynomial interpolation. It is shown that if the channel errors are syn-

chronized – occur in the same positions in all the M−1 codewords – this algo-

rithm can, in principle, correct up to n
(
1− R(M−1)/M)

errors in a Reed-Solomon

code of length n and rate R, which is significantly higher than the Guruswami-

Sudan decoding radius of n
(
1− R1/2). The first nontrivial case M = 3 is dis-

cussed and analyzed in detail. For this case, we show how to achieve trivariate

interpolation using (a generalized version of) Koetter’s iterative algorithm. We

then recover the transmitted polynomials f (X) and g(X) from the output of

this algorithm. In contrast to the bivariate case, the recovery of f (X) and g(X)

requires at least two polynomials that satisfy the interpolation constraints. In

fact, our recovery method is based upon computing certain resultants of the

elements of a Gröbner basis for the ideal of all such polynomials.

The synchronized errors scenario was previously studied by Bleichenbacher,

Kiayias, and Yung (BKY) and by Coppersmith and Sudan. Our algorithm cor-

rects many more errors than the “simultaneous polynomial reconstruction” al-

gorithm of BKY and/or the “curve reconstruction” algorithm of Coppersmith-

21
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Sudan. Moreover, the algorithms of BKY and Coppersmith-Sudan are proba-

bilistic: both assume a memoryless q-ary symmetric channel, where the BKY al-

gorithm fails with probability O(1/q) while the Coppersmith-Sudan algorithm

fails with probability at least O(nM/q). These probabilities are much higher than

the error rates typically required in applications of Reed-Solomon codes. In con-

trast, our algorithm is deterministic. In order to achieve deterministic decoding

in polynomial time, the algorithm gradually reduces its decoding radius until

the number of codewords within a certain decoding region becomes polynomi-

ally bounded.

2.1 Introduction

It was recognized early on that decoding Reed-Solomon codes is equivalent

to the problem of reconstructing univariate polynomials from their noisy evalu-

ations. Conventional Berlekamp-Massey decoding [Mas69] attempts to solve

this problem using univariate polynomial interpolation. Specifically, suppose a

codeword
(

f (x1), f (x2), . . . , f (xn)
)

of a Reed-Solomon code Cq(n, k) was trans-

mitted and a vector (y1, y2, . . . , yn)∈Fn
q was received. Then the Berlekamp-

Massey algorithm essentially tries to construct a univariate polynomial of de-

gree less than k that passes through as many as possible of the received points

y1, y2, . . . , yn. The breakthrough achieved by Sudan [Sud97] and Guruswami-

Sudan [GS99] is due in large part to the transition from univariate to bivari-

ate polynomial interpolation. Specifically, the Guruswami-Sudan decoding algo-

rithm [GS99] first constructs a nonzero bivariate polynomial Q(X, Y) of least

(1, k−1)-weighted degree that passes through all the points (x1, y1), (x2, y2), . . . ,

(xn, yn) with prescribed multiplicities, then finds all polynomials f (X) of de-

gree < k such that Q(
X, f (X)

) ≡ 0.

This work was motivated by the following question. What if we try to in-

terpolate not in one dimension (conventional decoding) and not in two dimen-

sions (Guruswami-Sudan decoding), but in three or more dimensions? As we shall

see, provided the channel errors are synchronized (cf. [BKY03, CS03]), multi-
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variate interpolation makes it possible to deterministically decode substantially

beyond the Guruswami-Sudan error-correction radius of n
(
1−√R

)
in polyno-

mial time.

Multivariate interpolation decoding. To set-up an interpolation problem in

three dimensions, we decode together two codewords – say, the evaluations of

f (X) and g(X) – as shown below:
x1 x2 · · · xn x1 x2 · · · xn

︸ ︷︷ ︸
evaluation of f (X)

⇓
︸ ︷︷ ︸
evaluation of g(X)

⇓
y1 y2 · · · yn z1 z2 · · · zn

where y = (y1, y2, y3, . . . , yn)∈Fn
q and z = (z1, z2, z3, . . . , zn)∈Fn

q denote the two

received vectors. To decode y and z, we first construct a trivariate polynomial

Q(X, Y, Z) of least (1, k−1, k−1)-weighted degree that passes through the n

points (x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn), each with multiplicity m. We will

show in Section 2.3 that if the number of errors is upper bounded by
⌊

n − n 3

√
R2

(
1 +

1
m

)(
1 +

2
m

)
− 1

m

⌋
m→∞−→ n

(
1− R2/3

)
(2.1)

then the polynomial Q(X, Y, Z) satisfies Q(
X, f (X), g(X)

) ≡ 0. Thus, assum-

ing that f (X) and g(X) can be now recovered, trivariate interpolation decoding

makes it possible to correct up to n
(
1− R2/3) errors in a block of 2n symbols.

This is, in fact, not very much (see Figure 2.1). However, observe that if two

errors occur in the same position j of the two transmitted codewords, then both

errors affect the same interpolation point (x j, y j, z j). Following [CS03], we call

such errors synchronized. As we shall see, the combined effect of two synchro-

nized errors is equivalent to a single error for our decoding algorithm. It follows

that if all the errors are synchronized, we can correct up to 2n
(
1−R2/3) errors in

a block of 2n symbols. This is much more than the 2n
(
1− R1/2) errors corrected

by the Guruswami-Sudan decoder (cf. Figure 2.1).

The argument above easily generalizes from trivariate to M-variate interpo-

lation decoding. In the general case, we will decode together M− 1 transmitted
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Figure 2.1: Error-correction radius of trivariate interpolation decoding

codewords and assign interpolation points in an M-dimensional affine space. It

is shown in Section 2.3 that if all the errors are synchronized (occur in the same

positions in all the M−1 codewords), then M-variate interpolation decoding

can, in principle, correct up to (M−1)n
(
1− M

√
RM−1

)
such errors.

Synchronized errors: prior work. As discussed in the next section, syn-

chronized errors naturally occur in several distinct situations in coding the-

ory [JTH04]. Decoding Reed-Solomon codes under the synchronized errors as-

sumption is also equivalent to the simultaneous polynomial reconstruction problem

in computer science [KY02]. This problem has been recently studied by Ble-

ichenbacher, Kiayias, and Yung [BKY03] and by Coppersmith and Sudan [CS03].

BKY in [BKY03] develop an algorithm that, with a certain probability, corrects a

fraction of errors given by

τBKY =
M−1

M
(
1− R

)
(2.2)

where M− 1 is the number of Reed-Solomon codewords decoded together. The

key idea of the BKY algorithm is to construct a single system of linear equations
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Figure 2.2: Comparison of decoding algorithms that correct synchronized er-
rors, for M = 3, 4

for all the M− 1 codewords, which can be viewed as a natural generalization of

the Berlekamp-Welch decoder [WB86]. Coppersmith and Sudan [CS03] develop

a completely different probabilistic algorithm for the same problem, which cor-

rects a fraction of errors given by

τCS = 1− R− R
M−1

M (2.3)

This improves upon τBKY for rates that lie in the interval [0, γM), where γ is the

unique positive root of γM + MγM−1 = 1. As discussed in the foregoing para-

graph, multivariate interpolation decoding corrects a fraction of synchronized

errors that is given by

τMID = 1− R
M−1

M (2.4)

This improves substantially upon both τBKY and τCS for all rates, as illustrated in

Figure 2.2. Moreover, as already mentioned, the algorithms of BKY and Copper-

smith-Sudan are probabilistic. That is, both algorithms correct the fraction of

errors in (2.2) and (2.3), respectively, only with a certain probability 1 − PFAIL.

The alternative outcome, which occurs with probability PFAIL, is decoding fail-

ure. Both BKY and Coppersmith-Sudan assume a memoryless q-ary symmetric

channel model, where all the errors are independent and distributed uniformly

at random over Fq. For this model, BKY estimate the probability of failure as

PFAIL = t/q, where t is the number of synchronized errors. In view of (2.2),
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this behaves as PFAIL = O(n/q). This estimate was recently improved to O(1/q)

by Brown, Minder, and Shokrollahi [BMS05]. The probability of failure for the

Coppersmith-Sudan decoder [CS03] is much higher. The best estimate given

in [CS03] is PFAIL = O(nO(M)/q). This is fine if the alphabet size q is very large

compared to M and n. However, it is not the case in practice. Indeed, a fail-

ure probability of 1/q would be significantly higher than the error rates typically

required in most applications of Reed-Solomon codes.

In contrast, our decoder is deterministic. It is widely believed [Gur01, JH01,

RR03] that, at least in some cases, deterministic decoding in polynomial time is

impossible, since there is an exponential number of codewords within a sphere

or radius nτMID. However, rather than failing, the proposed algorithm gradually

reduces its decoding radius until the number of codewords within a certain

decoding region becomes polynomially bounded. We show that the decoding

radius never drops below the Guruswami-Sudan threshold of n
(
1− R1/2). All

this is explained in Section 2.5.

Organization. The rest of this Chapter is organized as follows. We start in

the next section with some definitions and notation. The synchronized errors

scenario is also discussed in more detail in the next section. Section 2.3 is con-

cerned with the error-correction radius of multivariate interpolation decoding.

We first derive the bound (2.1), and then generalize this bound to the case of

M-variate interpolation. Sections 2.4 and 2.5 deal with the algebraic aspects of

our decoder, namely the interpolation itself and the recovery of the transmitted

codewords from the results of such interpolation. Although our algebraic meth-

ods can be easily extended to the general case of M-variate interpolation, we

limit our discussion to the first nontrivial case M = 3. In Section 2.4, we show

how to perform trivariate interpolation using a generalized version of Koetter’s

iterative interpolation algorithm [Köt96]. Notably, this algorithm produces not

just one polynomial that satisfies the interpolation constraints, but a minimal

Gröbner basis for the ideal of all such polynomials. In Section 2.5, we show

how this Gröbner basis should be processed to recover the message polynomi-

als f (X) and g(X). This recovery process is very different from the bivariate
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factorization procedure used in the Guruswami-Sudan decoder [GS99, RR00].

As we shall see, straightforward factorization of the interpolation polynomial

Q(X, Y, Z) does not work and, moreover, the number of possible solutions to

Q(
X, f (X), g(X)

) ≡ 0 usually behaves as Ω(qk). Thus the recovery of f (X) and

g(X) requires at least two polynomials that satisfy the interpolation constraints.

In fact, the recovery method developed in Section 2.5 is based upon factoring

certain resultants of the (first two) elements of the Gröbner basis computed in

Section 2.4. In Sections 2.6 we show that in simulation the algorithm basically

correct up to n(1− R2/3) fraction of errors when we are decoding to interleaved

Reed-Solomon codes on a q-ary symmetric channel. Finally, in Section 2.7 we

give analytical evidence that the decoder decodes with high probability up to

n
(
1− (6R)2/3) when M = 2 and m = 1.

2.2 Preliminaries

In this section, we set up some of the notation that will be used throughout

this work. We first define Reed-Solomon codes. Let q be a power of a prime, and

let Fq be the finite field with q elements. We use Fq[X], Fq[X, Y], and Fq[X, Y, Z]

to denote the rings of polynomials over Fq in one, two, and three variables,

respectively. Reed-Solomon codes are obtained by evaluating certain subspaces

of Fq[X] in a set of points D = {x1, x2, . . . , xn} ⊆ Fq, which is known as the

locator set (cf. [RR03]) or the evaluation set (cf. [GV05]) of the code. Specifically,

a Reed-Solomon codeCq(n, k) of length n and dimension k is defined as follows:

Cq(n, k) def=
{ (

f (x1), . . . , f (xn)
)

: x1, x2, . . . , xn ∈D, f (X)∈Fq[X], deg f (X) < k
}

The rate R ofCq(n, k) is usually defined as k/n. However, we set R def= (k− 1)/n

as a matter of convenience. This doesn’t change much, but simplifies many of

the expressions in this paper.

Synchronized errors scenario. Let us begin with a precise definition. Con-

sider M codewords c1, c2, . . . , cM of a Reed-Solomon code Cq(n, k) which cor-
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respond to evaluations of the polynomials f1, f2, . . . , fM ∈Fq[X]. Suppose that

these M codewords are transmitted over a (hard-decision) channel and received

as c1 + e1, c2 + e2, . . . , cM + eM, where

e1 = (e1,1, e1,2, . . . , e1,n)

e2 = (e2,1, e2,2, . . . , e2,n)
...

eM = (eM,1, eM,2, . . . , eM,n)

are the error vectors. We say that the error pattern e1, e2, . . . , eM ∈Fn
q has at most

t synchronized errors if there exists a set J ⊆ {1, 2, . . . , n} of size |J | = t such

that

ei, j = 0 for all i∈ {1, 2, . . . , M} and j 6∈ J
Synchronized errors naturally occur when Reed-Solomon codes are block inter-

leaved [BKY03, JH01]. That is, the codewords c1, c2, . . . , cM are viewed as rows

of an M× n array A( f1, f2, . . . , fM) over Fq. The elements of this array are then

transmitted across a channel column-by-column. If the channel is bursty, the

errors are likely to be synchronized. Block interleaving is a very common tech-

nique in digital communications [LM88], and whenever Reed-Solomon codes

are used as outer codes in a concatenated coding scheme, the channel is likely

to be bursty [JH01].

Here is another interesting interpretation of the synchronized errors sce-

nario. One can regard the entire M× n array A( f1, f2, . . . , fM) as a single code-

word of a code over FQ, where Q = qM. Indeed, given any fixed basis for FQ over

Fq, the n columns of the array A( f1, f2, . . . , fM) can be viewed as n elements of

FQ. It is easy to see that the set of all such arrays forms a linear code of length

n and dimension k over FQ, which we denote by C . If codewords of C are now

transmitted over a Q-ary channel, then all the errors are obviously synchro-

nized. Curiously, the code C itself is again a Reed-Solomon code (and, hence, an

MDS code [MS81]). It is a somewhat special Reed-Solomon code over FQ in that

its locator set D = {x1, x2, . . . , xn} belongs to a subfield Fq of FQ. Conversely,

any Reed-Solomon code Cq(n, k) whose locator set belongs to a subfield F of
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Fq, of index M, has the structure of a block interleaving of several codewords of

a Reed-Solomon code of the same length and dimension, and the same locator

set, but over F . We leave the proof of all this as an exercise for the reader. As a

practical example, we point out the (16, k) Reed-Solomon codes over F256 used

in the cdma2000 communication standard.

More definitions. We need some definitions pertaining to polynomials in

one, two, and three variables over Fq. Thus let f (X)∈Fq[X], P(X, Y)∈Fq[X, Y],

and Q(X, Y, Z)∈Fq[X, Y, Z]. Given nonnegative integers a, b, c, the correspond-

ing Hasse derivatives are defined by

Da
[

f (X)
] def=

∞
∑
i=a

(
i
a

)
fi Xi−a (2.5)

Da,b
[
P(X, Y)

] def=
∞
∑
i=a

∞
∑
j=b

(
i
a

)(
j
b

)
pi, j Xi−aY j−b (2.6)

Da,b,c
[
Q(X, Y, Z)

] def=
∞
∑
i=a

∞
∑
j=b

∞
∑
k=c

(
i
a

)(
j
b

)(
k
c

)
qi, j,k Xi−aY j−bZk−c (2.7)

Note that all the sums in (2.5) – (2.7) are finite, since by the definition of a poly-

nomial there is only a finite number of nonzero coefficients fi, pi, j, and qi, j,k.

Also note that for all x∈Fq, the Hasse derivative of f (X) evaluated at x, namely

Da[ f (X)]
∣∣∣
x
, is just the coefficient of Xa in the polynomial f (X + x). Similarly,

Da,b[P(X, Y)]
∣∣∣(x,y) and Da,b,c[Q(X, Y, Z)]

∣∣∣(x,y,z) give the coefficients of XaYb in

P(X + x, Y + y) and of XaYbZc in Q(X + x, Y + y, Z + z).

Definition 2.1. Let x0 ∈Fq, (x0, y0)∈Fq×Fq, and (x0, y0, z0)∈Fq×Fq×Fq. The

polynomials f (X), P(X, Y), Q(X, Y, Z) are said to pass through the points x0,

(x0, y0), and (x0, y0, z0), respectively, with multiplicity m, or to have a zero of

multiplicity m at these points, if

Da
[

f (X)
] ∣∣∣

x0
= 0 for all a∈Nwith a < m (2.8)

Da,b
[
P(X, Y)

] ∣∣∣
(x0 ,y0)

= 0 for all a, b∈Nwith a + b < m (2.9)

Da,b,c
[
Q(X, Y, Z)

] ∣∣∣
(x0 ,y0 ,z0)

= 0 for all a, b, c∈Nwith a + b + c < m (2.10)
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We next deal with the weighted degree. Weighted degree of multivariate poly-

nomials can be defined quite generally. However, the only weighted degrees we

will need in this paper are the (1, k−1)-weighted degree for bivariate polynomi-

als and the (1, k−1, k−1)-weighted degree for trivariate polynomials, where k is

the dimension of the Reed-Solomon code at hand. Thus, henceforth, whenever

we say “weighted degree” this is what we mean. The weighted degree of the

monomials XaYb and XaYbZc is defined by

Wdeg XaYb def= a + (k−1)b, Wdeg XaYbZc def= a + (k−1)b + (k−1)c (2.11)

We can extend weighted degree to a monomial ordering ≺W by augmenting it

with the lex order. Explicitly, if the weighted degrees of two monomials are

equal, we shall write XaYb≺W XuYv iff a < u, and XaYbZc≺W XuYvZw iff either

a < u or a = u and b < v. Every polynomial in Fq[X, Y] and Fq[X, Y, Z] now has

a well-defined leading monomial under≺W, and we define the weighted degree

of the polynomial as the weighted degree of its leading monomial.

These are all the definitions we will need (until Section 2.5). Observe that

all these definitions generalize in the obvious way to polynomials in more than

three variables. We do not spell out such generalizations, although they will be

used in the next section.

2.3 Error-correction radius of the MID algorithm

Let f (X) and g(X) be arbitrary polynomials of degree < k over Fq. Suppose

that the codewords
(

f (x1), f (x2), . . . , f (xn)
)

and
(

g(x1), g(x2), . . . , g(xn)
)

of a

Reed-Solomon code Cq(n, k) were transmitted, and received as (y1, y2, . . . , yn),

(z1, z2, . . . , zn)∈Fn
q , respectively. We set

P def= {(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)} (2.12)

and define the interpolation polynomial Q(X, Y, Z) as the least weighted degree

nonzero polynomial in Fq[X, Y, Z] that passes through each of the n points in

P with multiplicity m. If there is more than one polynomial of the smallest
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weighted degree, ties can be broken using the monomial order ≺W defined in

the previous section (or in any other way). In the next section, we show how the

interpolation polynomial Q(X, Y, Z) can be efficiently computed in polynomial

time.

Lemma 2.1.

WdegQ(X, Y, Z) 6
⌈

3
√

n(k−1)2m(m+1)(m+2)
⌉

(2.13)

Proof. The proof is a straightforward generalization of the argument used

in [GS99] and [KV03a]. Let N(∆) denote the number of trivariate monomials

whose weighted degree is at most ∆. We claim that there exists a nonzero poly-

nomial of weighted degree at most ∆ that passes through each point in P with

multiplicity m, provided

N(∆) > n
m(m+1)(m+2)

6
(2.14)

Indeed, referring to (2.7), it is easy to see that (2.10) is just a system of linear

constraints on the coefficients of such a polynomial. The total number of linear

constraints imposed by passing with multiplicity m through each of n points

is n |{(a, b, c)∈N3 : a + b + c < m}|, which evaluates to the right-hand side

of (2.14). The total number of unknowns in the system (coefficients of the poly-

nomial) is N(∆). If the number of unknowns is strictly greater than the number

of constraints, the linear system is guaranteed to have a nonzero solution.

It follows that any ∆ such that N(∆) satisfies (2.14) is an upper bound on

the weighted degree of the interpolation polynomial Q(X, Y, Z). It remains to

estimate N(∆). To this end, consider the correspondence between monomials

in Fq[X, Y, Z] and unit cubes in R3, given by

XaYbZc 7→ K(a, b, c) def={
(x, y, z)∈R3 : a 6 x < a+1, b 6 y < b+1, c 6 z < c+1

}

Such cubes are fundamental domains of the lattice Z3; hence, they do not inter-

sect. Therefore, N(∆) is equal to the volume of a union of such cubes K(a, b, c),
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Figure 2.3: The union of cubes S and the pyramid P

the union being taken over all a, b, c∈N that satisfy a + (k−1)b + (k−1)c 6 ∆.

Let S ⊂ R3 denote this union of unit cubes (as illustrated in Figure 2.3). Now

consider the pyramid P ⊂ R3 defined by the four half-planes: x > 0, y > 0,

z > 0, and x + (k−1)y + (k−1)z 6 ∆. It is easy to see that P ⊂S . Indeed, any

given point (x, y, z) of P belongs to the unit cube K(bxc,byc,bzc), and the fact

that x + (k−1)y + (k−1)z 6 ∆ implies that K(bxc,byc,bzc) is one of the cubes

in S . Hence

N(∆) = Vol(S ) > Vol(P) =
∆3

6(k−1)2 (2.15)

Substituting the expression on the right-hand side of (2.13) for ∆ in (2.15), we

find that N(∆) satisfies (2.14), and the lemma follows.

Theorem 2.2. Suppose that codewords c1, c2 of a Reed-Solomon code Cq(n, k),

corresponding to evaluations of the polynomials f (X), g(X), are transmitted

and received as c1 + e1, c2 + e2. If the error pattern e1, e2 ∈Fn
q has at most t

synchronized errors, where

t 6
⌊

n − n 3

√
R2

(
1 +

1
m

)(
1 +

2
m

)
− 1

m

⌋
(2.16)
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then the interpolation polynomial Q(X, Y, Z) satisfies Q(
X, f (X), g(X)

) ≡ 0.

That is, the univariate polynomial p(X) = Q(
X, f (X), g(X)

)
is the all-zero

polynomial.

Proof. Since f (X) and g(X) are polynomials of degree at most k− 1, it follows

from the definition of weighted degree and Lemma 2.1 that

deg p(X) 6 WdegQ(X, Y, Z) 6
⌈

3
√

n(k−1)2m(m+1)(m+2)
⌉

(2.17)

If j∈ {1, 2, . . . , n} is an error-free position then, by definition, Q(X, Y, Z) passes

through the point
(
x j, f (x j), g(x j)

)
with multiplicity m. It now follows from

(2.8) and (2.10) that the total number of zeros of p(X) in Fq (counted with mul-

tiplicities) is at least

# zeros of p(X) > m(n− t) (2.18)

By the fundamental theorem of algebra, if the right-hand side of (2.18) is strictly

greater than the right-hand side of (2.17), then p(X) must be the all-zero poly-

nomial. The former condition is satisfied provided the number of synchronized

errors t is upper bounded as in (2.16).

Clearly, the right-hand side of (2.16) tends to dn(1− R2/3)e as m → ∞. Thus

Q(X, Y, Z) satisfies Q(
X, f (X), g(X)

) ≡ 0 provided the fraction τ3D = t/n of

synchronized errors is at most

τ3D 6 1− R2/3 + o(1) (2.19)

where o(1) denotes a function that tends to zero when m, n → ∞. This estab-

lishes (2.4) for the special case M = 3. We consider the general case of M-variate

interpolation next.

The set-up for general M-variate interpolation decoding is as follows. Con-

sider M− 1 codewords c1, c2, . . . , cM−1 of a Reed-Solomon code Cq(n, k) which

correspond to evaluations of the polynomials f1(X), f2(X), . . . , fM−1(X) of de-

gree < k over Fq. Suppose that these M− 1 codewords are transmitted over a

(hard-decision) channel and received as y1, y2, . . . , yM−1, where yi = ci + ei =

(yi,1, yi,2, . . . , yi,n)∈Fn
q for i = 1, 2, . . . , M− 1. As in (2.12), we will assign a set
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of n interpolation points

P def=
{
(x j, y1, j, y2, j, . . . , yM−1, j) : j = 1, 2, . . . , n

}
(2.20)

and define the interpolation polynomial Q(X, Y1, Y2, Y3, . . . , YM−1) as the least

weighted degree nonzero polynomial in Fq[X, Y1, Y2, Y3, . . . , YM−1] that passes

through each of the n points in P with multiplicity m. The argument used in the

derivation of (2.19) now easily generalizes.

Lemma 2.3.

WdegQ(X, Y1, Y2, . . . , YM−1) 6
⌈

M
√

n(k−1)M−1m(m+1) · · · (m+M−1)
⌉

(2.21)

Proof. As in Lemma 2.1, let N(∆) denote the number of M-variate mono-

mials whose weighted degree is at most ∆. The number of linear constraints

imposed by passing with multiplicity m through each of the n points in P is

n |{(a1, a2, . . . , aM)∈NM : a1 + a2 + · · ·+ aM < m}|. It is well known that the

number of partitions of a positive integer i into exactly M nonnegative integer

parts is (M+i−1
M−1 ). Thus there exists a nonzero polynomial of weighted degree at

most ∆ that passes through each point in P with multiplicity m, provided

N(∆) > n
m−1

∑
i=0

(
M + i− 1

M− 1

)
= n

(M + m− 1)!
M!(m− 1)!

(2.22)

It remains to estimate N(∆). As in Lemma 2.1, N(∆) is strictly greater than

the volume of the pyramid P ⊂ RM defined by the M + 1 half-planes: x > 0,

y1 > 0, y2 > 0, . . . , yM−1 > 0, and x + (k−1)(y1 + y2 + · · ·+ yM−1) 6 ∆. Thus

N(∆) > Vol(P) =
∆M

M!(k−1)M−1 (2.23)

As in Lemma 2.1, substituting the expression on the right-hand side of (2.21) for

∆ in (2.23), we find that N(∆) satisfies (2.22), and the lemma follows.

Theorem 2.4. Suppose that codewords c1, c2, . . . , cM−1 of a Reed-Solomon code

Cq(n, k), corresponding to evaluations of the polynomials f1(X), . . . , fM−1(X),
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are transmitted and received as c1 + e1, c2 + e2, . . . , cM−1 + eM−1. If the error

pattern e1, e2, . . . , eM−1 ∈Fn
q has at most t synchronized errors, where

t 6
⌊

n − n M

√
RM−1

(
1 +

1
m

)(
1 +

2
m

)
· · ·

(
1 +

M−1
m

)
− 1

m

⌋
(2.24)

then the interpolation polynomial satisfies Q(
X, f1(X), f2(X), . . . , fM−1(X)

) ≡
0. That is, the polynomial p(X) = Q(

X, f1(X), f2(X), . . . , fM−1(X)
)

is the all-

zero polynomial.

Proof. Since the degree of p(X) does not exceed the weighted degree of Q, it

is bounded by the right-hand side of (2.21). The total number of zeros of p(X)

is at least m(n− t), as before. The theorem now follows from the fundamental

theorem of algebra.

Remark. While the proofs of Theorems 2.2 and 2.4 are technically quite sim-

ple, it is perhaps not clear, on an intuitive level, why M-variate interpolation

decoding has the potential to correct more errors. Qualitatively, the underlying

reason is a dimensionality gain: the number of monomials of weighted degree

at most ∆ grows much faster in three dimensions than in two dimensions, faster

yet in four dimensions, and so on.

2.4 Iterative multivariate interpolation

It should be obvious that the interpolation polynomial can be always com-

puted in polynomial time by solving a system of linear equations over Fq. How-

ever, straightforward Gaussian elimination and/or matrix inversion [ABKR00,

BM82, MMM93] is not the most efficient way to accomplish this task.

In this section, we describe an efficient iterative algorithm for multivariate

polynomial interpolation. The algorithm is an easy generalization of the proce-

dure devised by Koetter [Köt96] for bivariate interpolation. Since the correct-

ness of this procedure is by now well established [FG01,FO02,Köt96,NH98], we

do not provide a proof of the correctness of our algorithm. Moreover, the algo-

rithm is described in detail only for the special case of trivariate interpolation.
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Further generalization to interpolation in M dimensions, for an arbitrary M, is

briefly sketched out in the last paragraph.

Notably, the iterative interpolation algorithm presented in this section com-

putes much more than just the interpolation polynomialQ(X, Y, Z). It produces

a set of polynomials which forms a Gröbner basis for the ideal of all polynomials

over Fq that satisfy the interpolation constraints. This property of the interpola-

tion algorithm will be crucial in the next section.

The input to our algorithm consists of the set P of n points in Fq×Fq×Fq,

as defined in (2.12), a positive integer m, which serves as the multiplicity pa-

rameter, and the weighted-degree monomial order ≺W defined in Section 2.2.

Let Im(P) denote the ideal of all the trivariate polynomials over Fq that pass

through each point in P with multiplicity m. Then the output of the interpola-

tion algorithm is a Gröbner basis (with respect to ≺W) for the ideal Im(P). As

noted in Lemma 2.1, passing through each of the points in P with multiplicity

m imposes a total of

C(m, n) def= n
(

m+2
3

)
= n

m(m+1)(m+2)
6

(2.25)

linear constraints on the coefficients of every polynomial in Im(P). This number

C(m, n) was called the interpolation cost in [KV03a, PV03, PV04b]. Let

µ(m, R) def= min
{

µ ∈N : (k− 1)
(
µ+2

3

)
> C(m, n)

}
(2.26)

and let ` = µ(m, R)
(
µ(m, R)+1

)
/2. Then the Gröbner basis G we compute will

have ` polynomials: G = {G1, G2, . . . , G`}. The major difference between our

iterative algorithm and that of Koetter [Köt96] is in the initialization step. We

initialize as follows

G (0) def=
{

G
(0)

1 , G
(0)

2 , . . . , G
(0)

`

}
:=

{
YaZb : ∀ a, b∈N such that a + b < µ(m, R)

}

(2.27)

Upon initialization, the interpolation algorithm goes through C(m, n) iterations,

imposing each of the C(m, n) linear constraints one-by-one. Thus, referring

to (2.10), suppose that at iteration i of the algorithm, we are dealing with the
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Hasse derivative Da,b,c
[·] at the point (xs, ys, zs)∈P . Then, given the set G (i− 1) ={

G (i− 1)

1 , G (i− 1)

2 , . . . , G (i− 1)

`

}
computed after the first i − 1 iterations, the i-th itera-

tion consists of the following:

1 For all j = 1, 2, . . . , `, compute δ j := Da,b,c

[
G (i− 1)

j (X, Y, Z)
] ∣∣∣∣∣

(xs ,ys ,zs)
, the

discrepancy of G (i− 1)

j (X, Y, Z). If δ j = 0 for all j , stop.

2 Among
{

G (i− 1)

1 , G (i− 1)

2 , . . . , G (i− 1)

`

}
, find the least with respect to≺W polyno-

mial such that its discrepancy is nonzero. Let G (i− 1)

t (X, Y, Z) be this poly-

nomial, so δt 6= 0.

3 For all j = 1, 2, . . . , `, except j = t, compute

G
(i)

j (X, Y, Z) := G
(i− 1)

j (X, Y, Z) − δ j

δt
G

(i− 1)

t (X, Y, Z)

Then update the pivot polynomial, G (i)

t (X, Y, Z) := (X− xs)G (i− 1)

t (X, Y, Z).

We will refer to the procedure above as UpdateBasis
(G , (xs, ys, zs); a, b, c

)
.

This procedure is the computational core of the iterative trivariate interpolation

algorithm; for completeness, we state the entire algorithm below.

Iterative interpolation algorithm

Input: A setP of n points in Fq×Fq×Fq, a positive integer m, and monomial

order ≺W.

Output: A Gröbner basis, with respect to ≺W, for the ideal Im(P).

Initialization step: Set G :=
{

YaZb : ∀ a, b∈N such that a + b < µ(m, R)
}

.

Iteration step: For all (x, y, z)∈P , do the following: for a := 0 to m−1, then

for b := 0 to m−a−1, then for c :=0 to m−a−b−1, do

UpdateBasis
(G , (x, y, z); a, b, c

)
.

Termination step: Return G = {G1, G2, . . . , G`}.

We will not prove that the set G = {G1, G2, . . . , G`} returned by the iterative

interpolation algorithm upon completion of the C(m, n) iterations is a Gröbner
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basis for Im(P) (a proof of this fact would be an easy generalization of the ar-

guments in [FG01, NH98, McE03b]). We henceforth order the polynomials in G
according to ≺W. Namely, we assume that

G1(X, Y, Z) ≺W G2(X, Y, Z) ≺W · · · ≺W G`(X, Y, Z)

Then G1(X, Y, Z) can be taken as the interpolation polynomialQ(X, Y, Z). Since

G is a Gröbner basis, G1(X, Y, Z) is guaranteed to have the least weighted degree

among all trivariate polynomials over Fq that pass through each point in P with

multiplicity m.

Referring to (2.25) and (2.26), we see that µ(m, R) = O
(
m/ 3
√

R
)

so that the

number ` of polynomials in G is O
(
m2/R2/3). Further, each of the C(m, n) =

O(nm3) iterations at the iteration step consists of manipulating ` trivariate poly-

nomials, each having at most C(m, n)+ 1 coefficients. Thus the iterative interpo-

lation algorithm takes O(n2m8/R2/3) operations (additions and multiplications)

in Fq. We observe that, in principle, this complexity can be reduced signifi-

cantly using the methods of [KV03b]. However, explaining how the coordinate-

transformation technique of [KV03b] generalizes to multivariate interpolation

is beyond the scope of this chapter.

Finally, we point out how the iterative algorithm described in this section

generalizes to M-variate interpolation. Steps 1 , 2 , and 3 of UpdateBasis
(·)

extend in the obvious way to M variables and remain virtually unchanged. All

that changes is the initialization in (2.27). A general expression for the cost

C(m, n) is given by the right-hand side of (2.22). Thus we take µ(m, R) as the

least integer µ such that Rµ(µ + 1) · · · (µ + M− 1) > m(m + 1) · · · (m + M− 1).

We then initialize the M-variate Gröbner basis G as follows:

{
Ya1

1 Ya2
2 · · ·YaM−1

M−1 :

∀ (a1, a2, . . . , aM−1)∈NM−1 with a1 + a2 · · ·+ aM−1 < µ(m, R)
}

It is easy to see that this set contains ` = O
(
mM−1/R

M−1
M

)
polynomials, so that

the complexity of the resulting M-variate interpolation algorithm is ` O(n2m2M)

or it is equal to O
(
n2m3M−1/R

M−1
M

)
.
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2.5 Multivariate polynomial recovery

As seen in the previous section, multivariate polynomial interpolation is

very similar to bivariate interpolation, and essentially the same iterative proce-

dure can be used to accomplish this task. In contrast, trivariate “factorization”

— namely, the task of recovering the polynomials f (X) and g(X) from the out-

put of the interpolation step — is completely unlike the bivariate factorization

task of the Guruswami-Sudan decoder [GS99, RR00] and all known versions

thereof [KV03b, McE03b].

In fact, the term “factorization” itself becomes a misnomer in the trivariate

case. Given a bivariate polynomial Q(X, Y), it is easy to see that Q(
X, f (X)

) ≡
0 if and only if Y − f (X) is a factor of Q(X, Y). Thus complete factorization

of Q(X, Y) immediately produces all the solutions f (X) to Q(
X, f (X)

) ≡ 0

and the number of possible solutions (whether of degree < k or not) is obvi-

ously bounded by the Y-degree of Q(X, Y). In contrast, in the trivariate case

Q(
X, f (X), g(X)

) ≡ 0 if and only if Q(X, Y, Z) is of the form

Q(X, Y, Z) = A(X, Y, Z)
(
Y− f (X)

)
+ B(X, Y, Z)

(
Z− g(X)

)
(2.28)

where A(X, Y, Z), B(X, Y, Z) are arbitrary polynomials in Fq[X, Y, Z]. It fol-

lows from (2.28) that neither Y − f (X) nor Z − g(X) are necessarily factors of

Q(X, Y, Z), so that straightforward factorization does not work. We therefore

use the term recovery rather than factorization.

More importantly, in the trivariate case, the number of pairs { f (X), g(X)}
such that Q(

X, f (X), g(X)
) ≡ 0 is not bounded by the degree of Q(X, Y, Z).

In fact, in some situations there are exponentially many solutions to the equation

Q(X, f (X), g(X)) ≡ 0, all of degree < k.

Decoding using two interpolation polynomials: As we mentioned, there

are situations that recovery from only the interpolation polynomial leads us to

exponentially many solutions. To reduce the size of the solution we can look

at f (X) and g(X)’s that not only satisfy Q(X, f (X), g(X)) ≡ 0 but also satisfy

P(X, f (X), g(X)) ≡ 0 for some other polynomial in Im(P). The intersection of
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solutions for both P and Q, in principle, is a smaller set than the solutions to

Q(X, f (X), g(X)) ≡ 0 itself and hopefully we get a set of solutions that is not

exponentially large. The best choice for P is the second smallest Gröbner ba-

sis of Im(P), because it has the least weighted degree after Q(X, Y, Z). Having

two polynomials in hand, we can eliminate variables Z between them, in cer-

tain conditions, and get a bivariate polynomial in X and Y. That reduces the

recovery problem back into bivariate case.

Lemma 2.5. Let H(X, Y) = Res(G1(X, Y, Z), G2(X, Y, Z); Z) denotes the resul-

tant of G1 and G2 respect to Z then H(X, Y) belongs to the ideal of 〈G1, G2〉, and

so for any ( f (X), g(X)) that both G1(X, f (X), g(X)) and G2(X, f (X), g(X)) are

equivalent to zero then H(X, f (X)) is also equivalent to zero.

To recover f (X) and g(X) using both G1 and G2 we proceed as follow:

1 Compute H(X, Y) = Res(G1, G2; Z). [polynomial-time computation]

2 Factor H(X, Y) – using e.g., Roth-Ruckenstein algorithm – to recover f (X)

such that H(X, f (X)) ≡ 0. [# of factors is bounded by degY H]

3 Substitute Y by f (X) in G1(X, Y, Z); then factor the resulting bivariate

polynomial to recover g(X). [# of factors is bounded by degZG1]

To find a bound on the performance of the algorithm, we drive an upper

bound on the weighted-degree of G2(X, Y, Z). For that we use properties of the

deltaset of Im(P).

Definition 2.2. The deltaset ∆(I) of a polynomial ideal is defined as the set of

all monomials that are not the leading monomials of the polynomials in I .

Lemma 2.6. Let Im(P) denote the ideal consisting of all polynomials belong to

Fq[X, Y, Z] that pass through n given points in a set P , each with multiplicity m,

then |∆(Im(P))| = nm(m + 1)(m + 2)/6. see [MTV04].
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X

Y

Figure 2.4: Deltaset of the ideal IP

Lemma 2.7. For the ideal Im(P) assuming ∆1 and ∆2 are weighted-degrees of

G1(X, Y, Z) and G2(X, Y, Z) then

|∆(Im(P))| > ∆3
2 − (∆2 − ∆1)3

6(k− 1)2 (2.29)

Proof. From Lemma 2.1 we know that number of monomials with weighted-

degree smaller than ∆ is approximately equal to ∆3/6(k − 1)2. So, number

of monomials with weighted-degree smaller than ∆2 in ∆(Im(P)) is approxi-

mately equal to number of monomials with weighted-degree smaller than ∆2

minus the monomials that G1 carves out the deltaset, see Figure 2.5.

Theorem 2.8. Suppose that codewords c1, c2 of Reed-Solomon code Cq(n, k),

corresponding to evaluations of the polynomials f (X) and g(X), are transmit-

ted and received as c1 + e1, c2 + e2. If the error pattern e1, e2 has at most t

synchronized errors, where

t 6
⌊

n− n
R
2

(
1 +

√
4

3R
− 1

3

)⌋
(2.30)

then both G1(X, f (X), g(X)) and G2(X, f (X), g(X)) are equivalent to zero when

multiplicity m goes to infinity.
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Figure 2.5: Deriving the bound for ∆2

Proof. By using Lemma 2.6 and Lemma 2.7 we can show the correctness of

(2.30). Due to lack of space we omit the proof.

Whenever the resultants of G1 and G2 respect to Y and Z are nonzero poly-

nomials, the recovery algorithm works but if G1 and G2 has a common factor

the resultants become zero.

Lemma 2.9. The resultant respect to Z, Res(G1(X, Y, Z), G2(X, Y, Z); Z) is the

all-zero polynomial if and only if G1(X, Y, Z) and G2(X, Y, Z) have a common

factor in Fq[X, Y, Z] which has a positive degree in Z. see [CLO96]

Let Ψ(X, Y, Z) denotes the gcd(G1(X, Y, Z), G2(X, Y, Z)) and U = G1/Ψ, V =

G2/Ψ. For any f (X) and g(X) that G1(X, f (X), g(X)) and G2(X, f (X), g(X))

are equivalent to zero we know either Ψ(X, f (X), g(X)) is equivalent to zero or

both of U(X, f (X), g(X)) and V(X, f (X), g(X)) are equivalent to zero. U and V

are relatively prime so the algorithm discussed can be used to recover f (X) and

g(X) from them but for f (X) and g(X)’s that are solution of Ψ(X, f (X), g(X)) ≡
0 we use next Gröbner basis, G3(X, Y, Z), and Ψ(X, Y, Z) together for recovery.

Hence in general we have the following adaptive recovery algorithm:

Adaptive recovery algorithm:

Initialize by setting Q(X, Y, Z) := G1(X, Y, Z) and P(X, Y, Z) := G2(X, Y, Z).
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Figure 2.6: Bound on decoding with first two Gröbner basis

Also set i := 2, and proceed as follow.

1 Compute Ψ(X, Y, Z) := gcd(Q, P), using the Euclidean algorithm.

2 If Ψ(X, Y, Z) is a polynomial in X and not in Y and Z, recover f (X) by

factoring Res(Q, P; Z) and recover g(X) by factoring Res(Q, P; Y) with

the Roth-Ruckenstein algorithm. Stop.

3 Otherwise, Let U = Q/Ψ and V = P/Ψ. Then U and V are relatively

prime. Recover f (X) by factoring Res(U, V; Z) and g(X) by factoring

Res(U, V; Y).

4 Set Q := Ψ(X, Y, Z), P := Gi+1(X, Y, Z), and i := i + 1. Go back to 1

Theorem 2.10. The adaptive recovery algorithm always terminates in polyno-

mial time. It corrects a fraction τ3D of synchronized errors, where

1−
√

R 6 τ3D 6 1− R
2

(
1 +

√
4

3R
− 1

3

)
' 1− R2/3 (2.31)

when m and n goes to infinity.
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Proof. The maximum number of execution of the algorithm is upper bounded

by the number of Gröbner basis which is polynomially bounded and all the

steps in the algorithm are polynomial time so the algorithm runs in polynomial

time. The upper bound of (2.31) is what we exactly drive previously. The sketch

of proof for the lower bound is as follow. Assume {(x1, y1, z1), · · · , (xn, yn, zn)}
are the received points. Let P(X, Y) and Q(X, Z) to be the least weighted-

degree interpolation polynomials that passes through {(x1, y1), · · · , (xn, yn)}
and {(x1, z1), · · · , (xn, zn)} respectively. From [GS99] we know weighted-degree

of both P and Q are smaller than mn
√

R for large m and n. Also, P and Q are

in Im(P) so P and Q are linear combination of first v and w Gröbner basis re-

spectively. In addition, we know Gi < max{P, Q} for i = 1, · · · , max{v, u} that

mean the weighted-degree of all Gi, i = 1, · · · , max{v, u} is less than or equal to

maximum of weighted-degrees of P and Q which is smaller than mn
√

R. Finally,

µ = gcd(G1, · · · , Gmax{v,u}) is in Fq[X] because, µ should divides the gcd(P, Q)

and we know gcd(P, Q)∈Fq. Therefore, the adaptive algorithm runs at most up

to max{v, u} iterations and uses at most Gmax{u,v} for recovery. As we shown,

weighted-degree of Gmax{u,v} is less than or equal to mn
√

R for large m and n.

So if the fraction of synchronized errors is less than or equal to 1−√R then we

have Gi(X, f (X), g(X)) ≡ 0 for i = 1, · · · , max{u, v} where f (X) and g(X) are

the corresponding evaluation polynomials for the transmitted codeword. So the

adaptive algorithm is able to recover f (X) and g(X) successfully.

2.6 The MID algorithm works

So far we have shown that the multivariate interpolation algorithm can cor-

rect some error patterns when number of errors is greater than n(1−√R) and

smaller than n(1− RM/(M+1)). The problem is that successful decoding is not

guaranteed: there are certain patterns of less than nτMID errors which the MID

algorithm fails to decode. Nevertheless, simulations show that the actual per-

formance of the MID decoder is very close to what one would expect if all pat-

terns of up to nτMID errors were corrected. On the other hand, analysis of the
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Figure 2.7: Performance of MID algorithm on decoding of RS(15, 11) over F256

failure probability for the MID algorithm is extremely difficult, and there were

no analytic results so far to confirm this empirically observed behavior.

In the following, we first look at the simulation results for the MID algo-

rithm. We consider a q-ary symmetric channel for the communication and in

Figures 2.7 and 2.8 result of simulation is plotted. From the simulation results

we see that in practice the MID algorithm can correct up to nτM many errors.

In Section 2.7, we provide an analytic results: we present a detailed analysis

of the probability of failure in the MID algorithm for the special case where M =

2 and the interpolation multiplicity is m = 1. In this case, the MID algorithm

attempts to correct up to nτ2,1 errors, where τ2,1 = 1− 3
√

6R2. We consider

the situation where symbol values received from the channel at the erroneous

positions are distributed uniformly at random (a version of the q-ary symmetric

channel). We show that, with high probability, the performance of the MID

algorithm is very close to the optimum in this case. Specifically, we prove that if

the fraction of positions in error is at most τ2,1 −O(R5/3), then the probability

of failure in the MID algorithm is at most n−Ω(n). Thus the probability of failure

is, indeed, negligible for large n in this case.
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Figure 2.8: Performance of MID algorithm on decoding of RS(15, 7) over F256

2.7 A bound on the performance of the multivariate

interpolation decoding algorithm

In this section, we study the failure probability of MID algorithm for a rel-

atively simple special case where M = 2 and the interpolation multiplicity is

m = 1 (as opposed to m→∞, which is needed to achieve the error-correction

radii τCS and τMID). In this case, the MID algorithm attempts to correct at most

nτ2,1 errors, where τ2,1 = 1− 3
√

6R2. We consider the situation where symbol

values received from the channel at the erroneous positions are distributed uni-

formly at random and show that, with high probability, the performance of the

MID algorithm is very close to the optimum in this case. Our main result is the

following theorem.

Theorem 2.11. Let C be an (n, k, d) Reed-Solomon code over the field of order

Q = q2 obtained by evaluating polynomials of degree < k over FQ in a set of

points {x1, x2, . . . , xn} ⊆ Fq. Further assume that

k− 1 =
6(n + 1)

s(s + 1)(s + 2)
− 3

s
(2.32)
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for an integer s > 1. Suppose that a codeword c of C is transmitted over a

Q-ary symmetric channel and the number of channel errors satisfies

t 6 n
(

1− 3
√

6R2 −O
(

R5/3)) (2.33)

Then the multivariate interpolation decoder recovers c from the channel output

with probability at least 1− n−Ω(n).

Theorem 2.11 shows that the probability of failure in the MID algorithm is,

indeed, negligible for large n in this special case.

2.7.1 Background and notation

Let Fq denote the finite field with q elements, let Q = q2, and let {1, β}
be a fixed basis for FQ over Fq. We will consider two Reed-Solomon codes

Cq(n, k) and CQ(n, k), both obtained by evaluating polynomials of degree 6
k− 1 in the same set of points D = {x1, x2, . . . , xn} ⊆ Fq. Throughout this sec-

tion, we assume that n, k are both θ(q), namely k = Rn and n = ηq, where R

and η are constants. Specifically, the codes Cq(n, k) and CQ(n, k) are defined as

follows:

Cq(n, k) def=
{(

f (x1), . . . , f (xn)
)

: f ∈ Fq[X], deg f < k
}

CQ(n, k) def=
{(

c1+βc′1, . . . , cn+βc′n
)

: c, c′ ∈ Cq(n, k)
}

We shall, moreover, assume that k satisfies (2.32). We point out that this limits

the validity of our results to only certain rates.

Suppose that a codeword c of CQ(n, k) is transmitted over a noisy channel

and the vector v = (v1, v2, . . . , vn)∈Fn
Q is received at the channel output. We

write v j = y j + βz j with y j and z j in Fq for all j = 1, 2, . . . , n, and define

Pv
def=

{
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

}
(2.34)

We let I(Pv) ⊂ Fq[X, Y, Z] denote the ideal of polynomials over Fq that pass

through all the points in Pv, namely

I(Pv)
def=

{
P : P(x j, y j, z j) = 0 ∀ (x j, y j, z j)∈Pv

}
(2.35)



2.7. A BOUND ON THE PERFORMANCE OF THE MID ALGORITHM

48

We denote the minimal Gröbner basis, with respect to the≺W order, for the ideal

I(Pv) by

G(Pv)
def=

{
G1(X, Y, Z), G2(X, Y, Z), . . . , G`(X, Y, Z)

}

where G1≺W G2≺W · · · ≺W G`. The following theorem is one of the main results

of Section 2.5:

Theorem 2.12. Let t = d(c, v) be the number of positions in v that are in error.

Then multivariate interpolation decoding successfully recovers the transmitted

codeword c provided

GCD
({

G∈G(Pv) : Wdeg G < n− t
})
∈Fq[X] (2.36)

Herein, we will not be concerned with the details of the MID algorithm;

rather, we’ll use the sufficient condition (2.36) as our guiding principle. It is clear

from (2.36) that our task involves careful estimation of the weighted degrees of

the polynomials in G(Pv). To this end, the following function will be useful

N(∆) def=
∣∣∣
{

XaYbZc : Wdeg XaYbZc 6 ∆
}∣∣∣ (2.37)

Observe that
∆3

6(k− 1)2 < N(∆) 6 (∆ + k)3

6(k− 1)2 (2.38)

as shown in [GS99, PV04a, PV05] and Section 2.2. However, we will need to be

more precise. Specifically, we will use the fact that

N
(
s(k−1)

)
= 1/6 (s + 1)(s + 2)

(
s(k−1) + 3

)
(2.39)

for all positive integers s (this fact is the source for the condition (2.32) on k and

n in Theorem 2.11). The correctness of (2.39) can be established by straightfor-

ward enumeration.

2.7.2 Bound on the failure probability

Before diving into the technical details, we first describe the general strategy

of our proof. The key idea is to show that, in most cases, the minimal element



2.7. A BOUND ON THE PERFORMANCE OF THE MID ALGORITHM

49

of G(Pv) — namely, the polynomial G1(X, Y, Z) — will be irreducible. More

precisely, we will show that G1(X, Y, Z) = p(X)G∗(X, Y, Z), for an irreducible

polynomial G∗(X, Y, Z). Loosely speaking, to prove that G1(X, Y, Z) is of this

form, we will establish an upper bound on Wdeg G1 (Lemma 2.13) as well as

a lower bound on Wdeg G1 which holds with high probability (Lemma 2.14).

Next we show in Lemma 2.15 that if G1 is not of the desired form, then the

lower bound exceeds the upper bound — a contradiction. Now, if G1(X, Y, Z) =

p(X)G∗(X, Y, Z), where G∗(X, Y, Z) is irreducible, then Theorem 2.12 implies

that the MID algorithm will correct t errors as long as n − t is greater than

Wdeg G, where G is any element of G(Pv) that does not have G∗ as its factor.

Finally, using the fact that the size of the delta-set of the ideal I(Pv) is n, we

derive an upper bound on the weighted degree of G, and Theorem 2.11 follows.

Lemma 2.13.
Wdeg G1 6 s(k− 1)

Proof. Let P∈Fq[X, Y, Z]. Then P∈I(Pv) if and only if the coefficients of P

satisfy n linear equations — one for each point in Pv. Thus we can think of

the coefficients of P as unknowns in a system of n linear equations. If P has at

least n + 1 nonzero coefficients, then the system is guaranteed to have a nonzero

solution. It follows that I(Pv) contains a polynomial of weighted degree ∆ pro-

vided N(∆) > n + 1. But N
(
s(k−1)

)
= n + 1 by (2.32) and (2.39), and so I(Pv)

contains a polynomial of weighted degree s(k− 1). Since G1 is the minimal el-

ement of G(Pv), it has the smallest weighted degree among all polynomials in

I(Pv), and the lemma follows.

Let us fix a set E def= {x1, x2, . . . , xt} ⊂ D, where D ⊆ Fq is the evaluation

set for both Cq(n, k) and CQ(n, k). Now let y1, y2, . . . , yt, z1, z2, . . . , zt be i.i.d.

random variables distributed uniformly over Fq, and define

P def=
{

(x1, y1, z1), (x2, y2, z2), . . . , (xt, yt, zt)
}

(2.40)

as in (2.34). As in (2.35), let I(P) ⊂ Fq[X, Y, Z] be the ideal of polynomials that

pass through all the points in P . Pick any polynomial Q(X, Y, Z) in I(P). We
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Figure 2.9: Counting the number of curves

will study WdegQ, which is a random variable. First, observe that

WdegQ > min
{

t, k− 1
}

(2.41)

Indeed, if Q has positive degree in either Y or Z, then we have WdegQ > k− 1

by (2.11). Otherwise, Q∈Fq[X] and it must be divisible by ∏xi ∈ E (X − xi), in

which case WdegQ > t.

Lemma 2.14. For all ε > 0, with probability at least 1− n−Ω(n) over the choice

of y1, y2, . . . , yt and z1, z2, . . . , zt, we have

WdegQ > min
{

t− k,
3√

6t(k−1)2− k
}
−εn (2.42)

Proof. Let A(t,ε) be the event in (2.42), and let Ā(t,ε) be its complement. We

need to show that Pr
{

Ā(t,ε)
}

6 n−Ω(n).

We say that a point x∈ E is an X-zero of Q if (X − x) is a factor of Q. For

each subset Z ⊆E , we let EZ denote the event that the set of all X-zeros of Q is

exactly Z . Then

Pr
{

Ā(t,ε)
}

= ∑
Z ⊆E

PrZ{Ā(t,ε)} Pr{EZ} (2.43)

= ∑
|Z|< t− k

PrZ{Ā(t,ε)} Pr{EZ} (2.44)
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where PrZ is the conditional probability measure Pr
{ · |EZ

}
. Let us explain the

second equality above. Given that EZ occurred, we can factor Q as follows

Q(X, Y, Z) = P(X, Y, Z) ∏
x∈ Z

(X− x) (2.45)

This makes it clear that WdegQ = |Z|+ Wdeg P. Hence, if |Z| > t− k, then

WdegQ is greater than the right-hand side of (2.42), and PrZ{Ā(t,ε)} = 0.

Now let X = E\Z , and let B∆ be the event that Wdeg P 6 ∆ in the factoriza-

tion of (2.45). We derive a bound on Pr{B∆ ∩ EZ} in what follows.

First, observe that X − x is not a factor of P for all x∈X (in view of (2.45)

and the definition of Z), which implies that P(x, Y, Z) 6≡ 0 (it is not the all-zero

polynomial). Also note

P(x, y, z) = 0 ∀(x, y, z)∈P such that x∈X (2.46)

We associate with such polynomial P the set of curves CX ,P defined as follows.

Let X = {x j1 , x j2 , . . . , x j|X |}; we say that

{
(x j1 ,α1, β1), (x j2 ,α2, β2), . . . , (x j|X | ,α|X |, β|X |)

}
∈CX ,P

if and only if P(x ji ,αi, βi) = 0 for all i = 1, 2, . . . , |X |. Note that total degree

of P(x, Y, Z) is less than or equal to Wdeg /P/(k−1) for all x ∈ X . Therefore, if

Wdeg P 6 ∆, then for each x ∈ X , there are at most q∆/(k−1) pairs (α, β) in

F2
q such that P(x,α, β) = 0, by the Schwartz lemma [CLO96]. With reference to

Figure 2.9, it follows that

∣∣CX ,P
∣∣ 6

(
q∆

k− 1

)|X |
(2.47)

Now let P(X,∆) denote the set of all polynomials of weighted degree at most

∆ in Fq[X, Y, Z] which satisfy (2.46) along with P(x, Y, Z) 6≡ 0 for all x ∈ X . Fur-

ther, let us define the corresponding set of curves C (X , ∆) =
⋃

P∈P(X ,∆) CX ,P.

Then

|C (X , ∆)| 6
(

q∆

k− 1

)t−|Z|
qN(∆) (2.48)



2.7. A BOUND ON THE PERFORMANCE OF THE MID ALGORITHM

52

which follows by combining (2.47) with the fact that the total number of polyno-

mials in P(X , ∆) is at most qN(∆). If both B∆ and EZ occur, then P ∈ P(X , ∆)

and the restriction of the random set P in (2.40) to X — namely, the set of

points of P with X-coordinate in X — must belong to C (X , ∆). Hence

Pr
{

B∆ ∩ EZ
}

6 q2|Z||C (X , ∆)|
q2t (2.49)

We next consider a carefully chosen value of ∆. Specifically, motivated by the

right-hand-side of (2.38), we set

∆ = 3
√

6(k−1)2(t− |Z|) − k − δn (2.50)

where δ 6 ε is a positive constant to be fixed later. For such ∆, the right-hand-

side of (2.38) implies that

N(∆)− t + |Z| 6 −δn
6

(
δ2

R2 −
3δ

R
γt,|Z| + 3γ2

t,|Z|

)
(2.51)

where γt,|Z|
def= 3

√
6
(
t−|Z|)/(k−1). In view of (2.44), we are concerned only with

the case where |Z| < t− k. For such Z , we have γt,|Z| >
3
√

6, which in conjunc-

tion with (2.51) implies

N(∆)− t + |Z| 6 −δn
6

(
δ2

R2 −
3δ

R
3
√

6 + 3 3
√

36
)

(2.52)

provided δ 6 R 3
√

6. Finally, we observe that with the value of ∆ given by (2.50),

we have (
∆

k− 1

)t−|Z|
6

(
3

√
6t

k− 1

)n

6
(

6
R

)n/3
(2.53)

Combining (2.49) with (2.48), (2.52), and (2.53), we arrive at the desired bound

on Pr{B∆ ∩ EZ}: for the ∆ in (2.50) with δ 6 R 3
√

6 and for allZ with |Z| < t− k,

we have

Pr
{

B∆ ∩ EZ
}

6
(

6
R

)n/3
q
− δn

6

(
δ2

R2− 3δ
R

3√6+3 3√36
)

(2.54)

To complete the proof, we reason as follows. Suppose that the event Ā(t,ε)∩
EZ has occurred, where |Z| < t− k. Then

Wdeg P <
3√

6t(k−1)2 − k− |Z| −εn (2.55)
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in view of (2.42) and (2.45). Observe that for all |Z| < t− k and δ 6 ε, the right-

hand side of (2.55) is smaller that (2.50). Therefore, the event B∆ must have also

occurred, and we conclude PrZ{Ā(t,ε)} Pr{EZ} is equal to Pr
{

Ā(t,ε)∩EZ
}

and this is less that or equal to Pr
{

B∆∩EZ
}

. Finally, combining this with (2.44)

and (2.54), we find that

Pr
{

Ā(t,ε)
}

6 2n
(

6
R

)n/3
q
− δn

6

(
δ2

R2− 3δ
R

3√6+3 3√36
)

(2.56)

where we have used the trivial bound ∑|Z|< t−k 1 6 2t 6 2n. It remains to set

δ = min{R 3
√

6,ε} and observe that the right-hand-side of (2.56) behaves like

n−Ω(n). This is so because 2 and 6/R are constants, while q = θ(n) by assump-

tion.

The next lemma requires the assumption that the number of channel errors

t = d(c, v) satisfies

n
(
1−

√
R

)
6 t 6 n

(
1− 3

√
6R2

)
(2.57)

This assumption is harmless for the following reasons. First, for the proof of

Theorem 2.11, we are not interested in the case where t exceeds the right-hand

side of (2.57). Second, it is shown in [PV06] that when t is strictly less than the

left-hand side of (2.57), the multivariate interpolation decoder always recovers c

from the channel output v. Thus we, again, do not need to worry about this case

in the proof of Theorem 2.11.

Lemma 2.15. Suppose that the total number t of channel errors satisfies (2.57),

and let G1 be the minimal element of the Gröbner basis G(Pv). Then, with

probability at least 1−n−Ω(n) over the choice of y1, y2, . . . , yt and z1, z2, . . . , zt

in (2.40), the polynomial G1 is of the form G1(X, Y, Z) = p(X)G∗(X, Y, Z), where

G∗(X, Y, Z) is an irreducible polynomial.

Proof. Assume to the contrary that G∗(X, Y, Z) is not irreducible, and write

G1 as

G1(X, Y, Z) = U(X, Y, Z)V(X, Y, Z) (2.58)
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Figure 2.10: Comparing upper and lower bounds on the weighted degree

for some polynomials U and V inFq[X, Y, Z]. Let ∆U and ∆V denote the weighted

degrees of U and V, respectively. Let f (X) and g(X) denote the polynomials

corresponding to the two codewords of Cq(n,k) that are the components of the

transmitted codeword c = (c1, c2, . . . , cn) of CQ(n, k). That is, let f (X) and g(X)

be such that c j = f (x j) + βg(x j) for all j.

Claim 1. Either U or V is in the ideal
〈
Y− f (X), Z−g(X)

〉
.

Proof. It is established in Section 2.3 that if t satisfies (2.57), then for G1(X, Y, Z)

we have G1
(
X, f (X), g(X)

) ≡ 0. In view of (2.58), this implies that either

V
(
X, f (X), g(X)

) ≡ 0 and/or U
(
X, f (X), g(X)

) ≡ 0. As shown in Section 2.5,

this is exactly what is claimed.

Without loss of generality, assume that U is in the ideal
〈
Y− f (X), Z−g(X)

〉
.

We shall think of the random point set P in (2.40) as the subset of Pv that corre-

sponds to the t positions in error. We will assume that U passes through some t1

points of P while V passes through the t2 = t − t1 remaining points of P (as

well as, perhaps, other points in P).

Claim 2. For all i = 0, 1, . . . , t1, with high probability

N(∆U−i)− (∆U−i) > t1 − i (2.59)
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Proof. Given the set Pv in (2.34), we shift it to construct a modified set P ′v as

follows:

P ′v def=
{(

x j, y j− f (x j), z j−g(x j)
)

: (x j, y j, z j)∈Pv

}

With respect to the two sets Pv and P ′v, we now observe the following facts:

• If A(X, Y, Z) is a polynomial that passes through all the points of Pv, the

polynomial A
(
X, Y + f (X), Z + g(X)

)
passes through all the points of the

set P ′v.

• If A(X, Y, Z) is a polynomial that passes through all the points of P ′v, the

polynomial A
(
X, Y− f (X), Z− g(X)

)
passes through all the points of the

set Pv.

• The weighted degrees of the polynomial A(X, Y, Z) is the same as A
(
X, Y±

f (X), Z± g(X)
)
.

Consequently, for any U ∈ 〈
Y− f (X), Z−g(X)

〉
that passes through t1 points of

Pv, there is an equivalent polynomial U′ in the ideal 〈Y, Z〉 that passes through

the t1 corresponding points of P ′v. Note that the weighted degrees of U and U′

are the same: ∆U = ∆U′ . The difference is that U′, being in the ideal 〈Y, Z〉, does

not have any monomials of the form X j for all j = 0, 1, . . . , ∆U′ . Thus, the total

number of monomials in the expansion of U′ is at most N(∆U′) − ∆U′ . Using

the fact that U′ passes through t1 random points, we now apply an argument

similar to Lemma 2.14, and (2.59) follows.

Also note that since U′ is nonzero and does not have any monomials of the

form X j, its weighted degree ∆U′ = ∆U is at least k− 1. Finally, observe that for

t2 less than k − 1, the polynomial V(X, Y, Z) in (2.58) becomes a function of X

only, since then the weighted degree of V will be smaller than k− 1. Therefore,

we can assume w.l.o.g. that t2 > k− 1.

Combining all the information on the weighted degrees of U and V, we set

up the following optimization problem to obtain a lower bound on the weighted

degree of G1(X, Y, Z).
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Minimize: Wdeg G1 = ∆U + ∆V (2.60)

Subject to:
∆V > min{t2, k− 1}

∆V > min
{

t2− k,
3√

6t2(k−1)2− k
}

(∆U−i+k)3

6(k− 1)2 − (∆U−i) > t1 − i for i = 0, 1, . . . , t1

t1 + t2 = t, t2 > k− 1, ∆U > k− 1

n
(
1−

√
R

)
6 t 6 n

(
1− 3

√
6R2

)

It turns out that the minimum in (2.60) always exceeds the lower bound Wdeg G1

6 s(k− 1) of Lemma 2.13. The difference between (2.60) and s(k− 1) is plotted

in Figure 3 for all rates that satisfy (2.32). Since this difference is positive, we

have arrived at a contradiction and (2.58) cannot hold.

From this point on, we give only a brief sketch for the rest of the proof.

From Theorem 2.12, we know that if some other Gröbner basis polynomial G in

G(Pv) does not have G∗ as its factor, the MID algorithm will successfully recover

the transmitted codeword c whenever the number t of channel errors is strictly

smaller than n−Wdeg G. In order to obtain a bound on the decoding radius of

the MID algorithm, we derive an upper bound on the weighted degree of such

polynomial G.

To this end, we use the concept of a delta-set. The delta-set ∆(I) of a poly-

nomial ideal I is defined as the set of all monomials that are not the leading

monomials of the polynomials in I . It was proved in [MTV04] that

∣∣∆(I(Pv)
)∣∣ = |Pv| = n (2.61)

Now, let F (Pv) denote the set of all elements of G(Pv) that do not have G∗ as a

factor. Let G denote the minimal element of F (Pv). Then we show that

Wdeg G 6 n
(

3
√

6R2 + O(R5/3)
)

(2.62)



2.7. A BOUND ON THE PERFORMANCE OF THE MID ALGORITHM

57

k−1

1

Less than k−1

k−1

∆

^

∆

∆

1

G G1 G

∆

�
�
�
�

�
�
�
�

�
�
�
�

Figure 2.11: Deriving the bound on Wdeg G∗(X, Y, Z)

with probability at least 1 − n−Ω(n) provided the number t of channel errors

satisfies (2.57). The proof of (2.62) is essentially based on the observation that

if Wdeg G is too large, then the size of the delta-set of I(Pv) becomes larger

than n, in contradiction with (2.61). This is so because G1 can only “carve-out”

a small number of monomials from the delta-set. Specifically, let ∆1= Wdeg G1

and ∆ = Wdeg G. Then Lemma 2.14 implies that with high probability ∆1 is

greater than or equal to 3
√

6(k−1)2t− k. On the other hand, using the argument

outlined above, we obtain

∆3

6(k− 1)2 −
(
∆− (∆1−k) + k

)3

6(k− 1)2 6 n

Combining these two inequalities yields the bound (2.62) on ∆, which finally

establishes Theorem 2.11.

The results of the Chapter 2 have been presented, in part, at the 43ed Annual

Allerton Conference on Communication, Control, and Computing, Parvaresh, Farzad;

Vardy, Alexander, and at the 2006 International Symposium on Information Theory

(ISIT), Parvaresh, Farzad; Taghavi, Mohammad; Vardy, Alexander. The disser-

tation author was the primary investigator and author of both papers.



CHAPTER 3

Correcting errors beyond the

Guruswami-Sudan radius

We introduce a new family of error-correcting codes that have a polynomial-

time encoder and a polynomial-time list decoder, correcting a fraction of adver-

sarial errors up to

τM = 1 −M+1
√

MMRM

where R is the rate of the code and M > 1 is an arbitrary integer parameter. This

makes it possible to decode beyond the Guruswami-Sudan radius of 1−√R for

all rates less than 1/16. Stated another way, for any ε > 0, we can list decode

in polynomial time a fraction of errors up to 1− ε with a code of length n and

rate Ω
(
ε/log(1/ε)

)
, defined over an alphabet of size nM = nO(log(1/ε)). Notably,

this error-correction is achieved in the worst-case against adversarial errors: a

probabilistic model for the error distribution is neither needed nor assumed.

The best results at the time of publication of the paper for polynomial-time list

decoding of adversarial errors required a rate of O(ε2) to achieve the correction

radius of 1−ε. Later, Guruswami and Rudra [GR06c] show that a very specific

class of codes we define here combined by a compression/decompression tech-

nique can achieve the bound of 1− M+1
√

RM.

Our codes and list decoders are based on two key ideas. The first is the

transition from bivariate polynomial interpolation, pioneered by Sudan and

58
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Guruswami-Sudan [GS99, Sud97], to multivariate interpolation decoding. The

second idea is to part ways with Reed-Solomon codes, for which numerous

prior attempts [BKY03, CS03, GS99, PV04a] at breaking the O(ε2) rate barrier in

the worst-case were unsuccessful. Rather than devising a better list decoder for

Reed-Solomon codes, we devise better codes. Standard Reed-Solomon encoders

view a message as a polynomial f (X) over a field Fq, and produce the cor-

responding codeword by evaluating f (X) at n distinct elements of Fq. Herein,

given f (X), we first compute one or more related polynomials g1(X), g2(X), . . . ,

gM−1(X) and produce the corresponding codeword by evaluating all these poly-

nomials. Correlation between f (X) and gi(X), carefully designed into our en-

coder, then provides the additional information we need to recover the encoded

message from the output of the multivariate interpolation process.

3.1 Introduction

Let q be a power of a prime, let Fq denote the finite field of order q, and let

Fn
q be the vector space of n-tuples over Fq, endowed with the Hamming metric.

An error-correcting code C of length n is simply a subset of Fn
q , whose elements

are called codewords. The minimum distance d of C is the minimum Hamming

distance between distinct codewords, while its rate is defined as R = logq|C|/n.

Thus an encoder for a code C ⊆ Fn
q of rate R is an injective function that maps

bRnc arbitrary message symbols over an alphabet of size q into n coded symbols

over Fq (a codeword of C). One of the central questions in coding theory can be

stated as follows:

What is the largest possible fraction of errors

that a code C of rate R can correct?
(?)

To make sense of this question, we first need to make it precise. What are

“errors” and what does it mean to “correct” them? Throughout this paper,

we consider the case of adversarial errors. We say that a code C corrects up

to t errors if the “correction” is guaranteed whenever we are presented with a

vector v = c + e = (v1, v2, . . . , vn)∈Fn
q that differs from the original codeword
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c = (c1, c2, . . . , cn)∈C in at most t positions. An alternative approach would

be to assume a probability distribution on the error values (the differences e j =

v j − c j) and then require “correction” only with a certain (high) probability. For

more on this, see for example [RU05]. Herein, a probabilistic model for the

distribution of error values is not assumed. The “correction” itself can be also

understood in a number of ways. If correction is defined to be “given v, output

the original message” and no limit is imposed on the time it might take to pro-

duce such output, then any code C can correct precisely b(d−1)/2c adversarial

errors, where d is the minimum distance of C. Thus answering the question

in (?) becomes equivalent to maximizing the relative distance d/n for a given

rate R. For much more on this classical problem, see e.g. [MS81]. However, it

makes sense to modify the definition of “correction” in two important ways.

First, instead of requiring the decoder for C to produce only the original mes-

sage, one could define correction to be “given v, output a small list of messages

that is guaranteed to include the original message.” This is known as the list

decoding problem, dating back to the work of [Eli57,Woz58] in the 1950s. Second,

it makes sense to require that decoding — namely, producing this list of mes-

sages — is accomplished in time that is polynomial in the code length n. This, in

particular, guarantees that the size of the list produced by the decoder is at most

polynomial in n.

For adversarial errors, with error-correction defined as above, this work

gives the best known answer to the question in (?), at least for low rates. We

present a new class of algebraic error-correcting codes that correct a fraction of

τ = 1−O
(

R log(1/R)
)

(3.1)

adversarial errors in polynomial time. This exceeds the best previously known

bound τGS = 1−√R, due to Guruswami and Sudan [GS99], for all rates R <

1/16.
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3.1.1 Prior work on the list decoding problem

Formally, a code C ⊆ Fn
q is said to be (τ , L) list decodable if for all v∈Fn

q ,

the number of codewords at Hamming distance τn or less from v is at most L.

Most of the applications of list decodable codes in theoretical computer science

correspond to the “high noise” situation where τ is close to 1, and we henceforth

emphasize this fact by writing τ as 1− ε. For an excellent overview of the list

decoding problem and its applications, read Guruswami [Gur01].

In particular, it is observed in [Gur01] that
(
1 − ε, O(1/ε)

)
list decodable

codes of rate Ω(ε) exist, and that Ω(ε) is the best rate possible for such codes.

However, this existence result is based on random coding arguments — we do

not know how to explicitly construct such codes in polynomial time, let alone

decode them in polynomial time.

The first real breakthrough on the list decoding problem was achieved by

Sudan [Sud97] and by Guruswami-Sudan [GS99] in the late 1990s. The ground-

breaking work of [GS99] shows that using Reed-Solomon (and other algebraic)

codes, it is possible to list decode in polynomial time a fraction of 1−ε errors

with a code of rate ε2. Since then, the rate bound of O(ε2) has become a seem-

ingly unsurmountable “barrier” for list correcting a fraction of 1−ε adversarial

errors in polynomial time. To quote from [Gur04]:

Despite much progress in the general area of list decoding, the O(ε2)

bound has been a “barrier” for the rate for codes list decodable up to

a fraction (1− ε) of errors. [...] The question of improving the rate

beyond the O(ε2) barrier is one of the central open questions in the

subject of list decoding.

Here is a brief, and necessarily incomplete, overview of prior attempts at

breaking this barrier. In [GI01], the authors present a randomized construction

of codes of rate Ω(ε) together with an algorithm to list decode such codes up

to a fraction of 1−ε errors. However, the construction of [GI01] is not explicit,

since there is no efficient way to certify that the resulting codes have the de-

sired list decoding properties. Moreover, the list decoding algorithm of [GI01]
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runs in subexponential time of the form 2O(n1/τ ). The first explicit construction

of codes with rate better than Ω(ε2) was given by Guruswami in [Gur04]. This

construction uses extractors in an ingenious way to come up with (1−ε, L) list

decodable codes. The rate that these code achieve is ε/ logO(1)(1/ε), which is

not far from our results. However, the list decoding algorithm of [Gur04] is not

polynomial-time: it runs in subexponential time of the form 2c(Rn)1/τ
and could

return subexponential-sized lists as output. There are other graph-based con-

structions, most notably by Guruswami and Indyk [GI02], that for rates Ω(ε2)

correct a fraction of O(1−ε) errors. The Guruswami-Indyk codes [GI02] are

encodable and list decodable in almost linear time; however, they do not break

the O(ε2) rate-barrier. A completely different approach was recently developed

by Muralidhara and Sen [MS05] to show that Reed-Solomon codes are (1−ε, L)

list decodable at a rate of Ω
(
(ε + c

n)2) for any constant c > 0. Unfortunately,

the list size and the complexity of decoding in [MS05] grow at least as Ω(nc),

which again does not allow to break the O(ε2) rate-barrier in polynomial time.

Finally, we should mention the work of [BKY03], [CS03], and [PV04a]. Ble-

ichenbacher, Kiayias, and Yung [BKY03] study Reed-Solomon codes of a certain

type over an alphabet of size Q = nM. They devise a unique (list of size

one) decoding algorithm that, with probability at least 1 − O(1/n) on the Q-

ary symmetric channel, corrects a fraction of 1 − ε errors using a code of rate

R =
(
ε(M+1)− 1

)
/M. Coppersmith and Sudan [CS03] consider the same Reed-

Solomon codes1 over FQ and devise a list decoding algorithm that corrects a

fraction of 1−ε errors using a code of rate R = Ω(εα), for any constant α > 1.

However, this correction is again achieved only with a certain probability, which

Coppersmith and Sudan [CS03] show to be at least Ω
(

RM/(M+1)), again assum-

ing the same Q-ary symmetric channel model. Thus neither [BKY03] nor [CS03]

deal with adversarial errors. In our earlier work [PV04a], we do not assume a

probabilistic model for the error distribution. Nevertheless, we cannot provide

a guarantee on the list decoding radius of our algorithm in [PV04a] that would

1Neither Bleichenbacher, Kiayias, and Yung [BKY03] nor Coppersmith and Sudan [CS03] rec-
ognize that the codes they consider are, in fact, Reed-Solomon codes, but this is shown in [PV06].
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break the O(ε2) rate-barrier either.

In summary, there was no construction known (to us) of error-correcting

codes that are (1−ε, L) list decodable in polynomial time against adversarial

errors on one hand, and exceed the O(ε2) rate-barrier on the other hand.

3.1.2 Our main results

Herein, we present such a construction. We will explicitly describe a new

family of algebraic error-correcting codes and devise a novel list decoding algo-

rithm for these codes, which makes it possible to prove the following theorem.

Theorem 3.1. Let q be a power of a prime. Then for all positive integers m,

M, n 6 q, and k 6 n, there is a code C of length n and rate R = k/nM over

FQ = GF(qM), equipped with an encoder E and a decoder D that have the fol-

lowing properties. Given any vector v∈Fn
Q, the decoder D outputs the list of all

codewords that differ from v in at most

t =

⌊
n− n M+1

√
MMRM

(
1+

1
m

)
· · ·

(
1+

M
m

)
− 1

m

⌋

positions (where m, M are arbitrary integer parameters). The size of this list is

at most

L =




m M+1

√
(1+ 1

m)(1+ 2
m) · · · (1+ M

m )
MR




M

+ o(1)

Moreover, both the encoder E and the decoder D run in time (number of oper-

ations in Fq) that is bounded by a polynomial in n, M, and m.

To arrive at our main result, it remains to set the parameters in Theorem 3.1

appropriately. Given a small ε > 0, we write t/n = 1− ε. Then, assuming m is

sufficiently large, the best choice for M is given by M = ln(1/ε). Note that

FM(m) def=
M

∏
i=1

(
1 +

i
m

)
= 1 +

M2+ M
2m

+ O
(

1
m2

)
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Thus we can make this function arbitrarily close to 1, regardless of the value of

ε, provided m = ω(M2). For example, we could take m = M2 log log M. Then

the rate R and the list-size L in Theorem 3.1 are given by

R ' ε
M+1

M

M
=

e−1ε

ln 1
ε

; L ' mM

ε
=

(
1
ε

)O
(

loglog 1
ε

)

Finally, taking n = q, the code C in Theorem 3.1 is defined over an alphabet of

size Q = qM = nblog(1/ε)c.

Corollary 3.2. For all sufficiently small ε > 0, we can explicitly construct a fam-

ily of (
1−ε, (1/ε)O

(
loglog 1

ε

) )

list decodable codes of rate R = Ω
(
ε/ log(1/ε)

)
defined over an alphabet of

size nO(log(1/ε)). Moreover, such codes can be encoded and list decoded in poly-

nomial time.

The codes we construct to establish Theorem 3.1 are certain highly-structured

subsets of certain highly-structured Reed-Solomon codes. As we shall see, the

underlying ideas are extremely simple. Indeed, proving Theorem 3.1, at least

for the important special case M = 2, will not require much technical sweat. It

is also curious to note that, in general, our codes are not linear — neither over

FQ nor over Fq. This unusual circumstance does not seem to impede in any way

polynomial-time encoding and list decoding of these codes.

An important shortcoming of our result in Chapter 3.2 is that the alpha-

bet size grows very fast: nO(log(1/ε)) is much larger than O(1/ε), which is the

best one could hope for [Gur01]. However, in a recent paper Guruswami and

Patthack [Gur05a,GP06] extends our methods by replacing the underlying Reed-

Solomon codes with more general algebraic-geometric codes. Using this (highly

nontrivial!) generalization, they then shows in [GP06] that it is possible to re-

duce the alphabet size to (1/ε)O(log(1/ε)) — which does not depend on the code

length n — at the expense of slightly decreasing the rate to Ω
(
ε/ log2(1/ε)

)
.

Another important extension of our codes is the construction introduced by

Guruswami and Rudra in [GR06c, GR06b]. They show that for a specific set of
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parameters our codes can be compressed to folded Reed-Solomon codes. Currently,

for a specific set of data symbols we transmit evaluations of two correlated poly-

nomials f (X) and g(X) at n points of the finite field Fq. With the compression

technique of Guruswami and Rudra, we need only to send the evaluation of

f (X) and at the decoder evaluation of g(X) can be inferred by decompression

of evaluation of f (X). This improve the decoding radius up to a fraction of

1− (1 +ε)RM/(M+1) of errors for any ε > 0 and 0 < R < 1. In the limit for large

M, Guruswami and Rudra can decode up to a fraction of 1−R−ε of errors in

time (N/ε)O(1/ε) where N is the block length of the code with the alphabet size

of (N/ε)O(1/ε2).

3.1.3 The underlying ideas

Our results in this chapter are based upon two key ideas. The first is the tran-

sition from bivariate polynomial interpolation, pioneered by Sudan [Sud97] and

Guruswami-Sudan [GS99], to multivariate interpolation decoding. It was recog-

nized early on that decoding Reed-Solomon codes is equivalent to the problem

of reconstructing univariate polynomials from their noisy evaluations. Conven-

tional decoding [Ber68, WB86] thus attempts to solve this problem using uni-

variate polynomial interpolation. The breakthrough achieved by Sudan [Sud97]

and Guruswami-Sudan [GS99] was due in large part to the transition from

univariate to bivariate polynomial interpolation. Herein, we move on to in-

terpolation decoding in M+1 variables, where M > 1 is the integer parame-

ter in Theorem 3.1. Much of this framework was developed in our earlier pa-

pers [PV04a, PV06] and presented in Chapter 2. However, to keep the indepen-

dency of chapters of the dissertation, we will give a brief primer on multivariate

interpolation decoding in the next section. The readers that are familiar with

material of Section 2.4 of Chapter 2 may skip the next section.

The second key idea is to part ways with Reed-Solomon codes, for which nu-

merous prior attempts [BKY03, CS03, GS99, MS05, PV04a] at breaking the O(ε2)

rate barrier in the worst-case proved unsuccessful. Rather than trying to de-
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vise a better list decoder for Reed-Solomon codes (which, as it turns out [PV06],

is what all the previous papers attempted to do), we construct better codes.

Our construction is still based upon the Reed-Solomon codes, yet differs from

them in an essential way. Standard Reed-Solomon encoders view a message as

a polynomial f (X) over a field Fq, and produce the corresponding codeword

by evaluating f (X) at n distinct elements of Fq. In this paper, given f (X), we

first compute M − 1 related polynomials g1(X), g2(X), . . . , gM−1(X) and pro-

duce the corresponding codeword by evaluating all these polynomials. In the

degenerate case M = 1, we thus rederive the Guruswami-Sudan list decoding

algorithm [GS99] for RS codes. However, when M > 2, we can do better: cor-

relation between f (X) and gi(X), carefully designed into our encoder, provides

precisely the kind of information we need to break the O(ε2) rate-barrier for

adversarial errors.

3.1.4 Overview of the chapter

The next section is a primer on multivariate interpolation. In Sections 3.3

and 3.4, we consider in detail the first nontrivial case M = 2. As we shall see,

for M = 2, there are several different ways to obtain the necessary correlation

between f (X) and g(X). In Section 3.3, we describe a particularly elegant and

simple way to do so, namely

g(X) =
(

f (X)
)a mod e(X) (3.2)

where e(X) is an arbitrary irreducible (over Fq) polynomial of degree k, and a

is an arbitrary (but sufficiently large) integer. The encoding rule (3.2) leads to

a simple list decoding algorithm. Using this algorithm, we give in Section 3.3

a proof of Theorem 3.1 for the special case M = 2. In Section 3.4, we show

that the encoding rule (3.2) is just an instance of a much more general situation

where the pair
(

f (X), g(X)
)

can be regarded as a zero of an irreducible polyno-

mial T (Y, Z) over the field K = Fqk . We furthermore extend the list decoding

algorithm of Section 3.3 to this more general scenario. Finally, in Section 3.5,
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we generalize the construction and the decoding algorithm of Section 3.3 for all

M > 2, and thereby complete the proof of Theorem 3.1.

3.2 Multivariate interpolation

We will describe in detail only the (first nontrivial) case of trivariate inter-

polation. Generalization to multivariate interpolation in an arbitrary number of

variables should be fairly straightforward, and will be briefly sketched-out later

on.

We need some definitions pertaining to trivariate polynomials. Thus let

Q(X, Y, Z) = ∑∞
i, j,k=0 qi, j,kXiY jZk be a polynomial over Fq, and let N denote the

natural numbers. For a, b, c∈N, the corresponding Hasse derivative of Q is

Da,b,c
[
Q(X, Y, Z)

] def=
(3.3)∞

∑
i=a

∞
∑
j=b

∞
∑
k=c

(
i
a

)(
j
b

)(
k
c

)
qi, j,k Xi−aY j−bZk−c

The polynomial Q(X, Y, Z) is said to have a zero of multiplicity m at a point

(x0, y0, z0)∈Fq×Fq×Fq if

Da,b,c
[
Q(X, Y, Z)

] ∣∣∣
(x0 ,y0 ,z0)

= 0
(3.4)

for all a, b, c∈Nwith a + b + c < m

We next define the weighted degree of trivariate polynomials. While this is a

fairly general concept, we will only need the (1, k−1, k−1)-weighted degree,

where k− 1 is the degree of the message polynomial f (X). Thus, we define the

weighted degree of a monomial XaYbZc as follows

Wdeg XaYbZc def= a + (k−1)b + (k−1)c (3.5)

We extend the weighted degree to a monomial ordering ≺W by augmenting it

with the lex order (cf. [CLO96, Chapter 2]). The weighted degree of a poly-

nomial can be now defined as the weighted degree of its leading (under ≺W)

monomial.
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Now let x1, x2, . . . , xn be some n distinct elements of Fq, and consider the

interpolation set P given by

P def=
{
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

}
(3.6)

where y j, z j ∈Fq are unrestricted. We define the interpolation polynomial with

respect to P as the least weighted degree nonzero polynomial Qm(X, Y, Z) in

Fq[X, Y, Z] that has a zero of multiplicity m at each of the n points of P .

It should be obvious that, given P , the interpolation polynomial Qm(X,Y,Z)

can be computed in time that is bounded by a polynomial in n and m, say with

straightforward Gaussian elimination and/or matrix inversion. In fact, using a

generalization of the algorithm due to Koetter [Köt96], it is shown in Section 2.4

of Chapter 2 that this computation takes O
(
n8/3m8/k2/3) operations in Fq. No-

tably, the complexity analysis easily carries over to general multivariate inter-

polation. Recently Gaborit and Ruatta [GR06a] gave an algorithm with better

complexity to solve the Hermite interpolation polynomial.

Lemma 3.3.

WdegQm(X, Y, Z) 6
⌈

3
√

n(k−1)2m(m+1)(m+2)
⌉

Proof. The proof is a straightforward generalization of the argument used

in [GS99] and [KV03a]. Let N3(∆) denote the number of trivariate monomi-

als whose weighted degree is at most ∆. We claim that there exists a nonzero

polynomial of weighted degree at most ∆ that passes through each point in P
with multiplicity m, provided

N3(∆) > n
m(m+1)(m+2)

6
(3.7)

Indeed, referring to (3.3), it is clear that (3.4) is just a system of linear con-

straints on the coefficients of such a polynomial. The total number of linear

constraints imposed by passing with multiplicity m through each of n points

is given by the right-hand side of (3.7). The total number of unknowns (co-

efficients of the polynomial) is N3(∆). If the number of unknowns is strictly
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greater than the number of constraints, the linear system is guaranteed to have

a nonzero solution. It follows that any ∆ such that N3(∆) satisfies (3.7) is an up-

per bound on the weighted degree of the interpolation polynomial. It remains

to estimate N3(∆). To this end, consider the correspondence between monomi-

als in Fq[X, Y, Z] and unit cubes in R3, defined by XaYbZc 7→ K(a, b, c), where

K(a, b, c) = [a, a+1)× [b, b+1)× [c, c+1). Then N3(∆) is equal to the volume of

a union of such cubes K(a, b, c), the union being taken over all a, b, c∈N that

satisfy

a + (k−1)b + (k−1)c 6 ∆

Let U ⊂ R3 denote this union of cubes, and consider the pyramid P ⊂ R3

defined by the four half-planes: x > 0, y > 0, z > 0, and x + (k−1)y +

(k−1)z 6 ∆. It is easy to see that P ⊂U , so N3(∆) = Vol(U ) > Vol(P).

But Vol(P) = ∆3/6(k−1)2 and the lemma follows.

Lemma 3.4. LetQm(X, Y, Z) be the interpolation polynomial with respect to the

set P in (3.6). Given a pair of polynomials f (X) and g(X) over Fq, define
∣∣∣
(

f , g
)∣∣∣
P

def=
∣∣∣
{

j : f (x j) = y j and g(x j) = z j
} ∣∣∣ (3.8)

Provided the degree of both f (X) and g(X) is at most k− 1, and moreover

∣∣∣
(

f , g
)∣∣∣
P

>
⌈

3

√
n (k− 1)2

(
1 +

1
m

)(
1 +

2
m

)
+

1
m

⌉

we have Qm
(
X, f (X), g(X)

) ≡ 0. Namely, the univariate polynomial p(X) de-

fined as Qm
(
X, f (X), g(X)

)
is identically zero.

Proof. If deg f (X), deg g(X) 6 k− 1, it follows from the definition of the

weighted degree in (3.5) that

deg p(X) 6 WdegQm(X, Y, Z) (3.9)

On the other hand, for every integer j∈ {1, 2, . . . , n} that is counted in (3.8), the

interpolation polynomial Qm(X, Y, Z) has a zero of multiplicity m at the point
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(
x j, f (x j), g(x j)

)
. Hence the total number of zeros of p(X) in Fq, counted with

multiplicity, is lower-bounded by

# zeros of p(X) > m
∣∣∣
(

f , g
)∣∣∣
P

(3.10)

If the right-hand side of (3.10) is strictly greater than the right-hand side of (3.9),

then p(X) must be the all-zero polynomial. The lemma now follows from Lem-

ma 3.3.

Before concluding this section, we need to establish one more technical lemma.

Lemma 3.5. A polynomial Q(X, Y, Z)∈Fq[X, Y, Z] satisfies Q
(
X, f (X), g(X)

) ≡
0 if and only if it belongs to the ideal generated by Y− f (X) and Z− g(X), that

is, if and only if there exist some polynomials A,B ∈Fq[X, Y, Z] such that

Q(X, Y, Z) = A(
Y− f (X)

)
+ B(

Z− g(X)
)

(3.11)

Proof. It should be obvious that if Q(X, Y, Z) can be expressed as in (3.11),

then Q
(
X, f (X), g(X)

) ≡ 0. To prove the converse, fix a monomial order ≺
such that Y Â f (X) and Z Â g(X), then divide Q(X, Y, Z) by Y− f (X) and

Z− g(X) to express it as follows:

Q(X, Y, Z) = A(
Y− f (X)

)
+ B(

Z− g(X)
)
+ R (3.12)

The polynomial division algorithm guarantees that none of the monomials in

the remainder polynomial R∈Fq[X, Y, Z] is divisible by the leading term of

Y− f (X) or Z− g(X). But since Y Â f (X) and Z Â g(X), this simply means

that R(X, Y, Z) = R(X). This, in conjunction with (3.12) and the assumption

that Q
(
X, f (X), g(X)

)≡0, then implies that R(X) ≡ 0, and the lemma follows.

3.3 Simple trivariate codes and their decoding

We are now ready to describe the construction of our codes for the simplest

nontrivial case: M = 2 (trivariate interpolation) with the encoding rule of (3.2).
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This is done in the next subsection. Then, in Section 3.3.2, we describe a de-

coding algorithm for these codes that achieves the error-correction claimed in

Theorem 3.1 for the special case of M = 2.

3.3.1 Code parameters and encoder mapping
A specific code C in the family constructed in this section is specified by the

following set of parameters.

Underlying field order: An integer q, which is a power of a prime; determines

the message symbol alphabet.

Length: A positive integer n 6 q, which determines the length of the code (a

good choice is n = q).

Evaluation set: A set of n elements x1, x2, . . . , xn of Fq, that must be distinct but

are otherwise arbitrary.

Rate parameter: A positive integer k which, along with n, determines the rate

of the code.

Basis: A fixed basis {1,α} for Fq2 over Fq.

Multiplicity parameter: An arbitrary positive integer m, which determines de-

coding interpolation multiplicity.

Exponentiation modulus: A polynomial e(X)∈Fq[X] of degree k, that is irre-

ducible over Fq but otherwise arbitrary; determines the encoder mapping.

Exponentiation degree: A positive integer a that satisfies

a >
⌈

m 3

√
n

k− 1

(
1+

1
m

)(
1+

2
m

)
+

1
k−1

⌉
(3.13)

but is otherwise arbitrary; along with e(X), determines the encoder map-

ping, also determines the list-size.
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We assume that all these parameters are fixed in advance, and known to both

the encoder and the decoder for C.

Our code C is a subset of the set of vectors of length n over Fq2 . We define C
by describing a bijective encoder map E : Fk

q → C, as follows. Given k arbitrary

message symbols u0, u1, . . . , uk−1∈Fq, the encoder first constructs the polyno-

mial f (X) = ∑k−1
i=0 uiXi, and then computes

g(X) =
(

f (X)
)a mod e(X) (3.14)

over Fq. The codeword (c1, c2, . . . , cn)∈C corresponding to the message u0, . . . ,

uk−1 is then given by

c j = f (x j) +αg(x j) for j = 1, 2, . . . , n (3.15)

It is obvious from the above description that the rate of C is R = logq2 |C|/n =

k/2n. The minimum distance of C is at least n− k + 1, since C is a subset of a

Reed-Solomon code C of length n and dimension k over Fq2 . We leave the proof

of this fact as an exercise for the reader.

It is interesting to observe that in most cases C is not a linear subspace of C

because the computation in (3.14) is, in general, not a linear operation. However,

if q = ps for a prime p and we take the exponentiation degree a to be of the form

a = pb, where b is a multiple of s, then the code C becomes Fq-linear. It is still

not a linear code in the usual sense of the word, since it is not linear over the

field Fq2 over which it is defined. Making it linear over Fq2 requires a−1 to be

a multiple of qk−1, and leads to the degenerate case where g(X) ≡ f (X) since

the modular exponentiation in (3.14) then becomes the identity operation.

Finally, we need to show that the encoder map in (3.14) and (3.15) can be

computed in polynomial time. To this end, it is convenient to think of the poly-

nomials f (X) and g(X) of degree 6 k− 1 as elements in the extension field

K def= Fq[X]
/ 〈e(X)〉 (3.16)

of order qk. Let β and γ denote the elements of K that correspond to f (X) and

g(X), respectively. Then the computation in (3.14) becomes simply γ =βa in
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K. We can now use a result of Von zur Gathen and Nöcker [GN97], who show

how to compute βa with O(k2log log k) operations in the ground field Fq, using

storage for only O(k/log2k) elements of K.

3.3.2 Simple trivariate interpolation decoding

We have seen in the foregoing subsection that the construction of our codes

is conceptually quite simple. Their decoding is equally simple. Given a vector

v = (v1, v2, . . . , vn) over Fq2 , we first decompose each v j into its two components

over Fq, using the fixed basis {1,α}. Thus we write

v j = y j +αz j for j = 1, 2, . . . , n

where y j and z j are in Fq. We then set up the interpolation set P exactly as in

(3.6), namely

P =
{
(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)

}

where x1, x2, . . . , xn is the evaluation set for C. As observed in Section 3.2, the

corresponding interpolation polynomial Qm(X, Y, Z) can be computed in time

O
(
n8/3m8/k2/3).

Lemma 3.6. Suppose that a codeword c∈C differs from the given vector v =

(v1, v2, . . . , vn) in at most

t =

⌊
n− 3

√
n (k− 1)2

(
1+

1
m

)(
1+

2
m

)
− 1

m

⌋
(3.17)

positions, and let f (X), g(X) denote the message polynomial(s) that produce c

according to the mapping (3.14) – (3.15). Then Qm
(
X, f (X), g(X)

)
is equivalent

to zero.

Proof. This follows immediately from Lemma 3.4, upon observing that
∣∣( f , g

)∣∣
P

> n− t.

It remains to show how to recover the message f (X) from the interpolation

polynomial Qm(X, Y, Z), assuming that Qm
(
X, f (X), g(X)

) ≡ 0. To this end,
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we first reduce Qm(X, Y, Z) modulo e(X). That is, we compute

P(Y, Z) def= Qm(X, Y, Z) mod e(X) (3.18)

To see that P(Y, Z) is indeed a bivariate polynomial, first write Qm(X, Y, Z) as

an element of Fq[X][Y, Z], namely

Qm(X, Y, Z) =
∞
∑
i=0

∞
∑
j=0

qi, j(X) YiZ j (3.19)

and let pi, j(X) = qi, j(X) mod e(X). Then clearly pi, j(X) can be regarded as an

element of the extension fieldK defined in (3.16), and therefore P(Y, Z)∈K[Y, Z].

We point out that this is mainly a syntactic trick, but it greatly simplifies the

derivation in what follows.

Lemma 3.7. The polynomial P(Y, Z) defined by (3.18) is not the all-zero poly-

nomial.

Proof. Assume to the contrary that P(Y, Z) ≡ 0, or equivalently that e(X) is

a factor of qi, j(X) for all i and j, where qi, j(X) are the coefficients in (3.19). But

this means that e(X) is a factor of Qm(X, Y, Z), so we can define the polynomial

Q′(X, Y, Z) def=
Qm(X, Y, Z)

e(X)
(3.20)

Using the fact that e(X) is irreducible, it is not difficult to show that ifQm(X, Y, Z)

satisfies all the interpolation constraints, then so doesQ′(X, Y, Z). Furthermore,

we have WdegQ′(X, Y, Z) = WdegQm(X, Y, Z) − deg e(X) in view of (3.20).

But this contradicts the definition of the interpolation polynomial Qm(X, Y, Z)

as the least weighted-degree polynomial satisfying the interpolation constraints.

Lemma 3.8. Suppose thatQm
(
X, f (X), g(X)

) ≡ 0, and let β and γ denote the el-

ements of K that correspond to f (X) and to g(X), respectively. Then P(β, γ) =

0.

Proof. If Qm
(
X, f (X), g(X)

) ≡ 0, then by Lemma 3.5 it can be written in the

form

A(X, Y, Z)
(
Y− f (X)

)
+ B(X, Y, Z)

(
Z− g(X)

)
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for some polynomials A(X,Y,Z), B(X,Y,Z) in Fq[X,Y,Z]. Therefore P(Y, Z) can

be written in the form

P(Y, Z) = Ã(Y, Z)
(
Y−β

)
+ B̃(Y, Z)(Z−γ) (3.21)

where Ã(Y, Z) and B̃(Y, Z) in K[Y, Z] are the remainders of A(X,Y,Z) and

B(X,Y,Z) upon division by e(X). It is now obvious from (3.21) that P(β, γ) = 0.

Here is the crucial part of our decoding algorithm. From the encoding rule

(3.14), we know a priori that γ = βa in K. Hence P(β, γ) = 0 implies that β is a

root of the polynomial H(Y) = P(Y, Ya). But H(Y) is a univariate polynomial,

so all of its roots can be found using well-known techniques. First, however, we

should make sure that H(Y) 6≡ 0.

Lemma 3.9. The polynomial H(Y) = P(Y, Ya) is not the all-zero polynomial.

Proof. Assume to the contrary that H(Y) = P(Y,Ya)≡ 0. This happens if and

only if Z−Ya is a factor of P(Y, Z). Clearly, this cannot be the case if degYP(Y, Z)

is smaller than a. But it follows from (3.18) and (3.5) that

degYP(Y, Z) 6 WdegQm(X, Y, Z)
k− 1

(3.22)

Lemma 3.3 provides an upper bound on WdegQm(X, Y, Z), and our condition

for a in (3.13) uses this bound to guarantee that the value of a is strictly greater

than the RHS of (3.22).

Based upon Lemmas 3.6, 3.7, 3.8, and 3.9, we can now summarize the entire

decoding algorithm as follows:

1 Given a vector (v1, v2, . . . , vn) over Fq2 , set up the interpolation set P and

compute the interpolation polynomial Qm(X, Y, Z) in Fq[X, Y, Z].

2 Compute P(Y, Z) = Qm(X, Y, Z) mod e(X), interpreted as an element of

K[Y, Z].

3 Compute the univariate polynomial H(Y) = P(Y, Ya).
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4 Find all the roots of H(Y) in K, and output this list.

It should be obvious that this algorithm runs in polynomial time. The only

potential quibble is at Step 4, where we are required to find roots of a polynomial

over K, which is an exponentially large field. Note, however, that while the

order of K is qk its characteristic is still equal to that of Fq. Shoup [Sho91] gives

a deterministic algorithm for factoring polynomials over large finite fields of

small characteristic. Using this algorithm, factoring a polynomial of degree D

over a field of order pK (for a prime p) takes only

Õ
(

D2K2) log p + Õ
(

D3/2K3/2)log p
√

p

operations in Fp. Thus there are no problems with Step 4 as well. The following

theorem uses all of the above to establish Theorem 3.1 for the special case of

M = 2.

Theorem 3.10. Given a vector v = (v1, v2, . . . , vn) over Fq2 , the algorithm above

outputs in polynomial time the list of all codewords of C that differ from v in at

most

t =

⌊
n− n 3

√
4R2

(
1+

1
m

)(
1+

2
m

)
− 1

m

⌋
(3.23)

positions, where m > 1 is an arbitrary multiplicity parameter. The size of this

list is at most L2, where

L =




m 3

√
(1+ 1

m)(1+ 2
m)

2R




+ 1 (3.24)

Proof. The expression for t in (3.23) follows immediately from (3.17), when

taking into account that R = k/2n. The list-size is obviously bounded by the

degree of H(Y). It is clear that deg H(Y) 6 a degtotP(Y, Z), where degtot is the

total degree. But degtotP(Y, Z) is bounded by the RHS of (3.22), whence (3.24)

now follows by Lemma 3.3 and (3.13).

In general, we will always choose a to be just larger than the RHS of (3.22).

Hence, the list size is essentially bounded by the square of

a ' WdegQm(X, Y, Z)/(k− 1).
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3.4 General trivariate codes and their decoding

We now show that the codes constructed in the foregoing section are, in fact,

just one member of a much more general family of codes. All the codes in this

family can be list decoded in essentially the same way as the codes of Section 3.3.

3.4.1 Code parameters and encoder mapping

To the list of code parameters detailed in Section 3.3.1, we now add one more

ingredient:

Encoder polynomial: A polynomial T (Y, Z)∈K[Y, Z] of total degree a, that is ir-

reducible overK and has positive degree in both Y and Z, but is otherwise

arbitrary.

We then generalize the encoder mapping of Section 3.3.1 as follows. Let Z be

the set of zeros of T (Y, Z) in K2, namely

Z
def=

{
(β, γ)∈K×K : T (β, γ) = 0

}
(3.25)

We shall assume for the time being (but see the remark at the end of this section)

that there is a way to enumerate the rational points of T (Y, Z) in polynomial

time. That is, we assume that there is a bijection from {1, 2, . . . , |Z |} to Z that

can be computed in time polylog |Z |. We can then think of an encoder for our

code as a mapping E : Z → C from rational points of T (Y, Z) to codewords.

We now describe this mapping. Given a (β, γ)∈Z , we first write β and γ

as

β = f0 + f1ζ + · · ·+ fk−1ζ
k−1, with fi ∈Fq (3.26)

γ = g0 + g1ζ + · · ·+ gk−1ζ
k−1, with gi ∈Fq (3.27)

where ζ is a zero of e(X) in K and, hence, {1,ζ , . . . ,ζk−1} is a polynomial ba-

sis for K over Fq. Then f0, f1, . . . , fk−1 and g0, g1, . . . , gk−1 define polynomials

f (X) and g(X) in Fq[X] of degree at most k− 1. Henceforth, the encoder pro-

ceeds as in (3.15). Namely, the codeword (c1, c2, . . . , cn)∈C corresponding to
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the rational point (β, γ) is given by

c j = f (x j) +αg(x j) for j = 1, 2, . . . , n (3.28)

It should be obvious that the codes constructed in Section 3.3 are just a special

case of the above, which results by taking T (Y, Z) as the absolutely irreducible

polynomial Z−Ya.

Do we gain anything from this generalization? As we shall see, the error-

correction radius of the general codes is still given by (3.17). But their rate is no

longer simply k/2n.

Proposition 3.11. Let g denote the genus of T (Y, Z), and assume that T (Y, Z)

is absolutely irreducible. Then the rate R of the code C defined by (3.25) – (3.28)

is bounded as follows

R > k
2n

+
1

2n

(
logq

(
1− 2g

qk/2

)
− logqa

)
(3.29)

R 6 k
2n

+
1

2n

(
logq

(
1 +

2g
qk/2

))
(3.30)

Proof. Clearly, the rate of C is given by R = logq2 |Z |/n. By the Hasse-Weil

bound [Has49], the number of rational points of T (Y, Z), counted with multi-

plicity, is bounded by
∣∣∣# zeros[T ](K) − (1 + qk)

∣∣∣ 6 2g
√

qk (3.31)

Since the total degree of T (Y, Z) is a, the multiplicity of any rational point of

T (Y, Z) is at most a. The proposition now follows from (3.31), upon straightfor-

ward manipulations.

What Proposition 3.11 tells us is that, in principle, it should be possible to im-

prove upon the simple trivariate codes of Section 3.3 by choosing an irreducible

polynomial T (Y, Z) with many rational points. This would yield codes with the

same error-correction radius whose rate is higher than k/2n. But not by much.

For example, in the (reasonable) regime where n = q, k = Θ(n), and m = O(1),

it follows from Proposition 3.11 and (3.13) that R → k/2n as n → ∞, regardless

of the choice of the encoder polynomial T (Y, Z).
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3.4.2 General trivariate interpolation decoding

The decoding commences exactly as before: we set up the interpolation set

P , compute the corresponding interpolation polynomial Qm(X, Y, Z), then re-

duce it modulo e(X) to obtain the polynomial P(Y, Z)∈K[Y, Z]. In other words,

Steps 1 and 2 of the decoding algorithm of Section 3.3.2 remain unchanged, and

Lemmas 3.6, 3.7, 3.8 still apply.

In view of Lemma 3.8, we are now interested in all pairs (β, γ)∈K2 such

that P(β, γ) = 0. However, as suggested by (3.31), there could be an exponential

number of such pairs, at least in certain cases. The key to our decoding algorithm

is, again, the a priori relationship between β and γ embedded into the encoder.

We know a priori that T (β, γ) = 0, so (β, γ) is a solution to the following system

of equations

P(Y, Z) = 0 and T (Y, Z) = 0 (3.32)

The standard way to solve such a system of polynomial equations is to use re-

sultants. Thus we compute

H(Y) def= Res(P, T ; Z) (3.33)

The resultant of two polynomials is the determinant of their Sylvester matrix;

for a precise definition of the resultant operation Res(·, ·; Z) see e.g. [CLO96,

p.158]. We will furthermore make use of the following lemma from [CLO96,

Chapter 3].

Lemma 3.12. Let P(Y, Z) and T (Y, Z) be arbitrary polynomials over a field K,

both having positive degree in Z, and let H(Y) = Res(P, T ; Z). Then

a. The polynomial H(Y) belongs to the ideal generated by P(Y, Z) and T (Y, Z).

That is, there exist polynomials A(Y, Z) and B(Y, Z) in K[Y, Z] such that

H(Y) = A(Y, Z)P(Y, Z) + B(Y, Z)T (Y, Z) (3.34)

b. The polynomial H(Y) is the all-zero polynomial if and only if the polyno-

mials P(Y, Z), T (Y, Z) have a common factor inK[Y, Z] which has positive

degree in Z.
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Lemma 3.13. The resultant polynomial H(Y) given by (3.33) is not the all-zero

polynomial. Moreover, if (β, γ) is a solution of the system (3.32), then H(β) = 0.

Proof. This follows easily from Lemma 3.12. Strictly speaking, in order to ap-

ply this lemma, we need to make sure that P(Y, Z) has positive degree in Z.

But we can assume this w.l.o.g., otherwise compute the resultant in (3.33) with

respect to Y rather than Z. Now, the fact that H(β) = 0 follows by evaluating

both sides of (3.34) at the point (β, γ) and using (3.32). Since T (Y, Z) is irre-

ducible, it follows from Lemma 3.12.b that H(Y) ≡ 0 if and only if T (Y, Z) di-

vides P(Y, Z). Our condition for a in (3.13) again guarantees that degtotT (Y, Z)>

degtotP(Y, Z), so this cannot happen.

Given a β∈K, we can find all γ ∈K such that (β, γ) is a solution of (3.32) by

computing the set of common roots of the univariate polynomials P(β, Z) and

T (β, Z). To summarize, decoding the general trivariate codes of Section 3.4.1

amounts to modifying the last two steps of the decoding algorithm of Sec-

tion 3.3.2 as follows:

3′ Compute the resultant H(Y) = Res(P, T ; Z)∈K[Y].

4′ Find all the roots of H(Y) in K. For each such root β, find all γ ∈K such

that P(β,γ) = 0 and T (β,γ) = 0. Output the resulting list of pairs (β, γ).

The error-correction radius of this algorithm is still given by (3.17) and (3.23),

and the size of the resulting list is still bounded by a2, where a is given by (3.13).

The latter observation follows from Bézout’s Theorem [CLO96, p. 420]: since

P(Y, Z) and T (Y, Z) have no common factors, the number of solutions to (3.32)

is at most the product of their total degrees.

Remark. Observe that Res(P,T ; Z) = P(Y,Ya) in the special case T (Y, Z) =

Z − Ya. Thus the decoding algorithm of Section 3.3.2 is just an instance of the

general algorithm above. While there are no problems with decoding, the en-

coder assumes the existence of a polynomial-time algorithm for mapping infor-

mation into rational points of T (Y, Z). In general, finding such an algorithm is

hard. So far, we are not aware of any choices for T (Y, Z) that yield codes of rate

R > k/2n and come equipped with an efficient encoder.
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3.5 Extension to multivariate interpolation

We finally discuss the general case M > 2, where the encoder uses M − 1

irreducible polynomials T1, T2, . . . , TM−1. While, in principle, these polynomials

can be essentially arbitrary (cf. Section 3.4), we will only consider the special

case where Ti(Y, Zi) = Zi −Yai for all i (cf. Section 3.3).

Code parameters and encoder mapping. Our code C will now be a subset of

Fn
Q, where Q = qM. We modify the list of code parameters in Section 3.3.1 as

follows:

Basis: A fixed basis {1,α1, . . . ,αM−1} for FQ over Fq.

Exponentiation degrees: A sequence of M− 1 positive integers a1, a2, . . . , aM−1

given by

ai
def=

i

∑
j=0




M+1

√
n

k−1

M

∏̀
=0

(m + `)




j

(3.35)

All other parameters remain unchanged. Given k arbitrary symbols u0, u1, . . . ,

uk−1 ∈Fq, the encoder first constructs the polynomial f (X) = ∑k−1
i=0 uiXi, and

then computes

gi(X) =
(

f (X)
)ai mod e(X) (3.36)

for i = 1, 2, . . . , M−1. The codeword (c1, c2, . . . , cn)∈C corresponding to the

message u0, u1, . . . , uk−1 is given by

c j = f (x j) +
M−1

∑
i=1

αigi(x j) for j = 1, 2, . . . , n (3.37)

It is obvious from the above description that the rate of C is R = logQ|C|/n

which is equal to k/Mn. The minimum distance of C is at least n− k + 1, since

C is again a subset of a Reed-Solomon code of length n and dimension k over

FQ.

Multivariate Decoding. Given a vector v = (v1, v2, . . . , vn) over FQ, we decom-

pose each v j into its components over Fq using the basis {1,α1, . . . ,αM−1}. Thus

we write

v j = y j +
M−1

∑
i=1

αizi, j for j = 1, 2, . . . , n
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where y j and zi, j are in Fq. We then set up the interpolation set P consisting

of the n points (x j, y j, z1, j, . . . , zM−1, j). As before, the first decoding step con-

sists of computing the interpolation polynomial Qm(X,Y, Z1, . . . , ZM−1), defined

as the least (1, k−1, k−1, . . . , k−1)-weighted degree polynomial that has a zero

of multiplicity m at each point of P .

Lemma 3.14. Suppose that a codeword c∈C differs from the given vector v =

(v1, v2, . . . , vn) in at most

t =

n− n M+1

√(
k−1

n

)M(
1+

1
m

)
· · ·

(
1+

M
m

)
− 1

m



positions, and let f (X), g1(X), g2(X), . . . , gM−1(X) denote the message polyno-

mial(s) that produce c according to the mapping (3.36) – (3.37). Then the inter-

polation polynomial satisfies Qm
(
X, f (X), g1(X), . . . , gM−1(X)

) ≡ 0.

Proof. The key observation is that the weighted-degree of the interpolation

polynomial is at most

∆M
def=




M+1

√
n(k− 1)M

M

∏̀
=0

(m + `)




(3.38)

Since the number of interpolation constraints is now given by n(M + m)!/(M +

1)!(m − 1)!, this follows from a simple geometric argument as in Lemma 3.3.

The rest is an easy generalization of Lemma 3.4 and Lemma 3.6.

Next, as in (3.18), we reduce the interpolation polynomial mod e(X) to ob-

tain the polynomial P(Y, Z1, . . . , ZM−1) in the ring K[Y, Z1, . . . , ZM−1], where

K is defined by (3.16). Then exactly the same argument as in Lemma 3.7 shows

that P(Y, Z1, . . . , ZM−1) is not the all-zero polynomial. Moreover, under the con-

ditions of Lemma 3.14, we have

P(β, γ1, . . . , γM−1) = P(β, βa1 , . . . , βaM−1) = 0 (3.39)

where β and γ1, γ2 . . . , γM−1 are the elements ofK corresponding to f (X) and to

g1(X), g2(X), . . . , gM−1(X), respectively. We omit the proof of (3.39), since it is a
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straightforward generalization of the arguments in Lemma 3.5 and Lemma 3.8.

The third decoding step consists of computing

H(Y) def= P(Y, Ya1 , Ya2 , . . . , YaM−1) (3.40)

The fourth and final decoding step is exactly as before: find all the roots of H(Y)

in K, and output this list. It is obvious from (3.39) that, under the conditions of

Lemma 3.14, β is indeed a root of H(Y). There is only one thing left to prove.

Lemma 3.15. The polynomial H(Y) defined in (3.40) is not the all-zero polyno-

mial.

Proof. Consider the M polynomials P0, P1, . . . , PM−1 defined as follows: Pi is a

polynomial in the M− i variables Y, Zi+1, Zi+2, . . . , ZM−1 defined by the recur-

sive rule

Pi(Y, Zi+1, . . . , ZM−1)
def= Pi−1(Y, Yai , Zi+1, . . . , ZM−1)

To initialize this recursion, set P0 = P(Y, Z1, . . . , ZM−1). P(Y, Z1, . . . , ZM−1)

is the interpolation polynomial modulo e(X), as above. It is then clear that

H(Y) = PM−1. To establish the lemma, we will show by induction on i that

none of the polynomials P0, P1, . . . , PM−1 is the all-zero polynomial. As induc-

tion hypothesis, assume that Pi−1 is non- zero. As noted above (see also Lem-

ma 3.7), this is indeed true for i = 1. By induction hypothesis, Pi is the all-zero

polynomial if and only if Zi − Yai is a factor of Pi−1. Thus it would suffice to

show that ai > degtotPi−1. Observe that

degtotPi−1 6 max{a1, a2, . . . , ai−1} degtotP0 (3.41)

and since a1 < a2 < · · · < aM−1 in view of (3.35), it follows that degtotPi−1 6
ai−1 degtotP0. Thus it remains to show that ai > ai−1 degtotP0. But degtotP0 6
∆M/(k−1), as in Lemma 3.9, where ∆M is defined by (3.38). The induction step

now follows by observing that ai/ai−1 > ∆M/(k− 1).

As a by-product of the proof of Lemma 3.15, we also get an upper bound on

the degree of H(Y). Applying (3.41) for the special case i− 1 = M− 1, we find
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that

deg H(Y) 6 aM−1 degtotP0 6 ∆MaM−1

k− 1
(3.42)

Since the list-size of our decoder is obviously bounded by deg H(Y), this com-

pletes the proof of Theorem 3.1. Using the fact that R = k/Mn, the expression

for the error-correction radius t follows readily from Lemma 3.14 while the ex-

pression for the list-size L follows from (3.35), (3.38), and (3.42).

3.6 Explicit capacity achieving codes

This section is based on the results of Guruswami and Rudra [GR06c,GR06b]

on decoding of folded Reed-Solomon codes. We pretty much follow the structure

of [GR06b] here.

In Chapter 2, we observed that multivariate interpolation decoding can de-

code beyond the 1−√R bound when errors are random. However, the prov-

able performance of the algorithm coincides with the 1−√R bound under ad-

versarial model. The key obstacle in improving this bound is the following: for

the case when the messages are pairs of f (X) and g(X) polynomials with degree

< k, two algebraically independent relations is needed in the adaptive recovery

algorithm for decoding. The interpolation polynomial only provides one such

relation. So we used several interpolation polynomials in Section 2.5 to decode,

but there is no guarantee that these interpolation polynomials are algebraically

independent.

Then, in Chapter 3, we used the idea of obtaining the extra algebraic rela-

tion by enforcing it as an a priori condition satisfied at the encoder. Specifically,

instead of letting the second polynomial g(X) to be an arbitrarily polynomial

of degree < k, we make it correlated with f (X) by a specific algebraic condi-

tion, such as g(X) = f (X)a mod E(X) for some integer a and an irreducible

polynomial E(X) of degree k.

The modification of using algebraic relation at the encoder does not come

for free. In particular, since we send at least twice as much information as in the

original RS code, there is no way to construct codes with rate more than 1/2. The
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central idea of Guruswami and Rudra is to avoid this rate loss by making the

correlated polynomial g(X) essentially identical to f (X) (say g(X) = f (γX)).

The evaluations of g(X) can be inferred as a simple cyclic shift of the evaluations

of f (X), so intuitively there is no need to explicitly include those in the encod-

ing. The folded RS encoding of f (X) compresses all the needed information,

without extra redundancy for g(X).

3.6.1 Folded Reed-Solomon codes

Guruswami and Rudra use a simple variant of Reed-Solomon codes called

folded Reed-Solomon codes for which, by choosing parameters suitably, they can

decode close to the optimal fraction of 1− R of errors.

Consider a Reed-Solomon code C(n, k) consist of evaluations of degree < k

polynomials over Fq. Let q = n + 1 and γ be a primitive element of Fq. Assume

that the evaluation points are ordered as 1, γ, γ2, . . . , γn−1. Notice that in con-

struction of Reed-Solomon codes usually all the nonzero elements of Fq is being

used. Let S 6 1 be an integer parameter called the folding parameter. We assume

that S divides n = q− 1. Also let {β0, β1, . . . , βS−1} be a fixed basis of FS
q over

Fq.

Definition 3.1. The S-folded version of the Reed-Solomon code C(n, k) is a code

of block length N = n/S over FS
q . The encoding of a message f (X), a polyno-

mial of degree < k over Fq, is (c0, c1, . . . , cn/S−1)∈FN
qS where

c j
def=

S−1

∑
i=0

βi f (γ jS+i), for j = 0, 1, . . . ,
n
S
−1

In other words, the codewords of the folded Reed-Solomon code are in one-to-

one correspondence with C(n, k) and are obtained by bundling together consec-

utive S-tuples of symbols in codewords of C.

Notice that the folding does not change the rate R of the code. The relative

distance of the folded Reed-Solomon code also meets the Singleton bound and

it is at least 1− R.
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Folded Reed−Solomon code

symbol in errorcorrect symbol

Unfolding
Unfolded code

y
z

S = 4

Figure 3.1: Unfolding a folded Reed-Solomon code

3.6.2 Using trivariate interpolation for folded RS codes

Let us see how trivariate interpolation can be used in the context of decod-

ing the folded Reed-Solomon code. Given a received word v = (v1, v2, . . . , vN)

in (FS
q )N, we construct y = (y1, y2, . . . , yn)∈Fn

q to be the corresponding “un-

folded” received word. (Formally, let j-th symbol of v be (v j,0, v j,1, . . . , v j,S−1)

for j = 0, 1, . . . , N − 1. Let vector y∈Fn
q to be the corresponding “unfolded” re-

ceived word. (Specifically, let y jS+` to be equal to v j,` for j = 0, 1, . . . , N − 1

and ` = 0, 1, . . . , S − 1.) We also, define the vector z to be the cyclic shift

of y to the left, formally, zi := yi+1 for i = 0, 1, . . . , n (with the convention

y0 = yn).

The obvious but very important fact after unfolding is the following: if t

symbols of v∈FN
qS are not in error then at least (S− 1)t pairs of (yi, zi) are also

not in error for i = 0, 1, . . . , n− 1 of the unfolded received word (cf. Figure 3.1).

Suppose, v is the received word of the encoded version of f (X). Define g(X) =

f (γX). Now if we consider the n triples (γi, yi, zi) then for at least (S − 1)t

triples we have f (γi) = yi and g(γi) = zi. This suggest that, using Lemma 3.3,

there is a trivariate polynomial Q(X, Y, Z) that passes through

P =
{
(γ0, y0, z0), (γ1, y1, z1), · · · , (γn−1, yn−1, zn−1)

}
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with multiplicity m and has (1, k − 1, k − 1)-weighted degree smaller than or

equal to

WdegQ(X, Y, Z) 6
⌈

3
√

n(k−1)2m(m+1)(m+2)
⌉

Lemma 3.16. Suppose that a codeword of the folded Reed-Solomon code c∈FN
qS

differs from the given vector v∈FN
qS in at most

t =

⌊
N − N

S
S−1

3

√
R2

(
1+

1
m

)(
1+

2
m

)
− 1

m(S−1)

⌋
(3.43)

position, and let f (X) denote the message polynomial that produces c. Then the

interpolation polynomial satisfies Q(X, f (X), g(X)) ≡ Q(X, f (X), f (γX)) ≡ 0.

Proof. The proof simply follows from the Lemma 3.4 and Lemma 3.16 and the

fact that N = Sn.

Lemma 3.17. Let γ to be a primitive element of Fq and define E(X) def= Xq−1 −γ.

Then we have the following two facts:

1) The polynomial E(X) def= Xq−1−γ is irreducible over Fq.

2) For every polynomial f (X)∈Fq[X] of degree < q− 1 we have

f (γX) = f (X)q mod E(X).

Proof. Suppose E(X) is not irreducible and some irreducible polynomial h(X)

in Fq[X] of degree b, 1 6 b < q− 1, divides E(X). Let ξ be a root of h(X) in the

extension field Fqb . We have ξqb−1 = 1. Also, h(ξ) = 0 implies ξq−1 = γ. Thus,

γ
qb−1
q−1 = 1. γ is a primitive element of Fq and γα = 1 iff α divides q − 1. We

conclude that q− 1 must divide 1 + q + · · ·+ qb−1. This is, however, impossible

since 1 + q + · · ·+ qb−1 ≡ b mod q− 1 and 0 < b < q− 1. This contradiction

proves that E(X) has no factor of degree less than q − 1, and therefore is irre-

ducible. For a precise characterization of all irreducible polynomials of the form

Xa − c, see for instance [LN86, Chapter 3, Section 5].



3.6. EXPLICIT CAPACITY ACHIEVING CODES

88

For the second part, we use the identity f (X)q = f (Xq) for all polynomials in

Fq[X]. Thus, f (X)q− f (γX) = f (Xq)− f (γX). The latter polynomial is divisible

by Xq − γX and thus also by Xq−1 − γ. Hence, f (X)q ≡ f (γX) mod E(X).

Degree of f (γX) is less than q− 1 and that completes the proof.

Lemma 3.18. Let γ to be a primitive element of Fq. There is a deterministic

algorithm that for a nonzero polynomial Q(X, Y, Z)∈Fq[X, Y, Z] of degree less

than q in Y, outputs a list of all polynomials f (X) of degree < k that satisfying

the condition Q(X, f (X), f (γX)) ≡ 0. The algorithm runs in polynomial time

in q.

Proof. Let E(X) = Xq−1 − γ. We know from Lemma 3.17 that E(X) is irre-

ducible. We first divide out the largest power of E(X) that dividesQ(X, Y, Z) to

obtainQ0(X, Y, Z) whereQ(X, Y, Z) = E(X)bQ0(X, Y, Z). Clearly, if f (X) satis-

fies Q(X, f (X), f (γX)) ≡ 0 then it also satisfies Q0(X, f (X), f (γX)) ≡ 0. Now

define T(Y, Z)∈K[Y, Z] to beQ0(X, Y, Z) mod E(X), whereK def= Fq[X]/E(X).

Also, let α to denote the representation of f (X) inK. Therefore, for any f (X) we

know f (γX) = f (X)q mod E(X) and so f (γX) will be represented as αq in K.

Also, for any f (X) that satisfies Q(X, f (X), f (γX)) ≡ 0 we have T(α,αq) = 0.

Define H(Y) = T(Y, Yq). Then, for all the α’s that T(α,αq) is zero H(α) be-

comes zero as well. Degree of H(Y) is at most dq where d is the total degree of

Q(X, Y, Z). The characteristic ofK is at most q, and its degree over the base field

is at most q log q. Therefore, we can find all roots of H(Y) in K by deterministic

algorithm running in time polynomial in d, q [Ber70]. Each of the roots will be

a polynomial in Fq[X] of degree less than q− 1. Once we find all the roots, we

prune the list and only output those roots f (X) with degree < k that satisfy

Q(X, f (X), f (γX)) ≡ 0

Notice that H(Y) is a nonzero polynomial since H(Y) ≡ 0 iff Z−Yq divides

T(Y, Z), and this cannot happen as degree of T(Y, Z) in Y is less than q.

Theorem 3.19. For every ε > 0 and R, 0 < R < 1, there is a family of S-folded

Reed-Solomon codes for S = O(1/ε) that have rate at least R and can be list
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decoded up to a fraction of 1− (1 + ε)R2/3 of errors in time polynomial in the

block length and 1/ε.

Given that trivariate interpolation improves the decoding radius from 1 −
R1/2 to 1− R2/3, it is natural to attempt to use higher order interpolation to im-

prove the decoding radius. Here we just spell out the final result. An interested

reader can check [GR06c, GR06b] for the details.

Theorem 3.20. For every ε > 0, integer M > 1 and 0 < R < 1, there is a family

of S-folded Reed-Solomon codes for S = O(M/ε) that have rate at least R and

can be list decoded up to a fraction of 1 − (1 + ε)RM/(M+1) of errors in time

(NS)O(M)(1/ε)O(1) where N is the block length of the code. The alphabet size

of the code as a function of block length N is (NS)O(S).

In the limit of large M, the decoding radius approaches the list decoding

radius of 1− R.

Theorem 3.21. For every ε > 0 and 0 < R < 1, there is a family of folded Reed-

Solomon codes that have rate at least R an can be list decoded up to a fraction

of 1−R−ε of errors in time (N/ε)O(1/ε) where N is the block length of the code.

The alphabet size of the code as a function of the block length N is (N/ε)O(1/ε2).

The material of Chapter 3 has been presented, in full, at the 46th Annual IEEE

Symposium on Foundations of Computer Science (FOCS), Parvaresh, Farzad; Vardy,

Alexander. The dissertation author was the primary investigator and author of

this paper.



CHAPTER 4

Multiplicity assignment

A soft-decision decoding algorithm for Reed-Solomon codes, based upon

the algebraic interpolation and factorization techniques of Sudan [GS99,Sud97],

was recently proposed by Koetter and Vardy [KV03a]. The key to the soft-

decoding algorithm of [KV03a] is the conversion of probabilities observed at

the channel output into algebraic interpolation conditions, specified in terms of

a multiplicity matrix M. Koetter and Vardy [KV03a] show that the probability of

decoding failure is given by Pr{SM 6 ∆(M)}, where SM is a random variable

whose distribution depends on the channel observations and ∆(M) is a known

function of M. They then derive an efficient algorithm to compute the multi-

plicity matrix M that maximizes the expected value of SM. Here, we attempt to

directly minimize the probability of decoding failure Pr{SM 6 ∆(M)}.

First, we recast this optimization problem into a geometrical framework and

deduce the salient properties of the resulting geometric structure. Using this

geometric insight, we propose a simple modification to the Koetter-Vardy algo-

rithm which results in a provably better multiplicity assignment M.

Finding the multiplicities that minimizes the probability of failure in general

is a hard task. Instead, we use Chebyshev bound to set an upper bound on the

probability of failure Pr{SM 6 ∆(M)} and we minimize the upper bound. This

leads us to an iterative and analytical algorithms to minimize approximately

Pr{SM 6 ∆(M)}. This approach leads to coding gains of up to 0.20 dB for RS

90
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codes of length 255 and up to 0.75 dB for RS codes of length 15, as compared to

the Koetter-Vardy algorithm.

Finally we show how the multiparities can be computed for the finite case

by using both the geometrical framework theorems and the Chebyshev upper

bound on the probability of failure.

4.1 Introduction

The possibility of weighted interpolation was mentioned by Guruswami and

Sudan in [GS99], however the question of how such interpolation weights (or

multiplicities) should be chosen was not discussed. This problem has been later

investigated in a number of papers. Nielsen [Nie03] studies the setting of inter-

polation multiplicities in the context of concatenated codes so as to maximize

the overall Hamming weight of a correctable error pattern. Pecquet [Pec02,

Pec01] considers the so-called λ-distance and s-similarity, and then proposes

a logarithmic multiplicity assignment. The problem of assigning interpolation

multiplicities so as to maximize the cost of a correctable error pattern with re-

spect to a general additive cost structure (which includes [Nie03, Pec02] as spe-

cial cases) was introduced and studied in [KV02].

An entirely different approach to the problem of determining interpolation

multiplicities was taken by Koetter and Vardy in [KV03a]. The goal of the mul-

tiplicity assignment scheme of [KV03a] is to maximize the probability of correct

decoding. Koetter and Vardy [KV03a] show that, for a given multiplicity as-

signment M, this probability is essentially given by Pr{SM > ∆(M)}, where

SM is a random variable (called the score), whose distribution depends on the

channel output, and ∆(M) is a known deterministic function of M. The goal,

then, is to compute M so as to maximize Pr{SM > ∆(M)}. This goal is achieved

in [KV03a] only in the asymptotic sense. Koetter and Vardy [KV03a] derive an

efficient multiplicity assignment scheme that maximizes the mean of SM for a

fixed ∆(M). They moreover show that as the length n of the code becomes

large, the random variable SM concentrates about its mean. Thus for n → ∞,
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Figure 4.1: Score distributions for a fixed n

maximizing the mean of SM is the optimal strategy. In particular, for n → ∞,

this allows transmission with an arbitrarily small probability of error at a maxi-

mum possible rate [KV03a].

However, for each fixed n, maximizing the mean of SM (the expected score)

may be suboptimal. This situation is illustrated in Figure 4.1: the score distribu-

tion on the right represents the Koetter-Vardy [KV03a] multiplicity assignment,

whereas the distribution on the left corresponds to a different multiplicity as-

signment, with a smaller expected score, which nevertheless leads to a higher

probability of correct decoding.

Our goal here is to devise multiplicity assignments based on directly mini-

mizing the probability of decoding failure Pr{SM 6 ∆(M)}. To this end, we first

recast the problem of minimizing Pr{SM 6 ∆(M)} into a geometrical frame-

work. While we are as yet unable to solve the corresponding geometric prob-

lem, we establish several key properties of the resulting geometric structure. Us-

ing the insight thereby gained, we propose a simple modification to the Koetter-

Vardy algorithm which produces a provably better multiplicity assignment. The

results are summarized in Section 4.3.

A completely different approach is taken in Section 4.4. We find an upper

bound on the probability of failure using the Chebyshev bound. Then, instead
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of minimizing the actual probability of failure of the decoder, we minimize the

upper bound on the probability of failure. Under this second-order approxima-

tion, we assume

argmin
M

Pr{SM 6 ∆(M)} ' argmax
M

µ(SM)− ∆(M)
σ(SM)

where µ(SM) is the mean and σ(SM) is the standard deviation of SM. We de-

velop an iterative algorithm that solves the optimization. The iterative algo-

rithm is computationally intensive than the Koetter-Vardy algorithm and/or

the modification thereof developed in Section 4.3. However, it also results in

higher coding gains: up to 0.20 dB for RS codes of length 255 and up to 0.75 dB

for RS codes of length 15, as compared to the Koetter-Vardy algorithm. Finally,

we derive an analytical solution for the second-order approximation optimiza-

tion problem in high SNR cases which has almost the same complexity as that of

Koetter-Vardy but has the same performance as compare to iterative algorithm.

(see Figures 4.5 and 4.4).

In Section 4.5, we use both ideas developed in Section 4.3 and Section 4.4 to

solve the optimization problem for the finite cost. The idea is to transform the

finite cost optimization into infinite cost optimization. Using the theorems from

geometrical framework we show that these two optimization are equivalent.

Then, we exploit the ideas of the Section 4.4 to solve the new optimization prob-

lem. We see that the finite cost optimization is essentially the same as infinite

cost optimization subject to an extra condition on the summation of multiplici-

ties.

4.2 Background and notation

We first recall some of the notation and auxiliary results from [KV03a], that

will be used throughout this chapter. Let Fq be the finite field with q elements.
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A Reed-Solomon code of length n and dimension k over Fq is defined by

Cq(n, k) def= { ( f (x1), f (x2), . . . , f (xn)) :

x1, x2, . . . , xn distinct elements of Fq, f (X)∈Fq[X], deg f (X) < k
}

Given a bivariate polynomialA(X, Y) = ∑∞
i=0 ∑∞

j=0 ai, jXiY j over Fq and integers

wX , wY, the (wX , wY)-weighted degree ofA(X, Y) is defined as degwX ,wY
A(X, Y)

= maxai, j 6=0{iwX + jwY}. Let NwX ,wY(δ) denote the number of monomials XiY j

of (wX , wY)-weighted degree at most δ, and define

∆wX ,wY(ν) def= min { δ∈Z : NwX ,wY(δ) > ν }

It is shown in [GS99,KV03a] that N1,k−1(δ) > δ2/(k−1), and therefore ∆1,k−1(ν)

6
√

2(k−1)ν. Furthermore, for large δ, we have N1,k−1(δ) ' δ2/(k−1), so that

∆2
1,k−1(ν) ' 2(k−1)ν for large ν. Given a q× n matrix M = [mi, j], we define

C(M) def=
q

∑
i=1

n

∑
j=1

mi, j(mi, j + 1)
2

(4.1)

If M is a multiplicity assignment matrix, then mi, j > 0 and C(M) is called the

cost of M. The function ∆(M) that plays a crucial role in soft-decision decoding

of Reed-Solomon codes (see Section 4.1) is given by

∆(M) def= ∆1,k−1(C(M)) = (4.2)

min { δ∈Z : N1,k−1(δ) > C(M) } '
√

2(k−1)C(M)

where the approximation becomes valid for large costs. Next, we need to define

the score SM. To this end, it will be convenient to identify vectors in Fn
q with

q× n matrices over the reals. Specifically, let us list the elements of Fq in some

arbitrary, but fixed, order α1,α2, . . . ,αq. Then a vector v = (v1, v2, . . . , vn)∈Fn
q

can be represented by the q× n real-valued matrix [v], defined as follows: [v]i, j =

1 if v j = αi, and [v]i, j = 0 otherwise. We will often think of q× n matrices over

R simply as vectors in Rqn. In particular, we define the inner product of two

such matrices A and B as

〈A, B〉 def=
q

∑
i=1

n

∑
j=1

ai, jbi, j = trace(ABT)
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Now, the score of a vector v = (v1, v2, . . . , vn) over Fq with respect to a given

multiplicity matrix M can be defined as the inner product SM(v) = 〈M, [v]〉.
The following theorem is one of the key results of [GS99, KV03a, Sud97].

Theorem 4.1. Let M be a given q× n multiplicity assignment matrix. Then there

exists a polynomial-time decoding algorithm for Cq(n, k) that computes a list

of all codewords c∈Cq(n, k) such that SM(c) > ∆(M).

In view of Theorem 4.1, the remaining task of the decoder is to compute the

matrix M that maximizes the score of the transmitted codeword, subject to the

constraint ∆(M) = ∆. However, the transmitted codeword is unknown to the

decoder, only some probabilistic information about it is available through the

channel observations. Thus one should think of the transmitted codeword as

a random vector X = (X1,X2, . . . ,Xn), and the score of this codeword is a

random variable

SM
def= 〈M, [X ]〉 (4.3)

For Reed-Solomon codes, the random variables X1,X2, . . . ,Xn at the channel

input are a priori uniform over Fq, and we assume, as in [KV03a], that they are

independent (in fact, they are not, since X is drawn a priori from Cq(n, k) rather

than uniformly from Fn
q ; however, as shown in [KV03a], taking this into account

leads to an intractable optimization problem). Let Y denote the channel output

alphabet, let Y1,Y2, . . . ,Yn ∈Y denote the random variables at the channel out-

put, and let (y1, y2, . . . , yn)∈Y n be the specific channel output vector observed

by the decoder. Then, for a memoryless channel, the a posteriori distribution of

the random vector X is given by

Pr{X = (x1, x2, . . . , xn)} =
n

∏
j=1

Pr(X j = x j| Y j = y j) (4.4)

where (x1, x2, . . . , xn) ranges over Fn
q . For i = 1, 2, . . . , q and j = 1, 2, . . . , n,

we define πi, j = Pr(X j = αi| Y j = y j) and call the q × n matrix Π = [πi, j]

the reliability matrix. Observe that the a posteriori distribution of the score SM is

completely determined by Π and M. The decoder is given the reliability matrix



4.3. GEOMETRICAL FRAMEWORK

96

Π by the channel, but is free to choose the multiplicity matrix M. The question

is: given Π, how should M be chosen so as to minimize Pr{SM 6 ∆(M)}?

4.3 Geometrical framework

Our objective in this section is to recast the optimization problem above into

a geometrical framework. To this end, let us think of the q × n multiplicity

matrix M as a point in the qn-dimensional Euclidean space V = Rqn. In this

space, we assume that the multiplicity matrix could get not only integer values

but also real values. This assumption relaxes the problem of multiplicity as-

signment form integer value assignment into real value multiplicity assignment.

In Section 4.5, how to modify the real value multiplicity matrix into an integer

value multiplicity matrix. Given a positive integer C, what is the set of all points

M∈V such that C(M) = C? It turns out that this set has a simple characteriza-

tion.

Theorem 4.2. The set of all points M∈V with a given constant cost C(M) = C is

a sphere of radius rC
def=

√
2C + qn

4 centered about the point (−1/2, . . . ,−1/2)∈V .

Proof. It follows from the definition (4.1) that C(M) is equal to C if and only if

∑q
i=1 ∑n

j=1
(
mi, j + 1/2

)2 = 2C + qn
4 .

We denote the sphere in Theorem 4.2 by SC and call it the cost sphere. For

a given C ∈Z+, let ∆ = ∆1,k−1(C). Then it is obvious from (4.2) that ∆(M) = ∆

for all M∈SC . Thus the constraint ∆(M) = ∆ is equivalent to M∈SC in V .

Next, we derive a generating function for the probability distribution of the

score SM, for a given multiplicity assignment matrix M = [mi, j] and reliability

matrix Π = [πi, j]. Define G(T) = ∏n
j=1 G j(T), where

G j(T) def= π1, jTm1, j +π2, jTm2, j + · · ·+πq, jTmq, j =
q

∑
i=1

πi, jTmi, j , for j = 1, 2, . . . , n

(4.5)

Theorem 4.3. Let the reliability matrix Π and the multiplicity matrix M be
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given. Then for all numbers a, the a posteriori probability Pr{SM = a} is equal

to the coefficient of Ta in G(T).

Proof. Given αi ∈Fq, let M(αi, j) denote the entry in row i and column j of M,

that is M(αi, j) = mi, j. We can then define the random variables S j = M(X j, j)

for j = 1, 2, . . . , n. The polynomial G j(T) in (4.5) is precisely the generating

function for the probability distribution of S j. It is easy to see from (4.4) that the

random variables S1, S2, . . . , Sn are independent, and it follows from (4.3) that

SM = S1 + S2 + · · ·+ Sn.

In general, the product G(T) = ∏n
j=1 G j(T) has qn additive terms1, one for

each x∈Fn
q . These terms are of the form px T〈M,[x]〉, where px = e〈ln Π,[x]〉 (here,

ln Π denotes the q× n matrix [ln πi, j], with the understanding that ln 0 = −∞
and e−∞ = 0). To summarize all of the above, we have

G(T) =
n

∏
j=1
G j(T) = ∑

a
Pr{SM = a} Ta = ∑

x∈ Fn
q

px T〈M,[x]〉 (4.6)

Observe that the coefficients px in (4.6) are completely determined by the relia-

bility matrix Π, so that the choice of the multiplicity assignment M affects only

the corresponding exponents T〈M,[x]〉. In light of (4.6), we now assign a value

ϕ∆(M) to each point M∈V . The value function ϕ∆ : V → [0, 1] is defined as

follows:

ϕ∆(M) def= ∑
x∈ Fn

q

px I∆(M, x) (4.7)

where the indicator function I∆(M, x) is defined by I∆(M, x) = 1 if 〈M, [x]〉 >

∆, and I∆(M, x) = 0 otherwise. Combining the derivation of (4.6) with the

definition of ϕ∆ in (4.7), we have the following result.

Theorem 4.4. Let the reliability matrix Π and an integer ∆ > 0 be given. Then

Pr{SM > ∆} = ϕ∆(M) for all M∈V .

1In practice, only η j entries in the j-th column of Π are nonzero, where η j is usually a small
number — most often η j = 1 or η j = 2. Thus the number of nonzero additive terms in G(T) is
∏n

j=1 η j, which is usually less than 2n ¿ qn.
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Thus our goal is to find a point M on the cost sphere SC that maximizes the

value ϕ∆(M) for ∆ = ∆1,k−1(C). Note that the value function ϕ∆(M) partitions

the space V into s convex regions R1, R2, . . . , Rs (where s is at most 2qn
), with

ϕ∆(M) being constant on each region. To see this, observe that 〈M, [x]〉 is just

a summation of some n coordinates of the point M, so the set of all points in V
that satisfy 〈M, [x]〉 > ∆ is a half-space with the hyperplane

Hx
def=

{
M∈V : 〈M, [x]〉 = M(x1, 1) + M(x2, 2) + · · ·+ M(xn, n) = ∆

}

(4.8)

as its boundary. For a given hyperplaneHx, we say that a point M lies above the

hyperplane (or, equivalently, Hx lies under M) if 〈M, [x]〉 > ∆. Conversely, if

〈M, [x]〉 6 ∆, we say that M is under Hx. Now let us assign to each hyperplane

Hx a value equal to px. Then the value ϕ∆(M) of a point M∈V is precisely

the sum of the values of those hyperplanes Hx that lie under M. Clearly, the

hyperplanes Hx partition V into at most 2qn
convex regions, with ϕ∆(M) being

constant on each region.

In the following, we drive some of the properties of geometrical framework.

In Proposition 4.5 we show that in large-cost asymptotic case the framework is

invariance of scaling. With Lemma 4.6, we mark a singular point in space V
which is the intersection of all the hyperplanes in this space and by Lemma 4.7

and Lemma 4.9 we distinguish movements in space V that always keep or in-

crease the value of points conducted by these movements. These two lemmas

are bases of the main theorem of this section, Theorem 4.10, which reduces the

searching space of multiplicity assignment over cost sphere to a set which has

lower dimension than cost sphere.

Proposition 4.5 In asymptotic cases, the geometrical framework is invariance

of scaling, meaning that ϕ∆(λM)(λM) = ϕ∆(M)(M).

Proof. In the large-cost asymptotic case ∆(λM) =
√

(k− 1) 〈λM, λM〉 =

λ∆(M). Thus 〈λM, [x]〉 > ∆(λM) if and only if 〈M, [x]〉 > ∆(M). It follows

that Pr{SλM 6 ∆(λM)} = Pr{SM 6 ∆M}, in view of (4.8) and Theorem 4.4. In
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other word only the direction of the matrix M in the space V , and not the norm,

is relevant for the large costs.

Lemma 4.6. All the hyperplanes Hx intersect at the point ξ = (∆
n , ∆

n , . . . , ∆
n )∈V .

Proof. Clearly 〈ξ , [x]〉 = ∆ for all x∈Fn
q , which proves the lemma.

Lemma 4.7. Let a point M∈V be given, and consider the ray RM
def= {λM +

(1−λ)ξ : λ∈ [0, ∞) ⊂ R}, starting at ξ and passing through M. Then for all

points Mλ ∈RM\{ξ}, we have ϕ∆(Mλ) = ϕ∆(M).

Proof. Fix an x∈Fn
q . We assume there exist points P1, P2 ∈RM\{ξ} such that

〈P1, [x]〉 > ∆ and 〈P2, [x]〉 6 ∆, then show a contradiction. Since 〈Mλ, [x]〉 =

λ 〈M, [x]〉+ (1−λ) 〈ξ , [x]〉 is a continuous function of λ, there must also exist a

point P3 ∈RM\{ξ} such that 〈P3, [x]〉 = ∆. Thus P3 ∈RM ∩Hx. But the point

M0 = ξ belongs to RM ∩ Hx by Lemma 4.6, so that RM intersects the hyper-

plane Hx in (at least) two distinct points. Since RM is one-dimensional, this

implies that RM ⊂ Hx. It follows that all the points of RM lie under Hx, which

contradicts the assumed existence of P1 ∈RM with 〈P1, [x]〉 > ∆. This proves

that for each of the qn hyperplanes Hx in (4.8), either all the points of RM\{ξ}
lie under Hx or all lie above Hx. Hence, the value function ϕ∆ is constant on

RM\{ξ}.

Corollary 4.8 All the partition regions R1, R2, . . . , Rs are open, meaning that for

each i = 1, 2, . . . , s, there exists a line from ξ to infinity that is wholly contained

in Ri.

Proof. For a given point in Ri, consider the ray that start from ξ and passes

through M, RM = {λM + (1−λ)ξ : λ∈ [0, ∞) ⊂ R}. In Lemma 4.7 we have

shown that, either all the points of RM\{ξ} lie under Hx or all lie above Hx

for each hyperplane Hx in (4.8). Thus all the point of RM\{ξ} belongs to same

partition as M. Also, the ray RM goes to infinity as λ goes to infinity, which

completes the proof.
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Figure 4.2: Geometrical framework

Lemma 4.9. Let a point M∈V be given, and consider the line LM
def= {M + λ1 :

λ∈R} passing through M, where 1 denotes the vector (1, 1, . . . , 1)∈V . Then

the value ϕ∆(M+λ1) is monotonically nondecreasing with λ along this line.

Proof. We need to show that ϕ∆(M+λ11)−ϕ∆(M+λ21) > 0 whenever λ1 >

λ2. By the definition of ϕ∆ in (4.7), we have:

ϕ∆(M+λ11)−ϕ∆(M+λ21) = ∑
x∈ Fn

q

px

(
I∆(M+λ11, x)− I∆(M+λ21, x)

)

(4.9)

But if λ1 > λ2, then 〈M+λ11, x〉 − 〈M+λ21, x〉 = (λ1 − λ2)n > 0 for all x∈Fn
q .

This implies that the the difference of the indicator functions I∆ on the right-

hand side of (4.9) is always nonnegative, and the lemma follows.

Theorem 4.10. It is possible to move any given point M on the cost sphere

SC that does not lie on a tangent from ξ to SC to a point M′ ∈SC such that

ϕ∆(M′) > ϕ∆(M).
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Figure 4.3: Performance of C16(15, 11)

Proof. For a given point M∈SC , we move along the line LM defined in Lem-

ma 4.9. In the 2D plane that contains LM and ξ , the tangent line from ξ to cost

circle and LM are not parallel, therefore LM has intersection with the tangent

line at a point P. We know ∆/n > −1/2, so for some γ1 > 0 we reach the point

P = M + γ11 on the tangent from ξ to SC . If M′ ∈SC denotes the point of

tangency, then P = γ2M′ + (1−γ2)ξ for some γ2 6= 0. We can therefore move

along the tangent ray RM′ back from P to the cost sphere SC . By Lemma 4.7

and Lemma 4.9, we have ϕ∆(M′) = ϕ∆(P) > ϕ∆(M), and if γ1 is sufficiently

large, then ϕ∆(M′) > ϕ∆(M). This transformation from M to M′ is illustrated

in Figure 4.2.

Corollary 4.11. Assume the multiplicity matrix is computed as M = λΠ For

a given vector Π∈V and some λ∈R+. If the vector Π does not point toward

the tangency point of cost sphere and ξ , then it is possible to offset Π by γ1

such that the new vector Π + γ1 points toward the tangency point, and by

Theorem 4.10, for modified multiplicity assignment M′ = λ′(Π + γ1) we have
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ϕ∆(M′) > ϕ∆(M). λ′ is chosen such that cost of M′ to be equal to cost of M.

Proof. For the proof check Figure 4.2. To compute value of γ we use the geo-

metrical properties of the triangles CM′ξ and Π′CΠ. We get

γ =

√
r2
C

d2 − r2
C

√
〈Π, Π〉

qn
−

( 〈Π, 1〉
qn

)2

− 〈Π, 1〉
qn

− 1
2

(4.10)

where rC =
√

2C + qn/4 and d = √
qn(∆/n + 1/2).

The Koetter-Vardy algorithm [KV03a] is equivalent to the following multi-

plicity assignment: MKV = bλΠc for a constant λ > 1 (see Lemma 16 of [KV03a]).

In general, the point bλΠc is not on a tangent from ξ to the cost sphere. We can

therefore improve the Koetter-Vardy multiplicity assignment by using result of

Corollary 4.11. For Koetter-Vardy assignment 〈Π, 1〉 is equal to n. For large cost

we have
√

r2
C

d2−r2
C

=
√

n
(k−1)q−n . Thus, M′ = bλ(Π + γ1)c, where

γ = −1
q


1−

√√√√1−
1− 〈Π,Π〉

(k−1)

1− n
(k−1)q


 (4.11)

While the improvement in performance is slight, Figure 4.3, it should be noted

that it comes for “free”. The computation required to find M′ = bλ(Π + γ1)c
is the same as that needed to compute MKV = bλΠc. All we have to do is to

add the constant γ in (4.10) to each πi, j, and then (if desired) use the iterative

algorithm of [KV03a].

4.4 Second-order approximation

We know that the best multiplicity assignment is the solution of the follow-

ing optimization problem:

M∗ = argmin
M

Pr{SM > ∆(M)} (4.12)

In this section, by using the Chebyshev bound, we find an upper bound on the

Pr{SM > ∆(M)} and then we try to minimize the upper bound instead of solv-

ing the actual optimization problem of (4.12). Working with the upper bound
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is computationally more tractable than trying to solve the actual optimization

problem. From Chebyshev bound we know Pr{|X − E[X]| > kσ [X]} < 1/k2,

where E[X] is the expected value and σ2[X] is the variance of the random vari-

able X. Thus for SM we have

Pr{SM > ∆(M)} 6
(

σ(SM)
∆(M)−µ(SM)

)2

(4.13)

where µ(SM) and σ(SM) denote, respectively, the mean and the standard devi-

ation of the score SM. Maximizing
(

σ(SM)
∆(M)−µ(SM)

)2
is equivalent to minimizing

(
∆(M)−µ(SM)

σ(SM)

)2
, and in high SNR cases we know that µ(SM) > ∆(M) so it be-

comes the same as maximizing

L(M) =
µ(SM)− ∆(M)

σ(SM)
. (4.14)

The harder optimization problem of (4.12) is now transferred to a much easier

optimization problem of

M̃∗ = argmax
M

µ(SM)− ∆(M)
σ(SM)

(4.15)

We are expecting that the solution to (4.15) to be very close to (4.12) in high

SNR cases. Simulation results show that the multiplicity assignment based

on (4.15) improves upon Koetter-Vardy algorithm up to 0.2dB for decoding of

Reed-Solomon codes of C(255, 239) for error rates around 10−10.

Later on, in the papers [EM05,EMH04,RK05] authors show that by replacing

the Chebyshev bound on the probability of failure with Chernoff bound we

even can get multiplicity assignments with better coding gain. However, the

complexity of the algorithms derived in [EM05, EMH04] is much higher than

Koetter-Vardy algorithm or the one that we provide in the following section.

Before starting the section we just restate that it is established in [KV03a] that

µ(SM) = 〈M, Π〉 =
n

∑
j=1

q

∑
i=1

mi, jπi, j (4.16)

σ2(SM) =
n

∑
j=1

q

∑
i=1

m2
i, jπi, j −

n

∑
j=1

(
q

∑
i=1

mi, jπi, j

)2

(4.17)

which eventually will be used on deriving the multiplicity assignment algo-

rithms.
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4.4.1 Iterative solution

We will pursue the maximization of L(M) only for the asymptotic case when

the cost of M is large. In this case, as explained in Section 4.2, we have ∆(M) '√
2(k−1)C(M) and we can further simplify this to ∆(M) ' √

(k−1) 〈M, M〉 in

view of (4.1). Combining this with (4.16) and (4.17) yields

L(M) =

n

∑
j=1

q

∑
i=1

mi, jπi, j −
√√√√(k−1)

n

∑
j=1

q

∑
i=1

m2
i, j

√√√√ n

∑
j=1

q

∑
i=1

m2
i, jπi, j −

n

∑
j=1

(
q

∑
i=1

mi, jπi, j

)2
(4.18)

Now our goal is to find M = [mi, j]∈Rqn that maximizes the value of L(M).

Observe that in (4.18) if we replace mi, j by γmi, j or M by γM where γ is a non-

negative constant then L(γM) = L(M). In other words, the value of L(M) is

only a function of the direction of M in Rqn and not the norm of M. To find the

optimum multiplicities we need the solution of the following system of equa-

tions
∂

∂mi, j
L(M) = 0 for i = 1, 2, . . . , q and j = 1, 2, . . . , n (4.19)

After simplify the equations in (4.19) and using the fact that the norm of M is

irrelevant in our optimization we get

mi, j = πi, j
σ2 −µ j

(
µ −

√
k− 1

)

σ2
√

k− 1− πi, j
(
µ −

√
k− 1

) (4.20)

q

∑
i=1

n

∑
j=1

m2
i, j = 1 (4.21)

for i = 1, 2, . . . , q and j = 1, 2, . . . , n. Here, µ and σ are basically µ(SM) and

σ(SM) defined in (4.16) and (4.17), and µ j is defined as µ j
def= ∑q

i=1 mi, jπi, j. The

equations (4.20) and (4.21) are nonlinear and we use iterative methods to find

the solution.

Assume that the set of equations in (4.20) and (4.21) have a fixed point. We

start with an initial value for M = [mi, j] for example the Koetter-Vardy as-

signment. Then we normalize the multiplicities by dividing each mi, j with



4.4. SECOND-ORDER APPROXIMATION

105

√
∑q

i=1 ∑n
j=1 m2

i, j, and then we compute µ,σ and µ j for j = 1, 2, . . . , n. We plug

in all the computed variables in to the RHS of (4.20) to get a new set of multi-

plicities. We repeat the procedure couple of times to get a stable set of solutions.

Let say M(0) = [m(0)
i, j ], M(1) = [m(1)

i, j ], . . . , M(`) = [m(`)
i, j ] are the multiplicities at

the iteration i = 0, 1, . . . , `. Also, let µ(s),σ (s) and µ
(s)
j represent the value of µ,σ

and µ j for j = 1, 2, . . . , n at iteration s, respectively. Then the updates become

as follow:

m̃i, j ← πi, j

(
σ (s)

)2
+ µ

(s)
j

(
µ(s) −

√
k−1

)

(
σ (s)

)2√
k−1 − πi, j

(√
k−1−µ(s)

) (4.22)

m(s+1)
i, j ← m̃i, j√

∑n
j=1 ∑q

i=1

(
m̃i, j

)2

for s = 0, 1, . . . , `− 1. The initial value for the multiplicities can be taken as of

normalized Koetter-Vardy multiplicity assignment:

m(0)
i, j :=

πi, j√
∑q

i=1 ∑n
j=1 π2

i, j

for i = 1, 2, . . . , q and j = 1, 2, . . . , n

It seems to be hard to prove that the iteration of (4.22) converge to a fixed

point or the solution of (4.15). However, simulations results show that the itera-

tive solution, indeed, performs better than Koetter-Vardy assignment for decod-

ing of Reed-Solomon codes C(255, 239) over a BAWGN channel (cf. Figure 4.5).

In the iterative algorithm, at each iteration we compute µ(s), σ (s) and µ
(s)
j .

That takes 3qn addition and multiplication over reals. In addition, the normal-

ization part of iteration needs 2qn operation. To get a stable results for mul-

tiplicities usually more that 5 iteration is needed, so totally the complexity of

the algorithm is 30qn operation over reals. This is at least 30 times more than

Koetter-Vardy algorithm. In the next section we solve the optimization analyti-

cally and hence drive a much faster algorithm for multiplicity assignment.
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Figure 4.4: Performance of soft decoding of C(468, 420) over AWGN channel,
when multiplicity of the interpolation tends to infinity.

4.4.2 Analytical solution

In order to solve the optimization problem of (4.15) in Section 4.4.1 we end

up with a system of nonlinear equations (4.19). Here, by representing (4.18) in a

matrix form, we are able to transform the system of equations to a diagonal form

and so decouple the equations. That helps us to solve the equations analytically.

Although we have the solutions analytically but still they are hard to inter-

pret. So, we use further approximations to simplify the solution. At high SNR,

we know that the received symbol with high probability is either the most reli-

able symbol or second most reliable symbol. Thus, we just keep track of most

reliable and second most reliable symbol for each received symbol at decoder

and we assume that the reliability of the rest is zero. That reduces the dimen-

sion of reliability matrix from q× n to 2× n and so reduces the complexity by a

factor of q. In addition, this assumption helps us to simplify the final solution.

To represent (4.18) in a matrix form it is more convenient to think of the

reliability matrix and multiplicity matrix as vectors instead of matrices. So we
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Figure 4.5: Performance of soft decoding of C(255, 239) over AWGN channel,
when multiplicity of the interpolation tends to infinity.

define the vector forms as:

Πvec
def= [π1,1, . . . , πq,1, π1,2, . . . , πq,2, . . . , πq,n]t

Mvec
def= [m1,1, . . . , mq,1, m1,2, . . . , mq,2, . . . , mq,n]t

Also, let Pj denotes the covariance matrix of the S j(M), where S j(M) is the ran-

dom variable with the distribution of Pr{S j(M) = mi, j} = πi, j. Notice that

under this notation SM = S1(M) + S2(M) + · · ·+ Sn(M). The covariance ma-

trix for S j is equal to

Pj
def=




π1, j(1− π1, j) −π1, jπ2, j . . . −π1, jπq, j

−π1, jπ2, j π2, j(1− π2, j) . . . −π2, jπq, j
...

... . . . ...

−π1, jπq, j . . . πq, j(1− πq, j)




(4.23)
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In addition, we the covariance matrix of SM becomes

P def=




P1

P2 0
. . .

0 . . .

Pn




. (4.24)

Notice that the random variable Si is independent of S j for any i and j that i 6= j.

Then for the mean and variance of the score SM we have

µ(SM) = MvecΠ
t
vec , Var(SM) = Mt

vecPMvec (4.25)

and L(M) defined in (4.18) turns into the form of

L(M) =
Mt

vecΠvec −
√

(k− 1)Mt
vecMvec√

Mt
vecPMvec

(4.26)

Matrix P is symmetric along its main diagonal, so there exists a unitary ma-

trix V such that P = VtDV, where D is a diagonal matrix and the diagonal

elements of D are the eigen values of P. we map our multiplicity vector and re-

liability vector by V to the domain that the covariance matrix P has the diagonal

form of D:

M′
vec ← VMvec , Π′vec ← VΠvec (4.27)

Hence (4.18) becomes

L(M′
vec) =

M′t
vecΠ

′
vec −

√
(k− 1)M′tvecM′

vec√
M′tvecDM′

vec
(4.28)

Similar to Section 4.4.1, by using Lagrange multipliers, we optimize (4.28) under

the conditions that M′t
vecM′

vec = 1 and M′t
vecDM′

vec = σ2. The solution to the

optimization is

M′
vec = (I + λD)−1Π′vec (4.29)

where λ is an arbitrarily constant. To find λ we replace M′
vec in (4.28) by RHS of

(4.29). This gives us an optimization over λ:

L(λ) =
g(λ)−

√
(k− 1)

(
g(λ) + λg′(λ)

)
√−g′(λ)

(4.30)
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where

g(λ) def= Π′tvec(I + λD)−1Π′vec and g′(λ) =
d

dλ
g(λ) (4.31)

The derivative of L(λ) respect to λ is zero whenever g(λ) + λg′(λ) = k− 1:

Π′tvec (I + λD)−2
Π′vec = k− 1 (4.32)

After simplification (4.32) gives a univariate polynomial of degree at most 2n

over λ where the zeros of the polynomial are solution of (4.32). Any efficient

root finding algorithm such as Newton method can be used to find zeros of the

univariate polynomial. We set λ∗ to be the root that maximizes (4.32). Then

(4.29) computed at λ = λ∗ gives us the multiplicities.

Multiplicity assignment algorithm:

Input: Reliability

Πvec := [π1,1, . . . , πq,1, π1,2, . . . , πq,2, . . . , πq,n]t

Output: Multiplicities

Mvec := [m1,1, . . . , mq,1, m1,2, . . . , mq,2, . . . , mq,n]t

1 Construct matrix P as defined in (4.24) and (4.23).

2 Find the unitary transformation V that P = VtDV for a

diagonal matrix D; Set D ← VPVt and Π′vec ← V Πvec.

3 Find all the roots λ that satisfies the following equation

Π′tvec (I + λD)−2
Π′vec = k− 1

4 Set λ∗ to be the root among all the solution of step 3

that maximizes the value of L(λ) in (4.30).

5 Output Mvec ← Vt (1 + λ∗D)−1
Π′vec.

This algorithm is computationally more complicated than Koetter-Vardy mul-

tiplicity assignment. We find an approximation for the algorithm when the SNR
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is high; In those cases we are expecting that the received symbols to be reliable

with high probability. In other words, at each column of reliability matrix we

should have one or two elements with nonzero reliability and the reliability of

the rest should be very close to zero. We only keep the first two most reliable

symbol at each column of reliability matrix and consider the reliability of the

rest to be zero. This reduces the size of the reliability matrix from q× n to 2× n.

Also, we assume that π1, j + π2, j ' 1 for any j = 1, 2, . . . , n. Hence, without loss

of generality π1, j and π2, j denote the reliability of the most reliable and second

most reliable symbol of the jth received word, respectively. Then for covariance

matrix and its diagonal form we have

Pj = π1, jπ2, j

(
1 −1

−1 1

)
, D j = π1, jπ2, j

(
0 0

0 2

)
, Vj =

√
2

2

(
1 1

1 −1

)

(4.33)

We also assume that π1, jπ2, j is small so we approximate the terms of the form

(π1, jπ2, j)(πi, j ′π2, j ′) with zero. This simplifies (4.32) to:

λ∗ =
1

2 ∑n
j=1 π1, jπ2, j




√
∑n

j=1(π1, j − π2, j)2

2(k− 1)− n
− 1


 (4.34)

Using the result of (4.34) in (4.29) gives us the following multiplicity assignment

algorithm:

Choose:

λ∗ ' n
2 ∑n

j=1 π1, jπ2, j

(√
∑n

j=1(π1, j−π2, j)2

2(k−1)−n − 1

)

Assign Multiplicities:
m1, j = 1 +

π1, j − π2, j

1 + 2π1, jπ2, jλ
∗

m2, j = 1− π1, j − π2, j

1 + 2π1, jπ2, jλ
∗
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The complexity of this algorithm is essentially the same as of Koetter-Vardy

algorithm. In Figure 4.4 and Figure 4.5 , the performance of Koetter-Vardy algo-

rithm, the Chebyshev algorithm and the analytical solution are plotted.

4.5 Fixed-cost multiplicity assignment

Interpolation multiplicities are integer numbers and in practice have small

values close to one. The complexity of decoder increase with cost of multiplicity

matrix; To be able to decode in practice the cost of multiplicity matrix should be

below certain limit. Finding the optimum integer value multiparities for a given

cost is a really hard problem. Instead, we relax the optimization problem to real

value multiplicities but with fixed given cost. Using the Lemmas and Theorems

we developed in Section 4.3 we transform the finite cost problem into an infinite

cost problem and then we try to mimic the ideas we introduced in Section 4.4

to solve the new optimization problem. It turns out that the multiplicity assign-

ment for the finite cost after transformation into infinite cost is essentially the

same as multiplicity assignment for infinite cost with the extra condition on the

summation of multiplicities; I.e., multiplicity vector lies on a certain cone in V .

The general formulation of the multiplicity assignment for fixed-cost C is the

following:

M∗ = argmin
M∈ Rq×n

Pr{SM 6 ∆(M)} (4.35)

where C(M) =
q

∑
i=1

q

∑
j=1

1/2mi, j
(
mi, j + 1

)
= C

For simplicity lets denote by ∆C the value of ∆(C). From Theorem 4.2, the solu-

tion of (4.35) lie on the cost sphere SC of radius rC =
√

2C + qn
4 centered about

the point (−1/2,−1/2, . . . ,−1/2)∈V . Also, from Theorem 4.10, M∗ lies on a tangent

line from ξ to SC . Let Tξ(SC) denotes the following set

Tξ(SC)
def= {M∈SC : M belongs to tangent line from ξ to SC } (4.36)
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Then the optimization of (4.35) is equivalent to

M∗ = arg min
M∈ Tξ (SC )

Pr{SM 6 ∆C} (4.37)

Theorem 4.12. Let KC be the following set

KC
def= {λM + (1− λ)ξ : M∈Tξ(C) and λ∈ [0, ∞) ⊂ R} (4.38)

then the solution to optimization problem of (4.37) is also the solution to opti-

mization problem of

M∗ = arg min
M∈KC

Pr{SM 6 ∆C} (4.39)

In addition, let M∗ denotes the solution of (4.39). Then the solution of (4.37) and

(4.35) has the form of λM∗ + (1− λ)ξ for some λ∈ [0, ∞) ⊂ R.

Proof. From Lemma 4.7, ϕ∆(M) = Pr{SM > ∆} is invariant under the trans-

formation M → λM + (1− λ)ξ , for λ∈ [0, ∞) ⊂ R. The set KC is the extension

of the set Tξ(C) under the transformation M → λM + (1− λ)ξ . Thus the solu-

tion to optimization of (4.37) and (4.39) are the same modulo the transformation

M ← λM + (1− λ)ξ .

Lemma 4.13. The set KC is a cone in V defined by the set of ray in V starting at

ξ and are tangent to the sphere SC ; Explicitly, let θM denotes the angle between

the vectors ∆C
n 1 and ∆C

n 1− M in V .

KC =





M∈V : cosθM =

√√√√√1− r2
C(

∆C
n + 1/2

)2
qn





(4.40)

Proof. In the definition (4.38) we implicitly defined the set KC

KC = {M∈V : where the ray λM + (1− λ)ξ

for λ∈ [0, ∞) is tangent to sphere SC .}

The reset of the proof is just the result of the geometry of the cone KC in the

space V . See Figure 4.6.
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Figure 4.6: Geometrical framework; The cone and tangent rays

The definition of the cone becomes much simpler for the case that ‖M‖ is

large. In this case, we can approximate ∆C
n 1− M by −M and therefore for the

set KC we get:

KC =





M∈V : 〈M, 1〉 = −‖M‖

√√√√qn−
(

rC
∆C
n + 1/2

)2




, as ‖M‖ → ∞

(4.41)

So we solve the optimization problem of (4.39) on the tail of the cone KC where

‖M‖ is large and the simpler definition of the cone KC is applicable. After find-

ing the solution of (4.39) for large ‖M‖ we map it to finite cost multiplicity M

by moving along the ray λM + (1− λ)ξ toward ξ .

Similar to Section 4.4, we instead of optimizing directly the value of Pr{SM 6
∆(M)} we minimize the Chebyshev upper bound on the probability of failure

of decoder. Because we have already considered that ‖M‖ is large we can use

(4.18) for the upper bound. We know value of L(M) in (4.18) is independent of

the norm of M and it only depends on the direction of M in the space V . In

addition from (4.41) if M is in the set KC then also λM is in KC for any λ∈R+
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. Thus, without loss of generality we assume that norm of M is one in our opti-

mization. The optimization becomes:

M∗
∞ = argmax

M
L(M) =

n

∑
j=1

q

∑
i=1

mi, jπi, j −
√

(k−1)

√√√√ n

∑
j=1

q

∑
i=1

m2
i, jπi, j −

n

∑
j=1

(
q

∑
i=1

mi, jπi, j

)2
(4.42)

under the conditions:

n

∑
j=1

q

∑
i=1

mi, j = −

√√√√qn−
(

rC
∆C
n + 1/2

)2

,
n

∑
j=1

q

∑
i=1

m2
i, j = 1

The optimization of (4.42) can be solved using Lagrange multipliers. Similar to

Section 4.4.2, we use vector notations for M and Π and transfer the optimization

in the matrix form of

M∗
∞,vec = argmax

Mvec

Mt
vecΠvec −

√
k− 1√

Mt
vecPMvec

(4.43)

under the conditions:

Mt
vec Jvec = −

√√√√qn−
(

rC
∆C
n + 1/2

)2

, Mt
vecMvec = 1

where Jvec = [1, 1, . . . , 1]t is a vector of ones. Let V be the unitary matrix that

for P we have P = VtDV where D is a diagonal matrix. Also, let M′
vec :=

VMvec, Π′vec := VΠvec and J′vec := V Jvec. The solution to the optimization has

the following form:

M′
∞,vec = (ηI + λD)−1 (Π′vec + δ J′vec) (4.44)

where η, λ, and δ are constant, from Lagrange multipliers method. In general,

two of the constants can be eliminated by using the two conditions of optimiza-

tion (4.43). To eliminate the third constant we have to replace M in (4.43) by

(4.44). This gives a function only, let say, in λ; Then we optimize the function

one more time over λ to find the optimum λ. The computation is messy and we

omit the results.



4.5. FIXED-COST MULTIPLICITY ASSIGNMENT

115

The final step of the algorithm is to transfer the optimal multiplicity at infin-

ity to finite cost. As shown in Figure 4.6, the finite multiplicity vector is

M∗ =
∆C
n

1 + M∗
∞

√(
∆C
n

+
1
2

)2

qn− r2
C (4.45)

assuming that ‖M∗∞‖ = 1.

Remark. The optimization of (4.43) is well known as quadratic fractional optimiza-

tion in literature and there are efficient algorithms other that Lagrange multipli-

ers for that. It remains as an open problem to find the best method that is well

suited for our multiplicity assignment algorithm among the quadratic fractional

programs.

We have presented the results of Chapter 4, in part, at the 2003 International

Symposium on Information Theory (ISIT), Parvaresh, Farzad; Vardy, Alexander.

The dissertation author was the primary investigator and author of this paper.



CHAPTER 5

Efficient interpolation via

matrix-chain product

The main computational steps in algebraic soft-decoding [KV03a] and/or

Sudan-type list decoding [GS99] of Reed-Solomon codes are interpolation and

factorization. The interpolation consists of computing a certain bivariate poly-

nomial Q(X, Y) that passes through a prescribed set of points with prescribed

multiplicities. Using the iterative algorithm of Koetter [Köt96, Koe96, McE03b],

this computation can be accomplished in time O(N2), where N is the number

of linear equations that should be satisfied by the coefficients of Q(X, Y). Here,

we recast the iterative interpolation procedure of [Köt96, Koe96] as a computa-

tion of the product of a certain chain of polynomial matrices. We then derive

a dynamic-programming algorithm which optimizes the multiplication order

in computing such polynomial matrix products. The resulting optimization re-

duces the number of finite-field operations needed to compute Q(X, Y) by a

factor of about two. Our approach can be easily combined with other com-

putational speed-ups, such as the re-encoding method developed in [KV03b,

KMVA03].

116



5.1. INTRODUCTION

117

5.1 Introduction

As we have seen in Chapter 1 and Chapter 4 list decoding and algebraic soft-

decision decoding use interpolation and factorization of bivariate polynomials,

which is much more computationally intensive than hard-decision decoding.

Bivariate interpolation consists of computing a polynomial Q(X,Y) of min-

imum weighted-degree that passes through a prescribed set of points P =

{(x1, y1), (x2, y2), . . . , (xs, ys)} ⊆ F2
q with prescribed multiplicities mx1 ,y1 , mx2 ,y2 ,

. . . , mxs ,ys∈N. This is, by far, the most time-consuming task in Sudan-type

decoding: it is widely recognized as the computational bottleneck of the de-

coder. Several efficient algorithms for such bivariate interpolation have been

proposed in the literature [AKS03, FG01, KV03b, McE03b, NH98, OS99, RR00].

Most of these are based on the iterative algorithm, originally developed by

Koetter [Köt96, Koe96], for computing a Gröbner basis for the ideal of poly-

nomials that pass through the points in P with the prescribed multiplicities. We

will briefly review Koetter’s algorithm in the next section. This algorithm takes

about O(N2) finite-field operations to compute Q(X, Y), where N is given by

N def=
1
2

s

∑
i=1

mxi ,yi(mxi ,yi+1)

We note that this fundamental iterative algorithm is used in one form or another

in all of [AKS03, FG01, KV03b, McE03b, NH98, RR00] and serves as the basis for

all existing implementations of Sudan-type decoders [AKS03, GKKG02].

In the next section, we observe that the computation performed in Koetter’s

algorithm [Köt96, Koe96] is tantamount to computing the matrix-chain product

A1 A2 · · · AN, where A1, A2, . . . , AN are square polynomial matrices over Fq. Even

though all these matrices are of the same dimension `×`, the fact that the entries

in Ai are polynomials in X implies that the total number of finite-field opera-

tions required to compute A1 A2 · · · AN depends on the order in which the mul-

tiplication is carried out. In all of [AKS03, FG01, KV03b, McE03b, NH98, RR00],

this multiplication is carried out in the natural order
( ((

(A1 A2)A3

)
A4

)
· · · AN

)
(5.1)



5.1. INTRODUCTION

118

Instead, we derive in Section 5.3, a dynamic-programming algorithm which op-

timizes the multiplication order in computing A1 A2 · · · AN. The resulting op-

timization reduces the number of finite-field operations required to compute

A1 A2 · · · AN — and thus construct the interpolation polynomial Q(X, Y) — by

a factor of about two as compared to (5.1).

We can further reduce the interpolation complexity by yet another factor of

two, by observing that we only need to compute one element — the one with the

least weighted degree — from a Gröbner basis for the relevant ideal. In Section

5.5, we present an optimum and suboptimum algorithms for this case.

The problem with the optimal dynamic-programming algorithm of Section

5.3 is that it requires O(N3) integer additions and comparisons, and therefore

might take more time than computing the product A1 A2 · · · AN itself, which

takes only O(N2) finite-field operations. Thus in Section 5.4, we develop a sub-

optimal version of this algorithm which runs in time O(dN2), where d is a small

parameter, and achieves almost the same reduction in complexity. The constants

in O(·) work-out in our favor. For example, for N = 1000 and ` = 16, the se-

quential computation in (5.1) takes 53×106 finite-field operations. With d = 8,

we pay only about 8×106 integer additions to reduce the number of finite-field

operations required to compute A1 A2 · · · AN to 33×106.

We point out that several other methods for reducing the complexity of

interpolation in Sudan-type decoding have been recently proposed, most no-

tably [FG01] and [KV03b]. Indeed, the savings obtained here pale in comparison

with the re-encoding idea of [KMVA03, KV03b], which reduces the complexity

of interpolation by a factor of at least n2/(n−k)2 for a Reed-Solomon code of

length n and dimension k. The point is that our results can be easily combined

with the methods of [FG01, KMVA03, KV03b] and other authors. Whenever

there is iterative interpolation, it can be recast as a polynomial matrix-chain

product computation. Whenever the multiplication of the matrices in this chain

can be performed in an arbitrary order (as is often the case), our methods will

apply. Thus the savings we obtain in are on top and not instead of previous

reductions in interpolation complexity.
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5.2 Interpolation as a matrix-chain product

The central idea underlying all of the Sudan-type list decoding algorithms

is to construct a polynomial Q(X, Y) of minimal (1, k−1)-weighted degree that

passes through a prescribed set of points P = {(x1, y1), (x2, y2), . . . , (xs, ys)}
with prescribed multiplicities mx1 ,y1 , mx2 ,y2 , . . . , mxs ,ys ∈N. More specifically, let

Du,v P(X, Y) denote the (u, v)-th partial Hasse derivative of a bivariate polyno-

mial P(X, Y). Then the interpolation polynomial Q(X, Y) can be defined as the

least (1, k−1) weighted-degree polynomial in Fq[X, Y] that satisfies the follow-

ing set of linear equations:

∀(x, y)∈P , ∀u, v∈Z with 0 6 u + v < mx,y : Du,v Q(X, Y)
∣∣∣
(x,y)

= 0 (5.2)

Note that the total number of equations in (5.2) is precisely N. Koetter’s algo-

rithm [Köt96, Koe96] proceeds by iteratively constructing the minimal (in the

(1, k−1)-weighted-degree monomial order) Gröbner basis for the ideal of poly-

nomials that satisfy the first i equations in (5.2), for i = 0, 1, . . . , N. We will often

think of this Gröbner basis as a vector of bivariate polynomials (Q0, . . . , Q`−1),

where ` is the smallest integer such that 2N < `(` + 1)(k−1). For i = 0, this

vector is initialized to
(

Q(0)
0 , Q(0)

1 , Q(0)
2 , . . . , Q(0)

`−1

)
=

(
1, Y, Y2, . . . , Y`−1

)

Now suppose that at iteration i of the algorithm, we are dealing with the (a, b)-

th Hasse derivative at the point (xr, yr)∈P — that is, (x, y) = (xr, yr) and

(u, v) = (a, b) in (5.2). Then Koetter’s algorithm proceeds as follows. Given the

current basis Q(i−1)
0 (X,Y), Q(i−1)

1 (X,Y), . . . , Q(i−1)
`−1 (X,Y):

1 For all j = 0, 1, . . . , `−1:

Compute the discrepancy ∆ j = Da,b Q(i−1)
j (X, Y)

∣∣∣
(xr ,yr)

.

2 Among Q(i−1)
0 (X,Y), Q(i−1)

1 (X,Y), . . . , Q(i−1)
`−1 (X,Y), find the least (1, k−1)-

weighted-degree polynomial Q(i−1)
t (X, Y) such that its discrepancy ∆t is

nonzero. We call this the pivot polynomial and say that τ(i) def= t is the

pivot index at iteration i.
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3 For all j = 0, 1, . . . , `−1, except j = t, compute

Q(i)
j (X, Y) ← Q(i−1)

j (X, Y) − ∆ j

∆t
Q(i−1)

t (X, Y)

Then set Q(i)
t (X, Y) ← (X− xr)Q(i−1)

t (X, Y).

In fact, the only “essential” computation is the one performed in Step 3 of the

above algorithm. The discrepancies ∆1, ∆2, . . . , ∆`−1 and the pivot index t =

τ(i) can be pre-computed using the so-called discrepancy polynomials, as sug-

gested in [AKS03]. Moreover, if the divide-and-conquer methods of [FG01,

MTV04] are used, these discrepancies would often be already available to the

decoder. The computation in Step 3 of the algorithm can be represented in ma-

trix form as follows:



Q(i)
0 (X,Y)

Q(i)
1 (X,Y)

...

Q(i)
`−1(X,Y)




=




1 βi,0

1 βi,1
. . . ...

X− xr
... . . .

βi,`−1 1







Q(i−1)
0 (X,Y)

Q(i−1)
1 (X,Y)

...

Q(i−1)
`−1 (X,Y)




(5.3)

where, in the `× ` matrix above, βi, j = −∆ j/∆t for all j∈ {0, 1, . . . , `−1} \ {t},

the column containing X− xr is in the pivot position t, and all the other columns

are of the form (00 · · · 010 · · · 0)t. Let us denote the ` × ` polynomial matrix

in (5.3) by Ai. Then it should be obvious that




Q(N)
0 (X,Y)

Q(N)
1 (X,Y)

...

Q(N)
`−1(X,Y)




= AN AN−1 · · · A2 A1




1

Y

Y2

...

Y`−1




(5.4)

This is the desired formulation of the iterative interpolation algorithm as a poly-

nomial matrix-chain product. Since matrix product is associative, the computa-

tion in (5.4) can be carried out in any order, and not necessarily in the sequential
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iterative order implied by (5.3). Finding the “best” multiplication order for com-

puting AN AN−1 · · · A1 in (5.4) is the subject of the next section.

Remark. In the context of (5.4), the algorithm proposed by Feng and Giraud

in [FG01] essentially becomes a recursive divide-and-conquer parenthesization

of the matrix chain AN AN−1 · · · A1.

5.3 Optimal multiplication order

It is well known that an appropriate parenthesization of a chain of matrices

can have a dramatic impact on the cost of evaluating their product. Given a

matrix-chain product A1 A2 · · · AN, there is an exponential number of ways to

parenthesize this product, given by the Catalan number

CN−1
def=

1
N

(
2(N−1)

N−1

)
=

(N + 1)(N + 2) · · · 2(N − 1)
1·2 · · · (N − 1)

The standard matrix-chain multiplication problem, where the dimensions of the

matrices are different while the matrix elements are scalars, was first solved us-

ing dynamic-programming by Godbole [God73] in 1973. Godbole’s algorithm

runs in time O(N3). A more efficient algorithm, that runs in time O(N log N),

was given by Hu and Shing [CT84] in 1984. Variations of this problem are still

a subject of active research interest — see the recent survey in [LKHL03].

Here, we are interested in parenthesizing the chain AN AN−1 · · · A1 in (5.4),

where Ai is the matrix defined in (5.3). For convenience, we shall henceforth

reverse the indexing order and write this chain as A1 A2 · · · AN, with the con-

vention that i ← (N+1)− i with respect to (5.4).

We first need an expression for the cost of multiplying two univariate poly-

nomials and for the cost of multiplying two polynomial matrices. To this end,

we make several simplifying assumptions. Given p(X)∈Fq[X], we define

Deg p(X) def=





0 if p(X) = 0 or p(X) = 1

1 + deg p(X) otherwise



5.3. OPTIMAL MULTIPLICATION ORDER

122

where deg p(X) is defined as usual. We then assume that the cost of multi-

plying two polynomials p(X), q(X)∈Fq[X] is Deg p(X) Deg q(X). Indeed, if

p(X) and q(X) are both nonzero and non-sparse, then computing p(X)q(X)

(in a straightforward fashion, see the remark below) takes about (deg p(X) +

1)(deg q(X) + 1) finite-field additions/multiplications. Now let U = [ui, j(X)]

and V = [vi, j(X)] be `× ` polynomial matrices. Then we assume that the cost

of computing UV is

C(U, V) def=
`

∑
i=1

`

∑
j=1

`

∑
k=1

Deg ui, j(X) Deg v j,k(X) (5.5)

Remark. There are fast polynomial-multiplication algorithms [Gan89] that

compute p(X)q(X) with only O(D log D) finite-field multiplications, providing

deg p(X), deg q(X) < 2D − 1. We can account for such algorithms by modify-

ing the expression in (5.5) — the analysis remains virtually unchanged. There

are also fast matrix-multiplication algorithms [Pan92] that compute the prod-

uct of two `× ` matrices in time O(`2.496). However, such algorithms involve

significant overhead. They are therefore unlikely to be advantageous in our ap-

plication where ` is small (usually 4 6 ` 6 16).

We now return to the original problem of parenthesizing the matrix-chain

A1 A2 · · · AN in (5.4). Given integers i and j such that 1 6 i < j 6 N, let C (i, j)

denote the optimal cost of computing the subchain Ai Ai+1 · · · A j. Thus what

we are after is C (1, N). Clearly, an optimal parenthesization of Ai Ai+1 · · · A j

splits this product between Ak and Ak+1 for some k in the range i 6 k < j. Thus

C (i, j) = min
i6k< j

{
C (i, k) + C (k+1, j) +

C
(
(Ai Ai+1 · · · Ak), (Ak+1 Ak+2 · · · A j)

)}
(5.6)

To complete the recursion, we must compute C
(
(Ai · · · Ak), (Ak+1 · · · A j)

)
. To

this end, it will be convenient to introduce degree matrices, defined as follows.

Given an `× ` polynomial matrix U = [ui, j(X)], we define the corresponding

` × ` integer matrix Deg U = [Deg ui, j(X)] and call it the degree matrix of U.

With this notation, the following lemma shows that the expression for C(U, V)

in (5.5) can be computed with only ` rather than `3 integer multiplications.
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Lemma 5.1. Let C(U, V) be the cost of multiplying the `× ` polynomial matri-

ces U and V, as defined in (5.5). Then

C(U, V) = (
`︷ ︸︸ ︷

1, 1, . . . , 1 ) Deg U Deg V (
`︷ ︸︸ ︷

1, 1, . . . , 1 )t (5.7)

Proof. The expression on the right-hand side of (5.5) can be re-written as

`

∑
i=1

`

∑
j=1

`

∑
k=1

Deg ui, j(X) Deg v j,k(X) =

∑`
j=1

(
∑`

i=1 Deg ui, j(X)
)(

∑`
k=1 Deg v j,k(X)

)

It follows from Lemma 5.1 that if Deg(Ai Ai+1 · · · Ak) and Deg(Ak+1 · · · A j)

are known, then C
(
(Ai Ai+1 · · · Ak), (Ak+1 Ak+2 · · · A j)

)
can be computed with

`(2` + 1) integer additions and ` integer multiplications. Thus our remaining

task is to compute Deg(A j A j+1 · · · Ai) for all i and j such that 1 6 j < i 6 N.

This can be done in time O(N2) using the following lemma.

Lemma 5.2. Let U = A j A j+1 · · · Ai−1 and V = UAi. Let τ(i) and τ(i−1) de-

note the pivot indices at iterations i and i−1, respectively, of the Koetter algo-

rithm [Köt96, Koe96] (cf. Section 5.3). Then

(Deg V)k,l =



max
{
(Deg U)k,τ(i−1), (Deg U)k,τ(i)+1

}

if l = τ(i) and (Deg U)k,τ(i) 6= 0

(Deg U)k,τ(i−1) if l = τ(i) and (Deg U)k,τ(i) = 0

(Deg U)k,l if l 6= τ(i)

Proof. We finally use the structure of the matrix Ai defined in (5.3). Write

U = [uk,l(X)] and V = [vk,l(X)]. Since V = UAi, it is easy to see from (5.3) that

vk,l(X) = uk,l(X) unless l = τ(i). This shows that (Deg V)k,l = (Deg U)k,l for

all l 6= τ(i). For l = τ(i), we have

vk,τ(i)(X) = (X− xr)uk,τ(i)(X) +
`−1

∑
s=0

s 6=τ(i)

βi,s uk,s(X)
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Thus if uk,τ(i)(X) is equal to zero, then (Deg V)k,τ(i) = maxs 6=τ(i){(Deg U)k,s}
while if uk,τ(i)(X) 6= 0, then (Deg V)k,τ(i) is the maximum of (Deg U)k,τ(i) +1

and maxs 6=τ(i){(Deg U)k,s}. It remains to show that maxs 6=τ(i){(Deg U)k,s} =

(Deg U)k,τ(i−1). That is basically inherited in the recursion.

Lemma 5.2 shows that Deg(A j A j+1 · · · Ai) can be computed iteratively as

follows. Start with U = A j, then Deg U follows trivially from (5.3). Once Deg U

is known for U = A j A j+1 · · · Ai−1, compute Deg(UAi), and so forth. By Lem-

ma 5.2, at each iteration we need to update only the τ(i) column of the degree

matrix, which takes at most ` operations. Computing Deg(A j A j+1 · · · Ai) for all

i = j, j+1, . . . , N in this manner thus takes at most `(N − j) operations. Hence,

the overall complexity of computing Deg(A j A j+1 · · · Ai) for all i, j such that

1 6 j < i 6 N is O(`N2). Once the degree matrices are known, all the relevant

multiplication costs in (5.6) readily follow by (5.7).

This finally closes the recursion in (5.6). What then remains is classical dy-

namic programming problem. This can be easily solved using, for example, the

O(N3) algorithm of Godbole [God73]. We still need to verify whether the more

efficient O(N log N) algorithm of Hu and Shing [CT84] would apply in our case.

However, in the next section, we propose a simple variation to Godbole’s algo-

rithm, which ensures a running time of O(N2) with negligible degradation in

performance — that is, almost the same savings in the complexity of multiply-

ing A1 A2 · · · AN (see Figures 5.1 and 5.2).

5.4 Suboptimal dynamic-programming algorithm

We now use empirical observations to derive a suboptimal version of God-

bole’s dynamic-programming algorithm [God73] that is well-suited to the prob-

lem of parenthesizing the chain A1 A2 · · · AN in (5.4). This version runs substan-

tially faster and performs almost as well as the optimal algorithm.

First, we observe that C (i, j) seems to depend on i and j only through their

difference j− i. This is to be expected: since all the matrices in (5.4) have the same

structure, the chain A1 A2 · · · AN exhibits a “stationary process” behavior. Next
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we observe that the best way to split Ai Ai+1 · · · A j into (Ai · · · Ak)(Ak+1 · · · A j)

usually occurs for those values of k that are close to either i or j. Thus we pro-

pose to fix a small parameter d — the depth of the search — and restrict the

minimization in (5.6) to either i 6 k < i + d or j− d 6 k < j. This produces the

following recursion

C̃d(i, j) = min
i6k<min{ j,i+d}
max{ j−d,i}6k< j

{
C̃d(i, k) + C̃d(k+1, j)+

C
(
(Ai Ai+1 · · · Ak), (Ak+1 Ak+2 · · · A j)

)}
(5.8)

Since the depth of the search in (5.8) is fixed to at most 2d positions, where d

is independent of the size j− i of Ai Ai+1 · · · , A j, the complexity of solving the

recursion in (5.8) reduces to O(dN2).

5.5 Optimization over the interpolation polynomial

So far we have tried to find the best parenthesization of (5.1) in order to

minimize the number of finite field operations that is needed to carry out the

multiplication. However, our main goal is to find the interpolation polynomial.

From (5.3) we observe that interpolation polynomial is the smallest (1, k − 1)-

weighted degree polynomial among
(

Q(N)
0 , Q(N)

1 , . . . , Q(N)
`−1

)
. Thus, in order to

find the interpolation polynomial we do not actually need to compute the whole

matrix of (5.1) and we only have to compute the row with smallest weighted-

degree.

From Lemma 5.2, degree of (A1 A2 · · · AN) can be computed in O(N). There-

fore, the row of A1 A2 · · · AN that leads to the interpolation polynomial with

smallest weighted-degree can be determined without doing any multiplication.

We denote the row with smallest weighted-degree by s. Let Rs(i, j) denotes

the optimal cost of computing the s-th row of the sub-chain Ai Ai+1 · · · A j. We

optimize the value of Rs(i, j) under the following scenario:

In order to find the s-th row of Ai Ai+1 · · · A j we first split the chain
into Ai Ai+1 · · · Ak and Ak+1 Ak+2 · · · A j for some k in the range i 6
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k < j. Then we compute the s-th row of Ai Ai+1 · · · Ak and the
whole matrix of Ak+1 Ak+2 · · · A j. Finally we multiply the s-th row
of Ai Ai+1 · · · Ak to Ak+1 Ak+2 · · · A j.

Notice that we can compute s-th row of Ai Ai+1 · · · Ak using the same scenario.

Thus we have

Rs(i, j) = min
i6k< j

{Rs(i, k) + C (k+1, j)+

Cs

(
(Ai Ai+1 · · · Ak), (Ak+1 Ak+2 · · · A j)

)}
(5.9)

where Cs

(
(Ai Ai+1 · · · Ak), (Ak+1 Ak+2 · · · A j)

)
is the cost of multiplying the s-

th row of Ai Ai+1 · · · Ak to Ak+1 Ak+2 · · · A j. Similarly, we can solve the recursion

of (5.9) using dynamic-programming in O(N3).

The dynamic-programming solution to the recursion (5.9) needs O(N3) fi-

nite field multiplication and/or addition. The complexity of the algorithm is

more than the straightforward sequential multiplication of the matrices in the

chain of (5.1). Similar to Section 5.4, by looking at the empirical solution of

the recursion (5.9) we find a suboptimal solution that has better complexity but

good performance.

The optimum solution of (5.9) is usually the following series of multiplica-

tions: The s-th row of A1 multiplies to A2 the result multiplies to A3 and itera-

tively this goes up to AN. Based on this observation, we propose the following

suboptimal algorithm:

1 Find Deg(A1 A2 · · · AN) the degree-matrix of the chain of matri-

ces. From Lemma 5.2, we know that it takes O(N).

2 From Deg(A1 A2 · · · AN) pick the row of A1 A2 · · · AN with

smallest (1, k− 1)-weighted degree. Denote that row by s.

3 Set v to be the s-th row of A1 and i := 2.

4 While i 6 N update v ← vAi and i ← i + 1.

5 Return v.
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The performance of the suboptimal algorithm and optimal algorithm are

plotted in Figure 5.1 and Figure 5.2. In these figures, “Sequential” stands for the

straightforward multiplication of (5.1), “Suboptimal with different depths” are

the solution of (5.8) with different d’s, the “Optimum” is the solution of (5.6),

the “Least weighted-degree Optimum” is the solution of (5.9), and the “Least

weighted-degree Suboptimum” is the complexity of suboptimal algorithm pre-

sented in Section 5.5.

The results of Chapter 5 are published, in part, in proceedings of 2004 In-

ternational Symposium on Information Theory (ISIT), Parvaresh, Farzad; Vardy,

Alexander. The dissertation author was the primary investigator and author

of this paper.
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Figure 5.1: Average cost of multiplying a 4× 4 polynomial matrix-chain.
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Figure 5.2: Average cost of multiplying an 8× 8 polynomial matrix-chain.



CHAPTER 6

Conclusion and open problems

Before the pioneering work of Sudan [Sud97] and Guruswami-Sudan [GS99],

complexity of most of the algorithm that decode beyond the half-the-distance

bound for many family of error-correcting codes would grow exponentially.

Sudan came up with an algebraic list decoding algorithm that can correct up

to 1−√R fraction of errors for Reed-Solomon codes (and many other algebraic

codes). The Sudan-type list decoding algorithms basically consist of three parts:

multiplicity assignment, interpolation and factorization. The emphasis of this work

was to study, understand and improve these class of algebraic list-decoding al-

gorithms.

We first looked at the multiplicity assignment part of the algorithm. Koetter

and Vardy in [KV03a] present a novel way of assigning the multiplicities. The

goal of the multiplicity assignment scheme of [KV03a] is to maximize the prob-

ability of correct decoding. They show that, for a given multiplicity assignment

this probability is given by Pr{SM > ∆(M)}, where SM is a random variable

whose distribution depends on the channel output. Here, ∆(M) is a known

deterministic function of M. The goal then is to compute M in such way that

maximizes Pr{SM > ∆(M)}.

We are able to partially solve the optimization problem. We first relax the to

be real numbers instead of integers. Then, we recast the problem into a geomet-

rical framework. While we are yet unable to solve the corresponding geometric

129
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problem, we establish several key properties of the resulting geometric struc-

ture which later become handy in solving the optimization problem for finite

multiplicities.

A different approach is taken by upper bounding the probability of failure

using the Chebyshev bound. So, instead of minimizing the actual probability of

failure we minimize the upper bound on the probability of failure. This leads

to an iterative and analytical solutions for the multiplicity assignment when the

multiplicities are large.

Finally, we use both the geometrical framework and the analytical solution

for large multiplicities to derive the solution for finite multiplicities. We are able

to get up to 0.20dB coding gain in decoding of Reed-Solomon codes of length

255 and up to 0.75dB coding gain for decoding of Reed-Solomon codes of length

15, as compared to the Koetter-Vardy algorithm over BAWGN cannel.

Many open problems remain to investigate. Can we solve the problem for

integer multiparities? Currently, for a given reliability matrix and multiplic-

ity matrix we can compute the distribution of SM efficiently and so Pr{SM >

∆(M)}. Can this somehow be used to optimize the probability of failure for

integer multiplicities? A better upper bound on the probability of failure such

as Chernoff bound can be used instead of Chebyshev bound for the optimiza-

tion. There have been some research in this direction presented at [EMH04,

EM05]. However, the complexity of these algorithms are high comparing to

Koetter-Vardy algorithm. Is it possible to simplify these algorithms for high

SNR when the Chernoff-type optimizations usually show some coding gain

over the Chebyshev-type multiplicity assignment. How far are the current mul-

tiplicity assignment techniques from the optimum? Is the gap between the per-

formance of the optimum multiplicity assignment and the current approxima-

tions reasonably large for practical purposes and further research?

The other part the of the decoder is the interpolation part. The interpolation

part is the bottleneck of the decoder for the implementation. Many research al-

ready has been done on reducing the complexity of the interpolation part which

leaded to many clever ideas presented at [AKS03, FG01, KV03b, McE03b, NH98,
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RR00]. Most of these results are based on the iterative algorithm originally de-

veloped by Koetter [Köt96, Koe96], for computing a Gröbner basis of the ideal

of polynomials that pass through the received points with the prescribed mul-

tiparities. The complexity of these algorithms are in general O(n2) where n is

length of the code. Recently, Alekhnovich [Ale02] showed that the interpolation

can be done in O((w
r )0(1)n log2 n log log n) where, r is rate of the code and w is

the maximal multiplicity assigned to a vertical line.

We recast the interpolation problem into a polynomial matrix-chain prod-

uct. The parenthesization of the matrices changes complexity of computing the

product. We show that using a dynamic-programming algorithm one can finds

the best parenthesization. The complexity of the dynamic-programming algo-

rithm is in order of O(n3). Next, we derive a suboptimal dynamic-programming

algorithm, presented in Chapter 5, which has complexity of O(n2). With the

suboptimal algorithm we can reduce the number of finite field operation for

computing the Gröbner basis of the ideal by a factor of at least two.

Can we find algorithms for polynomial matrix-chain parenthesization with

better complexity? For scaler matrix multiplication problem there are algo-

rithms that solve the parenthesization problem in O(n log n). A study of these

algorithms for polynomial matrix-chain product problem may lead to much

faster algorithms.

The rest of the work is based on generalization of Sudan-type decoders to

construct codes with better decoding radius. Our first attempt is to decode

M− 1 transmitted Reed-Solomon codewords together, using M-variate polyno-

mial interpolation. It is shown that if the channel errors are synchronized – occur

in the same positions in all the M−1 codewords – this algorithm can often cor-

rect up to n
(
1− R(M−1)/M)

errors in a Reed-Solomon code of length n and rate

R, which is significantly higher than the Guruswami-Sudan decoding radius of

n
(
1− R1/2). When number of errors is smaller than Guruswami-Sudan bound

the algorithm for sure recovers the codeword but when number of errors is be-

tween n
(
1− R(M−1)/M)

and n
(
1− R1/2) then for some error patterns the new

decoder fails. We are able to analyze the performance of the decoder for a spe-
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cial case of M = 2 where multiplicity of the interpolation is one. In this case, the

MID algorithm attempts to correct up to nτ2,1 errors, where τ2,1 = 1− 3
√

6R2.

We consider the situation where symbol values received from the channel at the

erroneous positions are distributed uniformly at random (a version of the q-ary

symmetric channel). We show that, with high probability, the performance of

the MID algorithm is very close to τ2,1 in this case. Specifically, we prove that if

the fraction of positions in error is at most τ2,1 −O(R5/3), then the probability

of failure of the MID algorithm is at most n−Ω(n). Thus the probability of failure

is, indeed, negligible for large n in this case. Analyzing the performance of the

algorithm for a general case of M-variate decoding with arbitrary multiplicity

m remains open.

The interpolation part of the M-variate decoding algorithm has complexity

of O(n2). However, we are expecting that by using similar techniques presented

in [Ale02] we should be able to reduced the complexity further to O(n log n).

One of the main results of the dissertation is a consequence of deviation from

multivariate interpolation algorithm of Chapter 2. We introduce a new family of

error-correcting codes that have a polynomial-time encoder and a polynomial-

time list-decoder, where these codes correct a fraction of adversarial errors up

to τM = 1 − M+1
√

MMRM. Here, R is the rate of the code and M > 1 is an arbi-

trary integer parameter. This bound is beyond the Guruswami-Sudan radius of

1−√R for all rates less than 1/16. Notably, this error-correction is achieved in

the worst-case against adversarial errors: a probabilistic model for the error dis-

tribution is neither needed nor assumed. The best results at the time of publica-

tion of the paper required a rate of O(ε2) to achieve the correction radius of 1−ε.

Later, Guruswami and Rudra [GR06c] show that a specific class of the codes we

define here combined by a compression/ decompression technique can correct up to

a fraction of 1− M+1
√

RM errors. The list-size of these codes grows polynomially

with length of the code. Fixing the list-size of Guruswami-Rudra code remain

open. Guruswami-Rudra code construction gets close to capacity of adversarial

channel when alphabet size of the codes is not bounded. Is it possible to modify

these class of codes to get codes with constant alphabet size? Can we concate-
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nate these algebraic list-decodable codes with well-studied constant size binary

codes, such as Hadamard codes, to achieve the capacity of adversarial binary

channel?



References

[ABKR00] John Abbott, Anna M. Bigatti, Martin Kreuzer, and Lorenzo Rob-
biano, Computing ideals of points, Journal of Symbolic Computing 30
(2000), 341–356.

[AKS03] Arshad Ahmed, Ralf Koetter, and Naresh R. Shanbhag, VLSI Architec-
tures for soft-decision decoding of Reed-Solomon Codes, IEEE Transactions
on VLSI Systems (2003), submitted for publication.

[AKS04] Ahmed Arshad, Ralf Koetter, and Naresh R. Shanbhag, VLSI architec-
tures for soft-decision decoding of Reed-Solomon codes, IEEE International
Conference on Communications, vol. 5, June 2004, pp. 2584–2590.

[Ale02] Michael Alekhnovich, Linear Diophantine Equations over Polynomials
and Soft Decoding of Reed-Solomon Codes, FOCS ’02: Proceedings of the
43rd Annual IEEE Symposium on Foundations of Computer Science
(Washington, DC, USA), IEEE Computer Society, 2002, pp. 439–448.

[Ber68] Elwyn R. Berlekamp, Algebraic Coding Theory, McGrow-Hill, New
York, 1968.

[Ber70] , Factoring polynomials over large finite fields, Mathematics of
Computation 24 (1970), 713–735.

[BKR05] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhkrishnan, The
list-decoding radius for Reed-Solomon codes, AMS Sectional Meeting
(Lincoln, NE), October 2005.

[BKY03] Daneil Bleichenbacher, Aggelos Kiayias, and Moti Yung, Decoding of
interleaved Reed-Solomon codes over noisy data, Lecture Notes in Com-
puter Science 2719 (2003), 97–108.

[BM82] Bruno Buchberger and Hans Michael Möller, The construction of mul-
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Pierre et Marie Curie, Paris, France, 2002.

[Pet60] W. Wesley Peterson, Encoding and error-correcting procedures for Bose-
Chaudhuri codes, IEEE Transactions on Information Theory 6 (1960),
459–470.



REFERENCES

140

[PV03] Farzad Parvaresh and Alexander Vardy, Multiplicity assignments for
algebraic soft-decision decoding of Reed-Solomon codes, Proceedings of
IEEE Symposium on Information Theory (ISIT) (Yokohama, Japan),
July 2003.

[PV04a] , Multivariate interpolation decoding beyond the Guruswami-
Sudan radius, Proceedings of 42nd Annual Allerton Conference on
Communications, Control and Computing, October 2004.

[PV04b] , Polynomial matrix-chain interpolation in Sudan-type Reed-
Solomon decoders, Proceedings of IEEE Symposium on Information
Theory (ISIT) (Chicago, IL), July 2004.

[PV05] , Correcting Errors Beyond the Guruswami-Sudan Radius in Poly-
nomial Time, FOCS ’05: Proceedings of the 46th Annual IEEE Sympo-
sium on Foundations of Computer Science (Washington, DC, USA),
IEEE Computer Society, 2005, pp. 285–294.

[PV06] , Multivariate interpolation decoding of Reed-Solomon codes, May
2006.

[RK05] Niranjan Ratnakar and Ralf Koetter, Exponential Error Bounds for Alge-
braic Soft-Decision Decoding of Reed-Solomon Codes, IEEE Transactions
on Information Theory 51 (2005), 3899–3917.

[RR00] Ron M. Roth and Gitit Ruckenstein, Efficient decoding of Reed-Solomon
codes beyond half the minimum distance, IEEE Transaction on Informa-
tion Theory 46 (2000), no. 1, 246–257.

[RR03] Gitit Ruckenstein and Ronny M. Roth, Bounds on the list-decoding ra-
dius of reed-solomon codes, SIAM Journal on Discrete Mathematics 17
(2003), 171–195.

[RS60] Irving S. Reed and Gustave Solomon, Polynomial codes over certain fi-
nite fields, SIAM: Journal of the Society for Industrial and Applied
Mathematics 8 (1960), no. 2, 300–304.
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