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ABSTRACT

The Lanczos vectors and the Ritz vectors have been used for computing the dynamic
response of linear structures. Although the procedures of using these two sets of vectors
appear similar to the procedure of using the eigenvectors to find an approximate solution,
the fundamental mechanisms of the three are different. We compare the three sets of vec-
tors in detail to show some of the important differences in the hope that this comparison
will be helpful to the use of the Lanczos vectors or the Ritz vectors for computing dynamic

responses.
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INTRODUCTION
The mode superposition method has been used frequently in the analysis of dynamic
response of linear structures. The standard procedure of the method consists in finding the
eigenvectors of the system and using them to transform the coupled equations of motion
into an equivalent set of decoupled equations. These decoupled equations can then be
solved individually and their solutions are superposed to give the response of the dynamic
system. A major advantage of this method is the fact that often only the first few decou-
pled equations are needed to give a satisfactory approximation, thus resulting in consider-
able savings in the computational effort.

Recently, Wilson er al! proposed using a set of load-dependent Ritz vectors to solve a

class of problems where the applied load £(¢) is of the form
f(z) = te(r) (1)

in which f is a space vector and €(z) a time function. In this class of problems, the Ritz
vectors generated by choosing the static deflection shape as the starting vector produce
better approximations than the same number of eigenvectors. In addition, these Ritz vec-
tors are less expensive to generate than the eigenvectors. These advantages make the Ritz
vectors attractive for solving a variety of problems®™. In the mean time, Nour-Omid and
Clough® gave a detailed description on how to efficiently generate a set of Lanczos vectors
for the dynamic analysis. In fact, the Lanczos vectors and the load-dependent Ritz vectors
are equivalent since they span the same subspace, a special Krylov subspace. A Krylov
subspace has been used to find eigenpairs of a large system for a long time; however, its
use to obtain a reduced system for the dynamic response analysis is new.

Although the procedure of using the Lanczos vectors or the Ritz vectors appears quite
the same as the procedure of using the eigenvectors to find the dynamic response, the fun-
damental mechanisms of the three sets of vectors are different. By contrasting the three
sets in detail, we find out the following important points. First, it is not appropriate, at
least physically, to use the term, "participation factors”, for the right-hand side of the
reduced system resulted from the Lanczos vectors or the Ritz vectors. Second, the error in

the representation of the space vector f should be distinguished from the error in the



response of the system. When the eigenvectors are used, the error in representing f has a
direct relation to the error in the response and therefore the error in representing f is usu-
ally used as an estimate of the error in the response; however, this relation does not carry
over when the Lanczos vectors or the Ritz vectors are used. In addition, using the dynamic
deflection shape as the starting vector for generating the Lanczos vectors or the Ritz vectors
can further accelerate the convergence of the superposition process as compared with using
the static deflection shape. To demonstrate these important points, we first present a

theoretical background and then examine the three sets of vectors one by one in the follow-

ing.

REDUCED SYSTEMS

The differential equations of motion for a discretized model of structural systems can be

expressed by
Mu(r) + Cu(r) + Ku(t) = (1) (2)

where M, C, and K are, respectively, the n Xn mass, damping, and stiffness matrices, and
u(r), u(z), and u(r) are the n X1 acceleration, velocity, and displacement vectors. In prac-
tical analysis of complicated systems, the order n of the equations of motion is usually very
large. Therefore, how to efficiently obtain a satisfactory approximate solution becomes a
major concern. A commonly used approach in this regard is to reduce the original set of
equations to a much smaller set and to find the approximate solution by solving the
reduced set. In mathematical terms this approach can be interpreted as a projection pro-
cess. We summarize the essential ingredients below.

A set of n vectors Y = [y1, ..., ¥, | is orthonormal if they satisfy the condition
YT Y = I, where I is the n Xn identity matrix. Any set of n orthonormal vectors can be
chosen as a basis for expressing the solution u(z) since it contains n components. That is,

the exact solution to equation (2) can be expressed in a chosen basis Y as
u(t) = > y; x(1) = Y x(1) 3)
j=1

in which the basis Y serves to transform from the generalized coordinates x(¢r) to the



geometric coordinates u(z). Theoretically, only linear independence is required for Y to
be a basis, but an orthonormal set is convenient for computation. Since the solution is
exact no matter which basis is used, any basis can be used to express the solution. In prac-
tice, however, we are interested in finding a satisfactory approximation u,,(t) by using

only a small subset of Y, i.e.,
m
um(l‘)= E Y xj(t): Ym xm(t) (4)
ji=1

Therefore, we have to choose a set of basis vectors such that the first few of them, Y,, with
m being much smaller than n, will produce a solution with satisfactory accuracy.
Geometrically, the u,(r) is a projection of u(z) onto the subspace span[Y,,]. Dif-
ferent u, (¢) can be obtained by using different x,,(z). In practice, an orthogonal projec-
tion method is frequently used to find the approximate solution u,,(z). The requirement
of the orthogonal projection method is that the residual vector resulting from the approxi-

mate solution u,, (¢)
r,(t)=Mu,()+ Cu,(t)+ Ku,(t) — () (5)
be orthogonal to the basis Y,,, i.e.
Yy (1) = 0 (6)
Substituting in turn (5), (4) and its time derivatives into equation (6), we obtain an m Xm
reduced system :
M, %,(t) + Cp % (t) + K, %, (1) = £(2) (7)

which is actually the orthogonal projection of the original system, represented by (2), onto

the subspace Y,,. The projected mass, damping, and stiffness matrices and the force vec-

tor are given by the following

M, =YIMY, (7a)
C,=YICy, (7b)
K,=YIKY, (7¢)

£.(t) = Y, £(1) (7d)



That is, we solve the reduced system represented by (7) to find x,,(¢) and then use (4) to
construct an approximate solution u,, (¢) to the original system represented by (2).

It is important to note that in the orthogonal projection method the quality of the
approximate solution u,, (r) depends entirely on the chosen set Y,, since x,,(¢) is the solu-
tion of the reduce system, which is completely determined by Y,. In the following we
compare two sets of subspace : the eigenspace spanned by the least dominant set of eigen-
vectors, and the Krylov subspace represented by span[b, Db, D?b, . .., D" 'b] with
D=K™'M and b=K~!f. An interesting physical interpretation for this Krylov subspace
was given in Reference 1.

In practical computation the projected mass matrix M, is usually scaled to be the
identity matrix I,,. To be consistent, the definition of length (norm) and orthogonality
should be generalized such that they are in terms of the M-weighted inner product, defined
by <u, v>, = ul M v, rather than the conventional inner product <u, v> = ulv. That
is, the M-norm of a vector v is Il v ilyy = (vI M v)2 and a set of vectors Y,, are M-

orthonormal if Y, M Y,, = I,,. For simplicity, we assume in this study that the damping

matrix is proportional and can be expressed as
C=aM+bK (8)

with a and b being constants. Under such assumption, the projected system given by (7)

can always be decoupled by the eigenvectors of the pencil (M", K™).

EIGENVECTORS
In this section, we discuss using the eigenvectors, i.e., the solutions of cojz Mé; =Ko/,
as a basis to express the solution. It is convenient to scale the eigenvectors

P, =[dy ..., & ,, | such that they satisfy the M-orthonormality and K-orthogonality :
OIM, =1, OIK @, = Q2 %)

where I, is the identity matrix of dimension m and £}, is a diagonal matrix of dimension

m with elements w It

In order to take advantage of this M-orthonormality and K-orthogonality, we first

pre-multiply (2) by M~ to obtain a new equation :



U@) + (a I+ bMTK)u() + M Ku(r) = ML fe(r) (10)
Here the operator M~! K is unsymmetric but is symmetric with respect to the M-weighted
inner product since
(M"lKu)TM(v)=uTKv= ()T M (M 1Kv)
Therefore, we can use the M-orthogonal projection method to find an approximate solution
to equation (10). By substituting u,, (1) = ®,, v(r) and its time derivatives into (10), and
requiring that the resulting residual be M-orthogonal to ®,,, we obtain
OIMP, Vi) + (a ®IMD, + bDPITK D, ) v(r)
+dTKD, vit) = BTMM 1 te(r) (11)
or, after using (9),

V) + (al, + bQ2)v(r) + Q2 v(t) = ®fte@) (12)
which is a set of decoupled equations. Introducing the notation 2§;w; for a +bw jz, we can
write the j# equation of the set (12) as

Vie) + 28 0 v(0) + of vi(t) = & [ Te) (13)
where the participation factor ¢ ;1 f is generally used to measure the extent to which the ¢ j
participates in synthesizing the total load on the system. We note from the above deriva-
tion that the participation factor ¢ }r f is the M-weighted inner product of the basis vector

¢ ; and the right-hand side vector M~ fin (10). If we denotevd) Tt by p;, then it follows
i i i

that

n n

bjpj=®p (14b)

From this expression, we see that the participation factor p; = ¢ ij' is the component of

M1 in terms of the basis ¢ j- The M-norm of the M is

HM Ty =[(MTE)ITM(MTE) Y2



=M= (0702 = [ 5 o] 1 as)
2

Therefore, we can scale the p; by this norm to obtain the normalized participation factor

pj _ o]

( i P22 [fTM1E]2
J
j=1

(16)

which actually is equal to the cosine of the angle between the force vector fand ¢ j- Since
the square sum of these cosines is equal to one, we can assess how adequately the load vec-
tor f is represented in ®,, by examining the quantity :
m
#12 2
3 (¢]1) > P
i=1

j=m+1
— - — = (17)
fiM1¢ 1o,
( ) S p}

When this quantity is equal to 0, the force vector f is completely represented.
The participation factor is used to measure how adequately the spatial distribution of
the load f(¢) is represented. To assess how accurate the approximate solution is, we exam-

ine the error vector e, (t), defined as the difference between the exact solution u{r) and

the approximate solution u,,(z), i.e.

en() = u(t) —un(t) = 3 b v(t) (18)

j=m+1

The M-norm of this error vector is given by

len (i = [ef() M e, () V2= [ 3 vir) ] (19)
j=m+1

which gives the absolute error of the approximation. We can divide the absolute error by

the M-norm of the exact solution vector, i.e.

() iy = [T Mu() ]2 = [ S vr) V2 (20)

ji=1

to obtain the relative error

n

[ vi(e) 17
e, (1) j=§+1 ’ (21)

J
i=1



We see that the expression of the relative error has the same structure as the expression in
(17) except the square root in (21). Moreover, the p; and v;(¢t) are directly related
through the solution to equation (13)

vi(e) = —D(f) (22)
;

where the dynamic load factor D;(t) is given by

D(r) = -(i_)z-]e—g"m’(’~7)sind)j(t——T)e('r)dT (23)

0‘)_] 0
with @; = o; (1 —§; )Y2. Equation (22) simply indicates that the solution v i (¢) is equal
to the static response p; / w j multiplied by the dynamic load factor D;(¢). The fact that
the expression of v;(¢) has a factor 1/ o] 2 justifies that the higher modes are, in general,
less important than the lower modes when the eigenvectors are used to find the solution. It
follows from (21) and (22) that one can safely terminate the superposition process when the

quantity in (17) is close to 0 unless there exists such a higher mode whose §; is very small

and w; is very close to the frequency content of the loading so that D; () is very large.

LANCZOS VECTORS

We can apply the Gram-Schmidt orthonormalization process to the columns of the Krylov
subspace span[b, Db, D*b, . .., D™lb], the results is a set of Lanczos vectors. A
detailed theoretical description and numerical analysis on this subject can be found in
Reference 7. In the following, we summarize the steps used to derive the Lanczos vectors
for the convenience of discussion. In practical computation these steps have to be re-
arranged and reinforced by a reorthogonalization scheme to prevent the loss of orthogonal-

ity due to the roundoff errors.

Given an arbitrary vector b, we normalized it to obtain the first Lanczos vector as
= (bT M b)1? (24a)
= b /By (24b)

and compute the rest of the Lanczos vectors, j = 1, . . ., m ~1, by



Bj+19+1 = Ks'Mq; —o; q; —B; g1 (24¢)

where K, = K — o M with o being an appropriate shift, g; = 0, and

a; = ¢ MK;' M gq; (24d)
Bj+1= 4j+1 MK Mg; (24e)
After these steps, we have m Lanczos vectors Q,, = [ qq, . . ., q,, ] satisfying the matrix

form of the three-term recurrence formula :
Bm-f-l Qn +1 ég: KG_IMQm _Qm Tm (25)

where é,;,r is the mth row of I,,, and T,, is a tri-diagonal matrix made up of the coefficients

o; and B; :

[ a; By
Bz a; B3

T, = S (26)

Bm -1 Cm-1 Bm
Bm Om

A

The Lanczos vectors obtained in this way are M-orthonormal, i.e., they satisfy
Q. MQ, =1, (27)
where 1,,, is the identity matrix of dimension m. After pre-multiplying (25) by QX M and
using (27) we can obtain
QIMK;1MQ, =T, | (28)

That is, the M-orthogonal projection of K; 1 M onto the Krylov subspace with basis Q,, is

a tri-diagonal matrix.

To take advantage of the M-orthonormality and tri-diagonality between the Lanczos

vectors, we pre-multiply the equation of motion (after using K = K, + o M)
Miu(t)+[(a+bo)M+bK,Ju(t) + (K, + o M)u@) =fet) (29
by K, ! to obtain a new equation :
Ki'Mu(t)+ [(a + bo)K;IM + b1]u(r)

+(I+ o KSIM)u(r) = K, fe(r) (30)
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Here the operator K, M is unsymmetric but is symmetric with respect to the M-weighted

inner product since
(Ko Mu)™™M(v)=u"MK;TMv=(u)TM(K;TMv) (31)

Therefore we can apply the M-orthogonal projection method to equation (30) to find an
approximate solution. By substituting w,(z) = Q,, x,(¢) and its time derivatives into

equation (30), and requiring that the resulting residual be M-orthogonal to Q,,, we obtain
Q MK;'MQ, %,(1) + [(a + b0 ) Qu MK M Q, + 5 Q1 M Q, %, (1)
+(QrMQ, + 0 Qu MK; M Qy ) x,(t) = Qn MK fe(r) (32)
Using equations (27) and (28), we may rewrite the above equation to
T, X,¢)+[(a +bo )T, + b1, ]x,(>1)
+ (Iy + 0Ty, ) X, (1) = Qp MK fe(r) (33)

This reduced system is only slightly coupled and can be solved either by step-by-step
integration methods or by finding eigensolutions and using mode superposition.

Here it should be emphasized that since equation (33) is a coupled system, we have
to distinguish the jth component x; , (¢) of the x,(r) from the jth component x; ,, (¢) of
the x,, 4(z) for j = 1, . . . ,m —1, although the difference between them may be slight for
some j. The fact that the Lanczos coordinates x; ,,(¢) changes when we increase the
dimension m of the approximating subspace should be contrasted with the fact that the
eigenvector coordinates v;(¢) remains fixed when we increase m as shown in Section 3.
We will elucidate this point further by transforming the reduced set of equations into a

decoupled set in the next Section.

If we denote the jth component q}r M K1 of the right-hand side vector in (33) by

Pj, then it follows that

"~ n -
K, f= 3 q;p,=Qp (34a)

~ n ~
f=ZKaqjﬁj=Kon (34b)
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This expression is different from (14) for the eigenvectors. Moreover, it is not appropriate
to call the p; participation factor because equation (33) is not a decoupled set.

The starting vector of the Lanczos algorithm is arbitrary, so we choose it to maximize
the efficiency. For this purpose, we can choose the starting vector b to be the dynamic
deflection shape K;l f so that K(,“1 f=b= B1 q;- By choosing b this way, the right-hand

side of the reduced system (33) is simplified to
Qi MK;'t=py=(B1,0...,0) (35)

This indicates that the first element p, is equal to B and the remaining elements of the ﬁm
are all equal to O, independent of m. Physically, this choice guarantees that the vector
K1 fis completely represented. Algebraically, this choice tends to make x; ,, (¢) decrease
to zero as j increases so that the superposition process will converge quickly.

To see how to choose the shift o, we consider a special case where the system is
undamped and the loading €(¢) is a harmonic function, say sinw(z). Under this cir-

cumstance, the reduced system is simply
T X (1) + (Ln + 0 Ty ) X (1) = Py siNG(1) (36)

If o is chosen to be &2, the solution to the equation (36) is X,,(t) = p,, sin@(¢). In this
case, only xq,,(¢) is needed because all other x; ,,(¢) are equal to 0. Hence, by choosing
the dynamic deflection shape, ( K — @2 M )"l £, as the first Lanczos vector we can find
the exact solution, ( K — @2 M )! f sin@(z), by only one vector and no more other Lanc-
zos vectors are required. This is not surprising because the original system can be solved
directly when the loading function e(z) is harmonic. On the other hand, if ¢ is not chosen
to be @2, then in general all the x; , () will not be equal to 0 and accordingly more Lanc-
zos vectors are needed to obtain a better approximation. Guided by this special case, we
can pick a suitable shift to accelerate the convergence of the superposition process by using
the information on the frequency content of the loading function, such as the Fourier
expansion of the €(r), when dealing with general cases where the loading is not harmonic
or the system is damped, or both.

The error vector e, (1) of the approximation is

em(t) = U(t) - um(t) = Qn X"(t) _Qm xm(t)
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= 3 4 a) = S @ ) 37)
j=1 j=1

The M-norm of this error vector can be computed as

Il en (1) Uy = [ en(t) M ey (1) 1V
= [%/(1) QM Q, x,(1) = 2%,(1) Qi M Qpy %, (1) + %7(1) Qu M Qpy %, (1) 1V2
o2 < - 2 12
= [ E xj,n(t) -2 E xj,n(t) xj,m(t) + E xj,m(t)] (38)
j=1 j=1 ji=1
where the M-orthonormality between the Lanczos vectors has been used in the manipula-
tion. The relative error is then given by
n m m

[ 3 5Fu) =23 5,0) 5m0) + 3 0 12

e, (1) llm  ~ j=1 i=1 j=1

- 39
1 u(z) iy : i 2.0) 12 (39)
=17

We note that these expressions for the absolute and relative errors are different from those

given in Section 3. Besides, there is no simple connection between p; and x; , (¢).

RITZ VECTORS

To decouple the system represented by equation (33), we solve the eigenproblem

T, S, =S, 0.7 (40)
to find the set of vectors S,, = [ S1,,, . . ., S, » | Which satisfies
SaSn=ln  SpTuSy =0, (41)

where the ©,, is a diagonal matrix and contains the Ritz values 8;. Introducing the
transformation x,,(t) = S, z,,(¢) and pre-multiplying both sides of equation (33) by S,

we obtain the decoupled set of equations :
0727, )+ [(a+bc)O2+ b1, ]12,()
+ (1, +002)z,t)=YIMK;fe(r) (42)

where the Ritz vectors Y, is equal to Q,, S,, and has the following properties :
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YIMY, =SIQIMqQ,S, =58!S, =1, (43a)
YIMK;IMY, =sTQIMKk;TMQ,S, =8SIT, S, = 0.2 (43b)

That is, the set of Ritz vectors Y,, satisfies the M-orthonormality and the M K;! M-
orthogonality. With these properties, we can easily verify that (42) actually is the projected
system resulted from using the Ritz vectors as a basis to express the approximate solution.
This projected system is equivalent to the one given by (33) since Y,, and Q,, span the
same subspace and the solution Y,, z,(t) is the same as the solution Q,, x,,(¢). Therefore
we can use (42) to analyze the approximate solution u,(z) obtained by solving equation
(33).

As in previous discussion, if we denote the jth component y}r M K, f of the right-

hand side vector in (42) by p;, then it follows that

n -
K;'E= 3y p=Yp (442)
j=1
which is equivalent to
~ n - -
szKq)’ij=Kqu (44b)
j=1

Note that this expression is similar to (34) but different from (14). The M-norm of the
vector K, fis

-1 -

(KJ )™M (K;'E)=p"YTMYp=p'p= (45a)

M
<

HKSE 1y

or, in terms of p,

N n a N n ~ . n
K = (K7 E)TM (K5 ) = pTQTMQp=p"p= 3 5} (45D)
j=1
The relation between the right-hand side vectors p,, and p,, is given by
Pn = Yo MK E=S7Q MK B = S7p, (46)

Using this relation and S,, S = 1,, we can verify that p} p,, is identically equal to
f)mT P, as it should. Further, if the first Lanczos vector is chosen to be the dynamic

deflection shape K;l f= B1 4y, we have
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Bim = S}m Pm = S1jm B1 (47)
where sy ; ,, is the first element of s; ,,, the jth vector of S,,. Here we use an extra sub-
script m to label the components p; , of the right-hand side vector in (42) because the
values of these components will change as the dimension m of the subspace is increased.

Recall that the components p; of the right-hand side vector in eqn (13) are independent of

m. Therefore, we should distinguish the interpretation of the p; ,, from the interpretation

m
of the p; in Section 3. In particular, we need not compute the quantity > ﬁjzym in the
j=1

present case since it is always equal to 87 due to the fact that S, S, = I,, independent of

m.

To relate the z; ,(r) to p; ,,, We can solve the jth equation of the projected system
(42)
Zim(t) + [a+b (0402, )12 n(t) + (07,40 ) z; ,(t) = 07, B, €(t) (48)

Introducing the notation 6 jZ’m for 6 jz’,,, + o and 2 m; , 0 jmfora + b 6 jz,m’ we can rewrite

this equation to
Zm () + 20 O 2, () + 07 25 (1) = Py 0] €(1) (49)

The solution to this equation is

¥,

- Jm
Zj,m(t) = Pj,m ':'J:'Z—-Dj,m(t) (50)

07 :
where the dynamic load factor D; ,,(t) is given by (23) but with »; and §; replaced by 8 jm
and m; ,, respectively. Here we note that in the expression of z; ,(¢) there is a factor of
9 jz’m / él?"m, which is equal to one when the shift o is chosen to be zero. This indicates
that the higher modes have the same weight as the lower modes, which is again different

from the fact given by (22) where the eigenvectors is used. We can obtain the error

expression in terms of the Ritz coordinates z; ,(¢) simply by replacing the x's in (38) and

m
(39) by the z’s. However, since ) ;sz,,,, is always equal to B# and Zj m+1(¢) will be dif-
j=1

ferent from z; ,, (1), we cannot judge when to terminate the superposition by the same cri-

terion as stated in section 3.
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RECOMMENDATIONS

Although the Lanczos vectors or the Ritz vectors are superior to the eigenvectors for com-
puting dynamic responses in a common class of problems, the fundamental mechanisms of
the three sets of vectors are not the same. When the Lanczos vectors or the Ritz vectors
are used, the conventional criterion for deciding how many vectors are enough is theoreti-
cal not sound. As shown in previous sections, the load vector may be completely
represented by a set of Lanczos vectors or Ritz vectors due to the special choice of the start-
ing vector, but it does not follow that the exact solution will be obtained by this set of
Lanczos vectors or Ritz vectors. The error in the response, as defined in this paper, rather
than the error in the representation of the load vector is actually what one is concerned
with. More effort is needed to construct a convenient but justifiable error estimate so that

one can know how many Lanczos vectors or Ritz vectors are needed for a good approxima-

tion.
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