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A real-time approach for damage identification using 
hyperchaotic probe and stochastic estimation 
 

Shahab Torkamani1    Eric A. Butcher2     
Michael D. Todd3 

 
 
 
 

ABSTRACT123Among numerous damage 
identification techniques, those which are used 
for real-time damage identification have 
received considerable attention recently. In the 
current study a real-time damage identification 
approach is proposed which is applicable both as 
a vibration-based technique and as a guided-
wave technique for structural health monitoring. 
In fact, the proposed approach makes use of the 
intrinsic hypersensitivity of hyperchaotic 
systems to subtle changes in system parameters 
for identification of damage induced changes in 
structural systems driven by hyperchaotic 
dynamics. The proposed approach, as a 
vibration-based technique, involves applying the 
augmented state method along with optimal 
filtering problem to provide simultaneous 
estimation of the states and parameters of a 
(possibly) nonlinear structural system driven by 
a tuned hyperchaotic excitation in order to 
monitor damage-induced changes. The proposed 
real-time approach is also expandable to the 
realm of guided-wave structural health 
monitoring (SHM) by adapting the method of 
lines for discretization of the governing partial 
differential equation (PDE) of hyperchaotic 
guided waves and using that as a process model 
in the optimal filtering problem in order to 
estimate the transmitted hyperchaotic wave and 
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parameters of the model. The extended Kalman-
Bucy filter is then used for identification and 
real-time monitoring of damage-induced 
changes in parameters of the process model as 
well as estimating the transmitted waves at 
measurement points. Numerical simulation using 
measurements from a finite element model of a 
cantilever beam shows that the proposed 
approach with guided hyperchaotic waves is 
capable of real-time identification of reduction 
in elastic modulus of an isotropic beam. 

 
Keywords Wave Propagation  Real-time 
Damage Identification  Hyperchaos  Stochastic 
Estimation  Kalman-Bucy filter  

 

1. INTRODUCTION 
Two main strategies are possible for damage 
identification in structures. The first one which 
is the active approach needs continuous 
actuation (or excitation) of monitored structures 
and real-time measurements and analysis of the 
resulting response, e.g. acoustic emission. The 
second strategy which is the passive approach 
consists of checking the structure periodically 
and identifying the damage by comparing the 
initial state to the actual state of the structure. 
While the passive approach is satisfactory for 
traditional structures, it is not as desirable for 
some modern structures, and in particular, 
“smart structures” which contain active 
components or layers.  For such smart structures, 
the identification algorithm needs to provide 
instantaneous updates of the mechanical 
properties of the structure to the active 
components to adaptively perform functions of 
sensing and actuation required. For the online 
identification of damage, various time-domain 
approaches have been used in the literature with 



different degree of success. A few examples 
include least-squares estimation [12-3], different 
filter approaches including the extended Kalman 
filter [45-67], ܪஶ filter [8], Monte Carlo filter [9], 
etc. The Monte Carlo method is capable of 
dealing with nonlinear systems with even non-
Gaussian uncertainties. However, it is 
computationally expensive due to requiring a 
large number of sample points. Since the 
application of least squares estimation (LSE) for 
nonlinear structural system identification 
requires displacement and velocity 
measurements, which may not always be readily 
available. The extended Kalman filter (EKF) is 
perhaps the most widely-used vibration-based 
time-domain techniques for identification of 
nonlinear systems. While the EKF has good 
performance when the parameter to be identified 
is a constant parameter, it is not as successful in 
identification of changes in time-varying system 
parameters [10]. A common technique used in 
the literature for identification of time-varying 
parameters is an extension of the LSE approach. 
This technique makes use of a constant [11,12] 
or time-dependent [13] forgetting factor in LSE. 
This approach has some drawbacks and shows 
good performance in some cases; however, it 
exhibits poor results when the stiffness of the 
structure has an abrupt change [10]. An adaptive 
tracking technique based on EKF to identify 
structural parameters is proposed in [10], which 
is particularly suitable for tracking the abrupt 
changes of the system parameters with the 
purpose of online evaluation of the structural 
damages. However, the observation equation 
used in [10] to adopt acceleration measurement 
assumes the system parameters to be known 
which is not realistic. Note that to the authors 
best knowledge the application of filtering 
problem for real-time damage identification in 
the literature has been so far limited to vibration-
based SHM techniques and discrete structural 
systems only. 

The extended Kalman-Bucy filter is an 
alternative filtering approach that has been 
recently reintroduced due to its enhanced 
capabilities in parameter estimation compared 
with the extended Kalman filter [14, 15]. On the 
other hand, an aspect of damage identification 
which is shown to be crucial from a detectability 
standpoint is the excitation. When applied as the 

excitation in some attractor-based damage 
identification techniques, chaotic and 
hyperchaotic dynamics due to their intrinsic high 
sensitivity to subtle changes in the system can 
often produce better outcome rather than the 
common stochastic white noise [161718-19202122]. In the 
context of attractor-based damage identification 
techniques, a hyperchaotic excitation is proven 
to have an enhanced capability for being an 
indicator of damage compared with chaotic 
excitations [21,22].  

In the current investigation, a feasible 
approach for real-time identification of damage 
is proposed which can be applied both as a 
guided-wave technique for structural health 
monitoring (SHM) and as a vibration-based 
SHM technique. The proposed approach takes 
advantage of the intrinsic high sensitivity of 
hyperchaotic dynamical systems to subtle 
changes in system parameters and combines this 
advantage with the enhanced estimation 
capability of extended Kalman-Bucy filter to 
establish an appropriate tool for real-time 
damage identification. The proposed approach, 
as a vibration-based technique, involves 
applying the augmented state method along with 
optimal filtering problem to provide 
simultaneous estimation of the states and 
parameters of a (possibly) nonlinear structural 
system driven by a tuned hyperchaotic excitation 
in order to monitor damage-induced changes. 
The simulation results show that the proposed 
approach when used with the extended Kalman-
Bucy filter is capable of real-time identification 
and assessment of damage in nonlinear and 
hysteretic structures with single or multiple 
degrees-of-freedom using noise-corrupted 
measured acceleration response. The current 
approach is also expandable to the realm of 
guided-wave SHM for real-time damage 
identification by applying the method of lines 
for discretization of the governing partial 
differential equation (PDE) of guided waves 
propagation in isotropic media. The governing 
PDE of propagation of frequency-shifted 
hyperchaotic guided waves in an isotropic solid 
after being converted to a set of ODEs 
constitutes the process model and measurements 
of the transmitted wave at some equally-spaced 
points along the structure serves as the 
observation for the optimal filtering problem. 



The extended Kalman-Bucy filter is then used 
for identification and real-time monitoring of 
damage-induced changes in parameters of the 
process model as well as estimating the 
transmitted waves at measurement points. 

This paper is organized as follows: in 
Section 2, a concise background on optimal 
filtering problem in general and extended 
Kalman-Bucy filter in particular, is provided. 
Then further details is given on tuned 
hyperchaotic excitations; in Section 3, the 
application of the current approach to vibration-
based SHM is discussed; in Section 4, how the 
current approach is applicable for guided-wave 
SHM is studied; in Section 5, in a numerical 
simulation the proposed approach is applied for 
online identification and assessment of damage 
in discrete nonlinear and hysteretic MDOF 
structures using noise-corrupted measured 
acceleration response. Also, measurements from 
a finite element simulation of guided-wave 
propagation in a cantilever beam are used to 
numerically verify the capability of the approach 
for real-time identification of damage-induced 
reduction in elastic modulus of an isotropic 
beam. 

2. BACKGROUND THEORY 

2.1. STOCHASTIC ESTIMATION 
PROBLEM 

In a general parametric identification problem 
(cf. non-parametric identification) it is assumed 
that the form of the model is known only 
approximately due to imperfect knowledge of 
the dynamical model that describes the motion 
and/or imperfect knowledge of parameters. The 
goal is to obtain the best estimate of the state as 
well as of model parameters based on measured 
data that has a random component due to 
observation errors. In addition, a second source 
of stochastic disturbance typically appears in the 
state dynamics as so-called process noise. Both 
the process noise and the measurement noise are 
assumed to be additive in this paper. The 
optimal continuous-time filtering problem in the 
general form considered in this paper can be 
written as a set of Ito stochastic differential 
equations as 

ሻݐሺܠ݀ ൌ ,ሻݐሺܠሺࢌ ,ሻݐሺ܉ ݐሻ݀ݐ ൅ 	۵ሺܠሺݐሻ, ሻݐሻ݀઺ሺݐ
ሻݐሺܢ݀ ൌ ,ሻݐሺܠሺࢎ ,ሻݐሺ܉ ݐሻ݀ݐ ൅ ۸ሺݐሻ݀િሺݐሻ,	

ሺ1ሻ

where ܠሺݐሻ ∈ Թ௡ is the state process, ܢሺݐሻ ∈ Թ୯ is 
the measurement process, ܉ሺݐሻ ∈ Թ௥ is a vector 
of unknown parameters,  ࢌ is the drift coefficient 
(process model),	ࡳ is the diffusion coefficient, ࢎ 
is the measurement model function, ۸ሺݐሻ is an 
arbitrary time-varying functions independent 
of	ܠ, and ઺ሺݐሻ and િሺݐሻ are independent 
Brownian motion additive stochastic processes 
with ܧሾ݀઺ሺݐሻሿ ൌ Eሾ݀િሺݐሻሿ ൌ 0, ሻሿݐሻ݀઺்ሺݐሾ݀઺ሺܧ ൌ
ሻሿݐሻ݀િ்ሺݐሾ݀િሺܧ and ݐ݀ۿ ൌ  ሿ	ሾܧ where ݐ݀܀
represents the expectation operator. Note that in 
this paper the system is considered to be 
disturbed by additive noise only. Therefore, 
hereafter we will treat stochastic differential 
equations with the diffusion coefficient only 
depending on ݐ	and not the process ܠ. Under this 
condition the filtering problem can also be 
formulated in terms of the stationary zero-mean 
Gaussian white noise processes formally defined 
as ܞሺݐሻ ൌ ݀઺ሺtሻ/݀ܟ , ݐሺݐሻ ൌ ݀િሺtሻ/݀ݐ and 
differential measurement ܡሺݐሻ ൌ  as [23] ݐ݀/ሻݐሺܢ݀

ሶܠ ሺݐሻ ൌ ,ሻݐሺܠሺࢌ ,ሻݐሺ܉ ሻݐ ൅ ۵ሺݐሻܞሺݐሻ	
ሻݐሺܡ ൌ ,ሻݐሺܠሺࢎ ,ሻݐሺ܉ ሻݐ ൅ ۸ሺݐሻܟሺݐሻ,	

ሺ2ሻ

where ܞሺݐሻ and ܟሺݐሻ are assumed to be both 
mutually independent and independent from the 
state and observation with constant covariance 
matrices of 	ࡽ and	ࡾ, respectively, i.e. ܞ~ܰሺ0,ࡽሻ 
and ܟ~ܰሺ0,  ሻ. Here in this paper, the stochasticࡾ
term ܞሺݐሻ (the “process noise”) functions as an 
approximation for the influence of the unknown 
dynamics of the process model. The time 
evolution of the states of the system and the 
unknown parameters of the stochastic model are 
to be identified using measurements of the 
output corrupted by the measurement noise term 
  .ሻݐሺܟ

The Ito and standard forms in Eqs. (1)-(2) 
are only equivalent, however, because the 
process and measurement noise are restricted to 
be additive and not multiplicative.  Also, note 
that ܉ሺݐሻ can be a constant or time-varying 
vector and it is assumed to be Heaviside 
function later in this study. Eq. (2) defines a 
continuous-time state-space optimal filtering 
model. The purpose of the optimal continuous-
time filtering problem is to recursively obtain 
estimates of the states and parameters from the 



mean, median, or mode of the time-varying 
conditional probability density 

ሺ߬ሻܡ|ሼ	ሺtሻܠሺ݌ 	 ∶ 		0 ൑ ߬ ൑ 	.ሽሻݐ ሺ3ሻ

To see how the filtering problem can be 
represented in the context of system 
identification, once again consider Eq.(2). As 
mentioned before, the assumed model of the 
system consists of the nonlinear function ࢌ 
which is a function of the state vector ܠሺݐሻ and 
parameters ܉ሺݐሻ. Suppose that ܉ሺݐሻ is unknown 
but is assumed to be piecewise constant. The 
Kalman-Bucy filter can be used to 
simultaneously estimate the states ܠሺݐሻ and the 
parameters ܉ሺݐሻ. The standard method employs 
the so-called state augmentation method, in 
which the parameter vector ܉ሺݐሻ is included in an 
augmented state vector ܆ሺݐሻ ൌ ሾܠሺݐሻ,  ሻሿ் whileݐሺ܉
being constrained to have a predefined rate of 
change (zero here), i.e. 

ሶ܆ ሺtሻ ൌ ऐሺ܆, ሻݐ ൅ ऑሺݐሻܞሺݐሻ	

ൌ 	 ቄࢌሺܠሺݐሻ, ,ሻݐሺ܉ ሻݐ
૙

ቅ ൅ ቄ۵ሺݐሻ	
૙

ቅ 	ሻݐሺܞ

ሻݐሺܡ ൌ ऒሺ܆, ሻݐ ൅ ۸ሺݐሻܟሺݐሻ.	

ሺ4ሻ

The parameter vector ܉ሺݐሻ is assumed to initially 
have a Gaussian distribution with mean ܉૙ and 
covariance ࡼ଴. Note that there is no noise term 
in the equation for the unknown parameter 
dynamics. The reason is that the parameters are 
already assumed to be stationary. Therefore, the 
augmented state method along with optimal 
filtering problem provides a pertinent approach 
for simultaneous estimation of the state and 
parameters of a (possibly) nonlinear system 
from noise-corrupted observations. The next 
section discusses how to acquire the solution to 
this optimal filtering problem using extended 
Kalman-Bucy filter. 

2.2. THE EXTENDED KALMAN-BUCY 
FILTER 

The nonlinear optimal filtering problem 
described via the Ito differential form of Eq. (1) 
is considered, where the nonlinear process and 
measurement function are now functions of the 
augmented state ܆ (as in Eq. (4)), and ۸ሺݐሻ is the 
identity matrix. In order for the Kalman-Bucy 
filter to be applicable to the nonlinear system, 

the dynamics need to be locally linearized.  
Rather than linearizing about a reference 
trajectory, the extended Kalman-Bucy filter 
employs a linearization about the state estimate 
itself. It can be derived by taking the expectation 
of the dynamic model and adding a feedback 
term consisting of the measurement residual 
times an (as yet) unknown gain matrix, i.e.  

ሻݐ෡ሺ܆݀ ൌ ,܆ሾऐሺܧ ݐሻሿ݀ݐ ൅ ሻݐሺܢሻሾ݀ݐሺࡷ െ
,܆ሾऒሺܧ .ሿݐሻሿ݀ݐ

ሺ5ሻ

Defining the observer error as ࢋሺݐሻ ൌ ሻݐሺ܆ െ
 ሻ, the differential observation error isݐ෡ሺ܆
obtained as 

ሻݐሺࢋ݀ ൌ ሻݐሺࢄ݀ െ ሻݐ෡ሺࢄ݀ ൌ ऐሺࢄ, ݐሻ݀ݐ െ

,ࢄሾऐሺܧ ݐሻሿ݀ݐ െ ,ࢄሻሾऒሺݐሺࡷ ݐሻ݀ݐ െ

,ࢄሾऒሺܧ ሿݐሻሿ݀ݐ ൅ ሻݐሺ࡮݀ ,

ሺ6ሻ

where ݀࡮ሺݐሻ ൌ ऑሺݐሻ݀ࢼሺݐሻ െ  ሻ is aݐሺࣁሺtሻ݀ࡷ
Brownian motion process with 

ሻݐሺ࡮ሾ݀ܧ ሿࢀሻݐሺ࡮݀ ൌ ሾऑሺݐሻࡽሺݐሻऑሺݐሻࢀ ൅
.ݐሿ݀ࢀሻݐሺࡷሻݐሺࡾሻݐሺࡷ

ሺ7ሻ

Defining ࡲ෩ሺtሻ and ࡴ෩ሺtሻ to be the Jacobian 
matrices  

ሻݐ෩ሺࡲ ∶ൌ
ࣔऐሺࢄ,࢚ሻ

ࢄࣔ
ቚ
෡ࢄୀࢄ

, ሻݐ෩ሺࡴ ∶ൌ
ࣔऒሺࢄ,࢚ሻ

ࢄࣔ
ቚ
෡ࢄୀࢄ

and linearizing about the current estimate yields 

ऐሺࢄ, ሻݐ ൌ ऐ൫ࢄ෡, ൯ݐ ൅ ࢄሻ൫ݐ෩ሺࡲ െ ෡൯ࢄ
൅ ,෡ࢄ,ࢄሺࢌ࢘ 	ሻݐ

ऒሺࢄ, ሻݐ ൌ ,෡ࢄ൫ࢎ ൯ݐ ൅ ࢄሻ൫ݐ෩ሺࡴ െ ෡൯ࢄ

൅ ,෡ࢄ,ࢄሺࢎ࢘ 	ሻݐ

ሺ9ሻ

from which ܧሾऐሺ܆, ሻሿݐ ൌ ऐ൫܆෡, ൯ݐ ൅ ,܆ሾ࢘௙൫ܧ ,෡܆  ൯ሿݐ
and ܧሾऒሺ܆, ሻሿݐ ൌ ऒ൫܆෡, ൯ݐ ൅ ,܆ሾ࢘௛ሺܧ ,෡܆  .[ሻݐ
࢘௙ሺ܆, ,෡܆ ,܆ሻ and ࢘௛ሺݐ ,෡܆  ሻ represent the remainingݐ
higher order terms. Truncating the Taylor series 
after the first order terms yields the differential 
observation error as 

ሻݐሺࢋ݀ ൌ ሻݐ෩ሺࡲൣ െ ݐሻ݀ݐሺࢋሻ൧ݐ෩ሺࡴሻݐሺࡷ ൅ .ሻݐሺ࡮݀ ሺ10ሻ

The error covariance matrix can be obtained by 
differentiating Eሾࢋሺݐሻ	ࢋሺݐሻ்ሿ using the Ito 
differential rule to obtain  



ሻݐሺࡼ݀ ൌ 	 ሻݐ෩ሺࡲൣ െ ݐሻ݀ݐሺࡼ	ሻ൧ݐ෩ሺࡴሻݐሺࡷ ൅

ሻݐ෩ሺࡲൣ	ሻݐሺࡼ െ ሻ൧ݐ෩ሺࡴሻݐሺࡷ
ࢀ
ݐ݀ ൅

ऑሺݐሻ	ࡽሺݐሻ	ऑሺݐሻ்݀ݐ ൅ 	.ݐሻ்݀ݐሺࡷ	ሻݐሺࡾ	ሻݐሺࡷ

ሺ11ሻ

The optimal gain matrix ࡷሺtሻ which leads to a 
minimum variance estimator can be obtained by 
minimizing the cost function ܬ ൌ Traceሺ݀ࡼሺݐሻሻ 
with respect to ࡷሺݐሻ as 

∂
ሺtሻࡷ∂

ൣTrace൫݀ࡼሺݐሻ൯൧ ൌ 

െ2ࡼሺݐሻࡴ෩ሺݐሻ୘ ൅ ሻ୘ݐሺࡾሻݐሺࡷ2 ൌ 0, 

ሺ12ሻ

which yields the ࡷሺݐሻ matrix as 

ሻݐሺࡷ ൌ 	.ሻିଵݐሺࡾሻݐሺ܂෩ࡴሻݐሺࡼ ሺ13ሻ

Therefore the propagation of the estimate is 
obtained as 

ሻݐ෡ሺ܆݀ ൌ	 

ऐ൫܆෡, ݐ൯݀ݐ ൅ ሻݐሺࢠሺtሻൣ݀ࡷ െऒ൫܆෡,  ,൧ݐ൯݀ݐ

ሺ14ሻ

while the following Riccati differential equation 
is obtained which propagates the error 
covariance ࡼሺݐሻ. 

ሻݐሺࡼ݀ ൌ ݐሻ݀ݐሺࡼ	ሻݐ෩ሺࡲ	 ൅ ݐሻ୘݀ݐ෩ሺࡲሻݐሺࡼ ൅
ऑሺݐሻ	ࡽሺݐሻ	ऑሺݐሻ୘݀ݐ െ  .ݐሻ݀ݐሺࡼ	ሻݐ෩ሺࡴ	ሻݐሺࡷ

ሺ15ሻ

The estimator so obtained is the extended 
Kalman-Bucy filter. Unlike the discrete-time 
extended Kalman filter, the prediction and 
measurement update steps are combined in the 
continuous-time extended Kalman filter. 

2.3. TUNED HYPERCHAOTIC PROBE 

Traditionally, broadband random signals 
have been widely used for exciting structures. 
The reason is that the broadband nature of noise 
ensures a full modal response, ideal for 
frequency domain approaches to system 
identification or feature extraction. The 
motivation for the use of a chaotic signal as the 
excitation mechanism in damage detection is 
due to various unique features intrinsic to a 
chaotic signal. Chaotic signals also tend to 

possess broadband frequency spectra. However, 
unlike noise, chaos is deterministic and 
intrinsically low-dimensional (a stochastic 
process is infinite-dimensional). In fact many 
chaotic systems can be as low as three-
dimensional when described as a continuous 
time process. In addition, a chaotic system is 
defined by a positive Lyapunov exponent (LE) 
implying extreme sensitivity to small changes in 
system parameters. Hyperchaos, on the other 
hand, is defined as chaotic behavior where at 
least two LEs are positive and thus provides a 
higher level of sensitivity to changes in 
parameters of the system. Having all the 
advantages that make a chaotic signal suitable 
for being used as an excitation, it is shown in 
[21,22] that a hyperchaotic signal is even more 
sensitive to subtle changes in damage severity as 
a result of the trajectory being permitted to more 
fully explore the entire phase space. The subtlety 
of damage-induced changes to a structure further 
motivates this choice as the mechanism of 
excitation. Thus, hyperchaotic oscillators can be 
an alternative excitation mechanism in damage 
detection when extra sensitivity to damage is 
required. 

In order to better understand the effect of 
the hyperchaotic dynamic on the damage 
identification capability of a vibration-based 
SHM technique, consider a structure driven by a 
hyperchaotic excitation. The structure can be 
regarded as a filter affecting the hyperchaotic 
input signal while the damage manifests itself by 
changing the design parameters of the filter. 
Thus the approach makes use of the intrinsic 
high sensitivity of hyperchaotic systems to 
subtle changes of the parameters.  

However, in order for hyperchaotic 
excitation to have the best performance the 
excitation should be tuned for the structure. 
There are two tuning criteria based on attractor 
dimensionality. First, the Lyapunov spectrum of 
the oscillator must overlap that of the structure. 
This ensures that changes to the LEs of the 
structure, i.e. by damage, will alter the 
dimension of the filtered signal. Second, the 
dominant exponent associated with the oscillator 
must be minimized for a given degree of overlap 
in order to maintain the lowest possible 
dimensionality. By employing the Kaplan-York 



conjecture in attractor dimensionality, these 
criteria become 

ெߣ|
஼ | ൐ 	|ଵ௅ߣ|

|ଵ௅ߣ| ൐ ∑ ௥஼ߣ
௣
௥ୀଵ ,	

ሺ16ሻ

where ߣ௜
஼  are the LE exponents associated with 

the ܯ-dimensional hyperchaotic system, ߣ௝
௅ are 

the exponents of the ܰ-dimensional structure, 
and ݌ is the number of positive Lyapunov 
exponents of the ܯ-dimensional oscillator. 

3. APPLICATION TO 
VIBRATION-BASED SHM  

The parameter estimation technique based 
on filtering problem described in Section 2.1 in 
combination with the idea of using a 
hyperchaotic probe as the excitation (discussed 
in Section 2.3) makes a real-time damage 
assessment approach which is applied as a 
vibration-based SHM technique in this section.  

Conventional extended Kalman filter which 
is basically a discrete sequential filtering 
technique has already been used for 
identification of constant unknown parameters. 
However, in case of time-varying parameters the 
EKF does not show a good performance [10]. A 
commonly used approach to overcome this 
shortcoming is to apply the EKF with a 
forgetting factor [24] which is a constant factor 
used to modify the error covariance matrix of 
the EKF. As a result of applying this forgetting 
factor, the Kalman gain matrix is amplified by 
the inverse of the forgetting factor. This 
approach exhibits only a limited success in real-
time tracking of time-varying system 
parameters. A major drawback of this approach 
is that if the forgetting factor is small, it has a 
better tracking capability, but is very sensitive to 
noise. Conversely, if the forgetting factor is 
large, the approach is more robust against noise, 
but shows less tracking capability. Different 
modified versions of this approach based on 
using constant or variable (fading) forgetting 
factors are proposed [10,25] in the literature 
with different degrees of success.          

The approach used in this study makes use 
of continuous-time filtering technique and 
hyperchaotic probe for real-time damage 
identification. The extended Kalman-Bucy filter 

introduced in Section 2.2 has been shown [14] to 
provide an enhanced estimation capability over 
the EKF technique. Also the hyperchaotic probe 
is expected to show a better performance when 
used with filtering techniques compared to what 
random excitations used in [10] do. In order to 
adopt the filtering problem discussed in Section 
2.1 to damage assessment, the process equation 
in the optimal filtering problem of Eq. (4) is 
considered as 

,ሻݐሺܠሺࢌ ,ሻݐሺ܉ ሻݐ ൌ ࣐൫ܠሺݐሻ, ሻ൯ݐሺ܉ ൅ ,ሻݐहሺ	܊ ሺ17ሻ

where ࣐ሺሻ describes the nonlinear structure of 
interest, हሺሻ is the hyperchaotic excitation force, 
and the constant coupling matrix ܊ determines 
which component of हሺሻ to be used as the 
excitation and which degree-of-freedom of the 
structure is to be excited. Any hyperchaotic 
nonlinear systems may be used as an excitation. 
We use a hyperchaotic version of the well-
known Lorenz oscillator shown below, i.e.  

अሶ ଵሺݐሻ ൌ ሺߪሺअଶሺݐሻ െ अଵሺݐሻሻ ൅ अସሺݐሻሻߜ
अሶ ଶሺݐሻ ൌ ሺݎअଵሺݐሻ െ अଶሺݐሻ െ अଵሺݐሻअଷሺݐሻ െ अହሺݐሻሻߜ

अሶ ଷሺݐሻ ൌ ሺअଵሺݐሻअଶሺݐሻ െ ܾअଷሺݐሻሻߜ
अሶ ସሺݐሻ ൌ ሺ݀अସሺݐሻ െ अଵሺݐሻअଷሺݐሻሻߜ

अሶ ହሺݐሻ ൌ ሺ݇अଶሺݐሻሻߜ

ሺ18ሻ

which exhibits hyperchaotic behavior with 3 
positive LEs for ߪ ൌ 10, ߩ ൌ 28, ߚ ൌ

଼

ଷ
, ݀ ൌ 2, ݇ ൌ

10 [26]. Note that if we eliminate states अସ and 
अହ from the first 3 states of the oscillator above, 
the resulting 3-dimensional oscillator is the well-
known Lorenz oscillator which exhibits chaotic 
behavior (one positive LE) for ߪ ൌ 10, ߩ ൌ
28, ߚ ൌ

଼

ଷ
. The bandwidth control parameter ߜ	 is 

used to tune the LEs of the excitation based on 
the tuning criteria of Eq. (16). Values of ߜ	that 
are less than unity decrease the bandwidth of the 
input, while values greater than unity increase 
the bandwidth. In order to eliminate transient 
dynamics when using the hyperchaotic oscillator 
as an excitation, the oscillator is initiated at a 
point on the attractor. The matrix ܊ throughout 
this paper is chosen in a way that the first 
component अଵ of the chaotic/hyperchaotic 
Lorenz oscillators is used for the excitation.  

Refer to the examples in Section 5.1 and 
Section 5.2 to see applications of the current 
vibration-based real-time technique in numerical 
simulations. 



4. APPLICATION TO 
GUIDED-WAVE SHM 

The idea of combining optimal filtering 
problem with a hyperchaotic probe is extended 
to guided-wave SHM in this section.  

The classical problem of propagation of 
stress waves in solid media gives rise to the 
problem of guided and bulk waves. Although 
guided waves and bulk waves share the same set 
of partial differential governing equations, these 
two classes of wave are fundamentally different. 
Bulk waves travel in the bulk of material and 
away from boundaries. Guided waves however 
propagate along an elongated structure while 
guided by its boundaries. Mathematically, the 
introduction of boundary conditions to the 
problem of bulk waves leads to the guided 
waves problem. Thus, the solution to the 
governing equations in guided waves must 
satisfy some physical boundary conditions in 
addition to the governing equations. In contrast, 
there are no boundary conditions that need to be 
satisfied by the proposed solution in the case of 
bulk waves. Additionally, waves can be 
categorized according to the relative 
configuration of the direction of propagation and 
the direction of particle oscillations. In that 
sense, waves can be either longitudinal or shear. 
Longitudinal waves occur when the direction of 
particle oscillation is in the direction of wave 
propagation while shear waves are formed when 
the direction of particle oscillation is 
perpendicular to the direction of wave 
propagation. Obviously, the oscillation particles 
in shear waves can be either perpendicular to the 
plane of wave propagation which is called 
vertical (or transverse) shear wave or in the 
plane of wave propagation which is called 
horizontal (or normal) shear waves. 

So far, the proposed technique for real-time 
damage identification was only applicable to 
discrete structural systems and used low-
frequency vibration excitations. Next, we will 
extend this technique to continuous structural 
systems and use high-frequency guided-waves. 
In a thin isotropic and homogeneous linear 
elastic plate-like structure, the elasto-dynamics 
equation of waves, regardless of their modes, 
can be described (using Cartesian tensor index 
notation) as 

ߤ ܝଶ׏ ൅ ሺߣ ൅ ሻߤ .׏ሺ׏ ሻܝ ൅ ܎ߩ ൌ ሷܝߩ 	 ሺ19ሻ

where ܝ and ܎ are the displacement and body 
force, and ߤ ,ߩ and ߣ are the density, shear 
modulus, and Lamé constant, respectively. By 
using Helmholtz decomposition and writing the 
displacement vector of particles of an isotropic 
media (away from boundaries) in terms of an 
irrotational displacement and a pure rotational 
displacement, the elasto-dynamic equation in the 
absence of body force can be decomposed into 
an equation for propagation of dilatational 
waves (or longitudinal waves) as 

ሺߣ ൅ ሻߤ2
߲ଶݑ
ଶݔ߲

ൌ ߩ
߲ଶݑ
ଶݐ߲

ሺ20ሻ

and an equation for propagation of distortional 
waves (or shear waves) as 

ߤ
߲ଶݑ
ଶݔ߲

ൌ ߩ
߲ଶݑ
ଶݐ߲

ሺ21ሻ

In order to extend the proposed real-time 
damage identification approach to (longitudinal 
or shear) wave propagation, the optimal filtering 
problem needs to be applied to a system of 
particles in a continuous medium instead of a 
discrete mass-spring-damper system as used 
before. Therefore, the elasto-dynamic equation 
of wave propagation needs to replace the 
equation of motion of MDOF systems in the 
optimal filtering problem. The main problem 
that arises here is that the governing equation of 
guided waves is a PDE that cannot be used with 
filtering problem. To solve this problem we take 
advantage of a method called method of lines 
[27,28] to convert the governing PDE of guided 
waves to a set of ODEs that can be used with the 
filtering problem. 

The method of lines is a semi-analytical 
technique originally developed by 
mathematicians that basically involves 
discretizing a given PDE in one or two 
dimensions while using analytical solution in the 
remaining dimensions. For instance, consider the 
governing PDE of longitudinal (pressure wave) 
wave as described in Eq.(20). The displacement 
 .has a temporal and a spatial dimension, i.e ݑ
ݑ ൌ ,ݔሺݑ  ሻ. By discretizing the spatial domain ofݐ
 into ܰ intervals and using finite-difference ݑ
discretization technique we will have 



ሺߣ	 ൅ ሻߤ2
߲ଶݑሺݔ, ሻݐ

ଶݔ߲
ൌ ߩ

߲ଶݑሺݔ, ሻݐ

ଶݐ߲
⇒ 
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where ݑ௜’s are displacements at discretization 
points and ݄ is the discretization length. 
Therefore, the governing PDE of wave 
propagation can be written as a set of ܰ െ 1 
ODEs for internal discretization points. Defining 
the state-space vector 
ሻݐሺ܃ ൌ ,ሻݐଵሺݑൣ 	 … , ,ሻݐேିଵሺݑ	 ሶݑ ଵሺݐሻ,⋯ , ሶݑ ேିଵሺݐሻ൧

்
, the 

optimal filtering problem for the governing 
equation of wave propagation can be written as 

ሶ܃ ሺݐሻ ൌ ሻݐሺ܃ሻ൯ݐሺ܉൫࡭ ൅  ሻݐटሺ	ሻ൯ݐሺ܉൫࡮
൅۵ሺݐሻܞሺݐሻ 

࢟ሺݐሻ ൌ ሻ൯ݐሺ܃൫ࢎ ൅  ሻݐሻ࢝ሺݐሺࡶ

ሺ23ሻ

where ࡭ and ࡮ are coefficient matrices obtained 
based on Eq. (20) and are functions of the 
unknown parameter ܉ሺݐሻ, and टሺݐሻ is the vector 
of displacement boundary conditions in 
longitudinal direction. Assuming that the 
hyperchaotic excitation is exerted in terms of 
displacement at the boundary point ݑ଴ሺݐሻ and 
further assuming that the first component अଵ of 
the hyperchaotic Lorenz oscillators of Eq. (18) is 
used for the excitation, टሺݐሻ can be written as  

टሺݐሻ ൌ ൣ૙ଵൈሺேିଵሻ, अଵሺݐሻ, ૙ଵൈሺேିଷሻ, ሻ൧ݐேሺݑ
் ሺ24ሻ

This real-time guided-wave SHM approach is 
further illustrated in a numerical simulation in 
Section 5.3. 

5. SIMULATION RESULTS 

5.1. S-DOF HYSTERETIC NONLINEAR 
STRUCTURE 

Consider a single degree of (SDOF) 
nonlinear hysteretic Bouc–Wen system subject 
to the excitation ௘݂௫௖ሺݐሻ  

m ሻݐሷሺݔ ൅ c ሶݔ ሺݐሻ ൅ k ሻݐሺݎ ൌ ௘݂௫௖ሺݐሻ	 ሺ25ሻ

where ݎሺݐሻ is the Bouc–Wen hysteretic 
component with 

ሶݎ ൌ ሶݔ െ ሶݔ|ߚ ݎఈିଵ|ݎ|| െ ሶݔߛ 	ఈ|ݎ| ሺ26ሻ
 

(a) 

   (b) 

     (c) 
Figure 1. Comparing damage identification with a) random, b) chaotic 
and c) hyperchaotic excitations in nonlinear system of Eq. (25) using 
extended Kalman-Bucy filter (damage defined as a 50% stiffness and 

damping reduction at ݐ ൌ ࡽ	.(ݏ50 ൌ 1 ൈ ,ࡵ10ି଼ ࡾ ൌ 1 ൈ  ࡵ10ି଼
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The system parameters m ൌ 	1, c ൌ 	0.3, k ൌ 	9, 
ߚ ൌ ߛ ,2	 ൌ ߙ ,1	 ൌ 2 are chosen for the 
simulation. Considering ܢ ൌ ሾݔ, ሶݔ ,  ࣐  ሿ், theݎ
function in Eq. (17) that forms the process 
function ࢌ of the filtering problem for this 
system is 

ሺ27ሻ 
࣐൫ܢሺݐሻ൯ 

ൌ ቐ
ሻݐଶሺݖ

ሺ1 m⁄ ሻሺെk	ݖଷሺݐሻ െ c	ݖଶሺݐሻሻ
ሻݐଶሺݖ െ ሻݐଷሺݖሻ|ఈିଵݐଷሺݖ||ሻݐଶሺݖ|ߚ െ ሻ|ఈݐଷሺݖ|ሻݐଶሺݖߛ

ቑ,

 
Time-varying damage is implemented as a 50% 
abrupt reduction in the stiffness and damping 
coefficients of the system at time ݐ ൌ  The .ݏ50
mass of the system is assumed to be known 
throughout this simulation. The filtering 
sequence is initiated with values of the state and 
parameters (k, cሻ which are 50% deviated from 
the true values. Three types of excitation ܝሺݐሻ 
including white noise, chaotic Lorenz excitation 
and hyperchaotic Lorenz excitation (Eq. (18)) 
are applied to the system under identical 
measurement and process noise covariance 
 The standard deviation of the random .(ࡽ,ࡾ)
excitation is chosen to be equal to the RMS of 
the hyperchaotic excitation. The measurement 
function ࢎ is considered to be the identity 
function i.e. both displacement ݔ and ݎ and 
velocity ݔሶ  are directly measured. The extended 
Kalman-Bucy filter is used for real-time 
identification of the stiffness k and the damping 
coefficient c of the system. The value of 
ߜ ൌ 0.542 can be shown to satisfy the tuning 
criteria for both the chaotic Lorenz oscillator and 
hyperchaotic Lorenz oscillator of Eq. (18) and is 
used for this simulation. The results of the 
identified parameters with each of the three 
excitations are shown in Figure 1. As is clear 
from the figure, in the case of random excitation 
the change in system parameters is not sensed. 
However, when chaotic and hyperchaotic 
excitations are applied the approach successfully 
identifies the change. Note that in the case of 
hyperchaotic excitation the filter converges to 
the true value of the parameter faster than for the 
case of chaotic excitation.  

Figure 2. Identification of 10% change in the stiffness of the 
nonlinear hysteretic system of Eq. (25) from acceleration 

measurements (Eq. (28)) using hyperchaotic excitation and extended 
Kalman-Bucy (EKB) filter ሺࡽ ൌ 1 ൈ 10ିସࡵ, ࡾ ൌ 1 ൈ 10ିସࡵሻ. 

 
In the second simulation the proposed 

approach is applied for real-time identification 
of a 10% stiffness reduction in the hysteretic 
system of Eq. (25). The system parameters are 
considered as mentioned previously and the 
hyperchaotic Lorenz oscillator of Eq. (18) is 
used for the excitation. The value of ߜ ൌ 0.1 is 
used for this simulation which can be shown to 
satisfy the tuning criteria of Eq. (18) for the 
hyperchaotic Lorenz oscillator and the nonlinear 
system of Eq. (25). Since measurements of 
displacement ݎ and	ݔ and velocity ݔሶ  may not 
always be readily available, a more common 
acceleration measurement is considered here. 
Acceleration measurements in this simulation 
are provided by using the measurement function 
 based on the Eq. (25) as ࢎ

,ሻݐሺܢሺࢎ	 ሻݐ ൌ
ଵ

୫
൫݂ୣ ୶ୡሺݐሻ െ c	ݔሶሺtሻ െ k	ݎሺݐሻ൯. ሺ28ሻ

Note that the excitation force in Eq. (28) is 
assumed to be easily measurable via force 
transducers. The filtering sequence is initiated 
with values of the state and unknown parameters 
(k, cሻ which are 50% deviated from the true 
values.  As is clear from Figure 2, the approach 
is capable of real-time identification of the 10% 
stiffness reduction at time ݐ ൌ  with good ݏ250
accuracy and fast convergence from 
measurements of acceleration in the presence of 
noise. 

Although measuring acceleration is more 
realistic and practical than measuring both 
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velocity ݔሶ  and displacement ݎ and ݔ, the	ࢎ 
function that is used for measuring acceleration 
is still not quite realistic for some modern 
structures. The arguable part is that the values of 
system parameters m, k and c used in the ࢎ 
function are assumed to be known a priori. This 
is only realistic in the case that the mechanical 
properties of the structure can be measured or 
identified before the occurrence of damage. 
However, if the structure under consideration is 
a smart structure, then the identification 
algorithm needs to provide instantaneous 
updates of the mechanical properties of the 
structure to some embedded or layered actuators 
in order for the structure to adaptively perform 
functions of sensing and actuation. Therefore, 
the measurement function of Eq.(28) is not 
applicable to a smart structures. Consequently, 
in the third simulation the measurement function 
 is modified to incorporate the estimated values ࢎ
of the system parameters instead of the true 
values. Assuming the vector of unknown 
parameters in Eq. (2) to be composed of 
parameters m, k and c, i.e.  ܉ ൌ ሾm, k, cሿ, the 
modified measurement function is 

,ሻݐሺܢሺࢎ		 ,ሻݐሺ܉ ሻݐ ൌ	
૚

௔భሺ࢚ሻ
൫ ௘݂௫௖ሺݐሻ െ ܽଷሺݐሻ	ݔሶ ሺݐሻ െ ܽଶሺݐሻ	ݎሺݐሻ൯,	

ሺ29ሻ

where ܉ሺݐሻ is the vector of unknowns which is 
identical to what used in the augmented state 
 ሻ in Eq. (4) when forming the processݐሺ܆
function ऐሺ܆,  ሻ in the process of using the EKBݐ
filter. The EKB filter estimates are thus 
simultaneously used in the measurement 
function ࢎ to relate the measured acceleration to 
the states of the system (ݔሶ  Note that in .(ݎ and ݔ ,
this simulation m, k and c are all assumed to be 
unknown.  

Again, the value of ߜ ൌ 0.1 is used for this 
simulation and the filtering sequence is initiated 
with values of the state and parameters (m, k and 

cሻ 50% deviated from the true values. Figure 3 
shows the simulation results. As is clear from 
the figure, in this simulation a stiffness reduction 
of 10% at time ݐ ൌ 250 is accurately identified 
online in the nonlinear hysteretic system without 
any prior knowledge of the system parameters 
and by sole measurement of the acceleration 
response and the excitation force. In fact, the 

proposed technique first accurately identifies the 
values of the parameters from noise-corrupted 
measurements of the acceleration response 
within the first 250 seconds of excitation, and 
then successfully monitors the change in the 
system by identifying the parameter that has 
changed, the amount of change, and the instant 
of occurrence of the change. Therefore, the 
proposed adaptive identification technique is 
capable of real-time sensing of mechanical 
properties (m, k and cሻ in a S-DoF nonlinear 
smart structure. 

Figure 3. Identification of 10% change in the stiffness of the 
nonlinear hysteretic system of Eq. (25) from acceleration 

measurements (Eq. (29)) using hyperchaotic excitation and 
extended Kalman-Bucy (EKB) filter	ሺࡽ ൌ 1 ൈ 10ିସࡵ, ࡾ ൌ 1 ൈ

10ିସࡵሻ. 

 

5.2. FOUR-STORY SHEAR-BEAM 
STRUCTURE 

Consider an idealized four-story linear 
shear-beam type building with floor masses ݉௜, 

inter-story stiffnesses ݇௜, and inter-story viscous 
damping coefficients ܿ௜ where ݅ ൌ 1,… ,4. The 
structure is modeled with a linear discrete 
spring–mass–damper system where the first 
spring is connected to the ground. The masses, 
spring stiffnesses and damping coefficients 
forming the ࡷ ,ࡹ and ࡯ matrices are set to 
݉௜ ൌ 5, ݇௜ ൌ 8 and ܿ௜ ൌ 0.5. In this example the 
mass matrix ࡹ which denotes the floor masses is 
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assumed to be known and the vector of 
unknowns is only composed of stiffness ݇௜ and 
damping coefficients	ܿ݅. Therefore, ࡷ ൌ ,ሻ൯ݐሺ܉൫ࡷ
࡯ ൌ  ሻሻ. Considering the state-space vectorݐሺ܉ሺ࡯
ܢ ൌ ሾܠሺݐሻ, ሶܠ ሺݐሻሿ୘, the ࢌ function of Eq. (17) for 
this system is the linear function  

,ሻݐሺܢሺࢌ		 ,ሻݐሺ܉ ሻݐ ൌ ሻݐሺܢሻ൯ݐሺ܉൫࡭ ൅ ሻݐሺܝ	܊ ൌ	

൤
૙ ࡵ

െିࡹ૚ࡷ൫܉ሺݐሻ൯ െିࡹ૚࡯ሺ܉ሺݐሻሻ൨ ሻݐሺܢ ൅ ሻݐሺܝ	܊

ሺ30ሻ

where ܝሺtሻ is the response of the hyperchaotic 
oscillator as shown for example in Eq. (18) and 
the coupling matrix ܊ is selected in a way to use 
 ଵ as the excitation which is applied to theݑ
fourth mass of the system. The value of 
parameter ߜ is selected as ߜ ൌ 0.1 which can be 
shown to satisfy the tuning criteria of Eq (16). 
Damage is introduced as a 10% stiffness 
reduction in the third spring of the system 
occurring at time ݐ ൌ  It is assumed that .ݏ300
only the excitation force and the acceleration of 
the masses are measured. Thus, since the states 
of the system consist of velocity ܠሶ  and 
displacement ܠ, an appropriate measurement 
function ࢎ is required to enable acceleration 
measurement. The measurement function below 
enables the technique to be applied when only 
the excitation force ݂ୣ ୶ୡ	and acceleration are 
measured. 

,ሻݐሺܢሺࢎ		 ,ሻݐሺ܉ ሻݐ ൌ ૚ିࡹ

ۉ

ۈ
ۇ
൦
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݂ୣ ୶ୡሺݐሻ

൪ െ

ሶܠ	ሻሻݐሺ܉ሺ࡯ ሺtሻ െ ሻݐሺܠ	ሻ൯ݐሺ܉൫ࡷ
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where ࡹ is the known mass matrix and ܉ሺݐሻ is 
the time-varying vector of unknowns which is 
composed of ݇௜ and ܿ௜. Note that in the above 
measurement equation the estimates of the 
system parameters (except for ࡹ which is 
known) are used. This measurement equation 
thus enables acceleration measurement without a 
priori information about the unknown system 
parameters.  

The filtering sequence is initiated with 
values of the states and unknown parameters 

20% deviated from the true values. The system 
is excited for 800 seconds by the hyperchaotic 
Lorenz excitation and the parameters are 
identified using the current approach. The real-
time values of all 8 unknown parameters of the 
4-DoF system are depicted in Figure 4. As is 
clear from the figure, the approach first 
successfully identifies all 8 unknown parameters 
of the system within the first 300 seconds. Then 
the approach successfully identifies 10% 
stiffness reduction in the third spring of the 
system. Upon the occurrence of damage, the 
identified values of some parameters experience 
a disturbance without losing convergence. 
However, given enough time they converge to 
the new true values. The identified stiffness of 
the third spring clearly monitors the 10% 
reduction at time ݐ ൌ  .ݏ300
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software. The FE model of the cantilever beam 
is excited at the free end in longitudinal 
direction for 40 ms using the hyperchaotic 
waveform as shown in Figure 6 and the 
transmitted waves at nodes corresponding to the 
measurement points 1 to 9 (Figure 7) are 
collected. The elastic modulus of the FE model 
experiences a 10% reduction at time ݐ ൌ 20 ms. 
The collected displacement data after adding a 
Gaussian noise is used as the simulated 
measurements for the optimal filtering problem.  

 

 
Figure 7. Measurements of the transmitted wave simulated 

using a FE model in Abaqus/CAE 
 

 

 
Figure 8. Identification of 10% change in the elastic 

modulus of a beam continuous system using hyperchaotic 
wave and extended Kalman-Bucy (EKB) filter	ሺࡽ ൌ 2 ൈ

10ି଺ࡵ, ࡾ ൌ 1 ൈ 10ିଵ଴ࡵሻ 

The optimal filtering problem as described 
in Eq. (23) along with the extended Kalman-
Bucy filter are employed to estimate all the 18 
states of the problem (displacement and 
velocities of the transmitted wave at 

measurement points 1 to 9) as well as the elastic 
modulus of the cantilever beam. The estimated 
transmitted wave (displacement) at the first 
measurement point,	1ݑሺݐሻ, along with the 
estimated parameter, ܧ௫ሺݐሻ obtained using the 
proposed approach are depicted in Figure 8. As 
seen in the figure, the proposed approach first 
successfully identifies the elastic modulus of the 
beam from a 20% deviated initial guess within 
the first 20 milliseconds, and then successfully 
identifies 10% reduction in the elastic modulus 
of the beam. Also, a good estimate of the 
transmitted wave is acquired by the proposed 
approach. 

6. CONCLUSIONS 
The current study combines hyperchaotic 

excitation, which has been previously shown to 
produce improved outcome when applied as the 
excitation in some attractor-based damage 
identification techniques, with the stochastic 
estimation technique of extended Kalman-Bucy 
filter, which has been recently reintroduced due 
to its enhanced estimation capabilities over 
similar filtering techniques. As a result, a novel 
real-time approach for identification of damage 
in structural systems is developed that can be 
used in smart or self-healing structures for real-
time identification of damage. The proposed 
real-time approach is shown to be applicable 
both as a vibration-based technique and as a 
guided-wave technique for structural health 
monitoring. The current technique is also 
capable of monitoring changes in the identified 
parameters by determining the parameter that 
has changed, the amount of change, and the 
instant of occurrence of the change.  
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