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Abstract

Contextual Spatial Computing: A Generative Approach

by

Mohammad Keshavarzi

Doctor of Philosophy in Architecture

University of California, Berkeley

Professor Luisa Caldas, Chair

Spatial Computing interfaces such as augmented reality (AR), virtual reality (VR), and mixed reality
(MR) have become promising modalities for next-generation computing platforms. Along with
its potential impact on various technological applications, spatial computing comes with spatial
limitations itself. Such experiences are physically constrained by the geometry and semantics of
the local user’s environment where existing physical elements are present. Unlike 2D screens,
where a rectangular screen region can host digital content with possible overlay, 3D environments
are occupied with diverse physical obstacles and functional constraints. This results in complex
and, many times, non-convex activity spaces available for virtual content augmentation. Target
environments are not necessarily known to content developers, and hence the ability to deploy large-
scale curated experiences that can adapt to a diverse set of user spaces is challenging. This limitation
is elevated in remote telepresence scenarios, where identifying a common ground physically
accessible for all participants can become difficult, especially if users are unaware of the spatial
layout of other participants’ physical environments.

Motivated by these spatial challenges, this dissertation works towards developing context-aware
generative frameworks which enable large-scale deployment of adaptable spatial computing experi-
ences for everyday users in diverse target environments. By introducing novel workflows to learn
from examples as priors and utilizing spatial optimization methods, the systems developed in this
dissertation address the spatial challenges in spatial computing in various applications of remote
workplaces, multi-user telepresence, and curated experiences such as games and education. The
contributions of this dissertation consist of solving two general sets of problems: 1) developing
curated context-aware spatial experiences for large-scale deployment, which include a wide variety
of diverse target spaces not known to the content developer; and 2) facilitating telepresence experi-
ences, where participants are not aware of each other’s local spaces due to the Telepresence Spatial
Mapping Problem (TSPM), explained in this dissertation. The frameworks developed in this work
can play a role in increasing the adoption of spatial computing interfaces in everyday environments,
allowing developers to design and curate content in scale without knowing the target scene of the
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user itself. Moreover, the frameworks proposed here can potentially facilitate remote workplace
practices and virtual collaborations by decreasing the spatial requirements for telepresence systems.
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Chapter 1

Introduction

The re-emergence of Augmented Reality (AR), Virtual Reality (VR) and Mixed Reality (MR)
technology in the past decade as the next-generation human-computer interface has followed a
strong industry push for manufacturing affordable consumer-based hardware. Advances in optics,
displays, and processing technologies have allowed various disciplines to explore how spatial
interactions with virtual objects can benefit their fields. Many definitions have been introduced to
describe the broad terms of VR, AR, and MR [47, 156, 196]. Yet, all the above-mentioned terms
share a main common attribute: they use space as a medium to interact with virtual technology. To
encapsulate this spatial attribute, in the context of this dissertation we use a more recent term that is
also used in the academic and industrial community: Spatial Computing (SC). We define SC as a
technology that incorporates virtual objects and environments within a spatial context. Therefore,
AR, VR, and MR can be all classified as SC technology.

While SC interfaces are forming an expanding market in various applications, they have shown
potential success to promote remote workplaces, virtual collaboration [11, 65], immersive healthcare
[152, 190, 42] and professional training [248, 126, 20, 46] and design [23, 104, 168, 136]. The de-
ployment of such applications can also reduce carbon footprints by cutting transportation emissions,
time, and costs and increasing productivity by taking advantage of the enhanced user interaction
modules provided in such interfaces. Telepresence meetings allow participants to remotely join a
mutual space [249, 12, 134, 232], while sharing documents or 3D content with one another [135,
157]. Design reviews within immersive environments provide the opportunity to inspect and analyze
objects, or experience walk-throughs inside virtual buildings that have not yet been built [52, 25,
23]. In the gaming industry, SC can provide more activity-based leisure incorporated with rich
spatial content.

With all the promising future, SC has many hurdles to overcome before being able to serve as
a widely accessible computing platform for all. The goal of this dissertation is to shed light on
the inherent spatial limitations for next-generation SC platforms and discuss potential solutions by
introducing novel generative systems for various SC applications. With the goal of allowing SC
platforms to be accessible to a wide variety of users holding diverse cultural and socioeconomic
backgrounds, this dissertation starts by identifying the spatial problem in SC and discussing why
the large-scale deployment of SC experiences can be challenging with conventional methods.
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After highlighting the challenges, we further elaborate on our efforts on how we utilize generative
approaches to address the spatial limitation of next-generation SC systems.

1.1 Spatial Computing and Spatial Limitations
SC comes with inherent spatial limitations. Such experiences are physically constrained by

the geometry and semantics of the local user environment where existing building elements and
furniture may be present [151, 170]. Unlike 2D screens, where a universal rectangular region
hosts digital content, 3D environments are often occupied by physical obstacles that serve various
functions. The same 3D environment are also used to support various activity functions (such as
walkable, sittable, collaborative). This results in diverse and non-convex, usable spaces with various
activity functions. In a VR setting, when a user wears an Head-Mounted Display (HMD), the virtual
environment is visually detached from its surrounding physical environment and, therefore, can
be visually embraced in an infinite space of virtual content. Content can be rendered, augmented,
and placed anywhere necessary in the virtual space. However, the user’s physical boundaries limit
the user to freely walk around as it might physically collide with real-world objects of its local
environment. This could prompt possible conflicts between the virtual experience and the physical
space. For AR, experiences automatically become less immersive once the user encounters virtual
objects placed unrealistically in their environment, conflicting with other existing elements or not
holding common physical relationships with the real-world scene. Therefore, one can assess that
content placement in SC experiences is highly dependent on the end user’s target scene.

Acquiring an accessible activity space is a prerequisite for SC experiences. For many six-degrees-
of-freedom SC applications using HMD ’s, the user will often be asked to manually initiate a block
of free space where user activity for the SC experience can be assumed to be safe. Inferencing
the above contextual information can be readily done using several well-established 3D modeling
algorithms in computer vision. Current AR devices, such as the HoloLens or MagicLeap, integrate
such algorithms to estimate the layout of the space, including floors, walls, and ceilings, and typical
furniture objects such as tables and chairs. One can take advantage of the semantic segmentation
methods widely investigated in computer vision literature [165, 121, 3] to segment their spatial
boundaries and obtain their geometric properties, such as dimensions, position and orientation,
object classification, and activity functions. Given such contextual information of individual spaces
to be available via either a manual or algorithmic process, accessible spaces can be identified by
subtracting the occupied space from the whole room. These spaces, which are different for every
user based on their local environment, can serve as areas where virtual content can be augmented in
AR and MR, and where users can safely access and interact with other virtual entities within VR
environments.
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1.2 Large-scale Deployment of Spatial Computing
Experiences

A major challenge in the design and development of SC experiences is that the local scene and
the inherent spatial limitations of the end-user are not necessarily known to the content developer.
This challenge becomes a bottleneck when aiming to develop spatial experiences for a large number
of users. End users hold diverse spatial environments, which differ in dimensions, functions (rooms,
workplace, garden, etc.), and available activity spaces. For each target space, boundaries, openings,
surfaces, and existing furniture and their arrangements are often unknown to the developer, making
it challenging to design a virtual experience that would adapt to all end-users’ physical environments
while avoiding conflicts between the virtual experience and local physical boundaries.

For spatial experiences in AR and MR, which involve virtual object augmentation within the
physical space, context plays a key role as the location of the instantiated object becomes critical for
the user experience. If the user encounters virtual objects placed unrealistically in their environment,
conflicting with other existing elements or not holding common physical relationships with the
real-world scene, such experience automatically becomes less immersive and engaging. To avoid
this issue, current AR applications address this challenge by asking users themselves to identify
the usable spaces in their surrounding environment or manually positioning the augmented object
within the scene. In such cases, the holistic spatial placement of the virtual elements would no
longer be curated by an expert designer but rather by the end-users themselves. Therefore, virtual
object placement in most AR experiences is limited to specific surfaces and locations, e.g. placing
objects naively in front of the user with no scene understanding or only using basic surface detection.
These simple strategies can work to some extent for small virtual objects, but the methods break
down for larger objects, which may not simply sit on top of the nearest surface. In such a context,
the spatial design of the virtual elements would no longer be curated by an expert designer but
would rely on the placement strategies of the user itself.

A similar challenge is also present in 2D display experiences, where developers tend to develop
the same content for displays of various sizes (desktop, tablets, phones). In this regard, responsive
design methods [138] provides the ability to design the content in relation to the display margins
and digital elements themselves. Content in such methods automatically re-scale and re-arrange
to adapt to the end-users display boundaries. However, in 3D environments where usable spaces
are not always rectangular, additional complexities are introduced for adapting spatial content
to target scenes. Yet, recent research in the field of computer vision has allowed systems to not
only reconstruct and map the surrounding environment relative to the user but also semantically
segment the reconstructed geometrical data into objects categories. While this would allow end-user
interfaces to understand the surrounding environment, the process of how to efficiently position and
integrate virtual content with the surrounding world is still an open challenge.
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1.3 The Telepresence Spatial Mapping Problem (TSMP)
With the rapidly growing demand for remote communication platforms in workplaces, house-

holds, and education institutes, more forms of effective communication technologies have emerged
in the past two decades. More recently, advances in consumer-grade SC and standalone headsets
and displays have introduced alternative systems of immersive and context-aware communication
platforms known as telepresence. Telepresence allows changing the state of one’s sense of presence
from a physical location to a target remote environment without requiring the physical body to
relocate to the target environment [55, 56].

However, as all parties of the telepresence settings hold spatial limitations (room size, furniture
settings, etc.), their virtual doubles or avatars may not be able to hold the same spatial relationships
they have within their real-world spaces. This challenge is what is referred to in this dissertation as
the Telepresence Spatial Mapping Problem (TSMP). The TSMP is a mapping problem between
virtual remote avatars and the local physical environment in a spatial computing telepresence
experience. TSMP occurs when remote virtual avatars cause geometrical or contextual conflicts
with the local physical environment or other participant avatars. TSMP can potentially result
in misalignment of head and body gestures, spatial sound errors, and other micro expression
inaccuracies due to the incorrect positioning of each member of the virtual call.

This section briefly elaborates on the TSMP and how surrounding spatial limitations in telepres-
ence participants can cause immersion-breaking in multi-user interaction scenarios due to TSMP.
We discuss how the immersion-breaking can happen in two aspects a) geometrical conflicts and b)
line of sight. To simplify our explanations, we use an example of three remote users wanting to
meet each other in a full-body avatar telepresence scenario. As illustrated in Figure 1.1, each of the
participants reside in a room with a different size and functions. User A resides in a large living
room, User B resides in a small office space, and User C resides in a bedroom. In the illustration,
only the participant residing in the room is considered physically present. In contrast, the other two
are considered virtual avatars, remotely joining from their own physical spaces.

Geometrical Conflicts
In telepresence settings where full-body realistic avatars are rendered with physically correct

occlusions with the environment, users may experience geometrical conflicts between rendered
virtual remote participants and their own local physical spaces. Such geometrical conflicts can result
from the different room sizes and open space layouts in various participants’ local environments.
For instance, in our example in Figure 1.1, participants can virtually meet each other in Users A’s
space holding a socially acceptable distance. However, in contrast, due to the smaller size of room
B compared to rooms A and C, participants A and C are not seen in the telepresence experience
of User B. While room C comes with a slightly larger open space compared to room B and hence
can see other participants within its own bedroom space, the remote participants are rendered in
inappropriate locations - User B is rendered in the middle of the bed, and User A is rendered
colliding with the door and wall - conflicting with the context of room C’s environment. Note that
remote users may not be visually aware of the location of their virtual avatars in other spaces, and
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Figure 1.1: Illustration of an example of the TSMP. Three users in different spaces cannot hold the
same positional and orientational relationships with each other due to geometrical and contextual
conflicts within the room
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Figure 1.2: Due to the TSMP, force mapping and manual re-positioning cannot be exercised in AR
or MR scenarios since line of sight would be deconstructed.

therefore adjusting to multiple target environments while addressing their local physical boundaries
can become challenging.

Line of Sight
To avoid geometrical conflicts, one may argue that allowing the user of each space to force-

position other remote participants in a plausible custom location may be a solution to the problem.
However, if participants were to have the option to force position other remote participants within
their local space, a conflict of the line of sight would potentially occur. As seen in Figure 1.2.a, if
participants of each room were to choose a custom arrangement of the remote avatar placements in
their own space, the relationship shape of participants would differ in each space, causing visual
and social conflicts. For instance, in 1.2.b, if user A looks at User C in its own space, in User B’s
space, it would seem like User A is looking at the wall behind it instead of User C. In Users C’s
experience, User A’s line of sight is directly towards User B, which should’ve been directed to itself.

Even if we maintain the shape of participants’ relationship with each other and scale the distance
in which participants are situated, immersion-breaking can still occur during natural locomotion.
For example, if User A starts walking toward User B, it would have a longer length of walking
distance to complete within its own experience before colliding with User B, compared to what User
B experiences in its own space. Moreover, in this scaling scenario, users would experience different
social distances. One user may have a close social distance from the other, being able to observe
facial expressions, while the other may be meters away, limited in the social cues gained from the
conversation. Hence, one can conclude that to maintain social telepresence and avoid immersion
breaking, all participants of a remote telepresence scenario must keep the same arrangement in their
local environments.



CHAPTER 1. INTRODUCTION 7

1.4 Generative Spatial Computing
Motivated by the spatial challenges highlighted in this chapter, this dissertation works towards

developing context-aware generative frameworks which would allow adaptable SC experiences to
be executed for a large scale of everyday users in diverse target environments. Generative systems
have shown promising results in various applications in computer vision, computer graphics, and
computational design. A central component of this research discusses novel spatial representation
schemas to encapsulate contextual relationships between users, objects, and spatial boundaries. By
effectively learning from these representations via large datasets of scene priors and utilizing spatial
optimization methods, the systems developed in this dissertation address the spatial challenges in
SC in various applications of contextual spatial computing such as multi-user telepresence and
scalable virtual content curation via context-aware augmentation for diverse target spaces.

The contributions of this dissertation can be categorized in solving two general sets of problems:
1) developing curated context-aware spatial experiences for a large set of users, which include a wide
variety of diverse target spaces not known to the content developer; and 2) facilitating telepresence
experiences, where participants are not aware of each other’s local spaces due to the TSMP. In
both problems mentioned above, the unknown spatial layout of the target user space is considered
the mutual challenge, and hence this challenge is considered as the core research problem of this
dissertation.

The frameworks developed in this dissertation can play a role in increasing the adoption of SC
interfaces in everyday environments. The research would allow developers to design and curate
content in scale without knowing the target scene of the user itself. The content itself can adapt to
the target scene while addressing context-aware topologies with local physical and virtual objects.
Such an approach can pave the way for developing Responsive Spatial Computing frameworks.
Similar to responsive web design, Responsive Spatial Computing frameworks can be a cost-effective
alternative to hard-coded applications due to its ability to house all of the code in a single program.

In addition, the frameworks can facilitate remote workplace practices and virtual collaborations
by decreasing the spatial requirements for telepresence systems. Instead of setting up large open
spaces required for such workflows, the systems develop in this dissertation would allow users to
join from their personal spaces, with minimum modifications to their surrounding environment.
Physical and virtual re-arrangements would be optimized based on participants’ local environments.
In AR experiences, the topological relationship and line of sight between all participants would
be maintained without any conflicts between remote users and local physical obstacles, while in
VR, the system can generate a fully synthesized scene and recommend spatial modifications to
provide the required interaction area between multiple users. Such an approach can promote remote
collaborations, effectively decrease required resources for energy for transportation time and costs,
and can also increase productivity in a large spectrum of services.

Finally, scene synthesis and spatial manipulation techniques introduced in this work can provide
valid synthetic datasets for data-driven systems, especially for learning-based approaches explored
in design computing and computer vision applications. In addition, using methods introduced in
this thesis, augmentation of currently available 3D scenes and large real-world scanned datasets can
be executed, generating a more extensive set of spatial data for researchers in the field.
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1.5 Research Objectives
The research objectives of this dissertation are summarized as follows:

• Design and develop a context-aware scene augmentation system for SC applications that
can generate and augment virtual content to an already existing scene while considering
topological relationships and geometrical constraints of the target environment.

• Introduce a knowledge model to serve as a prior for the scene generation system. This model
can be trained by extracting contextual and topological features from previously constructed
scenes available through 3D datasets or manually defined by a context creator by providing a
limited set of examples.

• Compare the developed scene augmentation system with state-of-the-art constrained scene
synthesis techniques. Scene synthesis holds a similar goal in generating plausible scenes for
a given target space. Moreover, given that such techniques require a large number of priors
for training, develop alternative learning architectures that can achieve similar results with
limited scene priors.

• Extend the proposed generative tool for multi-user interaction scenarios. Such an approach
would initially require identifying available mutual ground between participants, and if
mutual space is insufficient, the system would recommend an alternative arrangement of the
surrounding furniture.

• Develop SC prototypes for the proposed frameworks and explore applications of the work in
AR, VR, and MR scenarios. Furthermore, perform comparative user studies to evaluate the
effectiveness of the proposed system from a user performance standpoint.

1.6 Dissertation Overview
Following this introductory chapter, Chapter 2 provides an overview of related topics covered in

this dissertation. Starting with the general subject of SC and its applications, we start by discussing
how such systems can be utilized for remote collaboration and telepresence. Moreover, Chapter 2
covers how 3D experiences can be generated via procedural modeling, generative design, and scene
manipulation. Furthermore, we discuss more recent approaches of scene graph representations
and example-based scene synthesis. This is followed by a review of spatial mapping techniques in
spatial computing workflows, allowing virtual experiences to adapt to physical spaces. We further
discuss on how the background work relates to our contributions separately in each chapter .

Chapter 3 further elaborates on the TSMP and introduces a Mutual Space Optimization system
to identify optimal mutual virtual spaces for multi-user interaction settings. The proposed algorithm
can effectively discover optimal shareable space for multi-user virtual interaction and facilitate
remote spatial computing communication in various collaborative workflows. In addition, the
framework recommends the movement of surrounding furniture objects that expand the size of the
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mutual space with minimal physical effort. The work demonstrates the performance of our solution
on real-world datasets and also presents an augmented reality prototype developed on HoloLens.

Chapter 4 expands the discussion of contextual scene generation for spatial computing expe-
riences and further introduces SceneGen, a generative contextual scene augmentation framework
that predicts virtual object placement within existing scenes. SceneGen takes a scene as input and
outputs positional and orientational probability maps for placing virtual content. The research
initially formulates a novel spatial Scene Graph representation, which encapsulates explicit topo-
logical properties between objects, object groups, and rooms. SceneGen utilizes kernel density
estimation to build a multivariate conditional knowledge model trained using prior spatial Scene
Graphs extracted from real-world 3D scanned data as priors. To further capture orientational
properties, this research also includes developing a fast pose annotation tool to extend current
real-world datasets with orientational labels. Furthermore, the chapter reports comparative and user
experiments to demonstrate the performance of our system in various indoor scene augmentation
scenarios. Finally, to demonstrate SceneGen in action, we present our developed AR application
which can contextually augment objects in real-time.

Furthermore, Chapter 5 discusses how 3D datasets can be augmented and manipulated via
GenScan, a generative system that populates synthetic 3D scan datasets in a parametric fashion.
The system takes an existing captured 3D scan as an input and outputs alternative variations of the
building layout, including walls, doors, and furniture with corresponding textures. GenScan is a
fully automated system that can also be manually controlled by a user through an assigned user
interface. The chapter covers how GenScan utilizes a combination of a hybrid deep neural network
and a parametrizer module to extract and transform elements of a given 3D scan, followed by style
transfer techniques to generate new textures for the generated scenes.

In an effort to improve SceneGen’s constrained scene synthesis method, Chapter 6 addresses
the challenge of state-of-the–art deep learning scene synthesis, which requires large datasets for
training by introducing GSACNet, a contextual scene augmentation system that can be trained with
limited scene priors. GSACNet utilizes a novel parametric data augmentation method combined
with a Graph Attention and Siamese network architecture followed by an Autoencoder network to
facilitate training with small datasets. The research shows the effectiveness of our proposed system
by reporting ablation and comparative studies with alternative systems on the Matterport3D dataset.
The results indicate that GSACNet’s scene augmentation outperforms prior art in scene synthesis
with limited scene priors available.

Finally, Chapter 7 extends our exploration of the TSMP, by providing a solution for VR and
MR telepresence experiences. This chapter discusses a novel Mutual Scene Synthesis framework
that takes the participants’ spaces as input and generates a virtual synthetic scene that corresponds
to the functional features of all participants’ local spaces. The method combines a mutual function
optimization module with a deep-learning conditional scene augmentation process to generate a
scene mutually and physically accessible to all participants of a mixed reality telepresence scenario.
The synthesized scene can hold mutual walkable, sittable and workable functions, all corresponding
to physical objects in the users’ real environments. The chapter covers experiments using the
MatterPort3D dataset and comparative user studies to evaluate the effectiveness of the proposed
MSS system.
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In the end, Chapter 8 concludes the work presented in this dissertation by discussing various
aspects of the key findings in addition to the challenges and limitations that were discovered during
the development of this research.
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Chapter 2

Background

2.1 Spatial Computing
SC provides immersive visualization through enhanced levels of interaction with virtual objects.

With its growing adoption through affordable hardware, new applications and experiences of SC are
being launched daily across the categories of healthcare [152, 190, 42], design [23, 104, 88, 136],
education [154, 110], and more. Studies suggest that immersive environments enabled through SC
interfaces can potentially provide a better spatial understanding for users when compared to 2D or
non-immersive 3D representations [186, 160], while enhancing collaboration and team engagement
among stakeholders [10, 13, 57]. Such property allows the deployment of SC for exploring new
spaces and evaluating and inspecting objects on various scales while providing a platform for
training, communication, and collaboration [23].

SC for healthcare, also known as immersive medicine, has been widely explored for the training
of the medical community, logistical planning, and rehabilitation of patients. Various studies
attempt to evaluate how useful SC can be utilized to improve the learning of anatomy [152, 190,
42] including studies proposing that SC could replace the use of corpses in medical school [221].
Training surgical procedures and the process of medical skill transfer has also drawn major attention
in immersive medicine [191, 61, 50, 85]. In this context, many studies attempt to review the
effectiveness of VR-based training for surgery including meta-analyses and reviews [86, 248, 126],
transfer of training [20, 46], and other specialized applications in the medical field [5, 81, 201].

Education is another area in which SC has shown promising applications. Work of [36] identified
positive effects of AR technology on students’ development of skills and knowledge, enhancement
of learning experiences, and improvement of collaborative learning. The use of SC in education
could improve the learning efficiency and provide a fun and engaging experience for students [51].
Like other computational mediums, it can change the abstract into a tangible object [236]. Another
advantage of SC in education can be seen in providing a platform that supports physical exploration
activity rather than just static observing. For example, if a class needs to learn about the planet’s
natural wonders, virtual visits can be conducted in VR. Work of [118, 24] are examples of such
environments for virtual field trips.
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In design, SC environments have been utilized to explore how SC can facilitate designers
through assimilating their sense of scale, depth, and spatial awareness. Such platforms integrate the
use of SC in various functions of building science research [104, 88] such as construction operations,
personnel training, end-user surveys, performance simulations and building information modeling
visualization. Clients, architects, and building owners use derived applications from game engines
to navigate 1:1 scale BIM models, allowing a virtual walkthrough experience of future buildings
[168]. For such use cases, the performance improvement of space navigation between VR HMDs
and 2D desktop screens have been investigated in various studies, with some suggesting significant
improvement in VR headsets [182, 177] while others indicate no significant difference [176, 178].
Architects and building engineers can also use immersive design tools to model various building
elements in VR Computer-Aided Design (CAD) interfaces and apply property modifications to
BIM files through such environments.

For building performance engineering and analysis, immersive environments enable the user
to focus on performance-based analysis without getting too distracted to operate and navigate
the simulation tool [75]. SC applications have been designed for finite element analysis of shell
structures. Using stylus and data gloves as input devices, the user can create, modify mesh, and
specify boundary conditions. For a simple geometry, real-time color-coded results are obtained
by changing loads on the model [124]. Studies have used artificial neural networks (ANN) or
approximation methods to achieve real-time interaction for the complex geometry and to simulate its
impact via haptic gloves [71]. For energy simulations, [155] developed a VR simulation environment
using bi-directional data exchange between Unity and Modelica/Dymola. [179] developed a
workflow for managing building information and performance data in VR with equirectangular
image labeling methods. For augmenting data on existing buildings, [136] developed a Human
Building Interaction system that uses AR to visualize CFD simulations.

In the construction industry, immersive environments have been used to improve site prepara-
tions, on-site communication, and collaboration of team members, safety [44] and logistics [144].
For training of construction workers, virtual environments have shown to be highly effective in skill
transfer, with studies showing similar performance results to training in real environments [226].
Moreover, virtual platforms are also used in the operation phase of buildings to interact and visualize
data with Internet of Things (IoT) devices available in buildings, process improvement and also
resource management [233, 43]. Studies show SC platforms can perform future occupant studies in
the building design process by allowing pre-construction mock-ups. This would allow the evaluation
of alternative design options in the building model in a timely and cost-efficient manner [133].
Studies conducting human experiments have shown users perform similarly in daily office activities
(object identification, reading speed, and comprehension) within immersive virtual environments
and benchmarked physical environments [73]. In the field of lighting, VR HMDs studies have been
used to investigate the influence of façade patterns on the perceptual impressions and satisfaction of
a simulated daylit space [26]. Moreover, artificial lighting studies have implemented immersive
virtual environments to evaluate end-users lighting preferences of simulated virtual scenes with the
controlling of the blinds and artificial lights in the virtual environment [73].
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2.2 Collaborative Telepresence Systems
Telepresence allows changing the state of one’s sense of presence from a physical location to a

target remote environment without requiring the physical body to relocate to the target environment
[55, 56]. This dissertation investigates how telepresence experiences can be enhanced and facilitated
by integrating spatial mapping and scene synthesis workflows. A large body of previous work has
explored how collaborative human-based telepresence can be achieved by capturing a region of
each participant’s body and space and projecting it to the target environment. Systems developed
by [232, 65, 105, 11, 249, 12] are examples of such efforts where participants and a limited range
of their surrounding spaces are continuously captured using a cluster of registered depth and color
cameras. Recent work of [107] in Project Starline takes this approach one step closer towards a high
fidelity co-presence experience. The bi-directional system is able to capture audiovisual cues such
as stereopsis, motion parallax, and spatialized audio; while enabling high-resolution communication
cues such as eye contact and body language.

However, window-based telepresence systems limit the participant’s ability to access each
other’s spaces. Users are spatially disconnected from each other, and interaction occurs through an
audiovisual window acting as a barrier. The importance of free-form user movement and the ability
to preserve mobility-based communication features in the context of co-presence has been studied
in the work of [9, 93, 128, 23]. Alternatively, research in room-based telepresence systems has
gained major momentum in recent years, allowing bilateral telepresence between participants, where
participants share a common virtual ground. Work of [157] allows a remote user to be captured
and rendered into a local user’s space via an AR HMD, providing the feeling that the remote user
is present in the local user’s space as well. Such an approach is also seen in [135, 56], where the
remote and local users do not share the same room layout but are calibrated to provide the required
mutual virtual ground between users. [208] enables mutual ground-sharing by capturing the local
space of one of the participants and streaming the data to a limited number of remote users. Recent
work of Codec Avatars [125, 131] implemented as a decoder network of a Variational AutoEncoder
(VAE) demonstrates how high-fidelity animatable human head models can be captured and later
rendered in real-time via spatial computing HMDs.

2.3 Generative Design
As discussed in the previous chapter, one of the goals of this dissertation is to explore how large-

scale deployment of curated designed SC experiences can be achieved via generative workflows.
Generative design is considered a paradigm shift in CAD. Unlike traditional CAD-based processes,
where a single design solution was modeled using a set of computational tools, in generative design,
designers specify high-level goals and constraints, and the system automatically generates large sets
of solutions all corresponding to the defined design criteria. In addition to geometrical attributes,
generative design systems can be integrated with performance evaluators [194, 159] and simulation
engines [53] to quantitatively assess and optimize the generated solution landscape. With the
availability of high-performance computing and cloud services, this process can be parallelized,
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allowing faster generation, improving the performance evaluation, and generating larger solution
landscapes [6]. Users of such systems are then responsible for choosing between plausible design
candidates, which is often considered a complex task [218, 224]. These users should inspect the
high-dimensional properties of each solution and assess their aesthetic qualities.

There are two general approaches recognizable among the current generative design workflows:
(i) Convergence generative design and (ii) divergence generative design [140]. In convergence
generative design, the search mechanism is implemented in a way to converge the solution space
into a single solution or a set of limited solutions. However, depending on the level of clarity
and accuracy of the goals, constraints, and fitness function, the optimization process may dismiss
many potentially acceptable solutions, which could have been otherwise chosen by the designer.
Also, automated optimization methods do not leverage human expertise and can only find solutions
that are optimal with regard to an invariably defined problem space [188]. On the other hand, in
divergent generative design, the whole solution space is generated, then the designers utilize sorting,
clustering, and filtering tools to manually navigate and explore the solution space. Rather than
looking at a limited set of solutions, designers have the chance to continually redefine their goals
and constraints, allowing a more comprehensive control over the generative process. As divergent
generative workflows often produce large numbers of solutions, organizing the solution space to
effectively explore the data is considered a critical step in design explorations.

There is also a large body of literature focused on how to interpret generative design solutions
and provide the user with appropriate workflows to modify and interact with the generated solution
space [188, 72, 142]. [32] explored methods and tools for multivariate interactive data visualization
of the generated designs and simulation results by enabling designers to not only focus on high-
performing results but also examine suboptimal ones. [147] proposed a computational design
exploration approach that takes advantage of an interactive evolutionary algorithm to integrate the
designers’ preferences within the solution search. Work of [91] extends the user interaction with the
solution space from 2D input to 3D exploration by developing a virtual reality generative analysis
framework for navigating large-scale solution spaces.

2.4 Scene Graphs and Graph Neural Networks
A central component of this research focuses on introducing novel spatial representation schemas

via scene graphs to encapsulate contextual relationships between users, objects, and spatial bound-
aries. Scene graphs have been applied to various computational tasks in the past, including image
retrieval [84], visual question answering [215], image caption generation [242], and more. The
past research can be divided into two approaches: (1) separate stages of object detection and graph
inference and (2) joint inference of object classes and graph relationships. Papers that followed the
first approach often leverage existing object detection networks [172, 112, 247, 242, 35]. Similar to
other scene understanding tasks, many methods also involved learning prior knowledge of common
scene structures in order to apply them to new scenes, such as physical constraints from stability
reasoning [241] or frequency priors represented as recurring scene motifs [247]. Most methods
were benchmarked based on the Visual Genome dataset [103]. However, recent studies found this
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dataset has an uneven distribution of examples across its data space. In response, researchers in
[66], and [35] proposed new networks to draw from an external knowledge base and to utilize
statistical correlations between objects and relationships, respectively. Our work focuses on the
task of construction and utilization of the semantic scene graphs. Work of [225] utilized PointNet
[164] and Graph Convolutional Networks to regress a scene graph from the point cloud of a scene.
Similar to [225] and [247, 35], the scene graph representations introduced in this dissertation
utilize statistical relationships and dataset priors. Yet, unlike these papers, we use an explicit graph
representation instead of implicit representations.

Furthermore, semantic scene graphs have been broadly explored to improve the general task
of scene understanding. On this topic, a progression of papers attempted to encapsulate human
common-sense knowledge in various approaches such as physical constraints and statistical priors
[199], physical constraints and stability reasoning [82], physics-based stability modeling [255],
language priors [127], and statistical modeling with deep learning [49]. A similar approach was
detailed in [96] for 3D reconstruction, taking advantage of the regularity and repetition of furniture
arrangements in certain indoor spaces, e.g., office buildings. In [239], the authors proposed a
technique that potentially could be well suited to AR applications, as it builds a 3D reconstruction
of the scene through consecutive depth acquisitions, which could be taken incrementally as a user
moves within their environment. Some recent work has addressed problems such as retrieving 3D
layouts from 2D panoramic input [212, 102] or floorplan sketches [95], building scenes from 3D
point clouds [162, 197], and 3D plane reconstruction from a single image [246, 122]. One can
consult a recent overview of the topic in [123].

When utilizing scene graphs for various computational tasks, graph neural networks have gained
immense popularity as a learning methodology for analyzing such graphs. Seminal work of [185]
introduced graph neural networks and the idea of message passing or neighborhood aggregation.
On a high level, message passing is an iterative update process used to find node representation by
using the graph structure to pass information from neighbors of a target node to the target node itself.
Originally, graph neural networks were used as a method to classify nodes within a graph. But
over the years, graph neural networks have expanded to autoencoder graphs [97], generate graphs
[244], solving link prediction problems [250], and segmenting 3D point clouds [137]. Furthermore,
different methods of message passing have been developed, as well as their aggregation strategies.
Inductive approaches [222], attention mechanisms [223], and gated recurrent units [113] are some
of the more popular approaches. For scene synthesis similar to our scene graph approach, the work
of [257] utilized a dense scene graph for passing neural messages to augment an input 3D indoor
scene with new objects matching their surroundings.

2.5 Data Augmentation and Scene Manipulation
Data Augmentation refers to a class of techniques that aim to enhance the size and quality of a

given training dataset. Such techniques can improve the generalization performance of deep neural
networks while avoiding the problem of overfitting when trained on limited data. A wide variety
of methods such as geometric transformations, color space augmentations, kernel filters, mixing
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images, random erasing, feature space augmentation, adversarial training, generative adversarial
networks, neural style transfer, and meta-learning have been explored in this field. [198] provides
a survey on image data augmentation for deep learning approaches. In Chapter 5, we introduce a
scene manipulation, and data augmentation method that takes advantage of a widely used method in
computer-aided design in architecture, commonly known as parametric design [22]. In parametric
design, various design elements in a procedural model can be transformed using input parameters
while maintaining their topological relationships with each other. Work of [95, 92] are examples of
systems that utilize parametric workflows for generating various space layout configurations.

In addition, part of our proposed systems intends to determine an optimal arrangement of
discrete spatial elements within a room. Such practice is often referred to as floorplanning [54].
Automated floorplanning methodologies have been widely investigated in architectural space layouts,
construction [41, 217, 158], electronic design [149, 31, 70], and industrial operation research [1].
Floorplanning aims to achieve a defined functional goal by efficiently generating and evaluating
possible spatial combinations while addressing the geometrical and topological constraints of
the spatial elements [83]. In electronics, proposed floorplanning methodologies mostly aim at
optimizing chip area and wire lengths to reduce interconnections and improve timing [87]. In
construction site layout and planning, optimizing the interaction between facilities, such as total
inter-facility transportation costs and frequency of inter-facility trips, can also be implemented as
objective functions [158].

In floorplanning, various representation methods of spatial arrangements are coupled with
optimization engines to efficiently search through all possible combinations of spatial elements.
Floorplanning representations are generally divided into two main categories: slicing and non-
slicing representations [229]. In slicing methodologies, the floor plan is recursively bisected until
each part consists of a single module [235]. Non-slicing representations are utilized for more
general use cases where no recursive bisection of a certain area takes place [68, 132, 119]. Multiple
studies have integrated these representations with various optimization algorithms such as Simulated
Annealing (SA) [98, 99, 235], Genetic Algorithms (GA) [171, 150, 117, 70, 237] and Particle
Swarm Optimization (PSO) [213, 33, 89, 205, 146].

Utilizing Generative Advisoral Networks (GAN) have also been widely explored for floorplan-
ning tasks in architectural contexts. Originally introduced by [64], GANs leverage a feedback loop
between a Generator and Discriminator model to slowly build an ability to create synthetic data,
factoring in phenomena found among observed data. The work of [80] in Pix2Pix extends this
generative ability to images by allowing networks to learn a proper mapping from one image to
another. [77] take advantage of Pix2PixHD [230] to recognize and generate furnished architectural
drawings. They do this by translating floorplan images to programmatic patches of color and,
inversely, generating patches of color that are turned into floorplans. Chaillou expands this approach
by nesting three models (footprint, program, and furnishing) to generate floorplans, given a set of
initial conditions and constraints. Extracting and manipulating existing layouts from images and
sketches using model retrieval methods [95, 14] has also been used as a data augmentation method
for generating new layouts.
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2.6 Scene Synthesis
Indoor scene synthesis aims to generate a feasible furniture layout of various object classes

that satisfy both functional and aesthetic criteria [251]. This dissertation utilizes scene synthesis
techniques to explore the large-scale deployment of curated context-aware scene augmentation.
Early work of synthetic generation focused on hard-coded rules, guidelines, and grammars, re-
sembling a procedural approach for this problem [21, 240, 63]. The work of [143] is a successful
example of hard-coded design guidelines as priors for the scene generation process. They extracted
these guidelines through consulting manuals on furniture layout [193, 231, 214] and interviewing
professional designers who specialize in arranging furniture. A similar approach is also seen in
[245], while [243] attempted synthesizing open-world layouts with hard-coded factor graphs.

The work of [59] can be seen as one of the early adopters of example-based scene synthesis.
They synthesized scenes by training to build a probabilistic model based on Bayesian networks
and Gaussian mixtures. Their problem, however, was one of generating the entire scene, and they
utilized a more limited set of input example scenes. In the work of [90], a full 3D scene was
synthesized iteratively by adding a single object at a time. This system learned some priors similar
to ours, including pairwise and higher-order object relations. The work of [116, 115] and [60]
also took room functions into account. While object topologies differ in various room functions, a
major challenge in this approach is that not all spaces can be classified with a certain room function.
For instance, in a small studio apartment, the living room might serve additional functions such
as a dining room and a study space. [184] also proposed a similar approach, involving a Gaussian
mixture model and kernel density estimation. However, their system targeted an inverse problem of
ours; namely, their problem received a selected object location as input and was asked to predict
an object type. We find our problem to be more relevant to the needs of a content creator who
knows what object they wish to place in the scene but does not have prior knowledge about a user’s
surroundings.

Another data-driven approach to scene generation involves modeling human activities and
interactions with the scene [58, 129, 60, 167]. Research following this approach generally seeks to
model and adjust the entire scene according to human actions or presence. There have also been a
number of interesting studies that take advantage of logical structures modeled for natural language
processing (NLP) scenarios. The work of [29, 28, 27, 130] are examples of such approach. More
specifically, [130] bears a minor resemblance to our approach in training on object relations and
the ability to augment an initial input scene. But unlike our work, it augments scenes by merging
sub-scenes retrieved from a database. In contrast, we seek to add in individual objects, which is
more aligned with the needs of creators of SC experiences. A series of papers (including [192, 34,
7]) proposed generating a 3D scene representation by recreating the scene from RGB-D image input,
using retrieved and aligned 3D models. This research, however, involves recreating an existing
physical scene, and does not handle adding new objects.

More recent work endeavored to improve learning-based methods, using deep convolutional
priors [227], scene-autoencoding [111], and new representations of object semantics [8], to name
just a few. [252] addressed a related but distinct problem of synthesizing a scene by arranging and
grouping an input set of objects. The work of [174] is another example of using deep generative
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models for scene synthesis. Their method sampled each object attribute with a single inference
step to allow constrained scene synthesis. This work was extended in PlanIt [228], where the
authors proposed a combination of two separate convolutional networks to address constrained
scene synthesis problems. They argued that object-level relationships can facilitate high-level
planning of how a room should be laid out, while room-level relationships perform well at placing
objects in precise spatial configurations. Similar to our scene graph approach is the work of [257],
which utilizes a dense scene graph for passing neural messages to augment an input 3D indoor scene
with new objects matching their surroundings. However, its scene graph representation does not
cover orientational relationships and only covers limited positional relationships between objects.

The method introduced in this dissertation differs from these studies in utilizing an explicit
model rather than an implicit structure and taking advantage of alternative discrete relationships
with the room itself. Moreover, our model can be trained on datasets that are significantly smaller
in size, with faster training and inference time. Furthermore, While work of [228, 257] extend
pairwise object to object relations to object to wall relations, we consider the room as a separate
entity and simply evaluate whether the object is on edge of the room, the corner of the room, or
in the middle of the room. From an architectural perspective, while the walls of indoor spaces are
elements that create the encasement of the room, the general location in which the object sits within
the room plays a critical role in the collective functionality of the overall space. Therefore, we show
modeling the room relationship as a separate explicit entity in the scene graph would benefit the
scene augmentation process in both fully automated and user-in-the-loop scenarios.

Moreover, while our work maintains a wide range of overlap with studies in the field of scene
synthesis, the main goal is to facilitate SC large-scale content generation in single-blind scenarios
where content developers are not aware of the target scenes. Therefore, in this dissertation, we aim
to emphasize our explicit structure, which allows SC developers to define new object categories
which may not be available in public datasets.

2.7 Spatial Mapping in Spatial Computing
Another feature investigated in this dissertation is to generate a virtual experience that can

map to the physical properties of the user’s surrounding environment. Such an approach has been
widely explored in previous work of [39, 37, 38]. In [40], a group of real people are instructed to
dynamically change a physical environment of props to provide haptic feedback for a user in VR.
Our work, however aims to generate a virtual experience that corresponds to the natural livable
personal environment of the user instead of calibrating props within the physical environment. A
similar approach is seen in the work of [120] where a live 3D reconstruction from external depth
cameras is utilized to allow modification of the scene, including adding custom virtual objects. In
[207], after identifying obstacles and walkable areas of physical space, the authors use a procedural
model to generate a planar walkable space within a predefined virtual environment.

For VR environments, techniques in redirected walking [170] also aims to remap the virtual
experiences to resolve the possible conflicts between virtual and physical surroundings. While
the focus is mainly on providing natural locomotion of a local user, such techniques use subtle
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(redirected without the user’s knowledge) [19, 15] or overt (detectable by the user) [79, 234,
161] strategies to manipulate the mapping between the user’s real and virtual translation and
rotation, resulting the user to avoid interference with edges of the usable space or physical obstacles.
Architectural manipulation of virtual spaces has also been investigated by re-arranging virtual
elements in blind-spots [211] or implementing self-overlapping [210], and flexible virtual spaces
[220]. However, redirected walking techniques may introduce simulator sickness [153], interfere
with spatial memory [234], and lead to higher cognitive load than real-world locomotion [18]. While
such strategies can be applied in VR environments, they cannot generally apply for AR experiences
due to the see-through nature of AR.

When addressing the TSMP, mapping virtual avatars within a shared target space while corre-
sponding spatial constraints of each user within their own physical environment is considered an
open challenge for next-generation mixed reality telepresence platforms.

Limited work in literature attempt to address this issue. [151] developed a system that generates
non-colliding movements for human-like agents interacting with other agents or avatars in a virtual
environment. [106] integrate scene semantics with a Markov chain Monte Carlo optimization
method to find optimized locations for placing virtual agents close to a single user. Such an
approach addresses the spatial limitations of a single user, but not multiple constraints generated by
multiple remote users. Alternative methods have been explored in previous work to create mutual
grounds and understand user preferences for different types of mutual ground generation. [206]
designed three mapping models (scale, kernel, and overlap) for aligning simple rectangular play
area spaces. They further conducted extensive user experiments to evaluate participants’ sense
of co-presence. The work of [109, 45] discussed methods that resembled our module the most.
The systems there aimed to optimally map remote environments to maximize user activity space
and minimize obstacle discrepancy. In contrast, our mutual space module offers a multi-function
optimization workflow, allowing a user in the loop to define weights and constraints for multiple
mutual function rooms. For example, instead of finding the maximum walkable space, the user can
choose to have a smaller walkable space while maintaining a workable mutual space with other
participants. Our method also utilizes an evolutionary optimization algorithm, more suitable for
processing multiple input spaces instead of just two spaces.
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Chapter 3

Mutual Space Optimization

3.1 Introduction
In the introductory chapter, we elaborated on the TSMP and explained why during telepresence

scenarios, finding a common virtual ground physically accessible for all participants is necessary
to avoid geometrical and line-of-sight conflicts. In other words, as participants are joining the
telepresence experiences from their own spaces, a consensus must be established to identify a mutual
space that respects the spatial constraints of all the participants. Yet, locating a mutually accessible
virtual ground can be difficult for the users themselves, particularly if they are not aware of the
spatial properties of other participants. Moreover, having users manually identify such a mutual
space would be imprecise and labor-intensive, especially when considering the contextual properties
of the other users’ spaces. Without more effective and efficient solutions, the establishment of a
contextual mutual space will be a bottleneck for multi-user immersion experiences.

Motivated by this challenge, this chapter presents a novel method to optimize contextual mutual
spaces in a multi-user immersion setting. Our method relies on existing semantic scene maps to
identify shareable functional spaces and is general enough to optimize contextual mutual spaces
even when the users’ spaces have very different layouts and sizes (see results in Figure 3.6). For
illustration purposes, we will use standable and sittable as the two exemplary contextual functions
to develop our method, and the proposed solution is compatible with other contextual functions
that can be modeled by the same mathematical framework. The method formulates an optimization
problem to seek the maximal mutual spaces. Furthermore, if one can assume the users have the
freedom to rearrange furniture objects on the floor, we introduce a more delicate optimization
process to further increase the mutual space’s size while balancing the users’ efforts to physically
move the objects as another constraint. To effectively solve the above two problems, we propose to
use a generative modeling approach. Clearly, we believe other comparable algorithms that optimize
these NP-Hard problems are equally effective. Nevertheless, our results validate a new approach
capable of automatically recommending contextual mutual space to multiple participants of virtual
immersion experiences in SC applications.

We believe our proposed framework can play a role in facilitating remote workplace practices
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and virtual collaborations by decreasing the spatial requirements for telepresence systems. Instead
of setting up large open spaces required for such workflows, our system would allow users to
join from their personal spaces, with minimum modifications to their surrounding environment.
Physical and virtual rearrangements would be optimized based on the number of participants and
their local environments. In AR experiences, the topological relationship and line of sight between
all participants would be maintained without any conflicts between remote users and local physical
obstacles, while in VR, our system can recommend spatial modifications and provide the required
interaction area between multiple users.

3.2 Methodology
Our solution consists of the following four steps: (i) semantic segmentation of surrounding

environments; (ii) topological scene graph generation; (iii) mutual space identification; and (iv)
manipulation of furniture to further maximize the mutual space. In this section, we will elaborate
on the details of the four steps. To start, we will define the terminologies and notations used in the
chapter.

Given a closed 3D room space in R3, one can project its enclosure, i.e., floors, ceilings, and
walls, via an orthographic projection to form a 2D projection, which is commonly known as the
floorplan of the space. If we assign the (x,y) coordinates on the floorplan plane and the z coordinate
perpendicular to the floorplan plane, simplifying our optimization problems on to the (x,y) plane
significantly reduces the complexity of our algorithms. It also implies an assumption that there is no
overlap between two objects on the (x,y) plane but with different z values. Nevertheless, we believe
such simplification is reasonable for analyzing the majority of room structures and thus does not
compromise the generality of our analysis provided herein.

Hence, we define for each user i their own room space expressed as a 2D floorplan as Ri. Each
k-th object (e.g., furniture) in Ri is denoted as Oi,k.The collection of all ni objects in Ri is denoted as
Oi = {Oi,1,Oi,2, ...Oi,ni}. Ōi,k represents the boundary of the object Oi,k. Similarly, R̄i represents
the boundary of the room Ri. Finally, we define the area function as K(O).

Semantic Segmentation
Given the measurement of the surrounding physical environments as large sets of point cloud

data, one can take advantage of the semantic segmentation methods widely investigated in computer
vision literature [165, 121, 3] to segment their spatial boundaries and obtain their geometric
properties, such as dimensions, position and orientation, object classification, functional shapes,
and their weights. In doing so, we can convert the 3D point cloud data to labeled objects Oi,k with a
bounding box as Ōi,k.

Additionally, in this chapter, we exclude lightweight objects (such as pillows, alarm clocks,
laptops, etc.) positioned on larger furniture. This is to simplify our calculations in the next steps
as we assume these lightweight objects can be easily moved by the users and do not need to be
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Figure 3.1: Abstract illustration of our proposed framework a) initial settings with different spatial
restrictions b) semantic segmentation defining standable (yellow boundaries) and sittable (orange
boundaries) areas c) search for mutual sittable space (this step can be before, after or simultaneous
with object repositioning) d) virtual arrangement of avatars with deterministic line of sight of all
participants.



CHAPTER 3. MUTUAL SPACE OPTIMIZATION 24

Figure 3.2: Comparison between available (a) standing only and (b) standing and sitting area in
rooms.

considered in the optimization criteria. Such classification is dependent on the output labeled object
categories above.

In the experiment section below, since the implementation of a computer vision algorithm for
semantic segmentation is not the main focus of this chapter, we will directly integrate a modified
version of Matterport 3D [30] object classifier in our system. This module can be replaced with any
other robust semantic segmentation algorithms, as long as they provide bounding box coordinates
for each object category. In a companion Matterport 3D [30] dataset, out of 1,659 unique text labels,
we classify 134 of the labels as lightweight objects and filter their corresponding bounding box
from our workflow.

Figure 3.2(a) illustrates the result of semantic segmentation of two room spaces projected onto
the (x,y) plane.
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Topological Scene Graph
After identifying the bounding box, orientation, and category type of each object in the scene Ri,

a topological graph is readily generated that describes the relationship and constraints of the objects
between one another within Ri. This step will allow us to identify usable spatial functions such as
standing in virtual immersion located between the objects. We categorize this type of functions as
standalone spatial functions, and their spaces are called standalone spaces.

A topological scene graph will also allow us to identify other spatial functions of the objects
themselves, such as sitting on a chair and working on a table. But note that such functions as sitting
or working are also constrained by the distances between the object that performs the function and
its adjacent other objects. For example, a side of the table can not be utilized for working purposes
if that side is adjacent to other furniture or building elements (such as walls, doors, etc.). We
categorize this type of functions as auxiliary spatial functions, and their spaces are called auxiliary
spaces.

In this chapter, we will use two spatial functions standable and sittable as an example to
demonstrate how to integrate both standalone spatial functions and auxiliary spatial functions in the
optimization of contextual mutual spaces for multi-user interaction in AR/VR.

Finally, we emphasize that standalone spaces and auxiliary spaces are not mutually exclusive.
For example, in this chapter, we will classify that a standable space can be assumed to be sittable as
well. However, the vice versa may not be true. For example, a portion of a sittable space involves a
part of a bed object, which we will not assume to be standable. Such contextual constraints can be
highly customizable based on the content of the AR/VR application. But the framework that we are
introducing in this chapter is general enough to accommodate other contextual interpretations of the
standalone spatial functions and auxiliary spatial functions.

In our implementation, we use a doubly-linked data structure to construct the graph. For each
side face of an object’s bounding box, we define the closest adjacent objects to the face and calculate
the distance between the object and the specified face. This information would be stored at the
object level, where topological distances and constraints are referenced using pointers.

Mathematically, for each object Oi,k, we define the function δXmax(Oi,k) as the shortest distance
between the points in Oi,k that have the maximal x value and the other objects including R̄i. Similarly,
we define the functions δXmin(·), δYmax(·), and δYmin(·).

Mutual Space Identification
In this step, we will identify the geometrical boundaries of available spaces in each room and

then align the calculated boundaries of all rooms to achieve maximum consensus on mutual spaces.
First, using the geometrical and topological properties extracted in the previous steps, we are

ready to calculate available spaces in each room based on two categories, namely, the standalone
spaces and auxiliary spaces. Specifically, we will formulate the calculation of the two most typical
spatial functions as examples again, namely, standable and sittable.
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Standable Spaces

Standing spaces consist of the volume of the room in which no object located within a human
user’s height range is present. In such spaces, user movement can be performed freely without any
risk of colliding with an object in the surrounding physical environment. Activities such as intense
gaming or performative arts can be safely executed within these boundaries. Such spaces are also
suitable for virtual reality experiences, where users may not be aware of their physical surroundings.

We calculate the available standing space (S) for room Ri simply as follows:

Si = Ri−
ni⋃

k=1

Oi,k. (3.1)

Sittable Spaces

The calculation of maximal sittable spaces is more involved than that of the standable spaces
above. As we mentioned before, sittable spaces normally extend the standable spaces by adding
areas where humans are able to sit. Furniture types such as sofas, chairs, and beds include sitting
areas that can extend usable spaces of a room for social functions such as general meetings, design
reviews, and conference calls.

To start, we define a sittable threshold ε(Oi,k) to calculate the sittable area within the bounding
box of the object Oi,k. In other words, ε(Oi,k) is the maximum distance inward from an edge of the
object’s bounding box that can be comfortably sit on. We use measurements from [169] to define
the ε of each furniture type. If object O is classified as non-sittable, then ε(O) = 0.

Therefore, we can first calculate the non-sittable area of an object O as

N(O)
.
= {∀p ∈ O : B(p,ε(O))∩O = B(p,ε(O))}, (3.2)

where B(p,ε(O)) is a sphere in R2 centered at p and with radius ε(O).
We note that sittable spaces do not necessarily comprise only sittable objects but rather describe

an area where a sittable object can be placed in. For example, while an individual may not be able
to comfortably sit on the top of the table, the foot space below the table can be considered a sittable
space. Therefore, in such a context, the sittable area of the room is always larger than its standable
area.

Moreover, the sittable areas of each object in the room are constrained by the topological
positioning of the object. If any of the object’s boundaries are adjacent to a non-sittable object
(such as a wall, bookshelf, etc.) or does not contain enough standable area between itself and a
non-sittable object, the sittable area of the side of the face should be excluded. For instance, if a
table is positioned in the center of a room, with no other non-sittable object around it, the sittable
area would be calculated by applying the sittable threshold to all four sides of the table’s boundaries.
However, if the table is positioned in the corner of the room, then there will be no sittable area
accumulated for the sides that are adjacent to the wall.

To simplify our calculation, we define a surrounding boundary threshold ρ(O) for object O,
which measures the distance from any object’s boundary point outward that allows that point to
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Figure 3.3: Standable (green), non-standable (red) and sittable spaces (yellow) for two example
scenes from the Matterport 3D dataset.

remain part of the sittable space of the object. In other words, if the boundary point is close to
other objects or the room boundary within distance ρ , then that point is not sittable. C(Oi,k) defined
below collects all such points for exclusion from Oi,k in room Ri:

C(Oi,k) = {∀p ∈ Oi,k : B(p,ε(Oi,k)+ρ(Oi,k))∩ R̄i 6= /0
or B(p,ε(Oi,k)+ρ(Oi,k))∩Oi,h 6= /0,h 6= k} (3.3)

where /0 denotes the empty set. Therefore, the sittable space of each object O is simply defined as

A(O) = O−N(O)∪C(O). (3.4)

Finally, the total sittable space A(Ri) for the room Ri is

A(Ri) =
ni⋃

k=1

A(Oi,k)+A(Si). (3.5)

Figure 3.3 illustrates two example rooms and compares their standing and sitting areas.

Maximizing Mutual Spaces

Now we consider an immersive experience where there are m subjects and therefore m room
spaces (R1,R2, · · · ,Rm), respectively. Then, in the (x,y) coordinates, we define a rigid-body motion
in R2 as G(F,θ), where θ describes a translation and a rotation.

If we want to maximize a mutual standable space, we can apply one G(Si,θi) to each individual
standable space Si for the i-th user. The optimal rigid body motion then maximizes the area of the
interaction space:

(θ ∗1 , · · · ,θ ∗m) = argmaxK(
m⋂

i=1

G(A(Ri)),θi)). (3.6)
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Figure 3.4: Mutual Spatial boundaries (blue) for different generations of the search mechanism.
The green area indicates standable spaces and the red area indicates non-standable spaces. The
result shows that the optimized mutual standable space increases over generations.

Then the maximal mutual standable space can be calculated as

MA(R1, · · · ,Rm) =
m⋂

i=1

G(A(Ri),θ
∗
i ) (3.7)

Similarly, one can calculate the maximal mutual sittable space MA(R1, · · · ,Rm) by substituting
the rigid body motions in (7.3) that maximizes their intersection area function in (7.2).

Furniture Movement Optimization
In the event where individual spaces Ri include movable furniture, additional optimization can be

considered to potentially increase the maximal mutual spaces. Diverging from merely considering
rigid-body motions to transform just the coordinate representation of the spaces, we consider moving
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furniture objects in space, which has an additional cost of human effort. Consequently, we will
formulate this effort as part of our optimization objective.

More specifically, given a rigid-body motion G, we definite ‖G‖t as the Euclidean distance of
its translation vector. Then we define

E = w‖G‖t , (3.8)

where w is a given parameter that approximates the weight of each object. Note that such weight
estimate can be looked up using architecture standards such as in [169]. Hence, if a room space Ri
has ni objects, then the total effort to rearrange the space is

E(Ri,Θi) =
ni

∑
k=1

wk‖G(Oi,k,θi,k)‖t , (3.9)

where Θi = {θi,1, · · · ,θi,ni} denotes the collection of ni rigid-body motion parameters.
Since solving for the optimal object transformation is an NP-Hard problem, in this chapter, we

will demonstrate a heuristic-based but practical algorithm to optimize it in a step-by-step greedy
fashion.

min
m

∑
i=1

E(Ri,Θ
s
i ) subj. to Ks(

m⋂
i=1

G(Si,θ
s
i )) increases 10%, (3.10)

where Ks indicates the area value at the s-th step with respect to transformation coefficients Θs
i and

θ s
i . The iteration would stop if the optimization cannot further increase the area of the mutual space.

3.3 Implementation on a 3D Scanned Dataset
To comprehensively observe how the search and recommendation system performs given various

room types with different spatial organizations, we take advantage of available 3D datasets to be
able to experiment with large quantities of real-world case studies. We use the Matterport 3D [30]
dataset, and randomly sample subsets of varying sizes of 3D scanned scenes, and perform the
search and recommendation practice on each subset to observe how the mutual spaces are identified
and maximized with our algorithm. Matterport 3D is a large-scale RGB-D dataset containing 90
building-scale scenes. The dataset consists of various building types with diverse architectural styles,
each including numerous spatial functionalities and furniture layouts. Annotations of building
elements and furniture are provided with surface reconstructions as well as 2D and 3D semantic
segmentation. For our experiments, we initially exclude spaces that are not generally used for
multi-user interaction (bathroom, small corridors, stairs, closet, etc.). Furthermore, we randomly
group the available rooms into groups of 2, 3, and 4. We utilize the object category labels provided
in the dataset as the ground truth for our semantic labeling purposes.

We implement our framework using the Rhinoceros 3D (R3D) software and its development
libraries. For each room, we convert the labeling data structure provided by the dataset to our
proposed topological scene graph. This provides the system with bounding boxes for each object
and the topological constraints for their potential rearrangement. Using such a structure, we are
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Figure 3.5: Furniture optimization and manipulation. In each step, a 10% increase of mutual
space area (K) is determined, while minimizing the overall effort needed (E) for the required
transformation (G).
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Figure 3.6: Screenshots from HoloLens illustrating the identified mutual boundaries as augmented
overlays for three rooms: A) kitchen; B) conference room; C) robotic laboratory. Blue color
indicates mutual boundaries, green color indicates standable spaces and red color indicates non-
standable spaces.

able to extract the standable and sittable spaces for each room based on our proposed methodology.
Figure 3.3 illustrates the available standable and sittable boundaries for two sample rooms processed
by our system. We define a constant εOi,k = 70 cm for all sittable objects.

Next, we integrate our algorithm with a robust Strength Pareto Evolutionary Algorithm 2
(SPEA 2) [258] available through the Octopus multi-objective optimization tool in R3D. The fitness
function (7.2) is used to maximize the mutual space for calculated standable spaces. Our genotype
is comprised of the transformation parameters G(F,θ) of each room, allowing free movement and
orientation to achieve maximum spatial consensus. Therefore, a total of 3(n−1) genes are allocated
for the search process. This process would result in the shape, position, and orientation of the
maximum mutual boundary of the assigned rooms. We use a population size of 100, mutation
probability of 10%, mutation rate of 50%, and crossover rate of 80% for our search. As our solution
integrates a genetic search, we expect the result to gradually converge to the global optimum.
Figure 3.5 shows how the mutual space boundary is progressively expanded with the increase of the
generations in our search.

Expanding further, we extend our search by manipulating the scene with alternative furniture
arrangements. As the objective goal is to achieve an increased mutual spatial boundary area with
minimum effort, we calculate the E based on the transformation parameters assigned to each object
present in the room. However, in our current implementation, the genetic algorithm integrated into
our solution is not capable of adapting dynamic genotype values and, therefore, cannot update the
topological values of each object (δXmax, δXmin, δYmax, δYmin) during the search process. Hence,
to avoid transformations that result in physical conflicts of manipulated furniture, we penalize
phenotypes that contain intersecting furniture within the scene. This penalty is added to the E value,
lowering the probability of such phenotypes being selected or surviving throughout the genetic
generations.
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The optimization can either be (i) triggered in separate attempts for each step (s), where the
mutual area value (K) is constrained based on the resulting step value, or (ii) executed in a single
attempt where minimizing E and maximizing K are both set as objective functions. In the latter, MS
is defined as the solution which holds the largest K while E = 0. Executing the optimization in a
one-time event is also likely to require additional computational costs due to the added complexity
to the solution space.

3.4 Results
Figure 3.5 illustrates our results for a furniture manipulation optimization task applied to three

example rooms. A total of 34 objects are located in the rooms. To shorten our gene length, we do
not apply rotation transformations to objects. We use a population size of 250, mutation probability
of 10%, mutation rate of 50%, and crossover rate of 80% for the scene manipulation search. We
visualize the standable, sittable, and mutual boundaries for each spatial expansion step. Moreover,
we report the corresponding E for each room in the alternative furniture layout. Our results in this
example indicate the solution can identify solutions that increase the maximum mutual boundary
area up to 65% more than its initial state before furniture movement.

The optimization process was able to generate a well-defined Pareto front, as seen on the bottom
of Figure 3.5, locating both the two extreme points and numerous intermediate trade-off points
representing non-dominated solutions. The bottom region of the curve is flat, indicating that for
a similar amount of effort, a significant increase in mutual standable area can be achieved. The
trade-off frontier thus starts at point MS, becoming very densely populated in its initial soft slope.
This shows that for each modest increase in physical effort (that is, in moving furniture), there can
be extensive gains in the mutual shareable area, which is an interesting result. After s = 4, the Pareto
front becomes increasingly steep, signaling that the user would now have to significantly increase
physical effort levels for modest gains in the shareable area. Point 4Gs thus seems to indicate a
breaking point of diminishing returns.

Similar to the MS search, in smaller furniture optimization steps, the algorithm seeks solutions
that are highly dependent on the transformation parameters G(F,θ) of the room itself, whereas, in
larger steps, we observe the algorithm correctly moving the objects to the more populated side of
the room in order to increase the empty spaces in available. In rooms where objects are facing the
center, and empty areas are initially located in the middle portion of the space, we see the objects
being pushed towards the corners or outer perimeter of the room in order to increase the initial
unoccupied areas.

Due to the smaller gene size, calculating the optimal MS (maximum mutual space without
furniture manipulation) executes much faster compared to E(Ri,Θ

s
i ) optimization, where the com-

plexity of the search mechanism radically increases due to the additional object transformation
parameters. The speed of the E(Ri,Θ

s
i ) optimization is also highly dependent on the transformation

range of each object, meaning that objects in larger rooms have more movement options to choose
from than those in small, constrained rooms. We observe an example of this effect in the later AR
experiment (Section 3.5), where the smaller space (kitchen) dominates the search process, causing
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the final mutual outcome between the rooms to maintain a very similar shape to the open boundaries
of the smaller space. While such an effect would still provide a well-constrained problem for
medium-sized rooms with multiple objects (such as the conference room), there are many possible
ways of fitting the smaller space in larger rooms with open spaces (such as the robotics laboratory),
resulting in an under-constrained optimization problem.

3.5 Augmented Reality Visualization
To explore the usability aspect of our solution in real-world scenarios, we deploy the resulting

spatial segmentation in AR using the Microsoft HoloLens, a mixed reality HMD. In this experiment,
three types of rooms were defined as potential telecommunication spaces: (i) a conventional meeting
room, where a large conference table is placed in the middle of the room, and unused spaces
are located around the table (ii) a robotics laboratory, where working desks and equipment are
mainly located around the perimeter of the room, while some larger equipment and a few tables are
disorderly positioned around the central section of the lab (iii) a kitchen space, where surrounding
appliances and cabinets are present in the scene.

After the initial scan of the surrounding environment by the user of each room, the geometrical
mesh data is sent to a central server for processing. This process happens in an offline manner,
as the current HoloLens hardware is incapable of processing the computations that our solution
would require. In addition, we scan the space using a Matterport camera and perform the semantic
segmentation step using Matterport classifications to locate the bounding boxes of all the furniture
located in the room. We then feed the bounding box data to our algorithm for mutual boundary
search. The implementation outputs spatial coordinates for standable and sittable areas, which are
automatically updated in the Unity Game Engine to be rendered in the HoloLens.

Figure 3.6 shows how the spatial boundary properties are visualized within the HoloLens AR
experience. The red spaces indicate non-standable objects, the green spaces indicate standable
boundaries, and the blue spaces indicate mutual boundaries that are accessible between all users.
The visualized boundaries are positioned slightly above the floor level, allowing users to identify
the mutual accessible ground between their local surroundings and the remote participant’s spatial
constraints.

Visualizing the mutual ground within the space itself using HoloLens allows us to understand
how complex the problem can be when executed in a manual fashion. Some corner spaces that are
not typically used as default social areas of a certain room may become the only required common
ground for interaction with other rooms. Overcoming this spatial bias is easily executed within
the algorithm; meanwhile, this may not happen so easily and instantly when individuals are left
to deal with it on their own. However, due to the limited field of view of the HoloLens, detecting
non-physical boundaries placed at a lower visual height becomes difficult to follow. This issue
proved more challenging when walking closer to the non-orthogonal edges of the mutual bounding
area, where an individual could easily step outside the designated area. The shareable area also
included a number of voids, which resulted in an inconsistent walking path inside the standable
spaces. Moreover, the accuracy of the real-time mesh reconstruction in HoloLens played a critical



CHAPTER 3. MUTUAL SPACE OPTIMIZATION 34

role in calculating the required rendering occlusions for the visualized boundaries. This was mainly
because the position of the visualization was reflected close to the floor with many objects placed
over it, therefore failing to detect occluding objects, a fact that often misled the user in identifying
whether the space was mutually accessible or not.

3.6 Conclusions
In this chapter, we introduce a novel optimization and manipulation framework to generate

an optimal common virtual space for interactions that mostly involve standing and sitting. Our
framework further recommends the movement of surrounding furniture objects that can expand
the size of the mutual space with minimal physical effort. We integrated our framework with a
Strength Pareto Evolutionary Algorithm for an efficient search and optimization process. The
multicriteria optimization process was able to generate a well-defined Pareto front of trade-offs
between maximizing mutual space and minimizing physical effort. The Pareto front is more densely
populated in some sections of the frontier than others, clearly identifying the best trade-offs region
and the on-start of diminishing returns.

Furthermore, we demonstrate how output solutions can be visualized using a HoloLens applica-
tion. Results show that the proposed framework can effectively discover optimal shareable space
for multi-user virtual interaction and thus provides a better user experience compared to manually
labeling shareable space, which would be a labor-intensive and imprecise workflow. In such a
context, if all participants stand within the calculated mutual spatial boundaries, the line of sight
between all participants will be deterministic. In addition, no remote participant will be positioned
in a conflicting location for any local user and would comply with the spatial constraints for all
other participants.

There are, of course, limitations to our work. First, furniture with fixed positions is not
automatically detected in our current implementation. We believe such a feature can be integrated
with further improvements in semantic segmentation methodologies or can be optionally specified
by the user whether an object is fixed or not. In addition, the furniture weight is calculated based on
standard assumptions. We envision that with the growth of spatial computing procedures, such meta-
data of the surrounding environment will be customizable by the user itself and can be loaded upon
each mutual spatial search execution. Future work can consist of integrating robust floorplanning
representations with the current search mechanism to minimize computation cost and complexity.
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Chapter 4

Contextual Scene Generation

4.1 Introduction
As previously discussed in Chapter 1.1, SC experiences are physically constrained by the

geometry and semantics of the 3D user environment where existing furniture and building elements
are present [151, 170]. Contrary to traditional 2D graphical user interfaces, where a flat rectangular
region hosts digital content, 3D SC environments are usually occupied by physical obstacles that
are diverse in their shape and function. Therefore, how one can assess content placement in SC
experiences is highly dependent on the user’s target scene.

However, since different users may reside in different spatial environments, which differ in
dimensions, functions (rooms, workplace, garden, etc.), and open usable spaces, existing furniture
and their arrangements are often unknown to the developers, making it very challenging to design a
virtual experience that would adapt to all users’ environments. Currently, contextual placement is
addressed by asking users themselves to identify the usable spaces in their surrounding environments
or manually positioning the augmented object(s) within the scene. Then, virtual object placement
in most AR experiences is limited to specific surfaces and locations, e.g., placing objects naively
in front of the user with no scene understanding or only using basic horizontal or vertical surface
detection. These simplistic strategies may work to some extent for small virtual objects, but
the methods break down for larger objects or complex scenes with multiple object augmentation
requirements.

The task of adding objects to existing constructed scenes falls under the problem of constrained
scene synthesis. The work of [90, 129, 111, 165, 174, 228] are examples of such an approach.
However, there are two major challenges in the general literature that create bottlenecks for virtual
content augmentation in SC experiences. First, current scanned 3D datasets publicly available
are limited in size and diversity and may not offer all the data required to capture the topological
properties of the rooms. For instance, pose, the direction in which the object is facing, is a critical
feature for understanding the orientational property of an object, and yet, such a property is not
clearly annotated for any objects in many large-scale real-world datasets such as SUN-RGBD
and Matterport3D. Therefore, more recent research has adapted synthetic datasets, which do not
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necessarily need to be manually annotated to pose prior information.
However, a critical drawback of using synthetic datasets is that they cannot capture the natural

transformation and topological properties of objects in real-world settings. Indeed, topological rela-
tionships between objects in real-world scenes typically exceed the theoretical design assumptions
of an architect and instead capture contextual relationships from a living environment. Moreover,
the limitations of the modeling software for synthetic datasets can also introduce unwanted biases
to the generated scenes. The SUNCG [204] dataset, for instance, was built with the Planner5D
platform, an online tool that any user around the world can use. However, it comes with modeling
limitations for generating rooms and furniture. Orientations are also snapped to right angles by
default, which makes most scenes in the dataset Manhattan-like. More importantly, there is no
indication whether the design is complete or not; namely, a user may just start playing with the
software and then leave at a random time, while the resulting arrangement is still captured as a
legitimate human-modeled arrangement in the dataset.

Second, recent models take advantage of implicit deep learning models and have shown promis-
ing results in synthesizing indoor scenes. Yet, these approaches fall short for content developers
to parameterize customized placement in relation to standard objects in the scene and to generate
custom spatial functionalities. One major limitation of these studies is that they do not have direct
control over objects in the generated scene. For example, authors of [111] reported they could
not specify object counts or constrain the scene to contain a subset of objects. Such limitations
come from the implicit nature of such neural networks. Implicit models produce a black-box tool,
which is difficult to comprehend should an end-user wish to tweak its functions. In cases where a
new object type (which has not been previously seen in prior datasets) needs to be placed, implicit
structures may not provide abilities to take into account manually defined topological properties by
a user. Moreover, training deep neural networks requires large datasets, a bottleneck that we have
discussed above.

Motivated by these challenges, in this Chapter, we introduce SceneGen, a generative contextual
augmentation framework that leverages explicit scene graph models to predict the functional
placements of new virtual objects in an indoor target scene. Contrary to the implicit models,
SceneGen is based on clear, logical object attributes and their architectural relationships with other
objects and the room. In light of the existing body of literature on semantic scene graphs, we leverage
this approach to encapsulate the relevant object relationships for scene augmentation. Scene graphs
have already been in use for general scene generation tasks; they can also inform the intelligent
placement of virtual objects in physical scenes. We use kernel density estimation (KDE) to build a
multivariate conditional model to encapsulate explicit positioning and clustering information for
objects in various room types. This information will allow our algorithm to calculate a probability
distribution to place and orient the new object in a scene while satisfying its physical and functional
requirements. From the calculated probabilities, we generate a score for each potential placement
of the new object, visualized in a heat map over the room. Our system is designed for both fully
automated scene augmentation and also user-in-the-loop scenarios, allowing the user to understand
the influence of the relationship features and their impact on the results.

Our contributions can be summarized as follows:
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1. We introduce a spatial Scene Graph representation that encapsulates the positional and
orientational relationships of a scene. Our proposed Scene Graph captures pairwise topology
between objects, object groups, and the room.

2. We develop a prediction model for contextual object augmentation in existing scenes. We
construct an explicit Knowledge Model which is trained from Scene Graph representations
captured from real-world 3D scanned data.

3. To learn orientational relationships from real-world 3D scanned data, we have manually
labeled the Matterport3D dataset with pose directions using an open-source labeling tool for
fast pose labeling.

4. We develop an AR application that scans a user’s room and generates a Scene Graph based
on the existing objects. Using our model, we sample poses across the room to determine a
probabilistic heat map of where the object can be placed. By placing objects in poses where
the spatial relationships are likely, we are able to augment scenes that are realistic.

We believe our proposed system can facilitate a wide variety of SC applications. Augmenting vir-
tual objects to scenes has been explored in online-shopping settings, and collaborative environments
require placing one user’s objects into another user’s surroundings. In addition, content creation for
SC experiences requires long hours of cross-platform development on current applications, so our
system will allow faster scene generation and content generation in AR/VR experiences.

4.2 SceneGen Overview
SceneGen is a framework to augment scenes with virtual objects using a generative model to

maximize the likelihood of the relationships captured in a spatial Scene Graph. Specifically, if given
a partially filled room, SceneGen augments it with one or more new virtual objects in a realistic
manner using an explicit model trained on relationships between objects in the real world. The
SceneGen workflow is shown in Figure 7.4.

In this Chapter, we first introduce a novel Scene Graph that connects the objects and the room
(both represented as nodes) using spatial relationships (represented as edges) in Section 4.3. For
each object, these relationships are determined by positional and orientational features between
itself and other objects, object groups, and the room.

In Section 4.4 we show how from a dataset of rooms, we can extract these Scene Graphs to
construct a Knowledge Model that is used to train explicit models that approximate the probability
density functions of position and orientation relationships for a given object using kernel density
estimation. In order to augment a scene with a virtual object, SceneGen samples possible positions
and orientations in a scene, building updated Scene Graphs for each sample. We estimate the
probability of each sample and place an object at the most likely pose. SceneGen also shares a heat
map of the likelihood of each sample to suggest alternate high probability placements. This can be
repeated to augment multiple virtual objects.
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Figure 4.1: End-to-end workflow of SceneGen shows the main modules of our framework to
augment rooms with virtual objects. Left: the training procedure including scene prior processing
for the Knowledge Model creation. Right: the test time procedure of sampling and prediction.

Our implementation of SceneGen is built using data extracted from the Matterport3D dataset as
priors and is detailed in Section4.5. As using object scans results in unoriented bounding boxes in
Matterport3D, we develop an application to facilitate the labeling of the facing direction of each
object.

We assess the effectiveness of SceneGen in Sections 4.6 and 4.7 for eight categories of objects
across several types of rooms including bedroom, living room, hallway, and kitchen. In order to
understand the effectiveness of each relationship in predicting where and how a new object should
be placed, we run a series of ablation tests on each feature. We use K-fold cross-validation to
partition the Matterport3D dataset, building the Knowledge Model on a training set and assessing
how well the model can replace removed objects from a validation set. Additionally, we carry
out a user study to analyze how SceneGen compares with random placements and the reference
scene in placing new objects into virtual rooms and to evaluate the value of a heat map showing the
probability of all samples.

Finally, Section 4.8 details an AR mobile application that we have developed to demonstrate
the user experience when employing SceneGen to add new virtual objects. This application
locally computes the semantic segmentation and generates a Scene Graph before estimating sample
probabilities on an external server, and then parses and visualizes the prediction results.
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4.3 Scene Representation

Graph Representation based on Extracted Features
In this section, we introduce a novel spatial Scene Graph that represents a room and objects in

it as a graph using extracted spatial features. A Scene Graph G is defined by nodes representing
objects, object groups, and the room, and by its edges representing the spatial relationships between
the nodes. While various objects hold different individual functions (e.g., a chair to sit, a table to
dine, etc.), their combinations and topological relationships tend to generate the main functional
purpose of the space. In other words, spatial functions are created by the pairwise topologies of
objects and their relationships with the room. In our proposed Scene Graph representation, we
intend to explicitly extract a wide variety of positional and orientational relationships that can be
present between objects. We model descriptive topologies that are commonly utilized by architects
and interior designers to generate spatial functionalities in a given space. Therefore, our Scene
Graph representation can also be described as a function map, where objects (nodes) and their
relationships (edges) correspond to a single or multiple spatial functionalities in a scene. Figure 4.2
illustrates two examples of our Scene Graph representation, where a subset of topological features
are visualized in the graph.

Definitions for Room and Objects
We consider a room or a scene in 3D space where its floor is on the flat (x,y) plane and the

z-axis is orthogonal to the (x,y) plane. In this orientation, we denote the room space in a floorplan
representation as R, namely, an orthographic projection of its 3D geometry plus a possible adjacency
relationship that objects in R may overlap on the (x,y) plane but on top of one another along the
z-axis. Specifically, the “support” relationship is defined in Section 6.2. This can also be viewed as
a 2.5D representation of the space.

Further denote the k-th object (e.g., a bed or a table) in R as Ok. The collection of all n objects
in R is denoted as O = {O1,O2, ...On}. B(Ok) represents the bounding box of the object Ok. Ȯk
represents the center of the object Ok. Every object Ok has a label to classify its type. Related to the
same R, we also have a set of groups G = {g1, ...,gm}, where each group gi contains all objects of
the same type within R.

Furthermore, each Ok has a primary axis ak and a secondary axis bk. For Frontal Facing objects,
ak represents the orientation of the object. ak and bk are both unit vectors such that bk is a π

2 radian
counter clockwise rotation of ak. We define θak and θbk to be the angle in radians represented by ak
and bk respectively.

For each room R, we define W = {W1,W2, ...,Wl} where each Wk is a wall of the l-sided room.
In the floorplan representation, Wk is represented by a 1D line segment. We also introduce a distance
function δ (a,b) as the shortest distance between a and b objects. For example, δ (B(Ok), Ṙ) is the
shortest distance between the bounding box of Ok and the center of the room R.
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Figure 4.2: Our proposed Scene Graph representation is extracted from each scene capturing
orientation and position based relationships between objects in a scene (pairwise) and between
objects and the room itself. Visualization shows only a subset of features for clarity.
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Positional Relationships
We first introduce features for objects based on their spatial positions in a scene. We include

both pairwise relationships between objects (e.g., between a chair and a desk), object groups (e.g.,
between a dining table and dining chairs), and relationships between an object and the room.

Object to Room Relationships

RoomPosition: The room position feature of an object denotes whether an object is at the middle,
edge, or corner of a room. This is based on how many walls an object is less than ρ distance from:

RoomPosition(Ok,R) = ∑
Wi∈(W )

1(δ (B(Ok,Wi)< ρ). (4.1)

In other words, if RoomPosition(Ok,R) ≥ 2, the object is near at least two walls of a room and
hence is near a corner of the room; if RoomPosition(Ok,R) = 1, the object is near only one wall
of the room and is at the edge of the room; otherwise, the object is not near any wall and is in the
middle of the room.

Object to Object Group Relationships

AverageDistance: For each object, and each group of objects we calculate the average distance
between that object and all objects within that group. For cases where the object is a member of the
group, we do not count the distance between the object in question and itself in the average.

AverageDistance(Ok,gi) = ∑
O j∈gi

j 6=k

δ (B(Ok),B(O j))/ ∑
O j∈gi

j 6=k

1. (4.2)

SurroundedBy: For each object, and each group of objects, we compute how many objects in
the group are within a distance ε of the object. For cases where the object is a member of the group,
we do not count the object in question.

SurroundedBy(Ok,gi) = ∑
O j∈gi

j 6=k

1(δ
(
B(O j),B(Ok))< ε

)
. (4.3)

Object Support Relationships

Support: An object is considered to be supported by a group if it is directly on top of an object from
the group or supports a group if it is directly underneath an object from the group.
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Support(Ok,gi) =


1 ∃O j ∈ gi where Ok is on top of O j;
−1 ∃O j ∈ gi where Ok is under O j;
0 otherwise.

(4.4)

Orientation Relationships
We categorize the objects in our scenes into three main groups:

1. Gomn: Omnidirectional objects such as coffee tables and house plants that have no clear
front-facing direction;

2. Gfrf: Frontal Facing objects such as beds and chairs that can be oriented to face in a specific
direction;

3. Gin: Inside Facing objects such as paintings and storage that are always facing opposite to
the wall of the room where they are situated.

In this section, we discuss features applicable to objects with defined facing directions and not to
omnidirectional objects.

Object to Room Relationships

We first define an indicator equation that is 1 if a ray extending from the center in the direction dk of
an object intersects a wall Wi:

f (Ȯk,dk,Wi) = 1(∃γ ≥ 0|Ȯk + γdk ∈Wi). (4.5)

TowardsCenter: An object is considered to be facing towards the center of the room, if an ray
extending from the center of the object intersects one of the furthest l

2 walls from the object:

c1 = argmax
Wi∈(W )

δ (Ȯk,Wi);

c2 = argmax
Wi∈(W\c1)

δ (Ȯk,Wi);

...
c l

2
= argmax

Wi∈(W\c1...c l
2−1

)

δ (Ȯk,Wi).

(4.6)

TowardsCenter(Ok) = f (Ȯk,ak,c1)∨ ...∨ f(Ȯk,ak,c l
2−1). (4.7)

AwayFromWall: An object is considered facing away from a wall if it is oriented away from and
is normal to the closest wall to the object:

c1 = argmin
Wi∈(W )

δ (B(Ok),Wi);

AwayFromWall(Ok) = f(Ȯk,−ak,c1)∧ (ak ⊥ ci).
(4.8)
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DirectionSimilarity: An object has a similar direction as one or more objects within a constant
ε distance from the object if the other objects are facing in the same direction or in the opposite
direction (π radians apart) from the first object subject to some small angular error ϕ:

Same(Ok) = ∑
O j∈O, j 6=k

δ(B(Ok),B(O j))≤ε

1(|θak−θa j | ≤ ϕ),

Opp(Ok) = ∑
O j∈O, j 6=k

δ(B(Ok),B(O j))≤ε

1(|π−|θak−θa j || ≤ ϕ),

DirectionSimilarity(Ok) = [Same(Ok),Opp(Ok)] ∈ R2.

(4.9)

Object to Object Group Relationships

We first define an indicator function that is 1 if a ray extending from the center of the object in
direction dk intersects the bounding box of a second object:

h(Ȯk,dk,B(O j)) = 1(∃γ ≥ 0|Ȯk + γdk ∈ B(O j)). (4.10)

Facing: Between an object and a group of objects we count how many objects of the group are
within a distance ε of the object and are in the direction of the primary axis of the first object:

Facing(Ok,gi) = ∑
O j∈gi, j 6=k

δ (B(Ok),B(O j))≤ε

h(Ȯk,ak,B(O j)). (4.11)

NextTo: Between an object and a group of object we count how many objects of the group are
within a distance ε of the object and are in the direction of the positive or negative secondary axis
of the first object:

NextTo(Ok,gi) = ∑
O j∈gi, j 6=k

δ(B(Ok),B(O j))≤ε

h
(
Ȯk,±bk,B(O j)

)
. (4.12)

4.4 Knowledge Model

Feature Vectors for Position and Orientation
To evaluate the plausibility of a new arrangement, we compare its corresponding Scene Graph

with a population of viable Scene Graphs priors. By extracting Scene Graphs from a corpus of
rooms, we construct a Knowledge Model, which serves as our spatial priors for the position and
orientation relationships of each object group. For each object instance, we assemble a data vector
for positional features from G . For Frontal Facing objects, we similarly create a data vector for
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orientational features. First, we define the following that represents an object’s relationships with
all groups G = {g1, ...,gm}:

AD(Ok) = [AverageDistance(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
S(Ok) = [SurroundedBy(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
F(Ok) = [Facing(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
NT(Ok) = [NextTo(Ok,gi)|i = 1, · · · ,m] ∈ Rm,
SP(Ok) = [Support(Ok,gi)|i = 1, · · · ,m] ∈ Rm.

(4.13)

This allows us to construct data arrays, dp (Ok) and do (Ok), containing features that relate to the
position and orientation of an objects respectively. RoomPosition is also included in the data array
for orientational features, do, since the other features of do are strongly correlated with an object’s
position in the room. This is abbreviated as RP. We also abbreviate TowardsCenter as TC and
DirectionSimilarity as DS. For succinctness, when using these abbreviations for our features, the
parameter Ok is dropped:

dp (Ok) = [RP ∈ R,AD ∈ Rm,SP ∈ Rm,S ∈ Rm] ∈ R3m+1,
do (Ok) = [RP ∈ R,TC ∈ R,DS ∈ R2,F ∈ Rm,NT ∈ Rm] ∈ R2m+4.

(4.14)

Finally, given one feature vector per object for position and orientation, respectively, we can
collect more samples from a database, which we will discuss in Section 4.5, to form our Knowledge
Model. The model collects feature vectors separately with respect to different object types in
multiple room spaces. To do so, we introduce gi, j to collect all of the i-th type objects in room
R j, j = 1, · · · ,r. Without loss of generality, we assume that the i-th object type is the same across
all rooms. Therefore, we can collect all the objects of the same i-th type from a database as

gi,∗ =
r⋃

j=1

gi, j.

Then Dp(gi,∗) and Do(gi,∗) represent the collections of all feature vectors in (4.14) from objects in
gi,∗:

Dp(gi,∗) = {dp (Ok) |∀Ok ∈ gi,∗},
Do(gi,∗) = {do (Ok) |∀Ok ∈ gi,∗}.

(4.15)

Scene Augmentation
Given the feature samples for the same type of object in (4.15), now we can estimate their

likelihood distribution. In particular, given an object placement O of the i-th type, we seek to
estimate the likelihood function for its position features:

P(dp(O)|Dp(gi,∗)). (4.16)

If O is Frontal Facing, we also seek to estimate the likelihood function for its orientation features:

P(do(O)|Do(gi,∗)). (4.17)
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However, if O is an Inside Facing object, then with certainty, its orientation will be determined by
that of its adjacent wall. Similarly, an Omnidirectional object O has no clear orientation. Therefore,
for these categories of objects, estimation of their orientation likelihood is not needed. In this
section, we discuss how to estimate (4.16) and (4.17)

We can approximate the shape of these distributions using multivariate kernel density estimation
(KDE). Kernel density estimation is a non-parametric way to create a smooth function approximating
the true distribution by summing kernel functions, K, placed at each observation Xi...Xn [195]:

f̂h(x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
. (4.18)

This allows us to estimate the probability distribution function (PDF) of the position and orientation
relationships from the spatial priors in our Knowledge Model, Dp(gi,∗),Do(gi,∗) for each group gi.

SceneGen Algorithm
Algorithm 1 describes the SceneGen algorithm. Given a room model R and a set of existing

objects O = {O1,O2, ...On}, the algorithm evaluates the position and orientation likelihood of
augmenting a new object O′ and recommends its most likely poses.

Algorithm 1: SceneGen Algorithm
Given a training database, calculate Dp(gi,∗) and Do(gi,∗) as prior.
For a given room R, construct the Scene Graph G of its objects O .
while Sample the position of O′ of type i in R do

Calculate P(dp(O′)|Dp(gi,∗)).
while Sample the orientation of O′ ∈ [0,2π) do

Calculate P(do(O′)|Do(gi,∗))
end

end
Generate a heat map displaying the likelihood distributions.
Make recommendation to place O′ at the highest probability pose.

Figure 7.4 shows how potential scene graphs are created for sampled placements. For scenes
where multiple objects need to be added, we repeat Algorithm 1 for each additional object.

4.5 Implementation
In this section, we discuss the implementation detail of SceneGen based on the relationship data

learned from the Matterport3D dataset.
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Dataset
Matterport3D [30] is a large-scale RGB-D dataset containing 90 building-scale scenes. The

dataset consists of various building types with diverse architectural styles, including numerous
spatial functionalities and furniture layouts. Annotations of building elements and furniture have
been provided with surface reconstruction as well as 2D and 3D semantic segmentation.

Pose Standardization

In order to use the Matterport3D dataset as prior for SceneGen, we must make a few modi-
fications to standardize object orientation using an annotation tool that we have also developed.
In particular, different from Section 4.3, our annotation tool interacting with the dataset is fully
in 3D environment (i.e., through Unity 3D). After the annotation, the relationship data are then
consolidated back to the 2.5D representation, conforming to the computation of the SceneGen
models.

For each object Ok, the Matterport3D dataset supplies labeled oriented 3D bounding boxes B(O)
aligned to the (x,y) plane. This is defined by a center position Ȯ, primary axis a, secondary axis b,
an implicit tertiary axis c, and r ∈ R3 denotes the radius vector of O. However, the Matterport3D
dataset does not provide information about which labeled direction the object is facing or aligns
with the z-axis. Hence, it will rely on our labeling tool to resolve the ambiguities.

To provide a consistent definition, we describe a scheme to label these axes such that the primary
axis a points in the direction the object is facing as a∗. Since we know that only one of these three
axes has a z component, we shall store this in the third axis c∗ and define b∗ to be orthogonal to
a∗ on the x,y plane. The box size r will also be updated to correspond to the correct axes. By
constraining these aligned axes to be right-handed, for a given a∗ we have:

c∗ .
= [0,0,1], b∗ .

= c∗×a∗. (4.19)

In order to correctly relabel each object, we have developed an application to facilitate the
identification of the correct primary axis for all the Frontal Facing objects and supplemented this to
the updated data set. For each object, we view the house model mesh at different camera positions
around the bounding box in order to determine the primary axis of the object as displayed in Figure
4.3. Our annotation tool shown in Figure 4.4 allows a labeler to select from two possible directions
at each camera position or can move the camera clockwise or counterclockwise to get a better view.
Once a selection is made, the orienting axis a∗ can be determined. We then use (4.19) to standardize
the axes. Using the annotation tool, the average time for each object to be labeled is 2.6 seconds.
For example, if a MatterPort3D house has 80 Frontal Facing objects that need to be labeled, it would
take an estimate of only 3.5 minutes for the annotation task of the house. a

Category Reduction

For this study, we have reduced the categories of object types considered for building our model
and placing new objects. Though the Matterport3D dataset includes many different types of furniture,
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Figure 4.3: In our annotation tool, a camera is orbited around each object to facilitate labeling of
object orientations.

organized with room labels to describe furniture function (e.g., "dining chair" versus "office chair"),
we found that the dataset has a limited amount of instances for many object categories. Because
we build statistical models for each object category, we require an adequate representation of each
category. Thus, we reduce the categories to a sufficiently represented subset and filter objects that
do not fall in these categories for the purposes of this study.

We group the objects into 8 coarse categories: G = {Bed, Chair, Decor, Picture, Sofa, Storage,
Table, TV}. Each of these categories has a specific type of orientation, as described in Section 4.3.
Of these categories, Frontal Facing objects are Gfrf = {Bed, Chair, Sofa, TV}, Omnidirectional
objects are Gomn = {Decor, Table}, and Inside Facing objects are Gin = {Picture, Storage}.

For room types, we consider the set { library, living room, meeting room, TV room, bedroom,
rec room, office, dining room, family room, kitchen, lounge} to avoid overly specialized rooms
such as balconies, garages, and stairs. We also filter rooms that hold more than 95% unoccupied
areas to avoid unusual empty rooms that come without any spatial arrangements. After the data
reduction, a total of 1,326 rooms and 7,017 objects are in our training and validation sets. The
object and room categories used can be expanded if sufficient data are available.

Knowledge Model
We use the processed dataset as prior to train the SceneGen Knowledge Model. The procedure

first estimates each object Ok according to (4.14), and subsequently constructs Dp(gi,∗) and Do(gi,∗)
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Figure 4.4: A labeler using our annotation tool can select which direction the object is facing or
move to the next camera to get a better view. The selection is used to automatically standardize the
axes of each object’s bounding box.
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Figure 4.5: Visualization of the Knowledge Model built from Scene Graphs extracted from the
Matterport3D Dataset shows for each group of objects: (a) frequency of each RoomPosition, (b)
frequency the object is surrounded by multiple objects from another group, (c) frequency the object
is facing an object from another group, (d) frequency the object is facing towards the center of the
room or not.

in (4.15) for categories in G and Gfrf respectively. Given our priors, we estimate the likelihood
functions P(dp(O)|Dp(gi,∗)) and P(do(O)|Dp(gi,∗)) from (4.16) and (4.17) using Kernel Density
Estimation.

We utilize a KDE library developed by [189] with a normal reference rule of thumb bandwidth
with ordered, discrete variable types. We make an exception for AverageDistance, which is continu-
ous. When there are no objects of a certain group, gi in a room, the value of AverageDistance(Ok,gi)
is set to a large constant (1000), and we use a manually tuned bandwidth (0.1) to reduce the impact
of this on the rest of the distribution.

Furthermore, we found for this particular dataset, a subset of features, Facing, TowardsCenter,
and RoomPosition, are most impactful in predicting orientation, as detailed in Section 4.7. Therefore,
while we model all of the orientational features, we only use the Facing, TowardsCenter, and
RoomPosition features for our implementation of SceneGen and in the User Studies. Finally, due to
overlapping bounding boxes in the dataset, calculating object support relationships (SP) precisely is
not possible. Thus in our implementation, we allow the certain natural overlaps defined heuristically
instead of using these features. A visualization of our priors from the Matterport3D dataset can be
seen in Figure 4.5.

We use Algorithm 1 to augment a room R with an object of type i and generate a probability
heat map. This can be repeated in order to add multiple objects. To speed up computation in this
implementation, we first sample positions and then sample orientations at the most probable position
instead of sampling orientations at every possible position.

Figure 4.6 shows how our implementation of SceneGen adds a new object to a scene, and
examples of scenes are augmented with multiple objects iteratively are shown in Figure 4.7. The
illustrated heatmaps are color-coded based on their normalized probability rank. In positional
visualizations, the top k of valid samples are rendered from zero opacity to a dark solid color (high
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probability), while in orientational visualizations, angular samples are color-coded from red (low
probability) to red (high probability).

Computation Time We train and evaluate our model using a machine with a 4-core Intel i7-
4770HQ CPU and 16GB of RAM. In training, creating our Knowledge Model and estimating
distributions for eight categories of objects takes approximately 12 seconds. In testing, it takes ≈2
seconds to extract a scene graph and generate a heat map indicating the probabilities of 250 sampled
poses.

4.6 Experiments

Ablation Studies
To evaluate our prediction system, we run ablation studies, examining how the presence or

absence of particular features affects our object position and orientation prediction results. We use a
K = 4-fold cross-validation method in our ablation studies, with 100 rooms in each validation set
and the remaining rooms in our training set.

Position Features Evaluation

The full position prediction model, SceneGen, trains three features: AverageDistance (AD),
SurroundedBy (S), and RoomPosition (RP). The combination is denoted as AD+S+RP. We further
consider three reduced versions of our system: AD+RP, using only AverageDistance and RoomPo-
sition features; S+RP, using only Surrounding and RoomPosition features; and RP, solely using the
RoomPosition feature.

We evaluate each system using the K-fold method described above. In this study, we remove
each object in the validation set, one at a time, and use our model to predict where the removed
object should be positioned. The orientation of the replaced object will be the same as the original.
We compute the distance between the original object location and our system’s prediction.

However, as inhabitants of actual rooms, we are aware that there is often more than one plausible
placement of an object, though some may be more optimal than others. Thus, we raise the question
of whether there is more than one ground truth or the correct answer for our object placement
problem. Hence, in addition to validating our model’s features, our first ablation study validates
them in relation to the simple approach of taking the single highest-scored location from our system.
Meanwhile, our second ablation study uses the top 5 highest-scored locations, opening up the
examination to multiple potential "right answers. "

Orientation Features Evaluation

We run a similar experiment to evaluate our orientation prediction models for Frontal Facing
objects. Our Scene Graphs capture five relationships based on the orientation of the objects: Facing
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Figure 4.6: Scene Gen places objects into scenes by extracting a Scene Graph from each room,
sampling positions and orientations to create probability maps, and then placing an object in the
most probable pose. (a) A sofa placed in a living room, (b) a bed placed in a bedroom, (c) a chair
placed in an office, (d) A table placed in a family room, and (e) storage placed in a bedroom.
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Figure 4.7: Examples of adding multiple virtual objects to a scene using SceneGen. Each object
is placed in the most likely position and orientation iteratively into a partially decorated room.
Top: A bed, storage, and sofa are first extracted from the room model, then reorganized in a viable
alternative to the dataset ground truth; Middle: Two sofas and a table are reorganized by SceneGen
to a living room in an arrangement similar to ground truth; Bottom: A sofa, a table are reorganized,
and another sofa and a table are added to a family room, showing an augmented scene with new
virtual objects compared to the ground truth.

(F), TowardsCenter (C), NextTo (NT), DirectionSimilarity (DS), and RoomPosition (RP). We assess
models based on several combinations of these relationships.

We evaluate each of these models using the same K-fold approach, removing the orientation
information of each object in the validation set and then using our system to predict the best
orientation, keeping the object’s position constant. We compare the angular difference between the
predicted and the original orientations.

Comparative Studies
We compare the performance system of our system with SceneGraphNet [257] in both quantita-

tive and qualitative experiments. The experiments are similar to the K-fold ablation study trained on
the MatterPort3D dataset mentioned in the previous subsection, where we remove each object in the
validation set dataset and compare the model’s ability to predict where the removed object should be
positioned. However, due to the fact that SceneGraphNet does not predict orientations of the object
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placement, we only limit the experiment to positional calculations only. In our qualitative results,
we used the original orientation of the ground truth as a basis for SceneGraphNet’s augmentation.

SceneGraphNet utilizes a neural message-passing approach to the scene synthesis problem.
However, the system is primarily designed to predict the probability distribution over the type of
objects given a query position in a scene. To get the probability distribution for the placement of
a specific object across a scene, their code was augmented with a sampling mechanism similar to
SceneGen to evaluate all possible coordinates which fit in the room. Next, each coordinate was fed
as an input to the SceneGraphNet procedure to predict the probability distribution for all categories
at that position. Using this exhaustive search approach, we are able to calculate the most probable
location to place a specific object category in the scene.

User Evaluation
We conduct user studies with a designed 3D application based on our prediction system to

evaluate the plausibility of our predicted positions and the usefulness of our heat map system.
We recruited 40 participants, of which 8 were trained architects. To ensure unbiased results, the
participants were randomly divided into four groups. Each group of users was shown five scenes
from each of the five levels for a total of 25 scenes. The order in which these scenes were presented
was randomized for each user, and they were not told which level a scene was at.

We reconstructed 34 3D scenes from our dataset test split, where each scene had one object
randomly removed. In this reconstruction process, we performed some simplification and regularized
the furniture designs using prefabricated libraries so that users would evaluate the layout of the
room rather than the design of the object itself while matching the placement and size of each object.
An example of this scene reconstruction and simplification can be seen in Figure 4.12(a-b).

The five defined levels test different object placement methods as shown in Figure 4.12(c-g)
to replace the removed object. Levels I and II are both random placements generated at run time
for each user. The Level I system initially places the object in a random position and orientation
in the scene. The Level II system places the object in an open random position and orientation,
where the placement does not overlap with the room walls or other objects. Levels III and IV
use SceneGen predictions. The Level III system places the object in the position and orientation
predicted by SceneGen. Level IV also places the object in the predicted position and orientation but
also overlays a probability map. The Level V system places the object at the position it appears in
the Matterport3D dataset, i.e., the ground truth.

We recorded the users’ Likert rating of the plausibility of the initial object placement on a scale
of 1 to 5 (1 = implausible/random,3 = somewhat plausible, 5 = very plausible). We also recorded
whether the user chose to adjust the initial placement, the Euclidean distance between the initial
placement and the final user-chosen placement, and the orientation change between the initial
orientation and the final user-chosen orientation. No comparison was made between the scenes by
the participants, and the scores were to be given to each scene independent of another. We expect
higher initial Likert ratings and smaller adjustments to position and orientation for levels initialized
by our system than for levels initialized to random positions.
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Each participant used an executable application on a desktop computer. The goal of the study
was explained to the user, and they were shown a demonstration of how to use the interface. For
each scene, the user was shown a 3D room and an object that was removed. After inspecting
the initial scene and clicking "place object," the object was placed in the scene using the method
corresponding to the level of the scene. In Level IV Scenes, the probability heat map was also
visualized. Note that participants were not aware whether Level IV was generating results from our
system, random, or ground truth. The user was shown multiple camera angles and was able to pan,
zoom and orbit around the 3D room to evaluate the placement.

For each scene, the user was first asked to rate the plausibility of placement on a Likert Scale
from 1-to 5. Following this, the user was asked if they wanted to move the object to a new location.
If they answered "no," the user would progress to the next scene. If they answered "yes," the
UI displayed transformation control handles (position axis arrows, rotation axis circles) to object
position and orientation. After moving the object to the desired location, the user could save the
placement and progress to the next scene. An IRB approval was maintained ahead of the experiment.

4.7 Results

Ablation & Comparative Studies
Position Features

In Figure 4.8, we plot the cumulative distance between the ground truth position and the top
position prediction, and in Figure 4.9, we plot the cumulative distance between the ground truth
position and the nearest out of the top 5 position predictions, using our full system and three ablated
versions.

We find that the full SceneGen system predicts a placement most similar to the ground truth
than any of the ablated versions, followed by the models using AverageDist and RoomPosition
features (AD+RP) and SurroundedBy and RoomPosition (S+RP). The predictions furthest from
the ground truth are generated by only using the RoomPosition (RP) feature. These curves are
consistent between the best and the closest of the top 5 predicted positions, and the fact indicates
that each of our features for position prediction contributes to the accuracy of the final result.

In addition, when the top 5 predictions are considered, we see that each system we assess is
able to identify high probability zones closer to the ground truth compared to only using the best
prediction. This is supported by the slope of the curves in Figure 4.9, which rise much more sharply
than in Figure 4.8. This difference provides support for the importance of predicting multiple
locations instead of simply returning to the highest-scored locations. A room can contain multiple
plausible locations for a new object, so the system’s predicted location with the highest score may
not necessarily be the same as the ground truth. For this reason, our system returns probabilities
across sampled positions using a heat map to show multiple viable predictions for any placement
query.

Table 4.1 shows the mean distance of the position prediction to ground truth position separated
by object categories in all SceneGen ablation and also SceneGraphNet. We find that the object
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Figure 4.8: Distance between a ground truth object’s position and where SceneGen and other ablated
versions of our system predict the object should be re-positioned is shown in a cumulative density
plot.

categories where the full SceneGen system outperforms its ablations are chairs, storage, and decor.
For beds and TVs, SceneGen only produces the closest placements out of the system versions when
considering the top five predictions. For pictures and tables, SceneGen’s top prediction is closest to
ground truth and is only slightly further when comparing the nearest of the top 5 predictions.

Furthermore, our results indicate SceneGen outperforms SceneGraphNet in all categories in
the positional placement experiment. Figure 4.10 illustrates a qualitative comparison of the object
augmentation tasks between the two systems on MatterPort3D scenes. While both systems show
their ability to predict plausible placement in relation to other objects in the target scene, we observe
a slightly better performance in SceneGen when taking into account the object’s position in relation
to the room.

Orientation Features Results

In our orientational ablation studies, we assess the ability of various versions of our model to
reorient Frontal Facing objects from test scenes. In Figure 4.11, we plot the angular difference
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Figure 4.9: Distance between the ground truth object’s position and the nearest of the 5 highest
probability positions predicted by SceneGen and other ablated versions of our system is shown in a
cumulative density plot.

Table 4.1: Distance between ground truth and predicted position for different models, with smallest
distances for each object type in bold (ablation study). Topology features are abbreviated as follows:
AverageDistance as AD, SurroundedBy as S, and RoomPosition as RP.

System Bed Chair Storage Decor Picture Table Sofa TV Overall
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

AD+S+RP (SceneGen) 1.58 0.87 2.26 1.35 2.27 1.45 2.71 1.71 2.80 1.99 2.15 1.47 2.56 1.58 2.49 1.52 2.40 1.54
AD + RP 1.40 0.95 2.40 1.47 2.55 1.67 2.79 1.96 2.95 2.03 2.26 1.46 2.58 1.58 2.39 1.731 2.49 1.65
S + RP 1.85 1.32 2.46 1.56 2.46 1.64 3.38 2.14 2.82 1.92 2.67 1.72 2.53 1.64 2.51 1.55 2.67 1.73

RP 1.99 1.31 2.95 2.31 2.75 1.53 3.12 2.56 2.95 2.21 2.70 1.57 2.55 1.72 2.95 2.32 2.80 1.96
SceneGraphNet [257] 1.91 1.56 3.01 2.49 2.37 1.95 3.14 2.70 3.36 2.94 3.80 3.31 3.57 3.12 3.97 3.40 3.25 2.80
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Table 4.2: Angular difference in radians between ground truth and predicted orientation for different
model architectures (ablation study). Topology features are abbreviated as follows: Facing as F,
TowardsCenter as C, RoomPosition as (RP), NextTo as NT, DirectionSimilarity as DS.

System Bed Chair Sofa TV Overall

F+C+RP (SceneGen) 0.65 0.98 0.67 0.66 0.85
F only 1.13 1.66 1.51 0.91 1.54
F+C 1.13 1.55 1.18 0.49 1.35
F+C+NT 1.18 1.53 1.23 0.46 1.35
F+C+DS 1.54 1.55 1.21 0.59 1.39
F+C+DS+NT 1.22 1.50 1.23 0.63 1.35

between the ground truth orientation and the top orientation prediction from various versions of our
system. The base model includes only Facing (F) and is the lowest-performing. We find that the
system that also includes TowardsCenter and RoomPosition features performs best overall. We use
this system (F+C+RP) in our implementation of SceneGen. The other four versions of our system
perform similarly to each other overall.

Table 4.2 shows the results of the orientation ablation study separated by object category. In this
case, the system with Facing, TowardsCenter, and RoomPosition features (F+C+RP) outperform
all other versions across all categories except for TVs, where the system that includes Facing,
TowardsCenter, and NextTo (F+C+NT) produces the least deviation. In fact, all three of the systems
that included either DirectionSimilarity or NextTo, predict the orientation of TVs more closely than
the overall best performing system but perform more poorly on other objects such as beds when
compared with systems without those features. This suggests that for other datasets, these features
could be more effective in prediction orientations.

User Study Results
Plausibility of Placement Results

We show the distributions of Likert ratings by levels in Figure 4.13. We also run a one-way
ANOVA test on the Likert ratings of initial placements, finding significant differences between all
pairs of levels except for Levels IV and V. In other words, the ratings for Level IV’s representation
of our prediction system are not significantly different from ground truth placements. Across
multiple tests, we see that Level IV result ratings are significantly different from levels based on
randomization, while those from Level III are not as significant. The difference between Levels
III and IV could support our conjecture that accounting for multiple "right answer" placements
improves the predictions.
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Figure 4.10: Comparison between SceneGraphNet [257] (left/yellow) and our proposed system
(right/red) for the scene augmentation task on example MatterPort3D scenes. Objects are removed
and augmented back into the scene via the constrained scene augmentation models. Illustration
includes augmentation comparison of a bed (top), sofa+ table (middle) in an office, and a storage
(bottom).
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Figure 4.11: Cumulative density plot indicates angular difference between ground truth orientation
and our system’s predicted orientation for SceneGen and other subsets of orientation features. The
range is [0,π).

Position Prediction Results

We analyze how participants’ choices to adjust placement vary across different scene levels.
Results of this can be seen in Figure 4.14. A one-way ANOVA test of the distance users moving
objects from their placements finds a significant difference (p = 1.8622e38) between two groupings
of levels: 1) Levels I and II (with higher means), and 2) Levels III, IV, and V (with lower means).
The differentiation in groupings supports the plausibility of our system’s position prediction over
random placements.

Orientation Prediction Results

A one-way ANOVA test is also performed on the change in object orientation from the partic-
ipants’ manual adjustment and finds a significant difference (p = 1.8112e16) between a different
pair of level groupings: 1) Levels I, II, and III, and 2) Levels IV and V. In Figure 4.15, we show the
distributions of the angular difference between the initial object orientation and the final user-chosen
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Figure 4.12: Users are shown scene models that are simplified based on original Matterport3D
rooms. An object is reorganized using each of the five levels of the systems. Level I places the
object randomly in the room. Level II replaces the object randomly in an open space. Levels III and
IV use SceneGen to predict the most likely placement and orientation, and Level IV further shows a
heat map visualizing the underlying probability score at each sampled position. In Level V, the user
sees the original placement in the ground truth. When providing scores during the experiment, the
user has multiple camera angles available and is able to pan, zoom, and orbit around the room to
evaluate the placement.

orientation, for each level. Levels IV and V have distributions that are most concentrated at no
rotation by the user. In Levels I and II, the users rotate objects more than half of the time, with an
average rotation greater than π

6 radians. A vast majority of objects placed by Levels III, IV, and V
systems are not rotated by the user, lending support to the validity of our prediction system.

4.8 Augmented Reality Application
To demonstrate a way to integrate our prediction system in action, we have implemented an

AR application that augments a scene using SceneGen. Users can overlay bounding boxes over
the existing furniture to see the object bounds used in our predictions. On inserting a new object
into the scene, the user can visualize a portability map to observe potential positions. Our AR
application consists of five main modules: (i) local semantic segmentation of the room; (ii) local
Scene Graph generation, (iii) heat map generation, which is developed on an external server, (iv)
local data parsing and visualization, and finally (v) the user interface. A brief demonstration of the
AR application’s interface and workflow is shown in Figure 4.16.

Semantic segmentation of the room can be done either manually or automatically, using inte-
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Figure 4.13: Users rank the plausibility of object placement averaged on the Likert Scale from 1 to
5. (1= Implausible/ Random, 3= Somewhat Plausible, 5 = Very Plausible). Scores are displayed in a
box plot separated by the user study level.

grated tools available on AR devices. However, as not all current AR devices are equipped with
depth-sensing capturing hardware, we use techniques previously introduced by [183], allowing the
user themselves to manually generate and annotate semantic bounding boxes of objects of the target
scene. The data acquired are then converted to our proposed spatial Scene Graph, resulting in an
abstract representation of the scene. Both semantic segmentation and graph generation modules are
performed locally on the AR devices, ensuring the privacy of the raw spatial data of the user.

Once the Scene Graph is generated, it is sent to a remote server where the SceneGen engine
can calculate positional and orientation augmentation probability maps for all object categories
for the target scene. Such an approach would allow faster computation time since current AR
devices come with limited computational and memory resources. The results are sent back to the
local device, which can be parsed and visualized using the AR GUI. For simplicity, we limit the
positional sampling to only on the floor. However, based on the object category, if an object is
already present in that location, the probability map will render on top of the object to maintain a
clearer visualization of the probability map.

The instantiation system can toggle between two modes: Manual and SceneGen. In Manual
mode, the object is placed in front of the user at the intersection of the camera’s front-facing vector
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Figure 4.14: Cumulative density plot indicates the distance an object is moved from its predicted
placement in each level by users.

direction with the floor. This would normally result in augmenting the object in the middle of the
screen. While such a conventional approach allows the user to control the initial placement by
determining the pose of the AR camera, in many cases, additional movements are necessary to
place the object in a plausible final location. In such cases, the user can then further move and rotate
the objects to their desired location. In SceneGen mode, the virtual object is augmented using the
prediction of our system, resulting in faster and contextual placements.

4.9 Discussion

Features and Predictions
The scene Graph we introduce in this Chapter is designed to capture spatial relationships between

objects, object categories, and the room. Overall, we have found that each of the relationships we
have presented improves the SceneGen algorithm’s ability to augment virtual objects in realistic
placements in a scene. These relationships are important to understanding the functional purposes of
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Figure 4.15: Radial histograms display distribution of how much a user rotates an object from its
orientation in each level of the user study.
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Figure 4.16: Augmented Reality application demonstrates how SceneGen can be used to add virtual
objects to a scene. Top Left: the target scene, Top Right: adding a TV, Middle Left: adding a table,
Middle Right: adding a sofa. A probability map displays how likely each position is. Bottom: the
AR application with virtual objects is compared to the original scene.
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the space in addition to the individual objects. Our approach can also be extended to predicting the
best category of a new object type to augment by running an exhaustive search on all the categories
for a given input room coordinate.

In SceneGen, RoomPosition is used as a feature in predicting both orientation and position of
an object. While this feature is based solely on the position of the object, it also has a strong impact
on how it should be oriented. For example, a chair in the corner of the room is very likely to face
toward the center of the room, while a chair in the middle of the room is more likely to face toward
a table or a sofa. When analyzing our placement predictions probability maps and our user study
results, we have observed that the best orientation is not only affected by the nearby objects but also
by the sampled position within the room.

Explicit Knowledge Model
In our evaluation of SceneGen, we have found a number of benefits in using an explicit model to

predict object placements. One benefit is that if we want to define a non-standard object to be placed
in relation with standard objects by specifying your own relationship distributions, it is feasible with
our system but would not be possible for implicit models. For example, in a collaborative virtual
environment, where special markers are desired to be placed near each user, one could directly
specify distributions for relationships such as NextTo chair and Facing table without retraining an
implicit model such as neural networks.

Another benefit is that explicit models can be easily examined directly to understand why
objects are being placed where they are. For example, the Bed orientation feature distribution, based
on the Matterport3D priors in Figure 4.5, marginalized with respect to all other variables except
TowardsCenter, shows that beds are nearly 5 times as likely to face the center of the room while
marginalizing features except the position of the Storage show that storage is found in the corner of
a room 63% of the time, along an edge 33% of the time, and only in the middle of the room in 4%
of occurrences.

Subjectivity of Placements
Where and how an object is placed in a scene is often very subjective, and preferences can differ

between users. This is demonstrated by the Likert scale plausibility ratings in Level V reference
scenes in the user studies. Figures 4.13 and 4.18 show that some users would only give scores of
somewhat plausible to scenes that are modelled from real-world ground truth Matterport3D rooms.
This supports providing a heat map of probabilities for each sampled placement, as alternate high
probability positions may be preferable to different users. Our results also indicate that most users
prefer level IV scenes, with the heat map, compared to level III scenes, even though the placements
use the same SceneGen models. This suggests that the inclusion of the heat map guides the users
towards the system’s placement and may help in convincing them of the viability and reasoning for
such a choice.

We also see that some users move objects to other high probability alternatives, as seen in Figure
4.17. This is a similar result to the position prediction experiment, which compares the ground truth
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position to the closest of SceneGen’s top 5 predictions and shows that while the reference position
may not always be the top prediction, it was often one of the top predictions. Moreover, results in
Figure 4.18 show the subjectivity of an object placement is highly dependent on the size and type of
the object itself. In any room, there are very few natural places to put a bed. Hence the results for
placing beds cluster in one or two high probability locations. Other objects such as decor are more
likely to be subject to user preferences.

4.10 Conclusion
In this Chapter, we introduce a framework to augment scenes with one or more virtual objects

using an explicit generative model trained on spatial relationship priors. Scene Graphs from a
dataset of scenes are aggregated into a Knowledge Model and used to train a probabilistic model.
This explicit model allows for direct analysis of the learned priors and allows for users to input
custom relationships to place non-standard objects alongside traditional objects. SceneGen places
the object in the highest probability pose and also offers alternate highly likely placements.

We implement SceneGen using the Matterport3D, a dataset composed of 3D scans of lived-in
rooms, in order to understand object relationships in a real-world setting. The features that SceneGen
extracts to build our Scene Graph are assessed through an ablation study, identifying how each
feature contributes to our model’s ability to predict realistic object placements. User Studies also
demonstrate that SceneGen is able to augment scenes in a much more plausible way than a system
that places objects randomly or in open spaces. We also found that different users have their own
preferences for where an object should be placed. Suggesting multiple high probability possibilities
through a heat map allows users an intuitive visualization of the augmentation process.

There are, of course, limitations to our work. While SceneGen is able to iteratively add objects to
a scene, the resulting layout is dependent on the order in which objects are placed. Such an approach
does not consider all possible permutations of the possible arrangements. In addition, it can narrow
down the possible open spaces for later objects, forcing placements that are far from optimal.
Moreover, in scenarios where a large number of objects are to be augmented, the current approach
may not have the ability to fit all the objects within the usable space, as initial placements are not
aware of upcoming objects. Future work can comprise incorporating floorplanning methodologies
with the current sampling mechanism allowing a robust search in the solution space while addressing
combinatorial arrangement.

Moreover, SceneGen is a framework that naturally fits into SC applications. We demonstrate
this in a AR application that augments a scene with a virtual object using SceneGen. Contextual
scene augmentation can be useful in augmenting collaborative mixed reality environments or in
other design applications, and using this framework allows for fast and realistic scene and content
generation. We plan on improving our framework by providing the option to contextually augment
non-standard objects by parameterizing topological relationships, a feature that would facilitate
content creation for future SC workflows.
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Figure 4.17: Top 5 highest probability positions for placing sofa (a,b), table (c) and TV (d) predicted
by SceneGen (green) are compared to the user placements (red) showing that different users’s
preferences do vary and SceneGen find the clusters as the users’ best consensus.
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Figure 4.18: The plausibility score for each object category on the Likert Scale given by users is
compared between the average scores from SceneGen Levels III and IV (left) and the ground truth
Level V (right).
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Chapter 5

Generation and Manipulation of Spaces

5.1 Introduction
In the previous chapter, we discussed how example-based scene augmentation could be utilized

for allowing large-scale deployment of curated SC experiences. In this chapter, we aim to explore
how scene manipulation can be utilized to augment datasets used as scene priors for scene synthesis
and augmentation. In addition to synthesizing new environments, the utilization of deep learning
techniques via training on large datasets has been widely explored in cross-disciplinary fields of
architecture, computer graphics, and computer vision. For tasks such as semantic segmentation
[3, 141], object recognition [166], and 3D reconstruction [69, 204], integrating 3D deep learning
methodologies have brought a promising direction in the state-of-the-art research. However, the
success of many learning-based models is highly dependent on the availability of the appropriate
datasets. In contrast to 2D image recognition tasks, where training labeled datasets are available
in large quantities, 3D indoor datasets are limited to only a small number of open-source datasets.
Capturing 3D geometry is seen to be much more expensive than capturing 2D data in terms of both
hardware and human resources.

3D data for training resources for computer vision tasks can be found in two general categories
(a) real-world captured data and (b) synthetic data. The first approach involves scanning RGB-D
data using high-end capturing systems or commodity-based sensors. To this extent, a number of
open-source datasets are available with various scales and capture qualities. The ETH3D dataset
contains a limited number of indoor scans [187], and its purpose is for multi-view stereo rather than
3D point-cloud processing. The ScanNet dataset [48] and the SUN RGB-D [203] dataset capture a
variety of indoor scenes with added semantic layers. However, most of their scans contain only one
or two rooms, which is not suitable for larger-scale layout reconstruction problem. Matterport3D
[30] provides high-quality panorama RGB-D image sets for 90 luxurious houses captured by the
Matterport camera. The 2D-3D-S dataset [4] provides large-scale indoor scans of office spaces by
using the same Matterport camera.

The second approach is to utilize synthetic 3D data of building layouts and indoor scenes, which
has also been recently produced in mass numbers to fill the void of rich semantic 3D data. SUNCG
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(a)

(c)

(b)

Figure 5.1: GenScan takes an existing captured 3D scan (a) as an input and outputs alternative
parametric variations of the building layout (b) including walls, doors, and furniture with (c) new
generated textures.

Figure 5.2: Applying individual transformations to wall segments results in the inconsistency of
the output layout (b). Using the Parametrizer module we avoid unwanted voids and opening in the
building’s walls
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Figure 5.3: Results of the parametric modification (right) of an input scan (left)

[204] offers a variety of indoor scenes with CAD-quality geometry and annotations. However, the
level of detail and complexity of the different building elements in such crowd-sourced synthetic
approaches is extremely limited when compared to 3D scanned alternatives. Synthetic datasets lack
the natural transformation and topological properties of objects in real-world settings.

Furthermore, there is a broad body of literature focused on synthesizing indoor scenes by
learning from prior data [251]. While such approaches are mainly focused on predicting furniture
placements and arrangement in an empty [111, 59] or partially populated scene [90], they are also
dependent on the quality and diversity of the input data in their training stage. Procedural models
have also been widely used in generating full buildings [148, 181], furniture layout [143, 63] and
manipulating indoor scenes [245, 94]. Yet again, the outputs of such methods lack the complexity
of real-world captured data, falling short of being effectively utilized in common computer vision
tasks.

Therefore, augmenting large-scale datasets of 3D geometry which correspond to the complexity
of the built environments is still an open challenge. Motivated by this challenge, we introduce
GenScan, a generative system that populates synthetic 3D scan datasets. GenScan generates new
semantic scanning datasets by transforming and re-texturing the existing 3D scanning data in
a parametric fashion. The system takes an existing captured 3D scan as an input and outputs
alternative variations of the building and furniture layout with manipulated texture maps. The
process is fully automated and can also be manually controlled with a user in the loop. Such an
approach results in the production of multiple data points from a single scan for 3D deep learning
applications.

5.2 Methodology
The general workflow of the system consists of four main components. First, we predict the

floorplan of the input 3D scan using a hybrid deep neural network (DNN). We classify what type of
building the input model is and estimate what common finishing wall-to-wall distance the input
model holds. Second, to avoid inconsistencies in the manipulated walls, we parameterize all
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Figure 5.4: Wall extraction module. We use the estimated floorplan layout and door sizes to
construct threshold bounding boxes centered on each parametric line. With this method we classify
wall elements (colored) and non-wall elements (white) in the scene.

generated vectors to prepare for element transformation. Third, we classify wall elements of the 3D
scan using the predicted floorplan and automated thresholds and apply parametric transformations
to all wall and non-wall elements separately. Finally, we apply a style transfer algorithm using a
combination of a pre-trained VGG network and gradient descent module to current texture maps to
generate new textures for the generated scenes.

Parameterization
As shown in Figure 5.2.b, moving an individual wall or a group wall with a certain transfor-

mation matrix produces inconsistency in the generated output layout, with unwanted gaps and
voids emerging between corner points of the floorplan. We instead assign transformations to the
corresponding nodes of the corner coordinates of the target wall elements. We utilize a modified
implementation of [95, 14] to parametrize the extracted floorplan. This would manipulate all
lines connected to the transformed node. However, to avoid distortion of the orthogonal nature of
the building floorplans, we merge co-linear paths that connect to each other with a mutual node
and share the same direction vector. Next, we identify the array of nodes that are located on the
co-linear lines. After applying transformations to the connected line node array, we construct new
polylines from each node array. This would result in a fully automated parametric model that takes
transformation vectors and connected line indices as an input and outputs a new floorplan layout
without producing undesired gaps and floorplan voids.

Wall Extraction
To classify the walls and movable edges of the input 3D scan, we use the original parametric

model to extrude threshold bounding boxes centered on each of the co-linear parametric lines
generated in the previous step. We then construct a bounding box for each available mesh in the
3D scan input and test if they inscribe within any of the connected line bounding boxes. With this
method, we estimate whether a mesh is part of the building wall system or not, and if so, we can find
out which connected wall it is subscribed to. To define the width and threshold of the connected line
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Figure 5.5: Transformation on wall elements only (top). Transformations on wall elements and
closest furniture correspondingly

bounding box, we take advantage of the extracted door sizes provided by the hybrid DNN module
introduced in [121]. Based on the door sizes, we can heuristically classify the building type of the
input model and estimate what common finishing wall-to-wall distance the input model holds. This
distance can later be verified by measuring whether a significant peak in the average height takes
place within the calculated range. However, both heuristics are not always precise, as elements such
as tall bookshelves and cabinets may interfere with the thickness estimation of the walls.

Model Transformation
Given a connected line index and an offset value, all nodes corresponding to the target line

would be transformed in the direction perpendicular to the connected line. In many cases, this
would not only affect the target line itself but also change the size of neighboring connected lines
(Figure 5.2.c). After all the transformations are applied to the nodes of the graph, we calculate
the difference between the transformation matrix of the initial geometry and the final geometry.
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Figure 5.6: Iterations of the style transfer gradient descent algorithm.

This includes a two-dimensional translation vector defining the variance in the position and also a
scale factor computed from the center of each line. Next, we apply the transformation vector of
each connected line to all input meshes included in the corresponding bounding box. This would
result in the parametric movement of the estimated walls while maintaining the overall node graph
constructed between all wall elements. By applying the scale transformation specifically to the x
and y directions, we stretch and shrink the walls to avoid unwanted architectural inconsistencies
and prevent the transformed output from containing irrelevant voids and structural gaps.

However, as shown in Figure 5.4, in many cases, the modification made to the walls can overlap
with non-wall elements or the building furniture. This can result in conflicting mesh artifacts in
certain clusters. To address this problem, we calculate the center coordinates of each bounding
box assigned to non-wall meshes and perform the closest point search with the parametric line
system to find the closest wall. We then transform each mesh with the two-dimensional position
translation vector of the corresponding closest wall, with a non-linear factor of its distance to the wall.
Therefore, a non-wall mesh element closer to the wall would have a much similar transformation
function to the wall itself than a non-wall mesh element located in the middle of the room. This
would allow furniture to move close and far in relation to each other instead of moving in a similar
direction altogether.

Model Generation
The parametric model can be modified to alternate layouts using two main approaches. First,

by manually inputting the system a list of parametric line indices and a corresponding offset
value, which requires a user in the loop. The second approach is by providing a random range of
offset values to be assigned to random parametric lines of the model. Such a method allows mass
generations of synthetic 3D scans, which can be later filtered and sorted by implementing evaluation
functions. Figure 5.5 illustrates a random floorplan generation of a 3D scan using this method.
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Figure 5.7: Different texture maps modified through style transfer and color modification. Permuta-
tions of matching style transfer with modified tints, hues, and saturation can be applied to generate
diverse texture maps.
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Figure 5.8: Examples of 3D mesh population from an input scan (top left) with modified floor
geometries, texture elements, and colors.
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5.3 Texture Generation
After applying parameterized geometry transformations to the scanned data, we aim to change

the overall visual appearance of the newly generated mesh by editing the associated texture maps.
Within our texture modification pipeline, we follow two steps to modify the texture maps of the
original mesh provided by the input scan data. First, we take all the texture maps associated with one
scan and apply a simple style transfer to each of the textures. Next, we take the generated texture
map and apply corrections to its image characteristics such as hue, saturation, tint, etc. Finally, by
updating the texture coordinates of the vertices in the newly generated geometry, we are able to
match the style-transferred texture maps accordingly.

We implement the style transfer method introduced by [62]. We incorporate a pre-trained VGG
network to output a style-transferred texture map. We calculate the content loss and style loss of
our generated image at each iteration of the algorithm and run a gradient descent module until we
reach an iteration that looks visually convincing. In Figure 5.6, we illustrate how the output image
converges to the style image while the content loss and image loss are being minimized. The higher
the number of iterations, the more distinct the style is on the texture map; therefore, to result in a
more subtle effect, we choose a lower number of iterations for its realism. We apply the transfer
technique to modify the texture maps included with the Matterport scans. Style transfer would allow
diverse modifications of the input textures, an easy and efficient way to blend a generate variations
within a single content texture. The style transfer implemented can be the same for each texture or
unique. For example, each room or part of the mesh can have its own different texture modification.
Our application of style transfer is to change our existing texture maps to look like new textures
using this established technique. By using different style images, we create rooms that look like
they are made from brick, wood, or even wallpaper laid on them. This versatility of style transfer
allows the subset of data regeneration to be limitless and provides a unique enough new mesh that
can be used for our original motivation.

Finally, to allow for more texture variation and realism, we apply a post-processing module of
hue, saturation, and tint adjustment to the texture maps. In Figure 5.7, we illustrate a variety of
textures we can generate with control over these parameters. At the end of our pipeline, we use the
original texture to adjust these parameters of the texture map image. We achieve this by converting
the image into an RGBA array that we can shift and scale dictated by the desired effect. Overall,
through just the texture modification process, we have control and access to infinite choices in style
images and parameterization of image characteristics mentioned above. Figure 5.8 displays just a
few of the possible final floor layouts created with GenScan.

5.4 Discussions and Conclusion
GenScan applies automated parameterization, and texture modification of 3D scanned geomet-

rical data to produce bootstrapped samples of 3D scanned data. Given data for just a single scan,
GenScan actively produces valid synthetic geometric and textured data of multiple potential layouts
resulting in floor plans with modified floor geometries, texture elements, and colors. We believe our
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system would allow for mass parametric augmentation to expand the currently limited 3D geometry
datasets commonly used in 3D computer vision and deep learning tasks. Such an approach results in
the production of multiple data points from a single scan for 3D deep learning methodologies. This
methodology can facilitate applications across multiple disciplines, including design optimization,
computer vision, virtual and augmented reality, and construction applications.

While the current GenScan system has the ability to parameterize walls and major building
elements extracted from the floorplan layout, it does not cover parameterizing smaller room elements
such as chairs, beds, tables, desks, etc. Such objects not only need to be identified using semantic
segmentation methods, but a parametric relationship would also need to be established to allow
relevant layout modifications. Furthermore, generating non-orthogonal layouts and extending
parameterization to distorted and curved layouts can also be considered as the next steps in this
study. Another limitation of our system lies in the inability to modify the textures of specific walls
and non-wall objects of our choosing. Identifying specific areas of the texture maps to regenerate
and filling in gaps produced by expanding the layout would result in a cleaner 3D model. Moreover,
applying unique changes to specific parts of the texture maps instead of the whole map would
allow for even greater customization, variability, and realism of the data. Finally, streamlining
our implementation of the texture modification process in our pipeline will achieve higher texture
resolution quality in an efficient time period.
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Chapter 6

One Shot Learning for Scene Generation

6.1 Introduction
We previously discussed that a major challenge for large-scale deployment of curated SC

experiences is that the target scene is not necessarily known to the content developer. Furthermore,
In Chapter 4, we explored how scene augmentation can be performed by learning from scene graph
priors. However, to formulate a good solution for contextual augmentation, it is tempting to adopt
the recent trend of using deep neural networks (DNN). Nevertheless, it is also well known that any
modern DNN solution would require large amounts of training data to estimate a set of optimal
parameters. This requirement can be met by using either elaborately scanned building datasets [30,
48, 203] or synthetic 3D building datasets [204, 101, 114, 175]. In this work, we further propose a
novel method to perform critical training data augmentation step in DNN training via contextual
synthesis based on real scanned datasets, a good balance between the above two distinct approaches.

Together, our proposed algorithm is called GSACNet, which is an acronym for Graph attention
Siamese AutoenCoder Network. Its main contributions are as follows:

1. GSACNet combines parametric data augmentation techniques with a novel network architec-
ture to achieve plausible indoor scene layouts with small training data.

2. By sampling the user’s target room space, we generate topological scene graphs to represent
the high-level relationship between objects in the room. This serves as an input to the Graph
Attention Network, followed by a Siamese Network.

3. Finally, autoencoder networks cast the plausibility prediction as an anomaly detection problem.
Using such workflow, we can generate probability maps for an object augmentation in a target
scene.

Siamese networks were first introduced in [17] to solve signature verification as an image
matching problem. A Siamese neural network consists of twin networks, each accepting distinct
inputs but joined by an energy function at the top. This function computes some metric between the
highest-level feature representation on each side [100]. Siamese networks have been used in various
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Figure 6.1: To contextually place an object within a scene, GSACNet takes a semantically labeled
indoor scene as input and outputs a plausible placement of the object. The system consists of a
graph attention, Siamese and auto-encoder network that can be trained with limited scene priors.

applications of indoor design and floorplanning due to their ability to learn from limited data. For
example, [67] used Siamese networks for scene change detection.

Furthermore, Autoencoders [16, 74] are a type of neural networks designed to map high-
dimensional input data to a low-dimensional latent representation that captures most of the important
information needed to reconstruct the data back. This is achieved by a sequence of nonlinear
mapping (encoder network) from the input space to a latent space, followed by another sequence of
nonlinear mapping (decoder network) from the latent space back to the input space. The parameters
in these mapping networks are chosen to minimize the difference between the input data and its
reconstructed image. A byproduct of this design is that autoencoders may be used to detect data that
strays from the input distribution during training. The idea is that the low-dimensional latent space
is forced to capture only information about the subset of the input space that data is drawn from and
accurately reproduce data living in this space. All other data points will suffer a significant loss
in fidelity when mapped through the autoencoder. Consequently, autoencoders have been used for
anomaly detection in a variety of applications [259, 256, 180]. Variations of autoencoders and other
similar networks such as Generative Adversarial Networks have been used as tools for generating
plausible indoor scenes by sampling from their associated latent spaces [163, 111]. In this work, we
make use of autoencoders to discriminate between natural-looking and random scene arrangements
and separate a scene proposal and scene generation as two independent tasks.

6.2 Methodology
Figure 6.1 shows the general workflow of our system. Given a semantically segmented target

room, our system aims to contextually place objects within the scene while maintaining a plausible
relationship with the room and its objects. To do so, the room space will be sampled uniformly
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where the sample points are considered the center of possible placement, and the plausibility
probability of each sample is then calculated. The GSACNet architecture involves five modules:
(1) scene graph extraction; (2) initialization; (3) graph attention; (4) projection into learned space;
and (5) plausibility assessment via an autoencoder network. The integral copies of the first four
modules together are called IGATP (Initialization Graph ATtention Projection), and the modules are
then used for Siamese training; the autoencoder is trained separately. In the following subsections,
we first define the topological relationships in which the scene graphs utilize, followed by the
formulations of the various components of our network architecture.

Definitions
We consider a room or a scene in 3D space where its floor is on the flat (x,y)-plane and the

z-axis is orthogonal to the (x,y)-plane. We denote the room space in a floorplan representation as R,
namely, an orthographic projection of its 3D geometry plus a possible adjacency relationship that
objects in R may overlap on the (x,y)-plane but on top of one another along the z-axis. This can
also be viewed as a 2.5-D representation of the space.

Further denote the k-th object (e.g., a bed or a table) in R as Ok. The collection of all n objects
in R is denoted as O = {O1,O2, ...On}. B(Ok) represents the bounding box of the object Ok. Ȯk
represents the center of the object Ok. For convenience, we will also define Ȯkxy as Ȯk but projected
onto either existing furniture below or the floor plane of R. Every object Ok has a furniture group
to classify its type. The set of all furniture groups is called G = {g1, ...,gm}, where each group gi
contains all objects of the same furniture group. Furthermore, Ȯk is the centroid of B(Ok).

For each room R, we define W = {W1,W2, ...,Wl} where each Wk is a wall of the l-sided room.
In the floor plan representation, Wk is represented by a 1D line segment. We also introduce a
distance function δ (a,b) as the shortest distance between a and b objects. For example, δ (B(Ok), Ṙ)
is the shortest distance between the bounding box of Ok and the center of the room R. Intersection
of bounding boxes is regarded as δ (B(Ok),B(O j)) = 0.

Spatial Relationships
Object to Room Relationships

RoomPosition: The room position feature of an object denotes whether an object is at the middle,
edge, or corner of a room. This is based on how many walls are less than a distance ρ away from an
object. For convenience, we define φ as follows:

φ (Ok,Wi) = 1(δ (B(Ok),Wi)< ρ). (6.1)

Using φ , we define RoomPos as follows:

RoomPos(Ok,R) = ∑
Wi∈(W )

φ(Ok,Wi). (6.2)

In other words, if RoomPos(Ok,R)≥ 2, the object is near at least two walls of a room and hence is
near a corner of the room. If RoomPos(Ok,R) = 1, the object is near only one wall of the room and



CHAPTER 6. ONE SHOT LEARNING FOR SCENE GENERATION 82

is at the edge of the room. Otherwise, the object is not near any wall and is in the middle of the
room.

Object to Object Group Relationships

AverageDistance: For each object and each group of objects, we calculate the average distance
between that object and all objects within that group.

AvgDist(Ok,gi) =

∑
O j∈gi

δ (B(Ok),B(O j))

|{gi}|
. (6.3)

SurroundedBy: For each object and each group of objects, we compute how many objects in
the group are within a close proximity of an object. Suppose Ok and O j are within room R. O j is
within the proximity of Ok if δ (B(Ok),B(O j))< εk = ‖[Lk,Wk]‖2, where Lk,Wk refer to the length
and width of B(Ok), respectively. For convenience, we define a function σ as follows:

σ
(
Ok,O j

)
= 1(δ

(
B(Ok),B(O j))< εk

)
. (6.4)

Using σ , we define the surrounded-by function SurrBy as follows:

SurrBy(Ok,gi) = ∑
O j∈gi

σ(Ok,O j). (6.5)

IntersectionXY: For each object and each group of objects, we compute how many objects in
the group are intersecting an object in the (x,y) plane. Suppose Ok and O j are within room R. O j
intersects Ok in the (x,y) plane if δ (Bxy(Ok),Bxy(O j)) = 0. Bxy(Ok) refers to the bounding box of
Ok projected onto the ground floor plane of R. For convenience, we define a function ι as follows:

ι
(
Ok,O j

)
= 1(δ

(
Bxy(Ok),Bxy(O j)) = 0

)
. (6.6)

Using ι , we define the intersection-XY function InterXY as follows:

InterXY(Ok,gi) = ∑
O j∈gi

ι(Ok,O j). (6.7)

Co-Occurence: Given a room R, an object Ok and another object O j,k 6= j are said to co-occur if
they exist within R.

Cooc
(
R,Ok,O j

)
= 1(Ok,O j ∈ R∧ k 6= j). (6.8)
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Figure 6.2: Example of contextual scene augmentation results. Top row illustrates the target scene,
and bottom row illustrates the augmented scene.

Object Support Relationships

Support: An object is considered to be supported by a group if it is on top of an object from the
group or supports a group if it is underneath an object from the group. Due to erroneous bounding
box intersections within our dataset, we relax the definition of support by enforcing a threshold τ

on the separation distance between the bottom bounding box plane of the top object and the top
bounding-box plane of the bottom object. For convenience, we define a function ψ as follows:

ψ
(
Ok,O j

)
=


1 0 < B(Ok)bottom - B(O j)top < τ;
−1 0 < B(O j)bottom - B(Ok)top < τ;
0 otherwise.

(6.9)

Using ψ , we define more specific support relationships. Specifically, the function SuppBy describes
the number of objects that support Ok:

SuppBy(Ok,gi) = ∑
O j∈gi

1
(
ψ(Ok,O j) = 1)

)
. (6.10)

Similarly, the function SuppTo describes the number of objects that Ok is supporting:

SuppTo(Ok,gi) = ∑
O j∈gi

1
(
ψ(Ok,O j) =−1)

)
. (6.11)
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Network Architecture
Scene Graph Extraction

We sample points uniformly in the (x,y)-plane. Regarding each point as the center of possible
placement for a target object Ok on the ground floor plane (the sample point will be temporarily
considered as Ȯk(x,y)), we form a summary vector XOk and scene graphs Gr ∼ (Vr,Er) for each
relationship r ∈ R, where R is the set of all spatial relationships under consideration. As an
important aside, in our scene synthesis system, there is a model per furniture group. For the target
object Ok, we will use the model associated with its furniture group gOk . We denote such model
usage by sub-scripting the main modules by gOk .

We use homogeneous scene graphs to represent spatial relationships. Objects are defined as
nodes, and relationships are defined as edges. The target object node refers to the node in a scene
graph associated with the object we want to place in the scene (the target object Ok). We refer to
this node as vOk . Secondly, given Oa and Ob both in a room R, the edge from node vOa to node vOb

is referred to as e(a,b). In the following paragraphs, we will describe the connection criteria per
scene graph that we use in our system. A scene graph’s connection criteria refers to the rules that
determine whether or not there exists an edge between two nodes. We utilize homogeneous scene
graphs such as in [257], and we utilize spatial relationship criterion from chapter 4 to construct
those scene graphs. However, we introduce the intersection scene graph as a new spatial relationship
consideration.

• Intersecting Objects Scene Graph.

EIX = {e( j,k)|∀O j ∈ R, j 6= k, ι(Ok,O j) = 1} (6.12)

• Surrounded-By Scene Graph.

ESB = {e( j,k)|∀O j ∈ R, j 6= k,σ(Ok,O j) = 1} (6.13)

• Support-By Objects Scene Graph.

ESBY = {e( j,k)|∀O j ∈ R, j 6= k,ψ(Ok,O j) = 1} (6.14)

• Support-To Objects Scene Graph.

ESTO = {e( j,k)|∀O j ∈ R, j 6= k,ψ(Ok,O j) =−1} (6.15)

• Relative Position Scene Graph. Suppose WR refers to the set of walls of room R and FR refers
to the floor of R. Furthermore, Wi ∈WR is defined similarly as O j ∈ R, but Wi is signified to
represent a wall object. The same is true of FR. Lastly, e(w j,k) refers to the edge from vW j and
vOk , and e( f ,k) refers to the edge from vFR to vOk .

ERP,W = {e(w j,k)|∀Wj ∈WR,φ(Ok,Wj) = 1} (6.16)
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ERP,F = {e( f ,k)|ERP,W = /0} (6.17)

ERP = ERP,W ∪ERP,F (6.18)

Another way to describe ERP is if a wall is within the proximity of an object, then an edge
is drawn from the node associated with the wall to the target object. If no walls meet this
criteria, an edge is drawn from the floor node to the target object node.

• Co-occurring Scene Graph.

ECO = {e( j,k)|∀O j ∈ R,Cooc(R,Ok,O j) = 1} (6.19)

• Graph Feature Vectors and Default Nodes. Nodes have a feature vector associated with them.
In particular, the node feature vector is in 11-D space, where the first 10-D represents the
one-hot encoding of the object furniture group (first 8-D for the furniture groups and the last
2-D are for the walls and floors, respectively), and the last dimension represents the distance
ordering from the target node Ok. Distance ordering refers to an object’s rank of how close
they are to the target object. For instance, suppose there is a table, a chair, and a bed in the
room. The table is considered to be the target object, and the chair is closer to the table than
the bed. Then, the table receives a distance order of 0, the chair receives a distance order of 1,
and the bed receives a distance order of 2.

In each scene graph, there also exists a default node such that its feature vector is a zero
vector, except for the component associated with relative ordering. For default nodes, the
relative ordering is set to -1. The edge exists from the default node to the target object, and if
only the default node exists within a scene graph, then no objects meet the connection criteria
for the specific scene graph.

Summary Feature Vector

For a proposed floor plane centering Ȯkxy of object Ok in room R, the summary vector XOk can
be described as follows:

XOk =

[
3C, EB, CB, AD, SB,
IX , SBY, STO

]
∈ R48

3closest (3C): [257] utilizes an ordered aggregation scheme for message passing. Specifically,
messages are passed through a GRU in the order of farthest object-node to closest object-node.
Inspired by this idea, our summary vector takes into account the three closest furniture groups in the
3closest ∈ R3 vector. Closeness is measured by the δ function, and furniture groups are stored such
that the closest group is the first component of 3closest and the farthest group is the third component.

[EB,CB] =


[1,0] RoomPos(Ok,R) = 1;
[0,1] RoomPos(Ok,R)≥ 2;
[0,0] otherwise.

(6.20)
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AD = [AvgDist(Ok,g1), ...,AvgDist(Ok,gm)] (6.21)

SB = [SurrBy(Ok,g1), ...,SurrBy(Ok,gm)] (6.22)

IX = [InterXY(Ok,g1), ..., InterXY(Ok,WR)] (6.23)

SBY = [SuppBy(Ok,g1), ...,SuppBy(Ok,WR)] (6.24)

STO = [SuppTo(Ok,g1), ...,SuppTo(Ok,WR)] (6.25)

Initialization

Features vectors associated with nodes in the scene graphs are passed through a 4-layer initial-
ization neural network INITgOk

, which transforms the dimensionality of the feature vector from 48
dimensions to 100. The resulting node set then becomes V̂r to represent nodes associated with the
transformed feature vectors V̂r,feats, and the resulting graph becomes Ĝr ∼ (V̂r,Er).

∀r ∈R,V̂r,feats = INITgOk
(Vr,feats) (6.26)

Graph Attention

Each scene graph Gr for a spatial relationship r is fed into its respective attention graph layer
GATgOk ,r

. Multi-head attention is suggested to stabilize the learning process, and applying dropout
to the attentional coefficients is found to be a highly beneficial regularizer [223]. Therefore, for
each GATgOk ,r

, we use 10 heads, each with output dimension of 10, and a dropout of 0.8 for each
GATgOk ,r

. Concatenating the outputs of each head results in the final output vector of dimension
100, and there is a 100-dimensional output vector given to each node in a scene graph. In the
message-passing context, we consider this vector as the finalized message passed to a node.

∀r ∈ R,Zr = GATgOk ,r
(V̂r,Er) (6.27)

Projection

After each scene graph is passed through the scene graph attention module, we extract messages
passed to the node associated with the furniture Ok. We concatenate messages Zr per scene graphs
(n total) with the summary vector XOk . We pass the concatenated vector into a 4-layer network
PROJgOk

, which acts as a method to project the concatenated vector into a space such that data points
representing plausible placements are clustered together while data points representing unplausible
placements are separated from the cluster. Our resulting projected matrix is labelled as Ŷ .

Ŷ = PROJgOk
([Zr1, ...,Zrn,XOk ]) (6.28)
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Table 6.1: Data augmentation method with the smallest average distance error between ground truth
and top-1 (T1) and top-5 (T5) predicted positions for scene augmentation task.

Furniture T1 T5 Furniture T1 T5

Bed M3DPIA M3DPIA Chair M3DP M3DP
Decor M3DPIA M3DPIA Picture M3D M3DR4PIA
Sofa M3DPIA M3DPIA Storage M3DR4PIA M3DR4PIA
Table M3D M3DPIA TV M3DP M3DR4PIA

Plausibility Assessment

Finally, we output a probability of plausible placement P using the reconstruction error produced
by an autoencoder AEgOk

. Specifically, the 4-layer encoder of AEgOk
is given Ŷ , which converts

the input to a coded vector. Then, with the decoder, AEgOk
will attempt to reconstruct Ŷ based off

the coded vector. Autoencoders are shown to carry a built-in anomaly detector because decoders
will be able to better reconstruct an input to the encoder if the input has been seen before [259]. By
training on Ŷ ’s corresponding to real placements of furniture group lF , we allow AEgOk

to learn
real placements as non-anomalies. With this anomaly detection ability of AEgOk

in mind, suppose
we call the output of the decoder as Ŷ ′. We measure the reconstruction error via the mean squared
error MSE between Ŷ and Ŷ ′, and we use the reconstruction error as the negative log probability of
plausibility. Finally, to convert to a valid probability, we use the mean squared error as the power to
an exponential function.

P = e−MSE(Ŷ ,Ŷ ′) (6.29)

Training
For our system, we have a model Mgi for each furniture group gi ∈ G, and each model follows

the network architecture described in Section 6.2. By using a model per gi, each model is trained to
specialize in the plausible placement of gi.

We train each model Mgi using two separate training processes. In the first process, we train
together IGATP and siamese network projection modules. In the second process, we use the
outputs of the first training process as input and train the autoencoder module alone. The following
paragraphs detail both training processes.

Siamese Learning

In this training process, we consider the initialization, scene graph extraction, and project
modules as one large siamese network IGATP. In our case, labels are binary, where 1 means a
plausible placement for gi and 0 means otherwise.
∀i ∈ {1,2}, unprocessed input Di contains a room Ri, a furniture to be placed Oi of furniture

group gOi , and placement center Ȯixy, and Li ∈ {0,1} describes whether or not Oi centered at Ȯixy
in Ri is plausible. We train this siamese network by giving pairs of unprocessed input. Suppose we
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Table 6.2: Average distance error in meters between ground truth and top-1 (T1) and top-5 (T5)
predicted positions for scene augmentation task via different models.

System Bed Chair Decor Picture Sofa Storage Table TV Overall

T1 T5 T1 T5 T1 T5 T1 T5 T1 T5 T1 T5 T1 T5 T1 T5 T1 T5

Siamese 1.77 1.77 3.03 2.90 2.92 2.86 3.44 3.24 3.49 3.43 2.89 2.86 2.47 2.47 3.23 3.07 2.90 2.82
GAT+ResNet 3.64 3.64 4.89 4.89 3.75 3.75 3.53 3.53 4.43 4.43 2.48 2.48 3.86 3.86 3.53 3.53 3.72 3.72
GAT+Siamese 2.99 2.5 2.87 2.31 2.85 2.45 3.17 2.08 3.05 2.55 3.12 2.63 2.91 2.35 2.62 2.37 2.98 2.35
Siamese+KDE 2.90 2.90 3.13 3.13 3.65 3.56 3.38 3.23 4.13 4.21 2.27 2.52 3.70 3.42 3.28 3.03 3.37 3.03

GAT+Siamese+KDE 1.75 1.14 3.25 2.31 3.14 1.75 2.99 2.24 2.18 1.07 2.77 1.85 2.95 2.12 2.70 1.99 2.80 1.88
GSACNet (Ours) 1.47 1.29 2.45 1.72 3.10 2.06 3.34 1.83 2.25 1.03 2.48 1.50 2.35 1.51 2.56 1.06 2.66 1.63

SceneGraphNet [257] 2.77 2.42 3.56 3.11 3.51 3.02 3.64 3.21 4.59 3.83 2.88 2.51 4.04 3.58 4.46 3.98 3.61 3.15

consider the first unprocessed data point as D1 and the second as D2, along with their labels L1 and
L2. Scene graphs and summary vectors are extracted from Ri from the perspective of Oi, and as
described in Section 6.2, IGATP takes these scene representations as input and outputs a vector Ŷi.
Therefore, the output associated with D1 and D2 would be Ŷ1 and Ŷ2, respectively.

Now that we have Ŷ1 and Ŷ2, we calculate the max margin contrastive loss L between these two
outputs.

L (Ŷ1,Ŷ2) =

{
‖Ŷ1− Ŷ2‖2

2 L1 = L2

max(0,m−‖Ŷ1− ŶF2‖2
2) L1 6= L2

m > 0 is the margin parameter for the contrastive loss function, and it acts as a lower bound on
the distance between a pair of data points with different labels (i.e. L1 6= L2).After calculating the
contrastive loss, we backpropagate the loss to update weights across the siamese network.

Autoencoder Training

In this training pipeline, we use Ŷi from the trained siamese network as input to train the
autoencoder AEgOi

. All Ŷi correspond to Li = 1 because we want the autoencoder to familiarize
itself with plausible placements of furniture group gOi . As a result, the reconstruction error of
plausible (Li = 1) Ŷi will be low, while the reconstruction error of implausible (Li = 0) Ŷi will be
high. From the perspective of anomaly detection, input vectors associated with implausible layouts
will be regarded as anomalies.

As described in Section 6.2, the encoder of AEgOi
takes in Ŷi as input and transforms the input

vector into another vector of smaller dimensionality to create a bottleneck effect. On the other end,
the decoder is forced to use the smaller vector to reconstruct the input. We use the mean squared
error MSE between the input and the output as the reconstruction error RE.

RE = MSE(Ŷi,Ŷ ′i )

Finally, we backpropagate RE to all the layers of AEgOi
.
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Figure 6.3: Example of parametric data augmentation.

Data Preparation
Dataset

We use Matterport3D (M3D) [30] which consists of various building types with diverse archi-
tectural styles, including numerous spatial functionalities and furniture layouts. Annotations of
building elements and furniture are provided with surface reconstruction as well as 2D and 3D
semantic segmentation. For this study, we reduce the categories of object types considered for
building our model and placing new objects. We group the objects into eight coarse categories:
G = {Bed, Chair, Decor, Picture, Sofa, Storage, Table, TV}. For room types, we consider the set
{Library, Living Room, Meeting Room, TV Room, Bedroom, Recreation Room, Office, Dining
Room, Family Room, Kitchen, Lounge} to avoid overly specialized rooms such as balconies,
garages, and stairs. We also filter rooms that hold more than 95% unoccupied areas to avoid unusual
empty rooms that come without any spatial arrangements.
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Parametric Data Augmentation

We use a modified version of the scene augmentation method introduced in Chapter 5. In
this method, after extracting parametric floorplans of the rooms, the model constantly permutates
boundary geometry and their adjacent furniture while maintaining a set of functional constraints
within the room. This is performed by calculating the center coordinates of each bounding box
assigned to objects and performing a closest point search with a parametric wall system to find the
closest wall. We then transform each object with the two-dimensional position translation vector of
the corresponding closest wall, with a nonlinear factor of its distance to the wall so that an object
closer to the wall would have a much similar transformation function to the wall itself than an object
located in the middle of the room. This would allow furniture to move close and far in relation
to each other instead of moving in a similar direction altogether. During the transformation, the
proportional distance of the object with the adjacent walls to the corresponding wall is maintained.

Furthermore, we run two sets of area checks: (a) to check whether the area of the open space of
the room is not larger than a certain percentage of the overall area of the room. This would disqualify
the augmentations, which result in overly large rooms with extensive open space. Next, (b) we
check whether the intersection of two non-colliding objects is not larger than a percentage of the
smaller object. Finally, we run another round of data augmentation by removing n smallest objects
for the generated scenes. Figure 6.3 illustrates an example of the parametric data augmentation for
two example furniture arrangements.

6.3 Experiments
To evaluate our prediction system, we run ablation studies, examining how the presence or

absence of particular features affects our prediction results. We use a subset of our dataset, which
include 200 room with a 4-fold cross-validation method and an 80/ 20 split between the training
and validation set. In these studies, we remove each object in the validation set, one at a time, and
use our model to predict where the removed object should be positioned. We compute the distance
between the original object location and our system’s top prediction. We also compute the smallest
distance to the top 5 predictions to address the multi-model property of objects which can be placed
in several valid locations.

Data Augmentation
In the data augmentation experiments, we prepare four datasets. The original Matterport3D

dataset (M3D), the M3D dataset with Parametric Data Augmentation (M3DP), the M3DP dataset
with the area and intersection checks (M3DPIA), and the M3DPIA dataset + 4 smallest items
iteratively removed from a room to create four new rooms (M3DR4PIA). By conducting the object
removal experiment, we aim to find which of the mentioned datasets achieve lower distance errors
for each object category via the GSACNet model. As shown in Table 6.1, we find that the data
augmentation proposed in this study effectively improves the scene augmentation workflow.
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Comparative Studies
We compare the performance of our system with alternative learning models and also Scene-

GraphNet [257]. The results can be seen in Table 6.2 in which GSACNet outperforms alternative
learning models, and [257] in nearly all categories. Details of the implementation of various models
can be found in the supplementary material.

6.4 Conclusion
The network that we presented in this paper takes a novel approach to contextual scene augmen-

tation through a Graph Attention and Siamese network architecture, followed by an autoencoder
network and its implementation of parametric data augmentation of a 3D space with objects. We
find that utilizing such a model improves the ability to augment virtual objects in plausible place-
ments in a scene despite a small set of training data. By training on a parametrically augmented
version of the Matterport3D dataset, we show our network architecture outperforms state-of-the-art
scene synthesis networks such as [257]. Our work comes with a number of limitations. First, our
current system does not conduct pose estimation for augmented objects. Moreover, in multi-object
placement scenarios, the resulting predictions are highly dependent on the order in which objects
are to be placed. Such an approach does not consider all possible combinations of the possible ar-
rangements. Future work can comprise incorporating floorplanning methodologies with the current
sampling mechanism allowing a robust search in the solution space while addressing combinatorial
arrangement.
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Chapter 7

Mutual Scene Synthesis

As previously explored in Chapter 3, due to the TSMP, a major challenge in developing
telepresence systems is how to align and map virtual avatars within a target space, while addressing
the spatial constraints of each user within their own local environments. Prototypes of high-fidelity
telepresence systems [125, 131, 173] could avoid this challenge by placing remote users in an empty
virtual space exclusively defined for the task. Considering natural locomotion as a key aspect of
maintaining high-fidelity experiences, users can therefore only perform interaction and navigation
tasks within their own boundaries. However, the method lacks rendering a mutual environment and
does not hold spatial correspondence with its local surroundings for each participating user, limiting
free body movement the use of mixed reality features such as pass-through objects and preventing
the ability to interact with existing physical entities within the telepresence experience.

Since shared mutual environments can potentially play an important role in increasing pro-
ductivity and social engagement. There has been a large body of literature focusing on capturing
surrounding environments that can be utilized in spatial computing applications [145, 216, 209,
139]. Such captures can be used as a spatial background for telepresence avatars while matching
their environmental lighting for additional photo-realism. However, attempting to capture detailed
information from personal spaces can potentially cause privacy concerns and may unwillingly ex-
pose socioeconomic information of individuals during a telepresence call. Capturing public spaces
(such as office spaces, conference rooms, or cafes) can also be integrated within the telepresence
environment. Yet, this approach also lacks spatial customization and interaction with the physical
environment itself, isolating the experience to predefined spaces or calibrated functions.

Studies have shown that users of immersive experiences report a higher sense of presence when a
match between proprioception and sensory data is achieved [202]. It is due to this match that natural
locomotion has been shown to be superior to other navigation methods such as teleportation, flying
or utilizing game controllers [219]. In addition, from a safety perspective, as users of immersive
environments are visually detached from their surrounding physical spaces, various techniques are
utilized to inform the user of their physical surrounding, or deter them to prevent physical collisions.
Alternative approaches aim to to generate a virtual experience that map to physical elements of the
user’s surrounding. For instance, a wall in the physical space would render as a barrier in the virtual
environment, or a chair in the virtual environment would be sittable in the physical world. With
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Figure 7.1: Mutual Scene Synthesis from three input rooms in a telepresence scenario. The system
calculates optimal alignments to maximize mutual functional spaces, and furthermore generates a
synthetic scene which incorporates the mutual functions with contextual placement of augmented
objects.

all its potentials, such techniques do not extend to multi-user scenarios and cannot generate virtual
environment that are adaptable to all participant’s physical spaces.

Motivated by challenges mentioned above, we propose a contextual Mutual Scene Synthe-
sis (MSS) system for spatial computing telepresence scenarios. Given a set of captured rooms, our
proposed system generates a synthetic virtual scene that holds maximum functionality between the
captured rooms and corresponds to their individual layouts. Users can safely navigate within the
synthetic scene with natural locomotion and interact with mutual furniture that will have a physical
correspondence in their surrounding local environment. Our work builds on an emerging body of
literature on scene synthesis, while taking advantage of the works done in mutual spatial alignment
for telepresence scenarios. As illustrated in Figure 7.2, when compared to alternative environment
generation for telepresence scenarios, our mutual scene synthesis system enables a shared envi-
ronment while maintaining privacy and spatial correspondence for each of the participants. We
believe that utilizing this method can potentially facilitate spatial adaptations of next-generation
computer-mediated communication platforms in spatial computing.

7.1 Introduction

7.2 System Overview
Figure 7.3 shows the workflow of our proposed system. The system takes the collection of

rooms of the remote participants as input and generates a synthetic virtual scene with maximum
mutual functions corresponding to the input rooms. Our proposed system consists of three main
components: (i) Semantic Extraction: where a simplified semantic scene graph representation of
the room is extracted; (ii) Mutual Scene Optimization: where the maximum mutual functions are
calculated between the input rooms; and (iii) Mutual Scene Augmentation: where conditional scene
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Figure 7.2: Comparison between various telepresence scenarios. Our proposed mutual scene
synthesis system can allow remote users to share a mutual environment while maintaining privacy
and spatial adaption of their local physical environment.

Figure 7.3: General workflow of the MSS system.
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Figure 7.4: A step by step example of each of the modules in our MSS framework. General
components include: (b) input rooms (b-c) semantic extraction (d-h) mutual scene optimization (i-l)
mutual scene augmentation (m) synthetic mutual scene output.
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augmentation is conducted using deep neural network models trained via scene priors. Figure 7.4
illustrates various steps of the mutual scene synthesis system using an example set of rooms. We
discuss the details of each component in the following sections.

7.3 Scene Representation

Rooms and Objects
In this chapter, we define the room space R as an orthographic projection of its 3D geometry on

the (x,y)-plane. We denote the k-th object (e.g., a chair or a bed) in R as Ok. The collection of n
objects in R is denoted as O = {O1,O2, ...On}. B(Ok) represents the bounding box of the object
Ok. Every object Ok has a label to classify its type. As our work requires multiple user spaces, we
define for each user i their own room space expressed as Ri and the k-th object in Ri is denoted as
Oi,k. Hence, the collection of all ni objects in Ri is denoted as Oi = {Oi,1,Oi,2, ...Oi,ni}. Finally, we
define the area function as K(O).

We also differentiate between physical rooms and the virtual room in our notation. A virtual
room is considered a room fully or partially rendered in mixed reality. We denote the virtual room as
R′ and the virtual objects as O′. In addition, we introduce a distance function δ (a,b) as the shortest
distance between a and b objects. For example, δ (B(Ok), Ṙ) is the shortest distance between the
bounding box of Ok and the center of the room R.

Semantic Scene Extraction
We consider the input to our system to also include semantically labeled bounding boxes.

Semantic bounding boxes can either be defined manually by the user in MR [183], or be an output
of automated semantic segmentation systems such as [165, 121, 3]. Therefore, every object Ok has a
label to classify its functional type (see Figure 7.4. b). Furthermore, we define functional categories
to describe objects and spaces with similar functional types. In our current implementation, each
Ri can hold various functional categories of walkable (Wi), sittable (Si) and workable (Ti) spaces.
Walkable spaces consist of the area of the room in which no object located within a human user’s
height range is present. In walkable spaces, user movement can be performed freely without any
risk of colliding with an object in the room. We calculate the available (Wi) for room Ri simply as
follows:

Wi = Ri−
ni⋃

k=1

Oi,k. (7.1)

Sittable and workable spaces correspond directly to a group of objects within a room. For exam-
ple, chairs, sofas, beds, stools, etc. are all considered to have a sittable functionality. Objects such
as desks, tables, etc. are considered workable functions. For Ri we have Si = {Os

i,1,Os
i,2, ...Os

i,ni},
where Os

i,k is considered an object in Ri which holds a sittable function. A similar notation is
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true for workable function groups defined as Ti. Figure 7.4. c) illustrates how functional semantic
segmentation takes place in the input rooms.

Semantic Scene Graphs
To capture contextual topologies between objects of a scene, we represent rooms via semantic

scene graphs. We utilize homogeneous scene graphs via the spatial relationship introduced in
Chapter 4 to construct those scene graphs. Nodes in the scene graph represent objects, object
groups, and the room; and edges represent the spatial relationships between the nodes allowing to
describe the pair-wise topologies of objects and their relationship with the room. In the proposed
scene graph representation, an explicit extraction of (a) positional and (b) orientational relationships
take place by modeling descriptive topologies that are commonly utilized by architects and interior
designers to generate spatial functionalities in a given space. Figure 7.5 illustrates an example of
semantic scene graph collections for two input scenes. Note that each edge color corresponding to a
spatial relationship represents a separate scene graph. Such a representation allows contextual scene
augmentation to be utilized for an incomplete scene by training with previous scene graph priors.
Further details of the scene augmentation process is discussed in Section 7.5.

7.4 Mutual Space Optimization
The goal of this module is to calculate optimal functional mutual spaces between participants by

aligning the participants local spaces within the virtual environment. The mutual functional spaces
generated in the virtual environment correspond to real-world functions in remote participants
within their local environments. Such spaces are calculated by finding the optimal transformation
function for each space to maximize the intersection of all spaces. We consider an immersive
experience where there are m subjects and therefore m room spaces (R1,R2, · · · ,Rm), respectively.
Then, in the (x,y)-coordinates, we define a rigid-body motion in R2 as G(F,θ), where θ describes
a translation and a rotation.

To maximize the mutual walkable space, we apply one G(Wi,θi)to each individual walkable
space Wi for the i-th user. The optimal rigid body motion then maximizes the area of the interaction
space:

(θ ∗1 , · · · ,θ ∗m) = argmaxK(
m⋂

i=1

G(Wi,θi)). (7.2)

Hence the maximal mutual walkable space can be calculated as

MW (R1, · · · ,Rm) =
m⋂

i=1

G(Wi,θ
∗
i ) (7.3)
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Mutual Functions
Similar to walkable spaces, our system calculates mutual areas of remaining functional categories

namely mutual sittable (MS) and mutual workable (MT ) spaces. The main difference between mutual
walkable spaces and mutual function areas is that mutual functions require pose estimation. We
use the following heuristic to define the pose of the calculated mutual functions: If the objects
constructing the mutual function share the same pose direction, the mutual function area would also
hold that pose direction. Else, the mutual function would be facing the center of the room. In Figure
7.4. e) mutual function optimization takes place, classifying a section of the sittable area of the sofa
in R1, and the bedspace in R2 and R3. Due to the fact that the pose of the bed in R3 differs from the
other corresponding sittable functions in R1 and R2, the resulting sittable space pose is calculated
towards the center of the room.

Geometry Simplification
In certain scenarios, participants of a telepresence experience may require the mutual activity

space to comply to a minimum area or hold a certain shape. Games for instance may require users
to hold a safe play area, often being a quadrilateral or circular space to avoid physical conflicts.
Another possible example is when users are surrounding and inspecting an object, and the activity
space is preferred to be a circular shape with the object placed in the center. To this extent, mutual
spaces solely calculated based on maximizing functional areas may hold non-convex peninsula-like
geometry, which can become inaccessible for various activities. For instance, the mutual walkable
space calculated in Figure 7.4. f) holds areas which a regular human body cannot perform free body
movement without colliding with the boundaries of the space.

To address such scenarios, we add two optional post-processing modules to our workflow to
generate safe activity spaces which allow: (a) simplification of the resulting mutual geometry to
exclude peninsula-like areas (Figure 7.4. g); and (b) calculation of the largest custom activity shape
inscribed in the mutual geometry (Figure 7.4. h). For simplification, a double-stage offsetting
procedure takes place. In the first stage an inward offset with a distance of ε is conducted from
the bounding polygon of the mutual space. Edges with more than two intersections are removed,
resulting in a simplified inward offset of the shape. An outward offset with distance ε is followed
as the second stage, generating a shape similar to the initial shape with excluded peninsula-like
areas. The size of ε can be defined based on the activity. For instance, intense gaming applications
that involve a high level of free-body movement would require a larger ε than a normal natural
locomotion activity.

For calculating the largest inscribed custom activity space LS, we define a rigid body function in
R2 as J(L,θ ,sx,y), where L is the custom activity shape, θ describes a translation and a rotation,
and sx,sy are scale factors applied to L is the x,y direction respectively. We run the following
optimization:

(θ ∗,s∗x ,s
∗
y) = argmax(K(J(L,θ ,sx,sy)

⋂
MW )

−K(J(L,θ ,sx,sy)
⋂

MW
′))

(7.4)
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Figure 7.5: Examples of semantic scene graph extraction. (a) input room; (b) semantic segmentation
(c) collection of semantic scene graphs. Semantic scene graphs represent pair-wise relationships
between objects and the room.

Where MW
′ is the inverse of the mutual space (Ri−MW ). Hence, the largest custom activity

space is calculated as:
LS = J(L,θ ∗,s∗x ,s

∗
y) (7.5)

Figure 7.4. h) shows an example of a optimization achieved to find the custom polygon inscribed in
the mutual boundaries

Optimization
Considering various user-in-the-loop scenarios, optimizations can be defined as single objective

or multi-objective problems. In telepresence settings that require only one mutual function type to be
maximized, a single objective optimization is utilized to find the required transformation parameters
for the room alignment. Alternatively, multiple functions can also have various weights and
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Figure 7.6: Results of the MSS system on MatterPort3D dataset examples.
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constraints (such as minimum sittable or workable area), reducing the dimension of the optimization
to a single-objective function. This approach was utilized in the mutual function optimization in
Figure 7.4. d) and 7.4. e) where a minimum projected mutual sittable space of 1m2 was defined as a
constraint, while maximization of the walkable space took place. Users can also be involved within
the workflow for multi-function scenarios, where a set of solutions representing the Pareto frontier
of the multi-objective optimization would be presented to the user. After considering trade-offs, the
user can choose which spatial configuration would be more suitable for their activity.

7.5 Mutual Scene Augmentation
After calculating the optimal alignment of target rooms, we aim to synthesize a new virtual

scene which would incorporate the mutual spaces and provide a plausible virtual environment
spatially corresponding to all target users. The Mutual Scene Augmentation process consists of two
modules: the first module utilizes a procedural grammar for initializing the scene, followed by the
second module that uses scene priors for conditional scene synthesis.

Procedural Initialization
As a first step of the virtual scene initialization, we define the base floor of the synthetic room as

the smallest circumscribed rectangle of the union of all the aligned rooms. This would guarantee
users to access all their available physical space within the virtual environment. Furthermore, we
populate the synthetic room with non-colliding elements of each local space (Figure 7.4. i) An
object is considered non-colliding if (a) its transformed projection on the (x,y) plane does not
collide with another room’s walkable space and (b) its transformed position does not collide with
another transformed object in the mutual alignment. Adding non-colliding objects to the virtual
scene would add an additional visual barrier to prevent a physical collision for the user holding the
object in its local space. Once the bounding boxes of mutual functions and non-colliding objects are
calculated, the system takes on the task of associating each calculated bounding box to a function
type and furthermore to a designated mesh. During the object association step (Figure 7.4. j), the
function of the mutual room determines what objects should be placed in the scene synthesis step.
The synthetic room function is an optional input given by the user of the system. If no input is
given, the system uses the most repeated room function in the target set. If no majority is present,
one of the room functions would be assigned randomly.

Conditional Scene Synthesis via Priors
As a final step, we use a deep-learning model to complete the room with additional furniture. The

furniture is augmented in a conditional manner, taking into account relative furniture arrangements of
input rooms. We utilize a modified version of GSACNet, discussed in Chapter 6 for the conditional
scene augmentation process. GSACNet combines graph attention, siamese, and autoenoder networks
to perform iterative scene synthesis for new or constrained scenes. For the training process, in
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order to achieve robust results with limited scene priors, we propose utilizing the parametric data
augmentation method introduced in Chapter 5. In this method, after building parametric floorplans
of the rooms, boundary geometry and their adjacent furniture are constantly permutated while
maintaining a set of functional constraints within the room.

For the scene augmentation process, the system initially samples points uniformly in the (x,y)-
plane. Each point is considered as the center of possible placement for a target object Ȯk(x,y) on
the ground floor plane, and forms its corresponding scene graphs discussed in Section 7.3. Next, the
system passes feature vectors associated with nodes in the scene through an initialization neural
network followed by a respective graph attention layer. Messages passed to the node associated
with the object’s furniture type are extracted and concatenate the messages per each scene graph
with the summary vector. Furthermore, the concatenated vector is projected via a 4-layer network
into a space such that data points representing plausible placements are clustered together while
data points representing implausible placements are separated from the cluster. Finally, we output a
probability of plausible placement P using the reconstruction error produced by the an autoencoder.
Studies have shown autoencoders to perform well as anomaly detectors [259]. In our scene synthesis
system, there is a model per furniture group. The system trains each model using two separate
training phases. In the first phase, the initialization, scene graph extraction, and project modules are
trained as one large siamese network, with a siamese network projection module. In the second
phase, the outputs of the first training process are used as input and train the autoencoder module
alone.

In a conventional scene synthesis scenario, Ȯk(x,y) is placed in the location with the highest P.
Instead, in our approach, we add an additional conditional module to allow contextual placements
to take into account the arrangement of the real-world user target scenes in addition to the generated
synthesized scene. The conditional module takes the n top samples of P and sorts them based on
their distance to the closest object in the same functional type from all the input physical spaces. In
simple terms, from the placements that the scene synthesis module considers plausible, the system
chooses the final placement based on its proximity of real world objects in one (or more) of the
real-world user spaces. Such an approach would assist the scene augmentation process to place
objects closer to where they are in the real-world, potentially corresponding to one of the target
room furniture arrangements. Hence, slightly contrary to conventional scene synthesis systems, our
proposed approach populates the virtual scene by placing objects close to their real-world setting
while being contextually relevant to the mutual virtual scene (Figure 7.4.l).

7.6 Experiments

Synthetic Generation via Real-world Datasets
To evaluate how our proposed mutual scene synthesis system performs with various room types

and different spatial organizations, we utilize available 3D datasets from captured real-world scenes
as case studies. We use the Matterport 3D [30] dataset and sample subsets of varying size and
functions of rooms, to observe how mutual spaces are optimized and the corresponding synthetic
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scene is generated. Matterport 3D is a large-scale RGB-D dataset containing 90 building-scale
captured models. The dataset consists of various building types with diverse architecture styles,
each including numerous spatial functionalities and furniture layouts. Human-defined annotations
of building elements and furniture are provided with surface reconstructions as well as 2D and 3D
semantic segmentation. We utilize this data for the semantic segmentation process. In addition, we
exclude spaces that are not typically used for telepresence spaces (bathroom, small corridors, stairs,
closet, etc.).

For the mutual function optimization procedure, we utilize a Strength Pareto Evolutionary
Algorithm 2 (SPEA 2) [258] algorithm to calculate the maximum mutual functions between the
rooms. We use a population size of 100, mutation probability of 10%, mutation rate of 50% and
crossover rate of 80% for our search. As our solution integrates a evolutionary search, we expect
the result to gradually converge to the global optimum. We stop the optimization after 80 generation
runs. Room translations are executed in 10cm steps in the (x,y) plane and 15◦ orientation gains for
the optimization process. For our conditional scene synthesis module, we train our model on the
same dataset excluding the input rooms used in our experiment. As the MatterPort3D dataset does
not offer pose annotation, we use the rapid-annotation tool in Chapter 4 to label pose data within
the scenes.

Figure 7.6 shows the results of three sets of real-world captured rooms, each including rooms
with different room sizes and functions. After extracting semantic labels of the objects (steps
2,3), the system performs mutual function optimization with functional semantics (step 3,4). Our
proposed system is able to locate mutual walkable, sittable and workable functions in target rooms
and align the physical environments to maximize the mutual functions. Furthermore, the system
aims to complete the initialized synthetic rooms with the conditional scene synthesis process (steps
5,6).

User Studies
In a comparative user study, we aim to measure the participant’s ability to find the maximum

mutual functions between the rooms and compare it with the outcomes of our proposed mutual
function system. We recruited 25 participants (m=10, f=15), which were skilled in 3D annotations
to find mutual walkable and sittable functions of groups of rooms. We utilized 17 rooms of the
MatterPort3D dataset which were organized in groups of three, and one group of two. We developed
a 3D annotation application, which allowed participants to view all the rooms of the group in
3D, and annotate what they believed is the mutual areas between them. The tool also allowed
the modification of annotated geometry after initial annotation. Participants were not aware that
they were going to be compared to an automated system and were just asked to provide their best
annotation skills for the task. Before data collection, the experiment operator demonstrated an
example of how to use the annotator tool and answered questions on what is considered a mutual
space. The data collection process from each participant took approximately 30 minutes, allocating
5 minutes to each room group for indicating mutual walkable and sittable spaces.

However, as anticipated, participants where not able to annotate 3 exactly similar areas in all
three rooms. Therefore, in our analysis, we performed an extra step of aligning the user annotated
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Figure 7.7: Results of the comparative user study showing top 3 human classification of walkable
spaces (MU ) compared with the MSS system (MW ).

spaces in a brute-force search process. The polygons are centred in a mutual point, and an exhaustive
search is conducted between all possible orientations of the polygons to calculate the maximum
intersection between them. We denote the maximum intersection as MU and further compare to MW
and MS predicted by our system. The optimization implementation of the system were similar to
what was described in Section 7.6.

Figure 7.7 shows the top 3 highest mutual area classification task (out of 25) for walkable spaces
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Figure 7.8: Comparison between manual annotations (MU ) and our MSS system for indicating
mutual walkable (MW ) and sittable spaces (MS) in 6 Matterport3D room groups

performed by the users in green, compared to the system’s calculation MS illustrated in blue for all
six groups. As seen in the figure, the automated system clearly outperforms user performance in this
classification task. A common technique that was observed is that most human annotators aimed to
start with the smaller room and try to find corresponding spaces in the other rooms. This of course
requires numerous editing attempts for the mutual space geometry to be modified accordingly.

Figure 7.8 shows a numerical comparison of the mutual area indication task between human-
annotators (MU ) and our MSS system for walkable and sittable spaces. For each room group,
we plot a whisker-plot to visualize the distribution of MU for all participants, while a thick line
represents MSS calculation. As seen in the figure, our system significantly finds larger areas of
mutual spaces than human annotators with an average increase of 58.68% for walkable spaces and
56.00% average increase for sittable spaces.

7.7 Discussions
As presented in our results from real-world captured room examples, furniture topology in

the resulting synthetic scene often corresponds to objects present in physical environments. For
instance in Figure 7.6, in Group A, chairs and tables correspond to the location of office space R1,
while the storage space can also be attributed to R3. All rooms hold part of their desk space as a
mutual workable space. In Group B, a mutual sittable space is extracted from the area attributed
to the bed in the bedrooms and a the larger sofa in the living room. In Group C, we see how
small spaces such as the bedroom R7 can also contribute to generating plausible spaces using our
system. While the mutual spaces are considered limited, yet the resulting synthetic scene has
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utilized non-colliding functions from R8 in its procedural generation before completing the space
with additional contextual furniture.

In the user study, there are a number of exceptional instances that participants classify larger
walkable spaces than our automated system. This is because (a) we do not cross-validate the
participants annotation as we consider any walkable or sittable area defined by the user to be
correctly annotated (b) the system uses annotated labels from the dataset which are also annotated
by humans and prone to error. However, since manually defining constant shapes between all
rooms using our tool was seen as challenging, the actual mutual space post-processed by an
exhaustive search module resulted in a significantly smaller area than each annotated room. Part
of the classification inconsistencies could be attributed to the limitations in the annotation tool
(eg. duplicating the annotation from one room to the other was not possible), hence, enhancing
workflows to improve user classification could have changed the outcome of the experiment.

For the conditional scene synthesis module, a major challenge when relying on learning-based
methods is that they are heavily biased towards the data. While the initial phase of our proposed
scene augmentation module integrates a procedural approach, the final steps include populating
the scene with additional furniture learned for scene priors. Real-world spaces are not generally
designed for hosting virtual users. Hence, defining which scenes from the dataset are suitable for a
meeting setting can be a challenging process. Models can be trained to filter room functions such as
meeting-room spaces and offices-space, however, many spaces cannot be specifically classified to
hold a single room functionality. For instance, a captured space from a studio or a dining room can
serve as multiple functions. Another limitation of real-world datasets is their low label accuracy
due to the labour intensive manual annotation process.

7.8 Conclusion
In this chapter we have presented a method for synthesizing a virtual environment for telep-

resence settings which corresponds to the spatial arrangement of the participants’ physical local
environments. Our method aims to calculate the maximum mutual walkable, sittable and workable
spaces between users, allowing the synthesized virtual scene to hold areas of mutual ground for
efficient virtual interaction. We utilize state-of-the-art scene synthesis methods to populate the
virtual room with objects that hold topological and functional relationships with elements of the
scene. We extend the scene augmentation process by introducing a conditional mechanism, allowing
virtual objects to position themselves close to objects with same functionalities in the physical
environment.

Our proposed system comes with a number limitations and failure cases. In scenarios with
a large number of participants, the mutual space optimization module may fail to locate mutual
function spaces that are present in all participants’ spaces. In such cases, the current system relies
on the procedural module to initialize a virtual scene using non-colliding functions. If this step is
also implausible due to the furniture arrangement of target rooms, the system can fail in generating
a mutual space. An alternative mechanism is to locate mutual spaces for subgroups, and initialize
the scene augmentation process from output of the subgroup mutual space. This, however, would
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significantly increase the complexity of the optimization, as the system would need to initially
search for the best subset of rooms.
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Chapter 8

Conclusion

8.1 Mutual Space Finding and Optimization
In this dissertation, we discuss how calculating the maximum mutual space between multiple

remote participants in SC telepresence scenarios can be a solution to the TSMP. When utilizing the
proposed mutual space optimization techniques, users avoid geometrical and line of sight conflicts
and can freely move around the space via natural locomotion and interact with each other’s remote
avatars. In Chapter 3 we define a mathematical formulation for calculating walkable and sittable
spaces, while Chapter 7 introduces a more generalized formulation for mutual functions. By using
various optimization methods, we show how our proposed workflow maximizes mutual spaces to
enhance user interaction between one another. We evaluate the proposed systems by performing
experiments on 3D captures of real-world rooms and demonstrate plausible results that can be
utilized by users in various room functions and spatial organizations.

Furthermore, custom activity spaces can be located and maximized using the optimization
framework introduced in Chapter 7. Such an approach would allow a more targeted calculation of
the remote mapping procedure to enhance the user experience for custom activities and increase
safety for games that involve a lot of body movement. Moreover, we formulate mutual area
simplification procedures for mutual space geometry to allow the optimization procedure to avoid
calculating peninsula-like areas which cannot be accessible during natural locomotion. In addition
to calculating the mutual space, the recommendation system developed in this dissertation can serve
as a spatial guide for the user to re-arrange the furniture in their rooms to gain larger mutual spaces
with minimum effort for telepresence workflows. Our results show significant increases in mutual
spaces can be found when utilizing the proposed recommendation system. We also evaluate whether
the proposed mutual space finding system offers any benefits compared to manual mapping by the
users themselves. The results of the user study in Chapter 7 show that our system significantly
finds larger areas of mutual spaces than human annotators, with an average increase of roughly 58%
for walkable spaces and 56% increase for sittable spaces. Regardless of annotation accuracy and
time, we observe manually aligning mutual spaces as a challenging task for individuals. Identifying
an acceptable boundary and checking whether all rooms comply with the defined geometry can
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take multiple iterations of modifications. Such a process is time-consuming and can be potentially
challenging to execute for novice users in spatial computing platforms. The task may become more
challenging if we consider privacy concerns, preventing users from viewing other participant spaces
during the telepresence setup. In the absence of mutual space generation systems, users would need
to communicate with each other to find suitable conditions that would address all spatial needs.

8.2 Context-aware Virtual Scene Augmentation
Another aspect explored in this dissertation is the ability to augment scenes with virtual objects

that can adapt to the context. In what we refer to as contextual scene augmentation, given a real-
world scene, the goal is to add one or multiple virtual objects while maintaining topological and
functional relationships between the objects, users, and the room. This dissertation introduces three
methodologies for the scene augmentation task. All three hold a similar property of representing
the scene as an explicit semantic scene graph, which we formulate as part of the contributions of
this dissertation. By learning from example scene graphs, either extracted from 3D indoor datasets
or inputted by the user itself, the developed contextual scene augmentation systems can calculate
a plausibility map of where to place and orient a given object in a scene. SceneGen, introduced
in Chapter 4, utilizes a kernel density estimation to build a multivariate conditional model for
the scene augmentation process. This approach is improved with the formulation of GSACNet,
introduced in Chapter 6, where we combine graph attention, siamese, and autoencoder networks to
perform iterative scene synthesis for new or constrained scenes. Finally, in Chapter 7, we introduce
a conditional scene synthesis method that adds an additional bias toward the scene augmentation
process to correspond to remote user’s furniture arrangements in a telepresence setting.

While some aspects of the scene augmentation task overlap with the task of scene synthesis
studied in computer graphics literature, there are many identifiable differences between the two.
Scene synthesis comes with the overall goal of generating a plausible scene, while our approach
initially aims to add defined objects to an already constructed scene in a curated fashion. Our
approach also covers virtual object placement of abstract entities that are not necessarily seen in
everyday scenes. For instance, if an augmented reality content developer intends to augment a
custom dragon in a set of target spaces unknown to the developer, how can this be done? Using
methods introduced in recent state-of-the-art scene synthesis literature, where implicit models are
trained through large datasets, addressing the task above is challenging, if not impossible. There
is no large dataset that contains a dragon placement in a room, and even if there were, there is
no guarantee that the placements are aligned with the custom definition of the content developer.
However, when using explicit models utilized in this dissertation, which can be trained with limited
data points, the problem above can be potentially addressed. A content developer can provide
limited examples while knowing what attributes the system would be measuring for the scene
augmentation. Nevertheless, scene augmentation can be combined with other scene generation
components to perform scene synthesis, something we introduced in Chapter 7 as mutual scene
synthesis.
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8.3 Generating Mutual Experiences
Next-generation SC platforms can potentially create new modalities of workplace and collabo-

ration environments. Using SC telepresence platforms, virtual meetings, gatherings, and meetups
can take place without occupying a designated physical space, such as an office, designed and built
only to accompany a meeting function. One of the main goals of this dissertation is to facilitate the
process of creating mutual experiences in SC platforms. Followed by the formulation of mutual
scene optimization procedures and the ability to complete scenes with contextual scene augmen-
tation, in Chapter 7 we combine the two techniques to present an MSS method for synthesizing a
virtual environment for telepresence settings which corresponds to the spatial arrangement of the
participants’ physical local environments. MSS aims to calculate the maximum mutual walkable,
sittable, and workable spaces between users, allowing the synthesized virtual scene to hold areas of
mutual ground for efficient virtual interaction. We utilize a scene augmentation method to populate
the virtual room with objects that hold topological and functional relationships with various scene
elements. We extend the scene augmentation process by introducing a conditional mechanism,
allowing virtual objects to position themselves close to objects with the same functionalities in the
physical environment.

Our experiments demonstrate our proposed mutual scene synthesis method in action using
real-world captured rooms as inputs to our system. By using our proposed method, meaningful
spaces suitable for meeting spaces are synthetically generated while holding mutual functional areas
for users to utilize. Furthermore, by performing a series of user studies to compare task performance
between manual and automated mutual space classification, we show our proposed system can
locate significantly larger mutual spaces in a fraction of the time. Therefore, an automated system
to generate synthetic spaces can potentially facilitate the adaption of mixed reality telepresence
platforms.

8.4 Scaling Spatial Computing Experiences
As discussed in Chapter 1.2, one of the main hurdles in SC development is the inability to

scale curated experiences that can adapt to a large number of user spaces. This dissertation
introduces a number of methods to facilitate this challenge by developing systems that can serve
as an automated middle-man between the content developer and millions of users. The context-
aware scene augmentation and scene synthesis process can allow curated SC experiences to be
generated by developers while preserving the spatial privacy of end-users. This would allow a
content developer to develop a single SC program or application; using the methods introduced in
this dissertation, the program itself can potentially scale to be adopted by millions of users, all with
different spatial organization and room layouts unknown to the content developer. Furthermore, this
dissertation constitutes an attempt to explore how adaptable SC experiences can be generated and
curated through a system learning from examples. This would potentially allow content developers
to provide examples of their desired scene arrangements and typologies instead of hard-coding rules
for a large set of target users. Such an approach can itself play a role in increasing the adaption
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of SC interfaces for a wide range of applications as developing adaptable SC experiences would
require less programming skills and instead be developed by providing desirable examples for the
system.

As a significant part of our everyday activities is conducted in social contexts, the framework
introduced in this dissertation can facilitate virtual collaborations and remote workplace practices
by decreasing spatial requirements for telepresence systems. Telepresence applications can utilize
the proposed mutual space and function optimization methods introduced in this dissertation to
allow a scalable number of participants to hold telepresence experiences between each other without
being affected by the TSMP. Instead of setting up large physical spaces required for meetings and
collaborations, the system would allow users to join from their personal spaces, with minimum
modifications to their surrounding environment. Telepresence participants are not aware of remote
users’ space, and similar to the content developer discussed above, hold a core challenge of unknown
spatial layout of the target user space. Hence, this dissertation aims to facilitate the efforts for scaling
SC experiences for the masses by addressing this core challenge with the proposed algorithms and
paving the way towards Responsive Spatial Computing.

8.5 Outlook and Future Work
This final section highlights what the author believes as possible future research explorations

based on the results and observations gained from this dissertation.

Multi-object Inferencing
In the context of generating scalable curated experiences via scene augmentation, one may

require to augment multiple objects within the scene as part of the content design process. The
scene augmentation methods introduced in this dissertation inference objects one at a time, resulting
in an iterative scene augmentation process. This itself is considered a limitation of our workflow
since the layout is dependent on the order of the object placement and does not calculate all possible
permutations of the possible arrangements. Such an approach can narrow down the possible open
spaces for later objects, forcing placements that are far from optimal. Moreover, in scenarios where
a large number of objects are to be augmented, or the scene is changed due to external modifications,
the current approach may not have the ability to fit all the objects within the usable space as initial
placements are not aware of upcoming objects. Hence, a more comprehensive search method needs
to be utilized to efficiently search all the possible permutations of the order in which objects are
placed. Due to the combinatorial enumeration of spatial relationships and the subjective nature of
their inter-dependencies, such a problem is considered an NP-Hard problem, as the size of solution
spaces grows exponentially as the size of the objects to be augmented increases.

Future work can comprise incorporating space layout methodologies with the current sampling
mechanism allowing a robust search within the solution space while addressing combinatorial
arrangement with virtual a physical objects. Space layout planning is the process of placing a set of
discrete but independent spatial elements while attempting to satisfy geometrical, topological, and
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performance goals in their layout. Applications of space layout planning are not limited to indoor
scene augmentation and can be seen in a wide variety of fields, such as integrated circuits [200],
architecture, urbanism, and operational research [2]. The inherent level of complexity in space
layout planning has encouraged researchers to also explore this problem by developing generative
systems that take advantage of various learning-based and meta-heuristic search approaches. Similar
to the workflows explored in this dissertation, the general process of space layout methodologies
can be described in three modules (i) generating various layouts via a generative function, (ii)
analyzing the layouts using certain design objectives via a fitness function, or comparing them
to a set of priors; (iii) iterating this search until the optimal solutions are found [92]. Generating
layouts often involves encoding a layout as a solution to a layout representation function. This
representation not only defines the complexity of the solution but also impacts the efficiency of the
search process to find a desired floorplan in the solution landscape. Hence, exploring scene graph
representations introduced in this dissertation as an encoding mechanism for the generative models,
and integrating them with multi-objective optimization procedures, can be seen as a possible future
research direction for addressing the multi-object inferencing problem.

Overcome Learning Bias
The methods introduced in this dissertation take advantage of both procedural modeling and

learning-based model training techniques for the contextual scene augmentation tasks. As procedural
modeling consists of hard-coded rules, the logic behind the scene augmentation procedure can be
understood as the system follows a certain interpretable procedure to generate the results. In contrast,
learning-based methods, especially techniques that utilize deep neural networks, are challenging to
interpret. It is hard to logically narrow down the exact reasoning of the system during the inferencing
phase from a previously trained model. While this dissertation highlights the necessity for using
explicit scene graph representations as opposed to implicit representations for contextual scene
synthesis, there is still a large degree of bias towards the input data that is fed to the system as scene
priors.

One important consideration in our choice of utilizing the MatterPort3D dataset in our work is
that we aim to learn spatial relationships for real-world scenes. One can imagine idiosyncrasies of
lived-in rooms, such as an office chair that is not always tucked into a desk but often left rotated away
from it or a dining table pushed into a wall to create more space in a family room. Using personal
living spaces, from the Matterport3D dataset, as our priors, we can capture these relationships
that exist only in the real world, lived-in scenes. Yet, one drawback of using real-world datasets
such as the Matterport3D dataset is that it is not as large as some synthetic datasets. For instance,
the SUNCG [204] synthetic dataset, which was unavailable during the course of our study, holds
more than 45,000 environments, while our models were trained on only 1,326 rooms from the
Matterport3D dataset. In our implementation, we were forced to group objects into broader groups
to ensure adequate representation to ensure that all object categories are represented well enough
to approximate the distribution of large feature space. A larger dataset would have allowed us to
model more diverse object categories in a data-driven approach.
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Current real-world datasets also come with a number of cultural biases. First, they are often
geographically limited to a certain building type, area, or country. MatterPort3D, for instance,
consists of large houses located in the United States only. Moreover, an average of 22.8 rooms
are scanned in each house, which usually includes multiple bedrooms, bathrooms, hallway spaces,
etc. This rate is far higher than the average of nine rooms per house in the United States [78],
which can indicate the houses are owned by wealthy occupants. Therefore, furniture arrangements
captured in this dataset may not accurately correspond to average-sized rooms and their layouts.
Residential spaces with limited areas, such as apartments and dorms, are not seen in the dataset.
Such limitation may cause biased results when the target scenes are spaces with limited open areas.
Another downside of using a real-world dataset is its accuracy in labeling, where many human
errors occur in this labor-intensive process. Such mismatches are unlikely to happen in synthetic
datasets as the geometry is already assigned in a digital format. To mitigate some of these concerns,
we have developed a labeling application that allows us to determine the correct orientation of each
object and also filter out rooms with corrupted scans and inaccurate labeling.

On the other hand, a critical drawback of synthetics datasets is that they cannot capture the
natural transformation and topological properties of objects in real-world settings. Furniture in
real-world settings is a product of the gradual adoption of space, contributing to the functionality of
the room and surrounding items. Topological relationships between objects in real-world scenes
exceed the design assumption of a designer and capture contextual relationships from a living
environment. Moreover, the limitations of the modeling software for synthetic datasets can also
introduce unwanted bias to the generated scenes. The SUNCG dataset, for instance, was built with
the Planner5D platform, an online tool that any user around the world can start using. The software
workflow is similar to building a house in The Sims, where simple functions allow users to create
rooms and add objects from an internal library. However, like any other design software, it comes
with modeling limitations for generating rooms and furniture. Orientations are also snapped to right
angles as default, which has made most scenes in the dataset Manhattan-based. More importantly,
there is no indication if the design is complete or not. Users may have started to play with the
software and leave the platform, while such arrangement was captured as a legit human modeled
arrangement for the dataset.

In addition to synthetic and scanned 3d datasets, future work can consist of utilizing novel
computer vision techniques to predict 3D bounding boxes from 2D images. There has been a large
body of research aiming to extract semantic 3D bounding boxes from monocular images [260, 108,
238, 253, 254, 76]. Such an approach would allow priors to be trained by more diverse 2D indoor
scene datasets available through online repositories or image search engines. As the knowledge
models proposed in this dissertation is independent of the input dataset, the integration of such
systems can be considered as a possible future alternative to current RGB-D datasets. An example
of using 2D images for 3D scene synthesis can be seen in the work of [129] where they extract the
relationship between human-based activities and various furniture to build a human-actively model
for the synthesis generation.
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Usability Studies
Finally, conducting thorough user experiments by developing additional features in the mixed

reality prototypes introduced in this dissertation can help identify the challenges of such frameworks
from a user standpoint. For instance, exploring effective techniques for users to interact with a
synthetic scene generator while allowing them to modify and adjust the output of such systems
can be possible future directions. Moreover, usability studies can be performed to identify the
best strategies for user-in-the-loop input when the system offers more than one option for spatial
arrangement or manipulation. In our developed mutual function optimization framework in Chapter
7, we propose utilizing multi-objective optimization processes, which in theory generate a selection
of Pareto-optimal solutions instead of a single optimal instance. Hence, a user should guide the
system in the trade-off process by choosing what objective functions to prioritize in the multi-
objective criteria. Another alternative is to visualize all the Pareto-optimal options and allow the
user to choose between them. This itself would require additional research and user experiments to
understand the efficient visualization practices for user performance in such tasks. Furthermore,
for telepresence scenarios, improving the framework to address scenarios where multiple users are
present in each space can be explored, as currently, only one user is considered to be present in each
space. When multiple users are present, challenges such as spatial audio and virtual geometrical
conflicts would need to be resolved to ensure a realistic experience for telepresence participants.
Lastly, future usability studies can be conducted to further improve the visualization strategies
for the mutual scene optimization workflows so participants can feel present in the telepresence
experiences without getting distracted from maintaining their spatial position in the allocated mutual
ground.

Future studies mentioned above, along with similar research avenues that focus on resolving
spatial limitations of SC can pave the way to facilitate large-scale contextualized deployment
and the enhancement of user experiences within SC systems. Creators can develop and curate
virtual experiences for millions of users worldwide, regardless of their geolocation and local spatial
constraints, opening the doors for next-generation SC interfaces to become the dominant computing
platform in various everyday applications.
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