UC Davis
UC Davis Electronic Theses and Dissertations

Title
Design of a High-Speed Direct Electron Imager for High Vacuum

Permalink

bttgs:ééescholarshiQ.orgéucéiteméGSsZBOO;I

Author
Gloekler, Ryan Edward

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/68s28001
https://escholarship.org
http://www.cdlib.org/

Design of a High-Speed Direct Electron Imager for High Vacuum
By

RYAN E. GLOEKLER
THESIS

Submitted in partial satisfaction of the requirements for the degree of
MASTER OF SCIENCE
in
ELECTRICAL AND COMPUTER ENGINEERING
in the
OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA
DAVIS

Approved:

Charles E. Hunt, Chair

William Putnam

Rajeevan Amirtharajah

Committee in Charge

2024



Acknowledgement

This research endeavor would not have been possible without the continued support of
my committee chair and principal investigator Dr. Charles E. Hunt, and Arthur Carpenter of
Lawrence Livermore National Laboratory (LLNL). I am especially thankful to my colleagues in
the Vacuum Microelectronics Laboratory, especially MA Mort and Jordan Ricci for their
contributions and incredible teamwork during our collaboration on this project. Finally, I would
like to express gratitude to my family for their motivation and support throughout my academic

journey.



Abstract

A data collection system was developed to enable high-speed imaging of electrons in a
vacuum, aiding the development of contemporary x-ray imaging technologies. The device was
tested in response to visible light at atmosphere and vacuum, and the response to an electron gun
was characterized. The system was used to obtain the 53% optical quantum efficiency (QE) of
the sensor and compare against theoretical maxima. Amplifier printed circuit boards (PCBs)
were designed to convert sensor photocurrent into a voltage, and a microcontroller was used to
transmit imager data. Data was received and processed by a custom software system. Imaging
hardware is triggered using an 8-ms pulse, coincident with a solenoid-based loop-focusing
device trigger. Data is collected over 10 ms at a frequency of 10 kHz. The amplifier PCB was
adjusted to be modular and allow for hardware-based sensitivity adjustments. Linear voltage-
response to input photocurrent was verified by collecting visible light data of differing
intensities. A positively biased phosphor plate was used to verify the electron gun configuration.
Despite the electron sensitivity of the photodiode array, the observed noise characteristics of the
sensor in response to the electron gun demonstrated that the electron beam had insufficient
power to guide electrons to the sensor interface. The design of the imaging system was

successful and suggests it may be a suitable replacement for existing x-ray imaging technology.
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Chapter 1

1.1 Background

Developing x-ray imaging systems use a combination of electrical and optical signals to
reconstruct and image an incident x-ray signal with high spatial and temporal resolutions. This is
accomplished by first converting the incident signal to electrons with the combination of a
photocathode and Microchannel Plate (MCP), acting as an electron amplifier. The
photogenerated electrons then travel through a vacuum drift chamber, before colliding with a
phosphor which subsequently fluoresces, converting the electron signal into a measurable optical
output. The converted signal is finally captured from the phosphor plate by a photon imaging
device [1] such as a CMOS sensor, which collects the light into individual pixels that can then be

read off to generate images of a discrete x-ray event.

Due to the hardware involved in conversion back and forth between photons and
electrons, there is a great deal of temporal and spatial resolution loss in the data that is received
by the CMOS sensor. MCP’s can facilitate high-speed particle and electron detection by
delivering well-defined charge clouds but are limited by phosphor screen readout [2]. The
fluorescence of the phosphor plate itself is a significant source of spatial resolution loss,
especially for sub-nanosecond speed imaging systems [1]. As a result, it is desirable to
circumvent the loss associated with electrical and optical conversion steps by imaging electrons

directly at the interface. Direct-electron sensitive sensors are in development for such



applications and are capable of ultrafast and high spatial resolution electron detection, but there

is a significant need for imaging systems to support them [3].

1.2 Research Description

This research focuses primarily on the development of a high speed, direct-electron
imager to verify the viability of direct electron-imaging under high vacuum. The system is
designed to image incident electrons generated by a photocathode and MCP pair and may be
tested directly using an electron gun under vacuum. The imager triggers a high-current pulse
through a solenoid to magnetically focus electrons throughout the length of its drift region, while
simultaneously triggering the imager to capture many frames of electron data. The imager uses
an electron-sensitive linear photodiode array and produces an output voltage by converting the
induced photocurrent with a transimpedance amplifier circuit. The system is driven directly and
timed with custom hardware and firmware to capture and store data with a temporal resolution of

100 ps.

The imaging system was tested with visible light at atmosphere and is ready for further
direct electron testing under vacuum, which will be performed using an electron source rather
than photoelectrons once the electron gun has been properly configured. The transimpedance
amplifiers were initially tuned for each test case, based on the estimated and measured maximum
photocurrent under each operating condition. Test data samples were stored for analysis,
allowing the system to be later tuned by adjusting the driving firmware and transimpedance

amplifier circuit parameters individually.
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1.3 Solenoid Loop Focusing of Electrons

For the imager to capture frames of electron data in high resolution the electron source
needs to be focused, similar to how a camera uses a lens to focus light. While testing with an
electron gun, the emitted beam should be focused to decrease spot size and increase spatial
resolution at the photodiode interface. In application, such a mechanism is also needed to focus
electron charge clouds from an MCP as they travel through the length of the vacuum drift
chamber. To accomplish this, a solenoid was constructed to guide electrons from the MCP to the
photodiode sensor interface, and was the solenoid pulsed with high current to establish a

momentary magnetic field, thereby confining the signal and guiding it to the imager.

The solenoid was constructed using 144 turns of wire over a total length of 8.25 cm and
had a measured peak field strength of 340 Gauss with an input current of 17 A. The magnetic
field throughout the cylindrical region can be modeled with the following equation, where B is
magnetic field strength, L is the permittivity of free space, z is the axis along which the field
points, I is pulsed current, and N and L correspond to number of wire turns and length,

respectively [4, pp. 265-267]:




1.4 Photodiode Imager Operation

Photodiodes may be used in the context of direct electron imaging due to their operating
principle of converting incident photons or electrons into electron-hole pairs at the device
interface. The devices are generally constructed using two adjacent semiconductor layers doped
to be P-type and N-type, which contain an abundance of holes and electrons, respectively. These
two layers create a depletion region, or barrier, which separates electrons and holes due to the
built-in electric field. When an incident photon or electron of sufficient energy strikes the
depletion region, electron-hole pairs are generated, and electrons and holes move towards
opposite ends of the device [5]. The induced current due to the motion of electrons and holes is
called the “photocurrent,” which is the primary sensing parameter used in a photodiode image

sensor and is amplified by the hardware detailed in Chapter 2.2.

Given that each pixel in an array of photodiodes produces its own photocurrent, an array
of devices can be used to construct a sensor with spatial resolution determined by the size of
each pixel relative to the incident signal. The signal must be focused prior to striking the surface
of the imager to maximize the image quality. Pixel read-out can be achieved by converting
generated photocurrent into a corresponding voltage, which is sampled to create a digital number

representing signal intensity.



1.5 Electron-Sensitive Photodiode Array

The photodiode array was chosen due to its sensitivity to both photons and electrons,
allowing the imaging system to be tested with both visible light at atmosphere and direct
electrons under vacuum. The array is made up of 16 individual pixels, each having an active area
of 2 mm x 5 mm, and a rise time of 500 ns. The device is packaged in a common anode

configuration, with eight total anode pins as seen in Figure 2 [6].

PIN
NUMBERS \|\
¥

595
[15.11]

ELEMENT
NUMBERS

Dimensions are in inch [metric] units.

Figure 2: Photodiode array packaging diagram. Schematic from [6].

As shown in Figures 3 and 4, the device exhibits a non-linear typical electron and photon
responsivity, so the supporting hardware must be tuned to the expected input signal range with
respect to the signal source. This may be done by adjusting transimpedance amplifier circuit

parameters as discussed in Section 2.2. The device does not require a bias to operate.



Typical UV-VIS-NIR Photon Responsivity

0.5
g 0.4
E 0.3
>
# o2
8 \
g \
E 0.1 \
0.0 ™

200 300 400 500 600 700 800 900 1000 1100
WAVELENGTH (nm)

Figure 3: Typical visible light photon response in A/W of the photodiode array. Data from [6].
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Figure 4: Typical electron responses in A/W of the photodiode array. Data from [6].



Chapter 2: Imager Design and Implementation

2.1 Solenoid Pulsing Circuit

2.1.1 Pulsing Circuit Design

To establish a magnetic field within the solenoid boundaries, it must be pulsed with high
current throughout the duration of the data collection period as described by Ampere’s law.
Since typical laboratory equipment is current limited and cannot support switching at the
required speed, it is necessary to design a pulsing circuit to drive current through the coil as
shown in Figure 5. The initial targeted design parameters were selected to achieve a 12.5 A pulse
through the solenoid for 5 ms. The choice of single pulses rather than a repeated or DC current

design was made to avoid damaging the device due to heat buildup on the coil.

Bypass —L_ a+ 1+
Capacitor ——10uF == 10mF == 10mF 27.5V
é Solenoid Shunt Resistor
L=0.24mH
30A MOSFET Gate R=0550 R=12
Driver YN

{Rds,on = 0.6 2) A"
I\
A

g\a‘,l 5ms "lg
ue Flywheel Diode
~

Figure 5: High current pulsing circuit design.



The pulsing circuit is based on a power MOSFET gate driver, which switches to allow
the current to flow from a capacitor bank through the solenoid to ground. The chosen gate driver
is rated to withstand 30 A and supports a 20 ns switching time [7]. If the power supply maintains
a voltage greater than the under-voltage lockout (UVLO) of 12.5 Volts and the input signal is
greater than 0.8 Volts, the driver allows current to flow while the trigger signal is high. The
design also considers the on-channel resistance, Rpg, of the driver while it is in conducting mode,

as it will have an impact on the maximum attainable pulse current.

The gate driver is loaded directly with the solenoid, which is in series with a shunt
resistor Ry. This resistor was put in place to extend the RC time constant of the circuit,
preventing the capacitors from discharging too quickly. The tradeoff of this design choice is that
R will limit the maximum current that can flow through the load and as a result limit the strength
of the induced magnetic field. The solenoid and Ry are connected in parallel with a flyback
diode, which prevents sudden voltage spiking across the gate driver’s inductive load. This was

first designed in LTspice and prototyped before its assembly as a PCB.

2.1.2 Pulsing Circuit Simulation

The circuit was first simulated in LTspice so that the schematic could be adjusted easily
as design parameters were tuned. Using a software approach also allowed for a safe design stage,
necessary due to the high-current application of the circuit. The circuit model uses two voltage-
controlled switches to model the MOSFET gate driver, using the appropriate Rps values from the

IXYS datasheet. The circuit was initially simulated by providing a 5-Volt trigger pulse for 5 ms.



Figure 6: Equivalent LTspice model of the solenoid pulsing circuit.

The simulation was run for 10 ms using the component values shown in Figure 6. The
maximum observed current from the solenoid was 13 A, which occurs after roughly 500 ps of
rise time. Over the course of the 5 ms switching period the signal drops to about 12 A nearly
linearly, making the average pulse current about 12.5 A. The current quickly falls to zero once
the input signal is pulled low by the gate driver. The simulation results in Figure 7 confirm that
the circuit meets the design requirements, and in testing also showed that driving the circuit with

higher supply voltages can yield greater solenoid currents.

Modeled Solencid Current vs. Time (Sms Pulse)

Current (&)

Figure 7: LTspice solenoid current simulation results for 5 ms input trigger.
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2.2 Transimpedance Amplifier

The photodiode’s hardware interface to the supporting imager hardware was designed as
a transimpedance amplifier circuit configuration, which converts a generated photocurrent into a
corresponding voltage. The amplifier circuit maintains a linear relationship between current and
voltage, which allows for accurate photocurrent detection. This means that incident signal
intensity at the interface of the photodiode array module can be directly related to the voltage
measured at the Arduino’s analog input pins. The circuit works by placing a feedback resistor,
Rp, across an operational amplifier, which converts input current to an output voltage by virtue of
Ohm’s Law. The feedback capacitance, Cp, is included to counteract the effects of unwanted
parasitic capacitances that change the amplifier’s loop-gain response [8, 9, 10]. By including the
op-amp in the design, we leverage its very high input impedance and minimal output impedance
to ensure that the output voltage is independent of any load attached to the circuit. This allows
for accurate, high-speed photodiode measurements. The device used in this design is a
commercial operational amplifier chosen due to its low noise and high precision characteristics,

which make it ideal for sensitive instruments [11].

To determine the correct feedback resistor, Ohm’s law can be rearranged based on the
maximum expected photocurrent. The device photocurrent can be estimated using known source
parameters and the responsivity of the photodiode array for a given signal intensity using the
following equation, where Ipy, is output photocurrent, P is incident signal power, and R is the

responsivity of the device:

Im=PxR (eq.2)

11



Initial calculations of Rrand Cr as they are shown in Figure 8 are based on expected
photocurrent from a 5-mW handheld red laser pointer source with an approximate wavelength A

= 635 nm. Using the above equation and taking R as the visible light responsivity of the

5p
[ o
3.3k
u3
Lo
. L Vout_OP27 >
~"op27

©,0)
| ]

Figure 8: LTspice transimpedance amplifier schematic.

photodiode array at this wavelength given in Figure 2, the maximum photocurrent due to visible
light was calculated to be approximately 1.7 mA. This maximum current was used as a
placeholder value until measurements of visible light and electron-induced photocurrents could
be obtained from the photodiode array. Given that the acceptable voltage range of Arduino’s
analog pins and ADC module is between 0 and 5 Volts, the required feedback resistance can then
be calculated as the following, rounding values to nearby standardized component values [8, 9,

10]:

Ry = LoMax—Vomin _ 5"‘01:’ =2941.17 Q - 3.3kQ (eq. 3)

Ip-Max 1.7m

12



Similarly, the necessary feedback capacitance given the desired circuit amplifier
bandwidth can be calculated using the following equation. R is the previously computed

feedback resistance value, and BW is the desired circuit bandwidth:

_ 1
2m*Rp*xBW

Cr (eq.- 4)

Since the desired sampling bandwidth of the circuit at the time of designing this amplifier
was unknown, a placeholder value of 5 pF was used which corresponds to a frequency of 1 MHz.
The actual circuit bandwidth was later determined by the chosen Nyquist sampling rate of 10

kHz in the Arduino sampling firmware, so Cr was adjusted to the standard value 10 nF:

1

Cr = s — 265 nF (eq. 5)

Output voltage clipping issues are avoided by powering the integrated circuit with +8 V,
where ideally the circuit would only demand +5 V. The photodiode equivalent circuit shown in
Figure 9 was used to accurately model the physical device parameters that may affect
photocurrent generation. This model includes the shunt resistant, Rg, and depletion region
capacitance, Cp, present at the photodiode P-N junction [12]. By connecting the photodiode
model to the inverting input of the op-amp and performing a DC sweep on the photocurrent

source, the simulation data in Figure 10 was obtained.

13
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Figure 9: LTspice photodiode model connected to the inverting terminal of the operational amplifier.

Vivout_op2T)

0.0mA 0.2mA 0.4mA 0.6mA 0.8mA 1.0mA 1.2mA 1.4mA
Figure 10: Transimpedance amplifier output voltage for DC current sweep of 0-1.5151 mA.

From this simulation, it can be observed that there is a linear relationship between input
photocurrent and output voltage over the target current range of 0-1.515 mA, due to the resistor
value adjustment to a standardized value. Since the Arduino Mega analog pins operate for an
input range of 0-5 V, any excess potential applied to the analog pins will be clipped down to 5 V

and will reduce the dynamic range of measurement. The microcontroller uses a 10-bit analog-to-

14



digital converter, meaning that voltages greater than or equal to 5 V will be digitally represented
with a value of 1023. Consequently, it is important to ensure that the circuit’s Ry value is tuned
accurately to the expected current range and the circuit produces 5 V only when the sensor is
fully saturated. Due to the modular nature of the amplifier circuit, the output voltage can be
easily adjusted based on the measured current range of a given source. Given that the expected
current range of each source will differ, preliminary current measurements must be taken from

the photodiode array under saturation conditions prior to data collection.

Breadboard testing of this circuit was accomplished by using a voltage-controlled current
source to simulate the photocurrent being generated by the PD array, and results very closely
matched what was observed in simulation. However, since the op-amps do not behave ideally,
the expected +5 V had to be increased to +8 V to ensure that voltages near the ADC input ceiling
were not clipped prematurely. The circuit was fully assembled as shown in Figure 11 with all
sixteen pixels such that it could be tested on a breadboard in response to incident light from a

handheld flashlight and laser pointer.

Figure 11: Transimpedance amplifier array connected to the linear photodiode array and Arduino Mega.

15



2.3 Photodiode Driver PCB

After prototyping the amplifier and verifying its functionality on a breadboard, a PCB
was designed such that the photodiode array and microcontroller may be directly connected
through the amplifier circuitry. The primary goal of this was to increase reliability and portability
for data collection and reduce any errant noise that may decrease ADC accuracy. The PCB
design is also much more organized than a breadboard configuration, making the circuit much
easier to debug while under test. The PCB was created with Altium Designer due to ease of

access and its high prototyping speed.

OP27GPZ I
= I
GND o
Us
- 8
| e - VOSTRIM VOSTRIM | -
GND * T L Outd
' X 7| +IN OUT (— . L
- V. NC
OP17GPZ

o
=

Figure 12: Altium Designer schematic for the transimpedance amplifier.

16
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Figure 13: PCB IO header pins, including extra ground pins for photodiode array.

Since the final PCB will be a linear array of transimpedance amplifiers, individual
component blocks were used as shown in Figures 12 and 13. This allowed for easy changes to
the design as device parameters were changed. As discussed in Section 2.2, the inverting
terminal is connected directly to the output photocurrent from the array, and the noninverting
terminal is connected to ground. The input voltage terminals In- and In+ are connected to header
pins on the board, and the offset voltage trim terminals are left without connection since the
typical offset voltage range is in the microvolt range and will not affect sensor readings
appreciably [11]. An additional set of header pins were added to the schematic for grounding
only, to make it easy for the PD array to share a common on-board ground with the amplifier

circuit.

The PCB was designed using a compact footprint of only eight transimpedance amplifiers

per board, meaning that two boards should be used to accommodate all sixteen pixels on the PD

17



array. This decision was made to ensure that the layout of the board was neat and organized, and
to allow for a more modular testing approach in which multiple interchangeable boards with
different amplifier parameters may be used (see Figure 14). For example, having multiple boards
can accommodate the variable input photocurrent ranges generated by visible light and direct

electron imaging.

Figure 14: Altium Designer PCB layout for transimpedance amplifier circuit.

A polygon pour was used to create routing for the V+ and ground pins of each op-amp to
create a more organized board layout. The headers for power delivery and I/O signals were
chosen due to what components were readily available, so there are some input and output pins
left with no connection. The final 3D render of the transimpedance amplifier array is shown in
Figure 15 with the final assembled board shown in Figure 16. The PCB was fabricated using
JLCPCB’s prototyping service and assembled using the initial circuit parameters of: R = 3.3 kQ

and C =5 pF.

18
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Figure 15: Final Altium Designer 3D render of transimpedance amplifier circuit.
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2.4 Microcontroller Interface

2.4.1 Live-plotting firmware

Two different firmware scripts were used for the imager, each for a different software
application. The first firmware code is listed as Appendix A-2 and supports the live-updating
Python application listed as Appendix A-4. The firmware takes a naive approach to monitoring
pixel brightness by reading the Arduino’s analog pins all at once and directly communicating
them to the serial interface. While the ADC can be sampled effectively at 10 kHz as in Appendix
A-1, this frequency is not necessary for live plotting applications. This allows data samples to
simply be read from analog pins and written to serial all in one step, eliminating the need for
timing code. As a result, the speed of the firmware is largely limited by the serial communication
and proved to be adequate for this application and yields a frequency of approximately 5 Hz
depending on the computer hardware used. A 175-ms timing delay was added between
read/write cycles to increase the stability of the firmware and ensure that corrupted data was not
received by the plotting application. After it is received by the Python script, the plot is re-drawn
with the newly received data and the process is repeated until interrupted by the user. Given
additional development time, this live-updating component could be adjusted to use a dedicated
high-speed program and circuit components to effectively eliminate the limitations imposed on

the sampling frequency.

2.4.2 Data collection firmware

The primary firmware code used for data collection is listed in Appendix A-1, which

supports the data collection Python script listed in Appendix A-3. This firmware takes a sample
20



from each pixel at 10 kHz over the course of 10 ms, collecting a total of 100 samples per shot.
These data points are stored in a 16 x 100 two-dimensional array stored in the Arduino’s on-
board memory. Each shot is triggered by an interrupt supplied to a digital pin on the
microcontroller. This trigger is sent before the solenoid is activated, so that the formation and
collapse of the magnetic field can be seen throughout the exposure time (see Figure 17). If
necessary, this 10-millisecond period of data collection can be delayed by introducing a software
delay according to solenoid pulser rise time, as the inductance contributed by the solenoid may
slow down rise time considerably. After collecting 100 data points, each sample value is
communicated to the serial interface so that it can be received by the Python data collection
software. After sending the data, the firmware resets itself and waits for another trigger. When
the data is received by the Python processing script A-3, it is averaged and drawn to the user
display and is stored in an Excel spreadsheet for further analysis. The firmware will then

continue to facilitate data collection based on the trigger signal until interrupted by the user.

Imager Trigger / 0-10ms \

Solenoid Trigger / 1-O9ms \

Figure 17: An ideal timing diagram depicting the relative length of each control signal used in data collection.

2.5 Data Collection and Processing Software

There are three primary software components of the imager, each having served a
different purpose throughout the design cycle of the imager. The first software component to be

designed was the live-plotting software, which was used in part to help verify the functionality of

21



the photodiode and transimpedance amplifier. It may also be used to help in the setup of the
electron source by allowing observation of the target during electron beam configuration. The
second software component is the data collection and storage script, which was utilized to read
data from serial after being collected at the Arduino. This script is also used to visualize data as it
is processed and stored. Finally, the data visualization script was written to display data after it

has already been collected.

2.5.1 Photodiode Array Live-Plotting

The live plotting software functions by communicating with the Arduino over the serial
interface. This software was designed to visualize the signal incident to the photodiode array at
any given time to test the transimpedance amplifier array and configure the electron source.
Using Matplotlib [13], a canvas is drawn to model the surface of the photodiode array where
each cell is mapped to a corresponding pixel on the linear array as seen in Figure 18. Each

sample read from serial is first processed such that it may be plotted and is then used as new data

£ Figure 1 - [m} X

PD Array Output

0 2 4 6 8 10 12 14
Pixel Number

AEH» Q=

Figure 18: A screenshot of the live-plotting application during operation, with visible light incident to the photodiode array.
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to populate the light intensity map of the sensor interface. After the plot is updated, the data
sample is written to an Excel spreadsheet for further analysis, and the next set of data is read

from serial. This process runs and stores data until interrupted by the user.

2.5.2 Data Collection and Storage

The primary data collection script is listed as Appendix A-3. The function of this script is
like the live plotting script, except it runs based on the firmware listed as Appendix A-1. A
single-shot data capture method was used in this code to facilitate high frequency measurement,
allowing fine-grained temporal resolution over the entire collection period. The data is captured
for 10 ms at 10 kHz by the firmware, and then communicated through the serial interface so that
it can be processed in detail. Upon receiving the pixel measurements, they are processed in a
similar manner to the live-plotting application. However instead of updating a preexisting
canvas, the data is averaged over the entire 10ms data collection period and displayed

accordingly to reflect the average signal incident to the sensor over the collection period.

After the collected data is visualized, each new data point from serial is stored into an
Excel spreadsheet and timestamped. This is done after reading each individual data point from
the serial buffer such that the interface is ready to be used again when the user clears the
visualization. Ultimately the purpose of signal intensity storage is to keep an archive of different
testing configurations and the data they yield, but also to allow the data to be analyzed more

thoroughly after the shot has taken place.
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2.5.3 Data Visualization

The final software component of the imaging system is the data visualization code, which
was designed to display data that has been previously captured and stored as discussed in section
2.5.2. This program takes two primary arguments used to determine which data file should be
read from, and the approximate sample time of the desired data (e.g. 0-10 ms). An optional third
argument is included, which enables an animation of the data over the course of the entire data
collection period. This functionality was included so that it would be easier to visualize and
understand imaging events after they have occurred, such as the effect of a collapsing magnetic
field on intensity of signal incident to the photodiode array. This can also be used to adjust the
timing of the system to better focus on the region of interest. If the animation function is enabled,
the image is updated every 100 ms. In this way the animation happens over 10 seconds, relative

to the 10 ms data collection period. An example of data visualization is presented in Figure 19.

X Figure 1 - ] X
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Figure 19: Visualization in response to visible light, displaying data captured at 5.5 ms. Illustrates that pixel 4 is inoperable.
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Chapter 3: Experimentation and Results

3.1 Experimental Setup

To experimentally validate the design of the imager, the system was initially constructed
with the photodiode array placed outside of vacuum to collect data at atmosphere and
characterize its response to visible light. Since two PCBs are required to image all sixteen pixels
on the array, the system ties the power and ground signals of the boards together. Because the
imaging hardware is very sensitive, the boards’ electrical connections were suspended above the
workbench using a 3D printed spacer and placed on a ceramic floor tile. The input wires were
constructed such that they may either be directly connected to the photodiode for data collection
at atmosphere or connected to the vacuum feedthrough for direct electron testing. The
microcontroller was connected directly to the output node of each transimpedance amplifier such
that it could directly sense amplifier output voltages. The trigger signal was attached to a digital

input pin. The full imager configuration is shown in Figures 20 and 22.

Figure 20: The experimental setup of the photodiode imager.

25



The trigger was also connected to the input pin of the solenoid pulser board to simulate
real imaging conditions while examining the visible light response of the device. The photodiode
itself was mounted to a polyether ether ketone (PEEK) ring and placed on the vacuum test stage,
so that it can be aligned with the electron drift region. The PEEK ring covers pixels 3-5, so the

signal test area is constrained to pixels 6-15 (see Figure 21).

16-Element Transimpedance Arduino Mega
Photodiode Array Amplifier PCB ADC (10-bit)

Data Playback Single-Shot Live-Plotting
Script L 1 data collection Script

Excel Data
Storage

Figure 22: Final experimental hardware setup for visible light and vacuum data collection.
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3.2 Experimental Hardware

Several changes were made to the experimental setup in preparation for visible light data
collection, which departed from some of the initial parameters. These changes were made in part
to streamline the data collection process, but also to ensure that the data collected was as
accurate as possible. These changes also facilitate future work, as they allow the device to be

more easily modified in preparation for further testing.

3.2.1 Removal of Amplifier Filter Capacitors

One of the more significant changes was the removal of the filter capacitors attached to
the output node of the transimpedance amplifiers. Feedback capacitors are typically included in
the design of a transimpedance amplifier to increase the stability of the circuit in high-frequency
applications where oscillations may be induced while also controlling the frequency response of
the amplifier. This helps to ensure that the gain response of the amplifier is consistent and
reduces overall noise in the system. However, the choice of feedback capacitor depends directly
on the resistor that is used in the circuit as described in Section 2.2. Since the imager must be
sensitive to light in the visible spectrum and direct electrons, the resistor values must also be able
to be changed. This is primarily because the photodiode array’s responsivity to each source
differs significantly. As a result, when the resistors are changed the required filter capacitor value
must also change to avoid impacting the circuit behavior and prevent it from possibly filtering

out the desired signal.

The inclusion of a filter capacitor may also inadvertently change the way the Arduino’s

ADC works and make it less reliable. This is because the Arduino Mega uses a multiplexed
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analog-to-digital converter such as the one shown in Figure 23, where the signal from each
analog input is temporarily stored in a capacitor as the single ADC driver is swept over each of
the inputs. Since voltage differentials between adjacent inputs (pixels) may contribute to inter-
channel crosstalk, the capacitors must be able to discharge as intended [14]. This solution
eliminates the need for multiple ADCs, with the tradeoff that large resistance and capacitance
values at the input of each analog pin may influence the converter’s ability to accurately sense
voltages at high operating frequencies. Since the frequency of data collection for the photodiode
is 10 kHz, the feedback capacitance was ultimately removed from the TIA circuit to ensure that
the performance of the ADC was not compromised and minimize any chance of incident signals

being filtered out by the amplifier.

Figure 23: Circuit diagram for a multiplexed analog-to-digital converter.
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3.2.2 Resistor Hot-Swap Board

In testing it became clear that to properly tune the boards for different intensities of
incident signal it would be necessary to have tunable resistances at each of the transimpedance
amplifiers. This ensures that the same set of boards may be used for different testing
configurations and different sources. Using potentiometers is an attractive choice, as they allow
for easily tunable resistance and consequently, tunable sensitivity. When the tunable boards were
assembled as shown in Figure 24, it was found that while they did allow for direct sensitivity
adjustments, they also introduced a large amount of variable thermal noise and the imager

became unstable.

Figure 24: The photodiode imager con}iected to the amplifier boards, conﬁ;gured with pote‘;liiometers in place of resistors.
To increase the signal-to-noise ratio, the potentiometers were replaced by a hot-swap
resistor board shown in Figure 25, which was soldered to the parent PCB for pixels 8-15. This

significantly improved the signal quality and overall performance of the system.
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Figure 25: The resistor hot-swap daughter board, which is connected to pixels 8-15 of the transimpedance amplifier array

3.2.3 Tuning the Analog-to-Digital Converter Reference Voltage

In some cases, the amplifier subsystem may require more precise tuning than can be
obtained by changing resistor values alone. For example, the responsivity of the photodiode
array to direct electrons is significantly lower than to visible light, and the system must use very

large resistors to be sufficiently sensitive. This issue may be resolved by utilizing a sensitivity

parameter built into the microcontroller’s ADC system. The ADC uses an internal reference
potential by default to approximate the amplifier output voltage but can be programmed to
instead use an external potential on the range of 1-5 Volts for comparison. By setting the

reference voltage to a smaller value with an external power supply, the ADC’s signal sensitivity

can be increased while maintaining the granularity of its digital number output.
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3.3 Sensor Quantum Efficiency Approximation

The quantum efficiency (QE) of a sensor is the ratio of the number of charge carriers
generated by a photodetector to the amount of incident particles and is used to quantitatively
evaluate a detector’s effectiveness in converting incident radiation into electrical signal. To
accurately estimate the quantum efficiency of a device, a well-known source must be used. The
amount of photocurrent generated experimentally by this source can then be measured and

compared to the theoretical maximum.

To experimentally measure the quantum efficiency of the photodiode array used in the
imager, a 5-mW, 532-nm wavelength laser was used. The sensor was first experimentally
verified by comparing the theoretical maximum photocurrent to the measured value. The laser
was mounted on a test station and positioned such that it was centered on a single pixel as shown
in Figure 26. Given that the diameter of the laser aperture is 4.8 mm, the spot size of the signal
is significantly larger than the surface area of a single pixel (see Figure 27). To adjust for this,

the area of all three pixels with incident signal on them and laser spot size were considered in the

Figure 26: The experimental QE measurement setup.
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preliminary calculations.

The total beam area was then used as an input parameter to the photocurrent
approximation script, which can be found in code listing A-6. This script generates the
photocurrent response to the laser, given its power, the cross-sectional area of irradiation, and the
responsivity of the detector. Utilizing the entire spot size of the laser eliminates the need to
account for the power distribution of the laser throughout its cross-sectional area. Using this
method, the theoretical maximum photocurrent induced by this source is 1.3475 mA, which is

divided across all three of the irradiated pixels.

One hundred samples were then collected from each of the relevant pixels and averaged
to give the mean signal intensity at each pixel over 10 ms. The average voltage at each amplifier
was then converted into photocurrent via Ohm’s Law and summed to reconstruct the total
induced photocurrent at the sensor. These values were then confirmed by placing a sensitive
handheld multimeter between the pixels and ground. The total induced photocurrent across all

three pixels was 1.145 mA. By calculating the ratio between this and the expected theoretical

’k 2.0000 a‘
s
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Figure 27: A CAD drawing used to calculate the area (mm?) of overlap between laser spot size and photodiode pixel.
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maximum, the produced photocurrent is approximately 85% of the expected value. This value is
appropriate due to the inherent measurement error of the laboratory setting due to factors such as

laser alignment and laser power fluctuations.

To confirm this the ratio was calculated once more, instead using the photocurrent
generated by only a single pixel. First, the percentage of the spot size constrained within the
center pixel was calculated as shown in Figure 27. The cross-sectional beam area was then
substituted with this partial spot size in the photocurrent approximation code. To account for the
non-uniform distribution of power across pixels, the averaged data was used to calculate the
percentage the photocurrent concentrated in the center pixel relative to the total. The power
incident to the center pixel was then calculated as:

(P * 0
Poixel = 222 (eq. 6),

P AOverlap

where o represents the current density concentrated within the pixel of interest. Using this new
power value, the theoretical maximum photocurrent is 1.127 mA. The average measured current
generated by one pixel over 100 samples was 0.957 mA, so the approximate ratio of produced

current to expected value is again 0.849 or 85% at this optical wavelength.

The quantum efficiency was calculated after verifying that the ratio of the experimentally
measured photocurrent to the theoretically maximum photocurrent fell within an acceptable
margin of error, ensuring the reliability of the results. The quantum efficiency was then

calculated using the same data to maintain consistency. Given that the QE is defined as the ratio

33



of generated electrons to the number of incident photons, equation 7 may be used to complete

this analysis where Neiectrons ad Nphotons are the number of electrons and photons, respectively.

Ne ectrons
QE = —flecirens (eq. 7)

Nphotons

The number electrons were computed simply as the measured photocurrent divided by
the charge of a single electron as shown in equation 8 where I, is the measured photocurrent and
q is the charge of an electron. Similarly, the number of incident photons were calculated using
the total power of the laser and the energy of a single photon at the laser’s nominal wavelength,
which is shown in equation 9 where Pj,s; is the power of the laser, lambda is the wavelength, h is

Planck’s constant, and C is the speed of light.

1
_ 1ph
Nelectrons - q (eq- 8)
Plaser (Praser* A)
N, = = eq. 9
photons Eph hsc ( q )

Using the experimentally obtained photocurrent, the quantum efficiency was calculated
to be approximately 0.534 or 53.4% when using the current collected across all three pixels.
While some silicon photodiodes may have quantum efficiencies up to 90%, it is typical for such
devices to exhibit between 40% and 80% efficiency [15]. Given that the QE measurement falls
within the typical range of values under laboratory measurement constraints, this estimation of

quantum efficiency is considered acceptable for this type of device.
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3.4 Observed Visible Light Response

3.4.1 Flashlight Intensity Data

A similar testing setup was used to test the imager’s response to polychromatic visible

light, using a mobile phone flashlight instead of the green laser source (see Figure 28). The

Figure 28: The polychromatic light testing setup, using different light intensities from a phone flashlight.
phone flashlight has four intensity values, and the device was spaced at a fixed distance away
from the imager to ensure consistency. Only pixels 8-15 were connected to the imager hardware
for these tests, as to simulate the operating conditions of the system under vacuum. Two shots
per light intensity level were collected with the single-shot script, and values for each pixel were

averaged over all 100 samples before being averaged among different shots.

The resulting data was processed and plotted with Excel, which showed that each shot

exhibited an exponential-like intensity distribution across pixels as shown in Figure 29. The
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signal intensity in each plot is normalized to a maximum of 1, with a peak indicating amplifier

saturation or an out-of-range signal.

Stacking these plots for each incident light intensity showed that this response is
consistent across each light intensity setting. From Figure 30 it is evident that the light intensity
steps of the mobile phone flashlight increase in a mostly linear fashion. As expected, the
exponential rate of decay is also a function of light intensity, with the peak brightness resulting

in the most extreme decay.
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Figure 29: Signal intensity across pixels, showing exponential decay.
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Figure 30: Signal intensity data for each experimental brightness level.

36



3.4.2 Rectangular Laser Pointer Data

A similar methodology was used to test the imager’s response to visible light in the 600-
650 nm range, using a generic handheld red laser pointer. The spot size of the laser pointer was
measured to be approximately 3 mm x 5 mm, so it was tested both centered vertically on one

pixel and horizontally across a group of three pixels. The horizontal beam is shown in Figure 31.

Figure 31: A dark image of the red laser pointer spot size.

Given that the spot size of the laser is about 33% larger than the area of a single pixel, it
is expected that the laser has overlap into the neighboring pixels. This was demonstrated in the
data, where some signal was seen in the adjacent pixels due to the overlapping area. However,
most of the generated photocurrent was still concentrated within the target pixel due to the
collimated nature of laser light. This was also observed in the data, which showed that 98.6% of

the signal collected was concentrated within the target pixel.
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The experimental data confirms that when the laser source is rotated 90 degrees, the
signal bleeds symmetrically into the neighboring pixels with the target pixel only containing
59.5% of the incident signal. As expected, the plot in Figure 33 is dimmer than pixel data in
Figure 32 due to the distribution of signal across pixels 12, 13 and 14. Taking the brightest frame
from the horizontal shot data shows that when the laser pointer is centered on pixel 13, the

photocurrent generated in neighboring pixels is relatively uniform.

PD Array Output at 7.5ms

4] 2 4 6 8 10 12 14
Pixel Number

Figure 32: The brightest frame of red laser pointer data centered vertically on pixel 13.

PD Array Output at 8.5ms
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Figure 33: The brightest frame of red laser pointer data in the horizontal orientation.
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3.5 Preliminary Direct Electron Testing and Noise Data

Prior to imager experimentation, a phosphor plate was positioned in place of the
photodiode array in the chamber to confirm that the electron source was operating as intended

and a beam could be formed.

Since the photocathode requires a significant bias for thermionic emission, it is biased
negatively, allowing a gradually increasing potential to be applied to the MCP and phosphor
plate to guide electrons through the drift region. An additional wire mesh grid was placed
between the MCP and the phosphor, which was biased slightly lower than the phosphor to
provide another source of electrical attraction to guide the electrons through the drift region. By
pulsing the solenoid as discussed in Section 2.1.1, the beam is confined into a focused spot as it
fluoresces on the surface of the phosphor plate. As the potential applied to the phosphor plate
increased, the fluorescence brightness increased due to more electrons reaching the plate's
surface. A particularly bright example is shown in Figure 34, and the focusing hardware is

shown in Figures 35 and 36.
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Figure 34: Solenoid-focused electron beam incident to the positively biased phosphor plate.
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Figure 35: The full solenoid testing setup placed under vacuum.

80 S s
Figure 36: The mesh grid added to the system to pull electrons to the phosphor (left) and the grid pattern visible on the
phosphor fluorescence (right).

After validating the electron beam, the photodiode was placed under vacuum to replace
the phosphor plate and was electrically connected to the amplifier array via a feedthrough as
shown in Figures 21 and 22. The functionality of the imager was then confirmed by flooding the
chamber with visible light using a flashlight and confirming that the feedthrough’s effect on the

41



generated photocurrent was negligible. The beam was then re-formed in with the same procedure
as to maintain consistent results. However, for the imager to function properly, the photodiode
must remain grounded relative to the transimpedance amplifiers’ power supply. To simulate this,
additional biases were tested on the phosphor plate between ground and the grid voltage. Under
these operating conditions, fluorescence only became visible once the potential applied to the
phosphor surpassed that of the mesh grid. Consequently, it was hypothesized that electrons
would be unable to reach the photodiode array when it was grounded, using the existing electron
beam configuration. Single-shot data was then taken from the imager under various sensitivity

configurations to discern whether electrons could be seen at the interface of the sensor.

Signal vs Pixel, 3 Sample Average - 390 kOhm Slgnal vs Pixel, 3 Sample Average - 820 kOhm

Figure 37: Direct electron noise characteristics collected with various resistor sizes.

Figure 37 shows the results obtained by pulsing the solenoid as the shot was taken,
compared to dark images taken without the electron beam or solenoid pulse. In this test
configuration, pixels 0-7 use the pre-soldered 3.3 k€ resistors, while pixels 8-15 are connected
to the resistor hot-swap board. This was done to discern the impact of thermal noise on the
system, while leaving the original 3.3 kQQ resistors on the left half of the sensor to provide a

baseline of noise, given that they are not positioned directly in the path of the beam. It can be
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observed given the scale of these plots that the variation we see is due to the intrinsic noise of the
system, and the noise level increases with the impedance of the resistors used on the hot-swap
board. Interestingly, the thermal noise due to the connected impedance was not significantly
higher on the 390 kQ test. In the 820 k€ test however, the noise level on the right half of the

sensor is much greater than on pixels 0-7.

The plots were generated using the average of three background shots and three real-data
shots with the electron beam enabled. Since the real-data shots closely match the trend of the
background data, it can be concluded that the sensor is not currently seeing electrons at its
interface. This is largely due to limitations with the testing setup because the photodiode array is
unable to be biased higher than the MCP and mesh grid in the same manner as the phosphor
plate. Given that the MCP and mesh grid are positively biased and in the path of the electrons as
they make their way toward the imager, it is unlikely any will overcome the attractive force of
the nearby hardware and be imaged. Furthermore, the surrounding vacuum chamber also being
grounded also makes it is unlikely that the electrons are able make it to the imager without being
sunk elsewhere. Since this result was obtained both with the photodiode array and with the
decreased phosphor plate bias, it follows that the testing setup must be changed such that the
MCP bias is much closer to ground to allow electrons to pass through and collide with the

imager.
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Chapter 4

4.1 Conclusion

In this research, a high-speed direct electron and visible light imager was developed to
provide proof of concept that direct-electron imagers are a feasible replacement for existing x-
ray imaging technologies and may provide meaningful improvements to temporal and spatial
resolution. Significant work was done to develop the imager’s supporting hardware and software
subsystems to facilitate high sensitivity and high frequency measurements. A custom PCB was
designed to amplify imager photocurrents and convert them to measurable voltages, and several
custom software components were designed to allow various distinct imager operating modes.
The imager was tested extensively at atmosphere with visible light to ensure consistent and

repeatable operation.

The imaging system was used to experimentally determine that the quantum efficiency of
the photodiode array in response to 532-nm incident light was approximately 85%. This value
was calculated using two different methods, with the error between them being less than 0.002%.
Polychromatic light from a mobile phone flashlight was analyzed to characterize the system’s
ability to image visible light of differing intensities and confirm the device’s linear relationship
of incident signal with photocurrent and output voltage. For each intensity value, the sensor
displayed an exponential decay away from the target pixel, in which the rate of decay was a
function of the source brightness. Furthermore, signal confinement testing was performed using a
handheld red laser pointer in two different orientations to confirm the spatial resolution of the

imager.

44



The photodiode array was also placed under vacuum in place of the pre-existing
phosphor plate testing stage to characterize its response to direct electron signal, and connected
to the resistor hot-swap board so that its hardware sensitivity could be adjusted. While the imager
operated as expected in response to photons while under vacuum, further changes to the system
such as signal shielding will be necessary to obtain quantitative data in response to the direct
electron source. Based on the successful visible light testing performed and the specification of
the photodiode array, we are very confident that the imager will accurately sense direct electrons
under vacuum with high spatial and temporal resolution following the completion of the electron

source configuration.

4.2 Future Work

4.2.1 Finalize Electron Source

The next validation step for the imager is to characterize its response to direct electrons.
This was not possible using the existing setup due to the photodiode needing to be grounded to
operate. Since the configuration used for the phosphor plate testing used increasing potential on
the MCP, mesh grid, and phosphor plate, electrons are being attracted to these components and
the photodiode array is not able to collect any signal. At the time of writing, a tube of wire mesh
shielding has been added to the vacuum chamber and will be biased very near the potential of the
electron source, which will allow a greater percentage of the signal to be guided through the free
space before being amplified by the MCP. This will also allow an adjustment of the potentials
used to bias the electron source, MCP, and grid to be more negative, which will allow the

grounded photodiode array to collect the signal.
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4.2.2 Implementation of hCMOS Sensor

The work presented in this research provides proof of concept that high-speed direct
electron imaging is feasible and should be iterated upon further. After the electron source is fully
configured and the response of the photodiode array is characterized, the sensor may then be
replaced with hybrid-CMOS sensors in development by the Lawrence Livermore National
Laboratory [2]. This would greatly benefit the temporal and spatial resolution of the system,
allowing electrons to be imaged at nanosecond time scale across 25-um pixels. The system will
be integrated with the existing hardware and will operate using the existing photodiode trigger as
its coarse trigger. The result of this work will be a very high-speed direct electron imaging
system, capable of capturing data in critical diagnostic applications where traditional imagers are

insufficient.
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Appendix A: Device Firmware and Software

A-1: Arduino 10-kHz Data Collection Firmware

// REFERENCES:
// adapted from https://stackoverflow.com/questions/28887617/arduino-fill-array-with-values-from-

//analogread [16]
// https://forum.arduino.cc/t/use-external-trigger-to-start-the-timer/567070/3

// https://www.arduino.cc/reference/en/language/functions/external-interrupts/attachinterrupt/

// Ryan Gloekler, UC Davis. Hunt Vacuum Microelectronics Lab

// regloekler@ucdavis.edu

// Takes an input trigger from DG535, which causes an interrupt. 100 data samples are taken at 10KHz
// (10 ms total sampling time). Data is then sent to serial, where it can be retrieved by python for
processing.

// Last edit: 6/12/2024

// The code was updated to use polling rather than an interrupt service routine as initially written.
// This was done to prevent noise from the DG535 from triggering, and included a line of code to check
// the input pin again after a set time, to confirm that the trigger was received.

// storing 100 values @ 10KHz = 10ms of data. Solenoid should be active ~5ms.

const unsigned int readings = 100;

const unsigned int numPixels = 16;

unsigned int analogVals[readings][numPixels]; // create an array to store data readings in
unsigned inti =0;

const int POLLING_PIN =5;
volatile int triggeredFLAG = 0; // initially set interrupt flag to low..

void setup()

{
// set the polling pin as input, and set it low initially.

pinMode(POLLING_PIN, INPUT);
digitalWrite(POLLING_PIN, LOW); // ensure internal pull-ups are off

Serial.begin(115200);
analogReference(EXTERNAL); // use an external analog reference for ADC. Allows for manual tuning of
adc sensitivity. 0 --> 1023 == 0 --> x Volts, x is the external reference voltage

}

void loop()
{
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static uint32_t tStart = micros(); // grab start time
const uint32_t period = 100; // setting measurement frequency to 10KHz
uint32_t tNow = micros();

if (digitalRead(POLLING_PIN) == HIGH){
delay(0.1); // if this value is unstable, change back to 0.250 (250us). This was stable and worked with
the electron gun
if (digitalRead(POLLING_PIN) == HIGH){
triggeredFLAG = 1; // if the pin is still high after 500us, its a shot instead of noise
}
//triggeredFLAG = 1; // set the trigger flag high to take data
}

if (tNow - tStart >= period && triggeredFLAG) // check to see if collection is active and interrupt is
received

{

tStart += period; // update start time to ensure consistent and near-exact period

// TAKE DATA FROM PIXELS
analogVals[i][0] = analogRead(A0);
analogVals[i][1] = analogRead(Al);
analogVals[i][2] = analogRead(A2);
analogVals[i][3] = analogRead(A3);
analogVals[i][4] = analogRead(A4);
analogVals[i][5] = analogRead(A5);
analogVals[i][6] = analogRead(A6);
analogVals[i][7] = analogRead(A7);
analogVals[i][8] = analogRead(A8);
analogVals[i][9] = analogRead(A9);
analogVals[i][10] = analogRead(A10);
analogVals[i][11] = analogRead(A11);
analogVals[i][12] = analogRead(A12);
analogVals[i][13] = analogRead(A13);
analogVals[i][14] = analogRead(A14);
analogVals[i][15] = analogRead(A15);

i++; // increment data counter value for analogVals

if (i>=readings) {
int counter =0;
Serial.printIn("Captured Data, exiting");
for (int x = 0; x < 100; x++) {
for (inty =0; y <= 15; y++) {
Serial.print(analogVals[x][y]);
Serial.print(", ");

}
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Serial.printIn("Sample: " + String(counter));
counter++;
}
delay(1000); // wait one second for stabilization, then become available for interrupts again
triggeredFLAG = 0;
i =0; //reset to beginning of array, so other readings overwrite existing data

A-2: Arduino PD Live-Plot Firmware

// Ryan Gloekler, UC Davis. Hunt Vacuum Microelectronics Lab

// regloekler@ucdavis.edu

// Simply collects data from the Arduino Analog-Digital Converter pins A0-A15

// Sends collected data to serial bus, such that Python can read and process sensor data
// Last edit: 2/29/2024

void setup() {
// initialize serial communication at 9600 bits per second:
Serial.begin(9600);

}

void loop() {
// read the input on analog pins:
int sensorValue = analogRead(A0);
int sensorValuel = analogRead(A1);
int sensorValue2 = analogRead(A2);
int sensorValue3 = analogRead(A3);
int sensorValue4 = analogRead(A4);
int sensorValue5 = analogRead(A5);
int sensorValue6 = analogRead(A6);
int sensorValue7 = analogRead(A7);
int sensorValue8 = analogRead(A8)
int sensorValue9 = analogRead(A9);
int sensorValuel0 = analogRead(A10);
int sensorValuell = analogRead(A11);
int sensorValuel2 = analogRead(A12);
int sensorValuel3 = analogRead(A13);
int sensorValuel4 = analogRead(A14);
int sensorValuel5 = analogRead(A15);

’

7

// send the ADC values to serial for Python collection
Serial.print(String(sensorValue) +',');

49



7

Serial.print(String(sensorValuel) +',")
Serial.print(String(sensorValue2) +',")
Serial.print(String(sensorValue3) +',')
Serial.print(String(sensorValue4) +',")
Serial.print(String(sensorValue5) + ',');
)
)
)
)

7’
1

7’
1

’

Serial.print(String(sensorValue6) + ',
Serial.print(String(sensorValue7) + ',
Serial.print(String(sensorValue8) + ',
Serial.print(String(sensorValue9) + ',
Serial.print(String(sensorValue10) +',')
Serial.print(String(sensorValuell) +,');
Serial.print(String(sensorValue12) +,');

)

)

’
1.
’
.
’
.
’
’

’

Serial.print(String(sensorValuel3) + ',
Serial.print(String(sensorValuel4) + ',
Serial.printin(String(sensorValuel5));
delay(175); // 175 ms between sensor readings (preserve serial data integrity for live plotting)

’

A-3 Python Data Processing and Storage Script

# @author Ryan Gloekler, UC Davis. Hunt Vacuum Microelectronics Lab

# regloekler@ucdavis.edu

# Reads and processes Serial data received from Arduino ADC module, sampling at 10 KHz for 10 ms.
# Plots the average data across the sensor over this time period.

# Stores data samples for each shot in labeled Excel files for later analysis

# Last updated: 6/12/2024

from datetime import *

from time import *

from matplotlib import pyplot as plt
from matplotlib.pyplot import draw
import serial, re, sys, csv, 0s

import numpy as np

MULTIPLIER = 10 # added an in-code multiplier to help with data visualization as shots take place
# DEFINE HELPER FUNCTIONS

# grab current data from the serial bus
def grab_serial(ser):
line = ser.readline()
#line = sys.stdout.write(str(ser.readline()))
sys.stdout.flush()
return str(line)

50



# used for scaling a matrix of values - not used for averaged pixel value cases
def scale_values(data_array):
# normalize
for val in range(len(data_array)):
try: data_array[val] /= 1023 # arduino uses a 10-bit ADC, 1024 values
except: print("Couldn't convert... Trying again")
return data_array

# create a new array that can be plotted (expected data format)
def make_plottable(input_data):
plottable_data =]
for val in range(0,2): plottable_data.append(input_data)
return plottable_data

# creates a new csv file that background data can be written to
def create_csv(filenm):

# create a csv file to write background noise data to, and a header array

file = open('./' + filenm, 'a', encoding = 'UTF8', newline=")

header = ['Pixel 1', 'Pixel 2', 'Pixel 3', 'Pixel 4', 'Pixel 5', 'Pixel 6', 'Pixel 7',

'Pixel 8', 'Pixel 9', 'Pixel 10', 'Pixel 11', 'Pixel 12, 'Pixel 13', 'Pixel 14', 'Pixel 15', 'Pixel 16', 'Sample No.',
'Serial Time']

writer = csv.writer(file)
writer.writerow(header)
return writer

# IMPLEMENT MAIN FUNCTIONALITY
# since the heavy lifting is done in firmware, we just need to read all the
# data from serial here...
def main():
# search for csv, create one if it is not found
filenm = 'shot_data/data_collection_dump.csv'
if filenm not in os.listdir("./'):
file_writer = create_csv(filenm)
else:
file_writer = csv.writer(open(filenm, 'a', encoding = 'UTF8', newline=""))

# set up serial communication

ser = serial.Serial(port="COM3', baudrate=115200, timeout = 1)
# setup regex for data parsing

non_decimal = re.compile(r'[*\d,]+')

# set sample counter to 0
counter=0
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# main loop of operation - constantly scan serial,
# until we receive data from ADC (firmware has been triggered)
averaged =[]
averaged np =]
new_shot = True
while True:
line = grab_serial(ser).split(', ')
if len(line) > 2: # get only proper pixel data from serial
received_time = perf_counter()
# if a shot has occurred, create a new CSV file for it.
if new_shot:
cur_time = strftime("%Y-%m-%d_%H-%M-%S", gmtime())
print(cur_time)
new_shot = False # set the new shot flag, so we don’t re-create files for each line

newfile = 'shot_data/shot_' + cur_time +'.csv'
if newfile not in os.listdir('./'):
file_writer = create_csv(newfile)
else:
file_writer = csv.writer(open(newfile, 'a’, encoding = 'UTF8', newline="))

# create processing array and start counting data points
processed =[]
counter+=1

# convert all values to integers, omit all other characters
for val in range(len(line)):
converted = non_decimal.sub(", line[val])
processed.append(converted)

# trim array to include only floating point values
processed = [int(val) for val in processed]

# scale values to range of 0-1, omitting the sample number row
scaled = scale_values(processed[0:-1])

# optionally include background subtraction (with noise data from Excel)

#bg vals =
[0.002600196,0.076774194,0.077556207,0.028670577,0.002424242,0,0.000371457,0.051104594,0.085
278592,0.110215054,0.011612903,0.005679374,0.09914956,0.0028348,0.105493646,0.082091887]

bg_vals = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

scaled = [val - bg_vals[scaled.index(val)] for val in scaled]

# convert data to floating point and get a plottable version for later
scaled_converted = [float(val) for val in scaled]
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averaged.append(scaled_converted)
plottable = make_plottable(scaled_converted)

# add metadata to the data, for final Excel readability
scaled.append(processed[-1])
scaled.append(str(datetime.now()))

# print(scaled)

# write the current set of pixel data to csv, and close file
file_writer.writerow(scaled)

# print out a scaled version of the data to terminal, much like is done in live-update script
printable = [val * MULTIPLIER for val in scaled[0:-2]]
print(printable)

#if received a complete set of data, plot it
if counter % 100 == 0:
final_time = perf_counter()
print('Final data transfer, processing, and csv write time is: ' + str(final_time - received_time))
# if we are ready to finish handling this shot, average data
# for plotting

# print(averaged)

# create a numpy array object to handle averaging

# uncomment this block to enable averaging over the total 10ms
# period

print("\nPLOTTING DATA AVERAGED OVER 10ms')

np_array = np.array(averaged)

averaged_np = np.mean(np_array, axis=0)

plottable = make_plottable(averaged np)

plottable = [[val*MULTIPLIER for val in row] for row in plottable]

# Set the figure size, and scale
plt.rcParams["figure.figsize"] = [7, 3.50]
plt.rcParams["figure.autolayout"] = True

print("\nPlotting light-intensity map...")

# set up the figure for plotting pixels

fig, ax = plt.subplots(1,1)

image = plottable

im = ax.imshow(image, cmap='Reds', vmin = 0, vmax= 1)
ax.set_title('PD Array Output')

ax.set_xlabel('Pixel Number')
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plt.show() # plot the last sample received
averaged = [] # reset the averaging list for the next shot

new_shot = True # reset shot flag for next shot data collection
if _name__=='__main__"
main()

A-4: Python Sensor-Data Live Plotting Script

# Ryan Gloekler, Hunt Vacuum Microelectronics Lab, MGXI Project
# @author: regloekler@ucdavis.edu
# last updated 6/12/2024

# Operation: Run draw_pixels_updated.py from the terminal. This will create a data

# file containing background signal, for the first 150 samples. The program will then

# terminate. Subsequent runs will not terminate, unless by the user, and will instead

# plot the live data, so that changes at the photodiode interface can be seen in

# real time. The values displayed have the average of the background data subtracted from
# them, so as to ensure that as much noise can be cut from the sensor readings as possible.

from datetime import *

from matplotlib import pyplot as plt
from matplotlib.pyplot import draw
import numpy as np

import serial, re, sys, csv, os, time

MULTIPLIER = 10 # a value that multiplies all of the observed pixel values by 10, so that they more easily
show up on live updating script

bg data = 'background_pixelData.csv' # used to create csv files...
data_csv = 'bg_subtracted data.csv' # used to create new data files (bg_sub)

# grab current data from the serial bus
def grab_serial(ser):
line = ser.readline()
#line = sys.stdout.write(str(ser.readline()))
sys.stdout.flush()
return str(line)

# used for scaling a matrix of values - not used for averaged pixel value cases
def scale_values(data_array):

# normalize

for val in range(len(data_array)):
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try: data_array[val] /= 1023
except: print("Couldn't convert... Trying again")
return data_array

# create a new array that can be plotted (expected data format)
def make_plottable(input_data):
plottable_data =]
for val in range(0,2): plottable_data.append(input_data)
return plottable_data

# creates a new csv file that background data can be written to
def create_csv(filenm):
# create a csv file to write background noise data to, and a header array
file = open('./' + filenm, 'W', encoding = 'UTF8', newline=""
header = ['Pixel 1', 'Pixel 2', 'Pixel 3', 'Pixel 4', 'Pixel 5', 'Pixel 6', 'Pixel 7',
'Pixel 8', 'Pixel 9', 'Pixel 10', 'Pixel 11", 'Pixel 12', 'Pixel 13', 'Pixel 14', 'Pixel 15', 'Pixel 16', 'TIME']

writer = csv.writer(file)
writer.writerow(header)
return writer

# get the averaged data from the existing data file

def collect_csv_data():
# read from csv file, and get the average of each column for
# background subtraction

data_array =]
with open(bg_data, "r") as f:
reader = csv.reader(f, delimiter="\t")
fori, line in enumerate(reader):
data_array.append(line)
data_array.pop(0)

averaged=10,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0]
for row in range(len(data_array)):
data_row = data_array[row][0].split(’,')
for val in range(len(data_row)):
averaged|[val] += float(data_row[val])

averaged = [element / len(data_array) for element in averaged]
return averaged

# main loop: creates figure, sets up serial communication, gets data from serial,
# performs background subtraction, and live plots the PD array data
def main():

averaged_time =]
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timer_counter=0
# establish comms with the Arduino
ser = serial.Serial(port="COM3', baudrate=9600, timeout = 1)

# setup regex, and grab some serial data
non_decimal = re.compile(r'[*\d,]+')

placeholder =[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.1,1.2,1.0,0.8,0.5, 0.2]

# Set the figure size, and scale
plt.rcParams["figure.figsize"] = [7, 3.50]
plt.rcParams["figure.autolayout"] = True

print("\nPlotting light-intensity map')

# set up the figure for plotting pixels

fig, ax = plt.subplots(1,1)

image = make_plottable(placeholder)

im = ax.imshow(image, cmap='Reds', vmin = 0, vmax= 1)
ax.set_title('PD Array Output')

ax.set_xlabel('Pixel Number')

# initiate the main loop of the program... Grab and plot data
# log the first several hundred samples to a csv file for background subtraction

# artifact of older code that used background subtraction from Excel file
background _counter =-1

writer = None

averaged = collect_csv_data()

data_writer = create_csv(data_csv)

# create a variable to store the maximum observed pixel value, over many cycles
CURRENT_MAX =0
while True:

initial_time = time.perf_counter()
# grab a new set of data from each of the pixels
new_data = grab_serial(ser).split(',")

# convert all values to integers, so they may be scaled
for val in range(len(new_data)):

converted = non_decimal.sub(", new_data[val])

if converted: new_data[val] = int(converted)

# scale the values for plotting, and get an array from them that can be
# plotted
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scaled = scale_values(new_data)
#print(type(scaled[0]))

# optionally include background subtraction (with noise data from Excel)

# bg_vals =
[0.002531769,0.074379277,0.074613881,0.026774194,0.002326491,0,0.000645161,0.048807429,0.084
623656,0.109032258,0.010420332,0.00516129,0.099921799,0.00285435,0.105913978,0.08113392]

bg_vals = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

scaled = [val - bg_vals[scaled.index(val)] for val in scaled]

plottable = [[]]

""" SKIPPING BG SUBTRACTION; negligible dark current, not needed for live updating purposes.
if bg_data in os.listdir('./'): # don’t bg sub if there is no bg
for val in range(len(scaled)):
try:
scaled[val] = float(scaled[val]) - float(averaged[val]) # perform the background subtraction,
and plot
except:
print("Couldn't update.. Trying again")
#print(scaled, end="
for val in scaled: print('%.7f' % (float(val) * MULTIPLIER), end =", ")
print(', MAX VALUE: ' + str('%.7f' % max(scaled)) + ' Pixel: ' + str(scaled.index(max(scaled))), end ="")

if max(scaled) > CURRENT_MAX:
CURRENT_MAX = max(scaled) * MULTIPLIER
print('Overall MAX: ' + str('%.7f' % CURRENT_MAX))

plottable = make_plottable(scaled)
plottable = [[val*MULTIPLIER for val in row] for row in plottable]

#print(plottable)
try: # update the canvas...
image = plottable
im.set_data(image)
fig.canvas.draw_idle()
plt.pause(0.00001)
except:
print('Couldnt update canvas... Data error.")
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# write the scaled data to the appropriate spreadsheet

if writer: writer.writerow(scaled)

else:
scaled.append(str(datetime.now())) # add the time to the data...
data_writer.writerow(scaled)

# check conditionals for background data

if background_counter > -1: background_counter +=1

if background_counter >= 150: exit('Finished Collecting Background data.')
final_time = time.perf_counter()

timer_counter +=1
averaged_time.append(final_time - initial_time)
if timer_counter % 200 == 0:
print(np.mean(averaged_time))
file.close()
if _name__ =='_main__":
main()

A-5: Python Excel Data Visualization Script

# @author Ryan Gloekler, UC Davis. Hunt Vacuum Microelectronics Lab
# regloekler@ucdavis.edu
# Last updated: 6/12/2024

# NOTE: this program expects that the data being processed (csv file) contains
# only one shot, separate shots of interest into separate csv files.

# Operation: Run the script as: py read_excelData.py 'datafile.csv' x [animate]

# where x is the time values you would like to visualize, and animate is an optional

# parameter, allowing for a playback animation of all 100 data points over 10 seconds
# (10ms data collection period)

import os, sys, csv

import numpy as np

from matplotlib import pyplot as plt
from matplotlib.pyplot import draw

# create a new array that can be plotted (expected data format)
def make_plottable(input_data):
plottable_data =]
for val in range(0,2): plottable_data.append(input_data)
return plottable_data
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# grab the appropriate sample number (divide time by .1 ms)
def time_to_row(sample_time):
# each row represents a sample, taken 100 us apart
sample_length =0.1 # ms
sample_num = sample_time / sample_length
sample_rounded = round(sample_num)
return sample_num, sample_rounded

def plot_sample(data, time_val):
# Set the figure size, and scale
plt.rcParams["figure.figsize"] = [7, 3.50]
plt.rcParams["figure.autolayout"] = True

print("\nPlotting data closest to ' + str(time_val) + 'ms.")

# set up the figure for plotting pixels

fig, ax = plt.subplots(1,1)

ax.set_title('PD Array Output at ' + str(time_val) + 'ms')
ax.set_xlabel('Pixel Number')

image = data

im = ax.imshow(image, cmap="'Reds', vmin = 0, vmax= 1)
plt.show() # plot the last sample received

return

def main():

global ANIMATE

ANIMATE = False

if len(sys.argv) < 2:
exit("Provide Excel file name and desired time")

else:
filenm, time = sys.argv[1], float(sys.argv[2])
excel_data =[]

if len(sys.argv) > 3:
ANIMATE = True
print(‘'Animating data over 10ms.")

print("Displaying data from the data point closest to " + str(time) + "ms"
sample_value = time_to_row(time)[1]

# catch out of bounds time values

if sample_value > 100: sample_value = 100
if sample_value < 1: sample_value =1
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with open(filenm, mode = 'r') as datafile:
linereader = csv.reader(datafile)
for line in linereader: excel_data.append(line)

# remove header from excel data
excel_data.pop(0)
if ANIMATE:
# set up the figure for plotting pixels
# Set the figure size, and scale
plt.rcParams|"figure.figsize"] = [7, 3.50]
plt.rcParams["figure.autolayout"] = True

fig, ax = plt.subplots(1,1)

image = make_plottable([1] * 15)

im = ax.imshow(image, cmap='Reds', vmin = 0, vmax= 1)
ax.set_title('PD Array Output')

ax.set_xlabel('Pixel Number')

foriin range(len(excel_data) - 1):
datapoint = excel_datal[i][:-2]
scaled_converted = [float(val) for val in datapoint]
plottable = make_plottable(scaled_converted)

image = plottable

im.set_data(image)

fig.canvas.draw_idle()

plt.pause(0.1) # pause for 100ms before drawing next frame
# this means that 100 samples * .1 s = 10s

# therefore, we are animating 10ms of data over 10s

else:
datapoint = excel_data[sample_value][:-2]
scaled_converted = [float(val) for val in datapoint]
plottable = make_plottable(scaled_converted)

plot_sample(plottable, time)
return

if _name__=="_main__":
main()

A-6: Photocurrent Approximation Script

# -*- coding: utf-8 -*-
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Created on Tue Apr 30 14:01:39 2024

@author: mamort@ucdavis.edu

import numpy as np
import math

source_type = "laser"

""" 532 LASER CASE """

a_overlap =9.3145 # [mmA”2] area overlap of circular laser over single rectangle pixel - calculated
by Jordan using autocad

A PD_pix=2*5 #[mmA*2] area of single PD pixel

A 532 =a_overlap # area of pixels lit up by laser

p_3r=4.9e-3 # [mW] power of class 3a laser

a_3r=np.pi * 2.4**2 # [mmA2] laser beam area ; d of clear aperture is 4.8mm
g_overlap = 0.8364 # percent of signal Gaussian beam power on single pixel - from real data
P_532 = (p_3r * g_overlap) / a_overlap

R_532=0.275 #[A/W] based on wavelength of laser & PD responsivity

""" 3 pix 532 LASER CASE """

a3pix_overlap = 9.3145 # [mmA~2] area overlap of circular laser over single rectangle pixel -
calculated by Jordan using AutoCad

A _PD 3pix=2*5 #[mm~"2] area of single PD pixel

#A 3pix532 = A_PD_3pix * 3 # area of pixels lit up by laser

p_3r_3pix=4.9e-3 # [mW)] power of class 3a laser

a_3r_3pix=np.pi ¥ 2.4*¥*2 # [mmA2] laser beam area ; d of clear aperture is 4.8mm
g3pix_overlap = 0.8364 # percent of Gaussian beam power on single pixel - from real data
P_3pix532 = (p_3r_3pix/a_3r_3pix)

A 3pix532 =a_3r_3pix # beam fully covered by 3 pixels

R_3pix532=0.275 #[A/W] based on wavelength (532nm) of laser & PD responsivity

mnn LASER CASE mnn
p_3a=4.3e-3 # [mW] power of class 3a laser
a_3a=3*5 # [mmA2] laser beam area

A _PD_pix=2*5 #[mm?*2] area of single PD pixel
A_laser = A_PD_pix * math.floor(a_3a//A_PD_pix) # area of pixels lit up by laser

P_laser = p_3a/A_PD_pix
R laser=0.35 #[A/W] based on wavelength (¥650nm) of laser & PD responsivity
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""" 3 pix LASER CASE """

p_3a_3pix = 4.9e-3 # [mW] power of class 3a laser

a_3a 3pix=2.5*5 #[mmA2] laser beam area

g_laser_overlap = 0.59494

P_3pixlaser = ((p_3a_3pix * g_laser_overlap) / a_3a_3pix)

A 3pixlaser = a_3a_3pix

R 3pixlaser=0.35 # [A/W] based on wavelength (~¥650nm) of laser & PD responsivity

""" E- GUN CASE """

#i_ gun=1.1e-6 # [A] max current measured on phosphor screen
i_gun=0.4e-6

V_grid = 3000 #[V] grid in front of PD

V_HK =-6600 # [V] 'ground' of e-gun

V_gun=V_grid-V_HK #[V] potentials between HK & grid

a_gun=50*50 # [mm~2] area of phosphor screen that collected 1.1uA

P gun=i_gun*V gun/a_gun

A _gun=A_PD_pix *1 #[mmA"2] full detector area of all 16 pixels
R_gun=0.225 # [A/W] based on eV of grids & PD responsivity
unity =1 # assume if PD worked ideally

QE _est=0.95 #assumed if PD is Si based
QE_PD=0.9 # random number - will update when have better idea what this is

if source_type == "laser":
P="P_laser # [mW/mmA2] power density of irradiation on detector
A=A laser # [mm~2] detector cross-sectional area/ area of beam irradiation

R=R_laser # [A/W] responsivity of the material
eta = unity # quantum efficiency of detector
elif source_type == "3pixlaser":
P = P_3pixlaser # [mW/mmA2] power density of irradiation on detector
A=A 3pixlaser # [mmA~2] detector cross-sectional area/ area of beam irradiation
R = R_3pixlaser # [A/W] responsivity of the material
eta = unity # quantum efficiency of detector
elif source_type == "532laser":
P=P_532 # [mW/mmA”2] power density of irradiation on detector
A=A 532 # [mm~2] detector cross-sectional area/ area of beam irradiation
R=R_532 # [A/W] responsivity of the material
eta = unity # quantum efficiency of detector
elif source_type == "3pix532":
P =P_3pix532 # [mMW/mm”2] power density of irradiation on detector
A=A 3pix532 # [mm~2] detector cross-sectional area/ area of beam irradiation
R = R_3pix532 # [A/W] responsivity of the material
eta = unity # quantum efficiency of detector
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elif source_type == "egun":
P=P_gun # [W/mmA”2] power density of irradiation on detector
A=A_gun # [mmA~2] detector cross-sectional area/ area of beam irradiation
R=R_gun # [A/W] responsivity of the material
eta = unity # quantum efficiency of detector
else:
print ("need source type")

I=P*A*R*eta
print("estimated photocurrent generated by PD [mA]: \n", 1*1e3)
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