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Positioning residues for function in designed proteins 

Cody Krivacic 

Abstract 

Computational protein design is poised to bring forth many advances in areas ranging 

from personalized medicine to biofuel production. While protein engineers have made huge 

strides towards the design of structure, proteins with new functions remain extremely difficult 

to design in silico, owing largely to the precise geometric requirements they demand. In this 

dissertation, I present two new methods for the design of functional proteins that focus 

specifically on enabling the precise sidechain geometries that are required for functions such as 

binding and catalysis. Pull Into Place (PIP) accurately places key amino acid sidechains by creating 

and stabilizing new irregular backbone geometries that are compatible with a provided functional 

interaction, utilizing new fragment-based local structure design and prediction methods. We 

experimentally validate PIP on a ketosteroid isomerase model system by redesigning its active 

site loop such that it uses a glutamate, rather than an aspartate, to perform proton extraction on 

its substrate, a task requiring accuracy on the scale of a carbon-carbon bond. 

Where PIP enables one or a few functional sidechain interactions requiring irregular 

backbone structures, Helical ELements Interface eXplorer (HELIX), a new method for de novo 

protein-protein interface design, instead attempts to connect highly regular secondary structure 

elements to facilitate many functional sidechain interactions at once. It does this by matching 

tertiary structural motifs from the PDB with a library of proteins containing systematically 

reshaped α-helices. HELIX results in computational designs with a high degree of shape 
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complementarity, many of which contain difficult-to-design polar interaction networks. 

Together, these two works encompass several new tools and approaches that enable the design 

of new functions. 
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Chapter 1 

Introduction: Computational Protein Design 

Proteins are a class of biological polymers that are uniquely situated for interacting with the 

atomic world. In nature, they perform a broad range of functions, including chemical synthesis 

and degradation, regulation, signaling, and structural roles. This variety in functions arises due to 

several features that differentiate proteins from other biological macromolecules: unlike the 

simple but inflexible hydrogen bonding-mediated interactions of DNA base pairing, proteins fold 

into and switch between complex structures by utilizing a breadth of chemical phenomena. The 

Escherichia coli lactose repressor, for instance, makes use of the energetic penalty resulting from 

burying a charged lysine residue in its hydrophobic core to facilitate a critical conformational 

change [1], combining charge interactions, relative permittivity, and the hydrophobic effect to 

impart function. By contrast, unlike the flexible but nonspecific interactions of lipids, proteins can 

reach deep and narrow energy minima, bestowing them distinctive structures that enable 

specificity and affinity in their interactions; indeed, preorganization of the same lactose 

repressor’s DNA-binding domain results in tighter binding to its target [2]. It is the intricate and 

varied structures of proteins, as well as their tunable flexibility, that gives them the affinity, 

specificity, and adaptability needed to carry out complex biological functions. This also makes 

them attractive targets for engineers looking to harness the power of biology; computational 
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protein engineering, then, is the rapidly evolving field of designing proteins in silico that fold into 

a desired structure or perform a user-defined task in vitro or in vivo. 

The variety of chemical properties available to proteins that makes them attractive targets 

for engineering also represents the biggest challenge facing computational protein design. Since 

each position in a protein is comprised of one of twenty canonical amino acids, a 100-residue 

protein, smaller than most natural proteins [3], represents roughly 1.3x10130 (or 20100) possible 

sequences, which is many orders of magnitude larger than the number of atoms in the observable 

universe [4]. Exhaustive sampling of sequences for even a single backbone is therefore impossible 

in practice, and the same is true of sampling conformational space for even a single sequence. 

Given the enormous search spaces required, it is no surprise that a myriad of limitations still 

impede the era of bespoke molecular machines. 

1.1 Designing functional proteins 

Sampling limitations are especially pronounced for the design of proteins with new functions. 

Such a task requires (a) functional interactions with a target molecule, (b) a structure that 

facilitates those interactions, and (c) a sequence that folds into the functional structure. These 

requirements result in a very small solution space within a vast combined sequence-

conformation-energy landscape, so protein engineers who wish to design new functions must 

find clever ways to navigate it. Because the requirements for (a) are the most strict, design 

approaches typically start by defining one or more functional motifs. Next, (b) is addressed by 

finding a structure which can facilitate the functional motif. Finally, a sequence is designed (c) 

which stabilizes the design structure. Using this general framework, the design of functions such 

as ligand and metal binding [5], [6], nucleotide deamination [7], kemp elimination [8], small 
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molecule sensing [9], and protein switching [10] have achieved success, often leveraging the 

extensive framework for modeling and design laid out by the Rosetta macromolecular modeling 

suite [11].  

Figure 1.1 Geometric requirements in functional proteins. Specific residue-level interactions 
(left, orange and green spheres) must be accommodated by compatible backbone geometries 
(orange, cartoon), and often constellations of many such interactions must be accommodated by 
several noncontiguous structural units (right, orange). These, in turn, must be held together by a 
suitable protein scaffold (right, white). 

 

Finding scaffolds that are compatible with a cluster of functional residues is often the most 

difficult step in designing function. These sampling difficulties are sometimes addressed by 

matching functional motifs into natural protein scaffolds [8], [9], or by modifying an existing 

protein to perform a new function [7], taking advantage of the myriad of functional structures 

already selected by nature. Natural protein folds are thought to be more fundamentally 

compatible with function than random protein geometries, as evidenced by the divergent and 

convergent evolution of domains [12], as well as the reuse of smaller geometric motifs [13], even 
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among proteins with unrelated functions. However, it may sometimes be desirable to use 

completely de novo folds, as they are less likely to interact with natural proteins unintentionally. 

In other cases, the scaffold problem is addressed by grafting functional residues into helical 

bundles [5], [10]. This approach constrains the design space significantly by only considering a 

single, highly designable topology; because helices self-satisfy their internal backbone hydrogen-

bonding donors and acceptors, a helical bundle can be stabilized primarily via hydrophobic 

packing, which is a far easier design task than satisfying buried polar groups [14]. This makes 

stable noncontiguous interactions much easier to design into helical bundles than folds which 

contain a variety of secondary structures. However, the palette of functions that are compatible 

with helical bundles is likely limited, and other approaches are needed to fully unlock the 

functional potential of designed proteins. 

Finally, machine learning approaches have recently emerged as a new paradigm in 

computational protein engineering [15], [16]. Here, recent advances in protein structure 

prediction via deep learning can be leveraged to design protein structures that are predicted to 

be well-folded. In principle, functional constraints can be incorporated as a loss function 

measuring the difference between the predicted structure and some target geometry, the value 

of which can be used as a Metropolis criterion in a Monte-Carlo search through sequence space. 

Alternatively, when the predicted structure is close to satisfying the design goals, the differential 

of the loss function can be backpropagated all the way to the input sequence [17]. This approach 

has seen some success in creating stable structures [18], but only computational results exist for 

the design of function [19], and it is unclear whether machine learning models that learned to 

predict natural protein structures would perform well with completely de novo geometries. 



 5 

Regardless of the approach, most computationally designed functional proteins fail to reach 

the affinities or catalytic rate enhancements seen in nature. One of the fundamental difficulties 

in the design of functions such as binding and catalysis is that they can require constellations of 

precise sidechain interactions with a ligand or binding partner, and these interactions must be 

facilitated by often-irregular backbone geometries. Indeed, success rates for the design of 

function are significantly lower than for the design of structure, yet functional proteins that are 

largely helical fare much better than the general pool of functional designed proteins [20]. This 

highlights the difficulty in stabilizing interactions that are incompatible with helical bundles, and 

many functions are likely to require combinations of secondary structure and irregular loop 

geometries to position key functional residues; therefore, methods for designing new backbone 

geometries that enable specific sidechain-level interactions are highly valuable. 

1.2 New methods for designing functional proteins 

In this dissertation, I outline two methods that address the problem of positioning 

functional residues: Pull Into Place (PIP) and Helical ELements Interface eXplorer (HELIX). PIP 

positions key residues by generating and optimizing the sequence of new local backbone 

geometries, utilizing fragment-based design and prediction algorithms to design new structures 

that are compatible with function. These geometries can consist of secondary structures or 

irregular loops, making PIP well-suited for optimizing functions that are less compatible with 

highly regular geometries. HELIX enables the creation of protein-binding proteins by focusing first 

on optimizing many local interactions via positioning of short helical fragments, and then 

searching for scaffolds that enable the positioning of several of these helices. This simultaneously 

addresses the problems of functional residue placement and scaffold selection. By focusing on 
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enabling residue-level functional interactions, these methods address what is perhaps the most 

fundamental problem in the design of functional proteins. I believe this work will continue to 

provide utility to protein engineers, as well as a basis for progressing the field of computational 

protein design. 
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Chapter 2 

Accurate positioning of functional residues using robotics-

inspired protein design 

2.1 Abstract 

Proteins achieve their complex functions, such as molecular recognition with high affinity 

and specificity, through intricate three-dimensional geometries in functional sites. To engineer 

new protein functions, accurate positioning of amino acid functional groups is therefore critical 

but has remained difficult to achieve by computational methods because of current limitations 

in the design of new conformations with arbitrary user-defined geometries. Here we introduce 

two computational methods capable of generating and predicting new local protein geometries: 

fragment kinematic closure (FKIC) and loophash kinematic closure (LHKIC). FKIC and LHKIC 

integrate two approaches: robotics-inspired kinematics of protein conformations and insertion 

of peptide fragments. We show that FKIC and LHKIC predict native-like conformations at atomic 

accuracy and with up to 140-fold improvements in sampling efficiency over previous approaches. 

We then integrate these methods into a new design protocol, pull-into-place (PIP), to position 

functionally important sidechains via design of new backbone conformations. We validate PIP by 

remodeling a sizeable active site region in an enzyme and confirming the engineered new 

conformations of two designs with crystal structures. The described methods can be applied 

broadly to the design of user-defined geometries for new protein functions. 
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2.2 Introduction 

Advances in computational protein design [1], [2] promise to create new proteins to 

impact current and future challenges in biotechnology and medicine. Computationally designed 

proteins already enable important applications as modular sense/response systems to control 

precise biological responses [3]; as nanoparticles for potent protein vaccines[4]; and as protein 

therapeutics with minimal side effects [5]. However, while new “idealized” protein structures 

consistent primarily of regular secondary structure elements connected by short loops can now 

often be designed rather robustly[6], design of new functions remains more difficult [2], [7].  

A key challenge lies in the difficulty of designing the fine-tuned protein geometries 

necessary for function with atomic accuracy. Many functions involve considerable deviations 

from the idealized highly stable de novo designed structures that are much easier to design [8], 

[9]. Further difficulties arise both from the small energy gaps between functional and non-

functional conformations [10] and the formidable problem of sampling the enormous space of 

possible sequence/structure combinations [11]. Taken together, these issues complicate the 

accurate positioning of amino acid functional groups for many applications involving specific 

molecular recognition. 

Accurate positioning of key amino acid side chain functional groups by computational 

design is particularly challenging in cases where the desired geometry cannot be achieved by 

simply placing new side chains on an existing or slightly modified backbone, but instead requires 

generation and design of substantially altered backbone conformations. Despite the importance 

of this capability for designing proteins with new user-defined functions, as well as prior work on 

local alterations of active sites [12], [13], this problem has remained generally unsolved.  
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Here we describe and experimentally validate a new approach for designing substantially 

altered protein conformations that accurately position user-defined functional groups in 

proteins, called Pull Into Place (PIP). The PIP protocol has three steps: (i) generation of new 

backbone conformations, where functional groups of interest are gently pulled towards their 

desired positions using harmonic restraints, (ii) sequence design using fixed-backbone side-chain 

optimizations with the same restraints, and (iii) structure prediction using unrestrained flexible-

backbone simulations to identify designs predicted to adopt the desired new backbone 

conformation. We demonstrate that PIP is capable of accurately placing side chains and designing 

the required considerable alterations of the protein backbone by solving crystal structures of two 

designs. Detailed characterization of one successful design reveals a robustness to mutation, 

suggesting that multiple interactions contribute to the conformation of the remodeled region. 

The design methods described here advance the engineering of new proteins by allowing the 

accurate positioning of functional groups critical for many aspects of protein function, such as 

specific recognition of binding partners. 

2.3 Results 

We set out to develop a method (PIP) to accurately position amino acid functional groups 

in proteins by designing new local backbone geometries. The PIP algorithm required 3 

components (Fig. 2.1): (1) a method to generate designable backbone conformations that could 

precisely position defined functional groups, (2) a way to stabilize these new backbone and side 

chain conformations by finding sequences optimal for the desired structure, and (3) a method to 

predict the new conformation given a sequence, to assess whether the desired structure is also 

optimal for the designed sequence. 
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Figure 2.1. Steps of the PIP protocol. Top left: functional geometry is defined. Top middle: new 
backbone conformations (green) are generated to satisfy the geometric restraints. Top right: 
Backbones are filtered based on their ability to satisfy the geometric restraints. d1, d2, and d3 
refer to the distances of the atoms in a positioned carboxyl group to their defined ideal positions. 
Bottom right: Sequences are designed to stabilize the de novo backbone. Bottom middle: Designs 
are selected based on multiple computational quality metrics using Pareto fronts (Methods). Red: 
Pareto-efficient designs; blue: other designs. Bottom left: For selected sequences, Rosetta 
structure prediction method are applied to predict the lowest-energy structure (yellow). 
Illustrations use the KSI model system detailed in Fig. 2.3. 
 

 
We first describe two improved computational methods, fragment-kinematic closure 

(FKIC) and loophash-kinematic closure (LHKIC), to generate new backbone conformations (step 

1) and to predict their structures accurately given designed sequences (step 3). These methods 

are particularly suited to problems where (i) target structures do not exclusively adopt regular 

secondary structure geometries, (ii) there are no protein homologs that can be used as templates 

for modeling, and (iii) there are no multiple sequence alignments to guide current deep learning 
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structure prediction methods [14], [15], since we aim to design new structures and sequences. 

We then describe the application of the entire PIP protocol in the program Rosetta to a design 

problem in which we reshape the backbone geometry of a model protein, ketosteroid isomerase 

(KSI), to replace a functional aspartate with a glutamate residue (not found in any KSI homologs) 

such that the carboxyl groups align. We chose this design problem as a proof-of-concept because 

it presents a particularly challenging positioning problem that cannot be solved with (near-)fixed-

backbone design, for which no solution was known in a homologous protein, and that requires 

accuracy on the length scale of a carbon-carbon bond.  

2.3.1 FKIC and LHKIC algorithms 

FKIC and LHKIC integrate two concepts that have separately led to considerable advances 

in protein modeling: sampling preferred combinations of backbone torsions from fragments of 

proteins in the protein structure databank (PDB) [16], and improved sampling of segments 

without regular secondary structure or template information with an inverse kinematic closure 

algorithm termed ‘KIC’ [17] borrowed from the field of robotics [18]. KIC determines 

‘mechanically accessible’ conformations for internal protein segments of given lengths by 

sampling the phi/psi torsion degrees of freedom in the segment. In each KIC move, three Cα 

atoms of an N-residue segment are designated as pivots, leaving N-3 non-pivot Cα atoms. In the 

standard implementation of KIC in Rosetta [17], non-pivot torsions are sampled from a residue 

type-specific Ramachandran map. In the new FKIC method (see Methods for details), non-pivot 

degrees of freedom are taken from peptide fragments that are picked from the PDB using the 

sequence of the target segment [19] (Fig. 2.2a, left); KIC is then used to determine the values of 

the pivot torsions that close the resulting chain break. We reasoned that FKIC would combine the  
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Figure 2.2. FKIC improves prediction of conformations of local backbone segments. (a) 
Individual FKIC/LHKIC move. Three Cα atoms (blue) on the target segment to be modeled 
(grey) are picked randomly as pivots. Fragment insertion (FKIC) or loop hash (LHKIC) is applied 
to sample torsion degrees of freedom at non-pivot atoms (red), which breaks the chain. The 
KIC algorithm is then used to close the chain by determining appropriate values for the pivot 
torsions. (b) Comparison of performance of different methods for three datasets: (i) Standard 
dataset described in ref. [17], and 2 new sets: (ii) A “Mixed Segment” dataset with 30 16-residue 
regions that contain both loops and segments of regular secondary structure and (iii) a “Multiple 
Segments'' dataset of 30 cases with 2 separate 10-residue regions that are interacting. KIC 
[17]: grey; CCD [20]: orange; NGK [21]: blue; FKIC: red; LHKIC: brown. Upper panel: violin plot 
of RMSD of lowest energy (best) model across each dataset. Horizontal bars indicate the 
median lowest-energy RMSD. FKIC is the only method that provides predictions with atomic 
accuracy (≤ 1Å median RMSD) for all datasets. Lower panel: violin plot of fraction of predicted 
models in each dataset that have sub-Å accuracy. FKIC leads to considerable improvements 
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improved prediction accuracy of KIC demonstrated previously [17] with improved sampling 

efficiency because of the reduction of degrees of freedom by using coupled torsion angles from 

fragments (in contrast to sampling all non-pivot torsions independently from Ramachandran 

space as in KIC, which is unlikely for example to sample regular secondary structures).  

To mimic a design case where the sequence of the modeled segment is not known a priori, 

we also developed a variation on the method, LHKIC, which uses the loophash protocol [20] to 

pick fragments that simultaneously sample structures and sequences of the target segments. The 

loophash protocol uses the 6D transformation between the residue before the first pivot and the 

residue after the last pivot as a query key to find peptide fragments from the PDB that 

approximately close the gap between these two residues (Fig. 2.2a, right). After insertion of a 

fragment, KIC determines the pivot torsions that close the gap. For design cases, LHKIC can 

optionally mutate remodeled residues to the amino acids from the inserted fragment to improve 

local sequence-structure compatibility. Individual FKIC or LHKIC sampling moves (Fig. 2.2a) are 

then followed by optimization of side chain conformations in and around the altered backbone 

region and integrated into a Monte Carlo minimization protocol (Fig. 2.5); sampled 

conformations are evaluated with Rosetta’s all-atom energy function [21], [22]. 

over previous methods. Asterisk indicates data from ref. [42]; all other simulations were run with 
the ref2015 Rosetta energy function [21]; methods using fragments (CCD and FKIC) used 
identical fragment libraries that excluded fragments from structural homologs to the target 
proteins. (c,d) FKIC accurately predicts geometries from sequence where the previous state-
of-the-art method, NGK, fails. Shown are examples from the Mixed Segment (c) and Multiple 
Segments dataset (d). Experimentally determined structures: grey; predictions from FKIC: red, 
top; predictions from NGK: blue, bottom. RMSDs to the experimentally determined structures 
are given in each panel in Å. (e) The fraction of sub-Å predictions is negatively correlated with 
the mean 3-mer fragment distance (Methods). Each data point represents a protein from the 
standard 12-residue dataset. 
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2.3.2 Local structure prediction performance   

We tested the ability of FKIC to recapitulate the local conformations of protein segments, 

given their sequences, on three benchmark sets. The first is a benchmark of 45 12-residue loops 

[23] previously used to evaluate KIC[17] (“Standard” set), to enable comparisons with published 

work. We also used two new sets representing more challenging problems closer to design 

applications: a new set of 30 16-residue-segments where each segment contains both regular 

secondary structure elements and loop regions (“Mixed Segment” set), and a new set of 30 pairs 

of interacting 10-residue segments (“Multiple Segments” set). As controls, we applied methods 

that use KIC and fragment insertion (CCD) [24], [25] alone to the same datasets using an 

otherwise identical protocol in Rosetta. We used two performance metrics: The first quantifies 

prediction accuracy by determining the RMSD of the model with the lowest (best) predicted 

Rosetta energy to each native structure and then taking the median RMSD value across each 

dataset. The second metric quantifies sampling efficiency by measuring the fraction of native-like 

(correct) models generated for each protein case, where native-like is defined as <1Å (“sub-Å”) 

RMSD to the native structure, and again taking the median for each dataset (Methods and Table 

2.2a). 

The Rosetta KIC method had previously been shown [17] to be comparable to a state-of-

the-art molecular mechanics method[23]. The next-generation KIC (NGK) update [26] led to 

improved performance over KIC, and had comparable performance to GalaxyLoop-PS2 [27], 

RCD+ [28], Sphinx [29], LEAP [30] and FREAD [31], [32] when tested on identical datasets. Here 

we show that FKIC improves structure prediction accuracy over CCD, KIC and NGK with the largest 

changes for the two new datasets (Fig. 2.2b, top and Table 2.2a). On the 16-residue Mixed 
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Segment dataset, which tests the ability of FKIC to predict conformations of protein segments 

with arbitrary secondary structure composition, the median accuracy improved to 0.53Å RMSD 

with FKIC compared to 1.29Å and 1.07Å with CCD and NGK alone, respectively. For the Multiple 

Segments dataset, which tests the ability of FKIC to predict conformations of discontinuous 

interacting segments, FKIC was the only method that yielded atomic (1Å) median accuracy, 

compared to 1.97Å and 1.29Å with CCD and NGK alone, respectively (Fig. 2.2b, top and Table 

2.2a). Representative examples where FKIC correctly predicted protein conformations while NGK 

failed are shown for the Mixed Segment and Multiple Segments datasets in Figs. 2.2c,d and 

details are given in Tables 2.3 and 2.4. The improvements on the Standard dataset were smaller 

(median RMSD was 0.62Å with FKIC compared to 0.64Å for NGK, Table 2.2a), but for 35/45 

proteins FKIC finds lower energy structures than NGK (Table 2.5). Cases where FKIC predictions 

did not lead to the identification of sub-Å accuracy lowest-scoring models can be attributed to 

both sampling and energy function limitations (Table 2.6, Fig. 2.6, and Appendix II: 

Supplementary Note 1).  

FKIC also considerably improved sampling efficiency, which we quantified by how 

frequently FKIC generated conformations that are <1Å RMSD from the crystallographic 

conformation (Fig. 2.2b, bottom). For the Mixed Segment set, the median fraction of sub-Å 

predictions for FKIC was 52.3%, which was 45- and 105-fold higher than for NGK and CCD, 

respectively. For the Multiple Segments dataset, the median fraction of sub-Å predictions was 

28.5% with FKIC, which was 5-fold higher than with NGK (5.5%) and 143-fold higher (0.2%) than 

with CCD (Table 2.2a). In several cases, FKIC was able to find correct solutions for even larger 

conformational sampling problems such as a set with 2 interacting 12-residue segments 
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(Appendix II: Supplementary Note 2 and Tables 2.7-8). These improvements in sampling 

efficiency are important in particular for design, since they reduce the computational time 

needed to predict the conformation of a reshaped backbone segment, allowing for more designs 

to be evaluated.  

We also tested the ability of LHKIC to predict local protein conformations on the three 

benchmark sets. LHKIC performed similarly to FKIC in terms of RMSD (Fig. 2.2b, top, Table 2.2a, 

and Appendix II: Supplementary Note 3). However, in this structure prediction task LHKIC 

sampling efficiency was lower than for FKIC (Fig. 2.2b, bottom), since LHKIC does not use 

information on the target sequence for picking fragments. LHKIC is therefore intended for design 

applications where sequence and structure are sampled simultaneously rather than for structure 

prediction tasks where the sequence is known and fixed. 

Overall, the improvement of the fraction of sub-Å predictions is negatively correlated with 

the mean 3-mer fragment distance from the native structure (Fig. 2.2e, Methods). This 

observation shows that high quality fragments focus the sampling on native-like conformations. 

While both CCD and FKIC sample from the same fragment set, FKIC performs considerably better 

(Fig. 2.2b). This difference between the two fragment-based structure prediction methods could 

at least partly be attributed to the fact that when CCD closes a chain break, it modifies all torsions 

along the inserted fragment, while KIC maintains more conformational information from the 

inserted fragment by only modifying the three pivot residues. While high quality fragments could 

be derived from homologous structures, for both CCD and FKIC benchmark simulations we 

excluded fragments from homologs to test the ability to predict structures of regions for which 

there are no templates. However, we also repeated our simulations with fragments from 
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homologs present in the database. As expected, both prediction accuracy and the median 

fraction of sub-Å predictions improved further when homologous structures are included in FKIC 

simulations (Table 2.2b).  

2.3.3 Application of the PIP protocol  

With improved methods for sampling and prediction of backbone conformations in hand, 

we set out to test the entire PIP protocol (Fig. 2.1) in a design application. We chose 

Pseudomonas testosteroni ketosteroid isomerase (KSI) as a model system (Fig. 2.3a). KSI uses a 

catalytic aspartate at position 38 to abstract a proton from a steroid substrate to catalyze an 

energetically favorable double-bond rearrangement. Here we set out to replace aspartate 38 

with glutamate while maintaining the precise placement of the side chain carboxyl group (Fig. 

2.3a) by reshaping a sizable region of the protein backbone (11-12 residues, Fig. 2.3b). To test 

our designs before solving atomic-resolution structures, we reasoned that KSI activity provides a 

convenient way to estimate the accuracy of functional group positioning, because KSI activity is 

sensitive to perturbations of the functional site geometry on the length scale of a carbon-carbon 

bond: With 5(10)-estrene-3,17-dione as a substrate, mutating aspartate 38 in KSI to a glutamate 

reduces the protein’s kcat by approximately 103-fold (Table 2.1) (this value is similar to previous 

work that reported a reduction of 240-fold in the D38E mutant compared wild-type [33]). This 

reduction in kcat is attributed to the misplacement of the side chain carboxyl group that is 

common to glutamate and aspartate due to the additional methylene group in the glutamate 

sidechain. We note that the PIP design protocol is not geared towards optimizing catalytic 

activity, as the protocol does not specifically consider requirements of catalysis other than 

positioning of functional groups. However, enzyme activity is still a useful proxy to probe for  
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Figure 2.3. Functional characterization of designs V1D8r and V2D9r. (a) Schematic of design 
goal for KSI. Green: wild-type KSI with catalytic aspartate. Yellow: Designed KSI variant with 
reshaped active site to position the glutamate carboxyl group in place of the wild-type aspartate 
carboxyl group. (b) KSI wild-type structure (PDB 1QJG), showing the active site regions to be 
remodeled. Residues allowed to change identity (design) or conformation (repack) during the 
design process (PIP version 2) are shown in yellow or green, respectively, and static positions 
are shown in grey. (c) Representative Michaelis-Menten curves for design V1D8r (top) or V2D9r 
(bottom). (d) Bar plots showing the kcat values of V1D8r (top), V2D9r (middle), or wild-type KSI 
(bottom) and their E38D or D38E active site mutations. Values show the fold-change in kcat 
between the respective D/E active-site residue pairs. Standard deviation of independent triplicate 
experiments are shown as error bars with individual measurements shown as points. 
 

accurate positioning when comparing aspartate to glutamate. Moreover, no known homologs of 

KSI contain a glutamate at the catalytic position [34]. Thus, any designed solutions would be 

novel, and a fragment-based design protocol would not be able to rely on naturally occurring 

homologs that have already solved this particular problem.   
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Our PIP design protocol for KSI (Fig. 2.1) proceeded in three steps: In step 1, we built 

20,000 de novo backbone conformations that positioned the functional carboxyl group using 

harmonic coordinate restraints defined by the amide atoms of asparagine 38 (an inactivating 

mutation for the catalytic D38 that enables a transition state mimic to be crystallized) in PDB file 

1QJG in place of the catalytic D38. We selected the 1,600 or 4,000 conformations(numbers are 

for two rounds of the protocol, see Methods) that best matched the desired geometry based on 

their restraint satisfaction, which we defined as the maximum distance of any restrained atom in 

the model to the atom’s ideal position (Fig. 2.1, top right panel). 

In the second step, these new backbone conformations were stabilized by redesigning 

the local environment, where all residues of the new backbone segments as well as residues in 

the environment were redesigned using design methods in Rosetta (see Appendix I: 

Supplementary Methods). This process resulted in 10-50 designs per input structure. We then 

selected 200 or 422 design models for structure prediction in step 3. These designs were selected 

based on how close the modeled catalytic residue carboxyl group atoms were to their desired 

positions, and several computational design quality metrics including Rosetta score terms, 

hydrogen bond satisfaction, and metrics for sequence-structure compatibility (see Methods for 

details).  

While step 2 (design) aims to find sequences that are optimal for the targeted new 

conformations, step 3 (structure prediction) aims to assess whether these sequences indeed fold 

into the targeted conformation (i.e. is the conformation also optimal given the sequence). Steps 

2 and 3 were iterated to further optimize sequence-structure combinations. In particular, 

designed sequences that produced structure prediction models that correctly placed the 
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functional carboxyl group but were not the lowest-scoring model generated by the structure 

prediction protocol were fed back to step 2 for further sequence optimization.  

2.3.4 Selection of designed KSI variants 

We created designs using two versions of the PIP protocol, denoted versions 1 and 2 (see 

Methods and Supplementary Methods for details regarding differences in implementation of 

the PIP steps). In total, 33-39 and 29-30 residue positions were designed (allowed to change 

amino acid residue) in versions 1 and 2, respectively. We selected 32 designs for experimental 

testing, 14 from version 1 and 22 from version 2. Designs were named according to the version 

of PIP used to create them (V1 and V2), a design number (D1, D2, ...), and an appended “r” to 

indicate if any mutations were reverted to the wild-type residue based on visual inspection (for 

details see Tables 2.9-10, Figs. 2.7-8). We chose designs that maximized the gap in Rosetta score 

between models that correctly place the catalytic residue (<1 Å restraint satisfaction, defined as 

the maximum distance between a restrained atom and its defined position) and models which 

do not correctly position the catalytic residue (>2 Å restraint satisfaction). We also chose designs 

that were predicted to have few buried unsatisfied hydrogen bond donors or acceptors, and that 

did not have significant sequence and structural similarity to other selected designs. Selected 

designs contained between 12 (V2D6r, V2D9r) and 32 (V1D7) mutations. For PIP version 1, all 

selected designs expressed in the insoluble fraction after cell lysis and had to be purified from 

inclusion bodies, as is common with KSI mutants[35]. Of the designs purified from inclusion 

bodies, half were soluble after refolding. We selected one design to characterize in further detail 

based on an initial screen of catalytic activity (Table 2.11), V1D8r. For version 2 we obtained one 
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design that expressed in the soluble fraction, V2D9r. Both designs V1D8r and V2D9r were stable 

after purification as assessed by Circular Dichroism spectroscopy (Fig. 2.9). 

2.3.5 Functional characterization of designed KSI variants 

Both designs V1D8r and V2D9r showed robustly measurable enzymatic activity when 

using 5(10)-estrene-3,17-dione as a substrate (Fig. 2.3c), enhancing catalysis by 4 to 5 orders of 

magnitude when compared to the water-catalyzed isomerization of the similar 5-androstene-

3,17-dione [36]. To test for the ability of PIP to accurately position functional groups, we reverted 

the glutamate in the designs back to the original wild-type aspartate. Because of the sensitivity 

to functional group positioning observed in wild-type when adding a methylene group going from 

aspartate to glutamate, and if we indeed correctly positioned the new glutamate in the design, 

we expected a considerable drop in catalytic activity in the design upon subtracting the 

methylene group again. As predicted by this model, for both designs V1D8r and V2D9r, we found 

a substantial reduction in kcat in the E38D reversion mutant; the activities of both E38D mutants 

were near the detection limit of the assay, and were reduced compared to the designs with E38 

by at least 41-fold and 119-fold for V1D8r and V2D9r, respectively (Fig. 2.3d). This reduction was 

not simply due to loss of protein stability as both E38D reversion mutants in the design 

background were folded (Fig. 2.9b-d). Notably, these fold changes are similar to the 103-fold-

change in kcat between wild-type KSI and the D38E mutation (Fig. 2.3d, Table 2.1). Taken 

together, these results suggest that the designed backbone geometries successfully altered the 

enzyme’s preference for its catalytic residue. We note that the designs were overall less active 

than both wild-type and D38E KSI (Table 2.1). There are many potential reasons for this finding 

(Supplementary Note 4), including the observation that the designs are monomeric at the 
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concentrations of the enzyme assay, whereas wild-type KSI functions as a dimer (Supplementary 

Fig. 5e). Additionally, our designs contain a large number of mutations (19 and 12 for V1D8r and 

V2D9r, respectively) that could affect active site electrostatics important for catalysis[37]. 

Predicting the energetics of polar interactions making up protein functional sites with sufficient 

accuracy is a formidable problem, and we note that PIP (like other computational design 

methods) does not consider possible requirements of catalysis other than positioning (see 

Discussion). However, our analysis suggests that the positioning of the catalytic residue’s 

carboxyl moiety, which PIP optimized for, is still an important determinant of catalytic activity. In 

particular, the design V2D9r has approximately the same fold reduction when changing 

glutamate to aspartate as wild-type KSI when changing aspartate to glutamate. 

2.3.6 Structural characterization of designed KSI variants 

To assess whether V1D8r and V2D9r indeed adopted the designed new backbone 

conformations, we determined crystal structures of the two designs V1D8r and V2D9r. Both 

structures contained a ligand in the active site. For V1D8r, we observed density from 

deoxycholate retained from the purification process. V2D9r was co-crystallized with equilenin 

(which was present in the structure that was used as a basis for design) but also contained some 

residual density for deoxycholate (see further below and Methods). For both designs the electron 

density of the reshaped backbone region (residues 34-45 for V1D8r and 34-46 for V2D9r) was 

well-resolved (Fig. 2.10a-b). Importantly, the backbone geometries of the reshaped backbone 

region in V1D8r and V2D9r were within 1.39 and 1.15 Å RMSD (N, C, Cɑ, and O backbone atoms)  
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Figure 2.4. Structural characterization of designs V1D8r and V2D9r. (a) Overlay of wildtype 
KSI crystal structure (grey), lowest-energy predicted models for V1D8r (orange, top) and V2D9r 
(orange, bottom), and crystal structures for V1D8r (blue, top) and V2D9r (blue, bottom). (b) Crystal 
structure (blue) of V1D8r (top) and V2D9r (bottom) showing the catalytic glutamate’s placement 
relative to the amide in the KSI starting structure (PDB 1QJG) used to define the catalytic position 
(grey). RMSD values between compared structures are indicated in the different panels. (c-f) 
Mutational analysis of differences between wildtype KSI and design V2D9r: sequence alignment 
(c), comparison between the active site region in the crystal structures of wild-type KSI (d) and in 
design V2D9r (e), and (f) bar graph of kcat values for design V2D9r (black), alanine scan mutants 
(grey), and reversion / selected mutants (red). In (f), standard deviation of independent triplicate 
experiments are shown as error bars with individual measurements shown as points. The kcat 
error range for V2D9r is shown as a shaded bar. 
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Table 2.1. Kinetic parameters of wild-type (WT) KSI, WT D38E, and designs. Ranges are 
based on the standard deviation of three independent experiments. 
Enzyme kcat (min-1) KM (μM) kcat/KM (μM-1 min-1) 

WT 350 ± 18 120 ± 32 2.9 ± 0.79 
WT D38E 3.4 ± 0.50 37 ± 4.9 0.092 ± 0.018 
V1D8r 1.7 ± 0.41 67 ± 15 0.025 ± 0.0084 
V2D9r 0.29 ± 0.0040 9.0 ± 2.0 0.032 ± 0.0084 

 

of the corresponding lowest-energy design models (Fig. 2.4a). For comparison, both the design 

structures and the computational models had conformations considerably different from the 

wild-type backbone (Fig. 2.4a). In the reshaped region, the design model of V1D8r and V2D9r 

differed from wild-type by 2.41 Å and 2.50 Å backbone RMSD, respectively. If considering the 

most variable segment (residues 37-42 for V1D8r and 37-43 for V2D9r), the design models for 

V1D8r and V2D9r differed from wild-type by 3.49 and 3.34 Å RMSD respectively.  

Next, we examined sidechain positioning, especially the catalytic glutamate carboxyl 

group. V1D8r and V2D9r (which was co-crystallized with equilenin) placed the catalytic carboxyl 

within 1.25 and 0.7 Å RMSD of the wild-type aspartate carboxyl, respectively (Fig. 2.4b). The 

overall heavy-atom RMSDs for buried designed residues in the reshaped segment (solvent-

accessible surface area (SASA) of less than 40 Å2) were 1.43 and 1.07 Å for V1D8r and V2D9r, 

respectively (Fig. 2.10c-d). As noted above, the crystal structures of both designs showed at least 

partial occupancy of deoxycholate in the ligand-binding site, and it is conceivable that the bulky 

carboxyl moiety of the ligand changed the placement of the catalytic carboxyl group. This 

hypothesis is supported by the observation that the V2D9r crystal had partial occupancy of 

deoxycholate in 3 out of 4 asymmetric units, and the positioning of the catalytic residue in those 

monomers was significantly worse than in the asymmetric unit that contained only equilenin. In 
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the asymmetric unit which contained only equilenin, we observed two distinct possibilities for 

the placement of the carboxyl of E38, which we modeled as alternate conformations (Fig. 2.10e). 

Despite the apparent flexibility of E38, the crystallographic data support the conclusion that the 

designed backbone is indeed capable of supporting the desired functional site geometry, as one 

of the alternate conformations is close to the wild-type carboxyl placement (0.75 Å restraint 

satisfaction, 0.67 Å carboxyl heavy-atom RMSD compared to the amide group of 38N of 1QJG, 

Fig. 2.4c). Taken together, the structural analysis shows that PIP can design novel backbone 

conformations that differ by over 3 Å from their native counterparts with high accuracy, and the 

functional analysis demonstrates successful switching of the specificity in the designs from 

aspartate to glutamate.  

Finally, we tested the robustness of V2D9r’s redesigned backbone segment to mutation. 

To determine whether the activity of V2D9r was dependent on any particular residue in the 

redesigned region (Fig. 2.4c-e), we performed an experimental alanine scan along all mutated 

residues. We also made reversion mutants for residues whose backbone atoms did not move 

significantly between the wild-type and the design conformations, as well as a T39S mutant that 

we hypothesized might alleviate problems with buried polar groups. No mutation affected the 

kcat more than two-fold except for the catalytic glutamate (Fig. 2.4f, Appendix II: Supplementary 

Note 5), suggesting that the designed new backbone conformation depends on several 

interactions to adopt a catalytically competent conformation, as well as the glutamate as a 

general base. 
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2.4 Discussion 

We introduced and validated methods to accurately position amino acid functional 

groups in proteins by computational design in cases that require substantial alterations of the 

protein backbone (Fig. 2.1). We first developed and benchmarked two new robotics-inspired 

sampling methods, FKIC and LHKIC, that generate and predict the structures of new backbone 

conformations with high accuracy (Fig. 2.2). We then integrated these methods into a new design 

protocol, PIP, to accurately position sidechain functional groups by remodeling the backbone 

(Fig. 2.1), and validated the approach experimentally by functional analysis and solving crystal 

structures of designs with reshaped backbone regions (Fig. 2.3, 2.4). 

FKIC leads to considerable improvements over the two approaches it combines, the 

fragment-independent loop modeling method NGK [26] and the fragment-insertion based 

prediction approach CCD [24] (Fig. 2.2b). In addition to sub-Å structure prediction accuracy, our 

results demonstrate that FKIC provides up to ~140- fold improvement in sampling native-like 

conformations on the challenging problems of modeling local protein conformations with 

multiple segments and arbitrary secondary structure composition. This key advance in sampling 

efficiency paves the way to use FKIC in combination with LHKIC to design new local backbone 

geometries not seen in nature. Our results provide a first proof-of-concept for such a design 

application.  

We note FKIC and LHKIC are conceived for generation, design and prediction of new local 

backbone conformations and not for homology modeling that may require additional non-local 

changes in protein structure. Therefore, applications of FKIC to homology modeling of naturally 

occurring proteins may require integration of FKIC with more aggressive remodeling in the entire 
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protein, not just a local region (Appendix II: Supplementary Note 6, Table 2.12). It will be 

interesting in the future to test whether deep learning methods for protein structure predictions 

[14], [15] could be used to predict structures of designed sequences more rapidly than the 

robotics-methods assessed here, while also achieving sub-Angstrom accuracy. To our knowledge 

there are not yet systematic studies benchmarking the accuracy of deep learning methods on 

protein regions with irregular structures in the absence of multiple sequence alignments and 

structures of homologous proteins, as will be the case when designing conformations not seen 

in nature.  

Despite the success with positioning a functional group that required reshaping of a 

sizeable backbone region, our results also highlight the considerable challenges faced when 

designing functional proteins. PIP in its current implementation optimizes positioning and is 

hence more suitable to designing specific geometries for binding rather than catalysis (which may 

require consideration of other determinants of catalysis not considered in current computational 

design methods and sometimes not even fully known). Moreover, certain functions may require 

switching between two or more approximately isoenergetic conformations. Such a scenario is 

much more challenging to engineer than optimizing for one deep energy minimum, which is 

sufficient for successful de novo design of protein structures. While the achieved carboxylate 

positioning in our designs is encouraging, it is not perfect, and accurately estimating the relative 

free energies of different alternative conformations in proteins is a current challenge common to 

all state-of-the-art atomistic modeling methods. 

Kinetic analysis of V2D9r failed to reveal any specific residues that were key to stabilizing 

the catalytically competent loop conformation (Fig. 2.4, Appendix II: Supplementary Note 5), 
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highlighting an important challenge in the design and modeling of precise local protein 

conformations: The energetic contributions to the stabilization of a particular backbone 

geometry may be distributed among many residues, which, combined with enormous sequence 

and conformational landscapes, makes it difficult to arrive at a minimum via successive single-

residue substitution. Efficient sequence and conformational sampling are therefore crucial to the 

design of functional geometries. LHKIC addresses this challenge by pairing the structure search 

with sequence information from natural proteins, favoring local sequence/structure 

compatibility. 

Naturally occurring proteins are often only marginally stable, so when reengineering them 

for new functions it is often challenging to maintain stability. One approach to avoid this problem 

is to start with highly stable entirely de novo designed proteins into which to build desired 

structural features [38]. However, the idealized geometries of current de novo proteins may not 

be optimal for specific new functions such as molecular recognition. Here, FKIC/LHKIC and other 

methods[39] could provide a new way to systematically reshape local regions to endow de novo 

designed proteins with new functions. The ability to sample both conformational and sequence 

space afforded by the robotics-inspired approaches and protocols presented here should help 

address current limitations, and be useful in both the design and modeling of novel backbone 

conformations that enable specific functional geometries for binding or conformational switching 

[40] in de novo designed proteins.  
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2.5 Methods 

2.5.1 Structure prediction simulations 

Fragment-sampled KIC (FKIC) Overview 

FKIC is based on the KIC protocol [17], but, instead of sampling non-pivot φ/ψ torsions 

probabilistically from Ramachandran space, FKIC uses coupled φ/ψ/ω degrees of freedom from 

consecutive residues of protein fragments of size nine, three or one to sample conformational 

space. During the low- and high-resolution sampling stages (Fig. 2.5), each KIC move in the 

original KIC protocol is replaced by an FKIC move (Fig. 2.2a). An FKIC move consists of the 

following sequence of steps: (i) a fragment library (see “Generation of fragment libraries” section 

in Appendix I: Supplementary Methods) is chosen at random from all available libraries (i.e. 

9mers, 3mers and 1mers), (ii) the chosen fragment library is searched for fragment alignment 

frames that (at least partially) overlap with the given target sub-segment, (iii) one of the 

alignment frames is chosen at random, (iv) one of the 200 fragments contained in the given 

alignment frame is chosen at random, (v) the φ/ψ/ω torsions of that fragment are applied to the 

respective overlapping region of the given target sub-segment, and (vi) the segment is closed 

using kinematic closure. Fragment libraries used for FKIC are the same as for the CCD protocol 

used in benchmark comparisons. Importantly, for benchmarking purposes, we ran simulations 

using fragment libraries that excluded homologs to the given query sequence (Appendix I: 

Supplementary Methods). 

Loophash-sampled KIC (LHKIC) Overview 

LHKIC and FKIC share the same overall simulation protocol (Fig. 2.2, Fig. 2.5). In LHKIC, 

the non-pivot φ/ψ/ω degrees of freedom are sampled from fragments picked by the loophash 
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algorithm [20]. At each KIC sampling step, we calculate the 6D transformation from the residue 

before the first pivot to the residue after the last pivot. We use the 6D transformation to query 

a pre-compiled loophash database (see “Generation of loophash databases” in Appendix I: 

Supplementary Methods). One 6D transformation query can return multiple loops. Torsions of a 

random loop from the returned loops are applied to the residues between the pivot residues.  

Rosetta Simulations  

FKIC and NGK benchmarking simulations were performed using the Rosetta 

macromolecular modeling and design suite (https://www.rosettacommons.org/software), 

revision 59052. The LHKIC method was developed later and used Rosetta revision 60022. KIC 

simulation results reported in Fig. 2.2b were taken from ref. [26]. The Rosetta ‘CCD’ loop 

modeling method using fragment insertion and the cyclic coordinate descent closure 

technique[24] is described in ref. [25]. The NGK loop modeling method is described in ref.[26]. 

For FKIC simulations, NGK was modified to sample torsions from the generated fragment 

libraries. Similarly, for LHKIC, NGK was modified to sample torsions from loops picked using 

loophash[20]. For control simulations that use native bond lengths and angles as input, we 

replaced the input structure with the native structure and disabled the randomization of torsions 

at the beginning of the simulation. Since the publication of the original KIC method, the Rosetta 

energy function has undergone several revisions, including the changes described in the 

“talaris2013” and “talaris2014” versions [41] and the latest improvements made in the “ref2015” 

version [21]. The ref2015 energy function [21] was used for all benchmarks unless otherwise 

noted. Compared to the other energy functions, ref2015 showed a consistent performance 

improvement (Table 2.13). For each test protein in each benchmark set (see below), we 
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generated 500 models with FKIC and calculated the backbone heavy atom root mean square 

deviation (RMSD) of each target segment after aligning the protein without the modeled segment 

to its crystal structure. We also measured the median run time to determine whether any 

increased sampling performance increases computational cost (Table 2.2a). 

Full descriptions of RosettaScripts code and command lines can be found in Appendix I: 

Supplementary Methods. 

Benchmark Datasets 

The 12-Residue “Standard” benchmark dataset was as previously described [17], [26], 

[42]. The 16-Residue “Mixed Segment” dataset consists of 30 structures from the PDB containing 

16-residue target segments where each segment has 5 to 11 residues that contain alpha helices 

or beta strands. The 10-Residue “Multiple Segments” dataset consists of 30 structures from the 

PDB each containing a pair of 10-residue interacting target segments. We also constructed two 

analogous sets that contain either two 8-residue segments or two 12-residue segments 

(Appendix II: Supplementary Note 2; Table 2.7 and Table 2.8). More details on the benchmark 

datasets are in Appendix I: Supplementary Methods. 

Preparation of benchmark input structures  

To exclude information on the native conformation of the target segment(s) for all 

benchmark datasets, all side chains in the segment(s) as well as side chains within 10Å of the 

segment(s) (based on all-atom pairwise distance measurements) were removed. The backbone 

information was removed by changing the segment into an extended conformation with 

idealized bond lengths and angles. The datasets were constructed with an openly available script: 

https://github.com/Kortemme-Lab/benchmark_set_construct. 
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Fragment distance calculation in structure prediction 

The chord distance [43] was calculated between pairs of fragments. The chord distance 

between two angles is defined as: 𝐷!(𝜃", 𝜃!) = 2 − 2 cos(𝜃" − 𝜃!). In our case, this value was 

calculated for backbone dihedral angles and summed over paired residues between fragments 

and target loops: 〈𝐷〉 = "
#
∑ /"

!
𝐷!0𝜙"$ , 𝜙!$ 2 +

"
!
𝐷!0𝜓"$ , 𝜓!$ 25#

$ , with n=3 defining 3mer fragments 

for example. 〈𝐷〉 will have a minimum of 0 if the angles match exactly and a maximum of 4 if the 

angles differ by 180 degrees. 

2.5.2 Pull Into Place (PIP) design protocol 

Overview 

We created designs using two versions of the PIP protocol, denoted versions 1 and 2, 

which differed in several details. Version 1 was developed before FKIC and LHKIC, and therefore 

used NGK for both model generation (step 1) and structure prediction (step 3). In step 1, we 

varied the length of the remodeled active site region from 0 to -6 residues (relative to its native 

length). In subsequent steps, we made comparisons only between segments of the same length, 

to avoid biases towards longer segments that can make more favorable interactions at the 

expense of loss of conformational entropy not considered in Rosetta. Sequence design (step 2) 

was done using fixed-backbone rotamer sampling. Residues within 4Å of the active site backbone 

segment were designed (i.e. allowed to change amino acid identity) excluding residues Y14, F54, 

D99, A114 and F116 that are important for catalysis. In total, 33-39 residues were allowed to 
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design, depending on segment length. Designs from step 2 to be evaluated in step 3 were 

selected with a probability proportional to their Boltzmann-weighted Rosetta total scores. This 

approach was intended to improve the diversity of the selected designs, while still selecting more 

favorable (low-scoring) designs. The designs selected by this procedure for experimental testing 

either retained the native segment length or shortened the segment by one residue. 

In version 2, we made several changes: We used LHKIC for model generation (step 1) and 

FKIC for structure prediction (step 3). This strategy takes advantage of the ability of LHKIC to 

sample both sequence and structure simultaneously in step 1 (as fragment picking in LHKIC is 

independent of the starting sequence). Conversely, FKIC is better suited to predicting 

conformations given a sequence in step 3, since FKIC picks fragments based on the input 

sequence. In step 2, we incorporated a small degree of backbone flexibility into the design 

process by using the Rosetta FastDesign method, which iterates fixed-backbone sequence design 

and fixed-sequence structure minimization. Because this design algorithm is more 

computationally expensive than that from version 1, we made fewer designs per backbone model 

(10 instead of 50). Based on the results from version 1, we only considered two segment lengths: 

the native length and a one-residue deletion. We also allowed a different (and smaller) set of 

residues to design: 25 – 26 residues in the active site segment and 4 residues in a small β-hairpin 

(residues 74 – 77 in the dimer partner) that make inter-chain contacts with the active site 

segment. To select designs for step 3, we incorporated knowledge from additional metrics 

besides Rosetta score and functional group positioning. We used metrics including the number 

of buried unsatisfied and oversaturated hydrogen bonds, a fragment quality filter, total solvent-

accessible surface area, and Rosetta’s foldability metric (Appendix I: Supplementary Methods). 



 37 

Because it is unclear a priori how to prioritize these metrics, we used Pareto fronts consisting of 

the above metrics to choose designs for computational structure prediction (Fig. 2.11). We also 

selected more designs than in version 1 (up to 422 instead of 200) for structure prediction in early 

iterations of step 3, taking advantage of the fact that FKIC requires fewer simulations than NGK 

to make sub-Ångstrom predictions. 

In comparison, both versions of PIP used similar robotics-inspired approaches to 

conformational sampling, but PIP version 2 placed an additional emphasis on fragment-based 

sampling using FKIC / LHKIC, and analysis of fragment quality using Pareto fronts. Fragment 

quality measures how well designs conform to local sequence / structure relationships observed 

in naturally occurring proteins, and designs with a better fragment quality might be expected to 

be more stable[44]. Attention to fragment quality as a design metric may have resulted in several 

beneficial characteristics in design V2D9r, which was both more soluble when expressed in E. 

coli, and had a higher apparent TM (Fig. 2.9) than design V1D8r. However, our design sample is 

small and further exploration of the impact of fragment-based design on design success would 

be interesting. 

Rosetta version.  

PIP was run using Rosetta commit 10b6f2f8e20d70757e6b510def2ddcbeef172538 (PIP 

version 1) or revision 60048 (PIP version 2). We used the latest available score function for each 

PIP version, which were talaris2013 for PIP version 1 or ref2015 for PIP version 2. 

More details on the PIP protocol are in the Appendix I: Supplementary Methods. 
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2.3.3 Experimental characterization 

Cloning and purification. 

The 14 designs chosen for experimental tests from PIP version 1 were ordered from 

GenScript pre-cloned into the pET-21a expression vector. For PIP version 2, and for 

characterization of V1D8r and the wild-type protein, we used an expression vector using parts 

from the modular yeast cloning toolkit[45] which was similar to pET-21a, except that the cloning 

resulted in a glycine-serine genetic scar at the C-terminus. Full sequences of ordered designs 

and vectors can be found in Supplementary Data 1. Proteins were expressed in E. coli 

BL21(DE3) cells. Wild-type KSI and design V2D9r were purified essentially as described 

previously [35], [46] with minor differences (Appendix I: Supplementary Methods).  

Activity assay. 

Purified KSI variants were tested for catalytic activity using an absorbance assay. 5(10)-

Estrene-3,17-dione was solubilized at 2.1 mM and serial-diluted two-fold down to 0.51 μM in 100% 

DMSO. 115 μL enzyme, prepared in 40 mM potassium phosphate, 2 mM DTT, and 1 mM EDTA 

at pH 7.2, was then added to 5 μL of substrate for final substrate concentrations between 520 and 

0.51 μM. KM and kcat values for the WT enzyme and designs V1D8r and V2D9r were measured 

at enzyme concentrations between 0.5 and 18 μM. For reversion and alanine scan mutations, kcat 

values were measured in triplicate at 512 µM substrate. Absorbance at 248 nm was tracked for 5 

minutes at room temperature in a Varian Cary 50 Bio UV-Visible spectrophotometer using a 1cm 

path length. The first 30-60s of each reaction were excluded to allow the reaction to reach steady-

state. 

X-ray crystallography. 

Designed proteins were crystallized in 1 M ammonium sulfate (design V1D8r) or 1.6 M 

ammonium sulfate, 50 mM potassium phosphate, pH 7.2 (design V2D9r) using the hanging drop 

method. For design V2D9r, an equal volume of 2 mM equilenin (CAS 517-09-9 from Steraloids 
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Inc., catalog ID E0400-000) was added to each drop. For details on X-ray data collection and 

processing see Appendix I: Supplementary Methods. 

Structure determination. 

We obtained initial phase information for calculation of electron density maps by molecular 

replacement using the program Phaser [47], as implemented in the PHENIX suite [48]. For the 

V1D8r structure, we identified a single copy of the protein in the asymmetric unit using the 

coordinates from a previous KSI model, and for the V2D9r structure we identified four copies of 

the protein in the asymmetric unit. Both solutions were consistent with an analysis of Matthews 

probabilities for the observed unit cell and molecular weight of the protein [49], [50]. 

We manually rebuilt the molecular replacement solutions using the resulting electron-

density maps, followed by iterative refinement of atomic positions, individual atomic displacement 

parameters (B-factors) with a TLS model, and occupancies, using riding hydrogen atoms and 

automatic weight optimization, until the model reached convergence. Throughout the course of 

manual model building, electron density corresponding to several ligand molecules became 

apparent, which we were able to model. In the V1D8r structure, we observed electron density for 

two steroid-like molecules, one occupying the KSI active site, and a second nestled at a crystal 

contact. These densities were modeled using deoxycholate, which was present in one of the 

purification buffers used to prepare the crystallization samples. Additionally, we identified two 

phosphate ions in this structure. In the V2D9r structure, we also saw density for steroid ligands in 

the active sites of each of the four copies of the enzyme. In this case, the modeling was 

challenging, because the samples were exposed to both deoxycholate (during purification) and 

equilenin (post-purification), and electron density features suggested that there could be a mixture 

of both ligands represented in the electron density. We attempted to model various combinations 

of the ligands into the active site densities, and found that the electron density features could best 

be described by modeling equilenin in one active site (chain B), deoxycholate in one active site 

(chain D), and a mixture of both ligands in the other two active sites (chains A and C). Our choice 
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to model the ligand densities in this way is based on both reduction of refinement R-factors, as 

well as on overall flatness of residual Fo-Fc difference density maps around the modeled ligands. 

In the V2D9r structure, we also modeled 12 sulfate ions. All model building was performed using 

Coot [51] and refinement steps were performed with phenix.refine within the PHENIX suite [48], 

[51]. Restraints for the ligands were calculated using phenix.elbow [52]. Further information 

regarding model building and refinement is presented in Table 2.14. 

RMSD and SASA Calculations. 

For all RMSD calculations, structures were aligned to all residues except those involved 

in the RMSD calculation. To calculate backbone RMSDs that involved comparing the shorter 

V1D8r segment to the full-length WT protein, we had to exclude one residue in WT structure. We 

chose to exclude residue 38, as this resulted in the lowest RMSD between the design and the 

WT protein. Per-residue SASA was calculated using the SasaCalc class in PyRosetta version 

2021.12+release.ed6a5560506, which uses the LeGrand approximation of molecular surface 

area [53]. 

2.6 Appendix I: Supplementary Methods 

2.6.1 Generation and prediction of new conformations (FKIC and LHKIC) 

Rosetta scripts & command line for CCD 

We used the following Rosetta scripts to run the CCD benchmark simulations: 

 

<ROSETTASCRIPTS> 

    <TASKOPERATIONS> 

        <RestrictToLoops name="loop" loops_file="%%loop_file%%"/> 

    </TASKOPERATIONS> 

    <MOVERS> 
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        <LoopmodelWrapper name="modeler" loops_file="%%loop_file%%" 

fast="%%fast%%"/> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover_name=”modeler”/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Let the home directory of Rosetta be /path/to/rosetta/main; the input structure be 

my_structure.pdb; the loop file be my_structure.loop; the fragment files be 

my_structure.200.9mers.gz and my_structure.200.3mers.gz; and the Rosetta script XML file be 

loopmodel.xml. Then the command to run one simulation is: 

 

/path/to/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease -database 

/path/to/rosetta/main/database -in:file:s my_structure.pdb -parser:protocol 

loopmodel.xml -parser:script_vars loop_file=my_structure.loop fast=no -

out:prefix prefix -overwrite -loops:remodel quick_ccd -loops:refine 

refine_ccd -ex1 -ex2 -loops:frag_sizes 9 3 1 -loops:frag_files 

my_structure.200.9mers.gz my_structure.200.3mers.gz  

 

Rosetta scripts & command line for NGK 

We used the following Rosetta script to run the NGK benchmark simulations: 

 

<ROSETTASCRIPTS> 

    <TASKOPERATIONS> 

        <RestrictToLoops name="loop" loops_file="%%loop_file%%"/> 
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    </TASKOPERATIONS> 

    <MOVERS> 

        <LoopModeler name="modeler" config="kic" loops_file="%%loop_file%%" 

fast="%%fast%%" /> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover_name=”modeler”/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Let the home directory of Rosetta be /path/to/rosetta/main; the input structure be 

my_structure.pdb; the loop file be my_structure.loop; and the Rosetta script XML file be 

loopmodel.xml. Then the command line to run one simulation is: 

 

 /path/to/rosetta/main/source/bin/rosetta_scripts.mysql.linuxgccrelease -

database /path/to/rosetta/main/main/database -in:file:s my_structure.pdb -

parser:protocol loopmodel.xml -parser:script_vars loop_file=my_structure.loop 

fast=no -out:prefix prefix -overwrite   

 

Rosetta scripts & command line for FKIC 

We used the following Rosetta script to run FKIC benchmark simulations: 

 

<ROSETTASCRIPTS> 

    <TASKOPERATIONS> 

        <RestrictToLoops name="loop" loops_file="%%loop_file%%"/> 

    </TASKOPERATIONS> 
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    <MOVERS> 

        <LoopModeler 

            name="modeler" 

            config="kic_with_frags" 

            loops_file="%%loop_file%%" 

            fast="%%fast%%"> 

        </LoopModeler> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover_name=”modeler”/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

Let the home directory of Rosetta be /path/to/rosetta/main; the input structure be 

my_structure.pdb; the loop file be my_structure.loop; the fragment files be 

my_structure.200.9mers.gz and my_structure.200.3mers.gz; and the Rosetta script XML file be 

loopmodel.xml. Then the command line for one simulation is:  

 

/path/to/rosetta/main/source/bin/rosetta_scripts.mysql.linuxgccrelease -

database /path/to/rosetta/main/database -in:file:s my_structure.pdb -

parser:protocol loopmodel.xml -parser:script_vars loop_file=my_structure.loop 

fast=no -out:prefix prefix -overwrite  -loops:frag_sizes 9 3 1 -

loops:frag_files my_structure.200.9mers.gz my_structure.200.3mers.gz  
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Generation of loophash databases.  

We generated the loophash databases using the loophash_createfiltereddb application 

and the VALL database distributed with Rosetta. The command line is: 

 

mpirun -np 32 loophash_createfiltereddb.mpi.linuxgccrelease -lh:db_path 

loophash_db/ -in:file:vall 

path_to_rosetta_tools_repository/tools/fragment_tools/vall.jul19.2011.gz -

lh:loopsizes  3 4 5 6 7 8 9 10 11 12 13 14  -lh:num_partitions 32 -

lh:createdb_rms_cutoff 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5 21 

 

where loophash_db is the output path.  

 

Rosetta scripts & command line for LHKIC 

We used the following Rosetta script to run the LHKIC benchmark simulations: 

      

<ROSETTASCRIPTS> 

    <MOVERS> 

        <LoopModeler name="modeler" config="loophash_kic" 

loops_file="%%loop_file%%" fast="%%fast%%" /> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover_name="modeler"/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 
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Let the home directory of Rosetta be /path/to/rosetta/main; the input structure be 

my_structure.pdb; the loop file be my_structure.loop; the Rosetta script XML file be 

loopmodel.xml; and the path to the loophash database be path_to_loophash_db. Then the 

command line to run one simulation is: 

 

/path/to/rosetta/main/source/bin/rosetta_scripts.mysql.linuxgccrelease -database 

/path/to/rosetta/main/main/database -in:file:s my_structure.pdb -parser:protocol loopmodel.xml -

parser:script_vars loop_file=my_structure.loop fast=no -out:prefix prefix -overwrite -lh:loopsizes  

6 8 10 -lh:db_path path_to_loophash_db   

 

By default, LHKIC does not mutate the sequence of the loop. When the 

loophash_perturb_sequence option is set to true, LHKIC applies the sequence of the returned 

loop to the pivot residues and the residues between the pivots. 

 

Rosetta scripts & command line for simulations with native bond lengths and angles 

For control simulations that use native bond lengths and angles as input, we replaced the 

Rosetta script XML file with the following: 

 

<ROSETTASCRIPTS> 

    <TASKOPERATIONS> 

        <RestrictToLoops name="loop" loops_file="%%loop_file%%"/> 

    </TASKOPERATIONS> 

    <MOVERS> 

        <LoopModeler 



 46 

            name="modeler" 

            config="kic_with_frags" 

            loops_file="%%loop_file%%" 

            fast="%%fast%%"> 

            <Build skip=”True” 

/>                                                                                                                                                

        </LoopModeler> 

    </MOVERS> 

    <PROTOCOLS> 

        <Add mover_name=”modeler”/> 

    </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

12-Residue “Standard” benchmark dataset 

The “Standard” set is a 12-residue loop benchmark dataset used in previous work [17], 

[26], [42]. This benchmark dataset consists of 45 protein structures from the PDB containing non-

redundant 12-residue target segments without regular secondary structure, curated from two 

previously described datasets [23], [25]. We used this dataset even though it is not ideal (for 

example, the conformation of several segments might be influenced by crystal contacts, see 

Appendix II: Supplementary Note 1 and Table 2.6) to facilitate comparison of FKIC with previous 

protocols. For each loop, we retained the N and Cα atoms of the N-terminal residue, as well as 

the Cα, C and O atoms of the C-terminal residue, which serve as loop anchor points for kinematic 

closure (as in ref. [17]). 
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16-Residue “Mixed Segment” benchmark dataset 

The Mixed Segment benchmark dataset consists of 30 structures from the PDB containing 

16-residue target segments. The target segments were derived from structures in the Standard 

benchmark dataset above using the following criteria: 

● The crystallographic resolution of the experimentally determined structure is equal to 

or better than 2Å. 

● Each segment has 5 to 11 residues that contain alpha helices or beta strands defined 

using DSSP[54] and the remainder of the segment is designated as loop. 

● Residues in the segment are at least 4Å away from any chains or copies of the molecule 

in other asymmetric units, to avoid crystal contacts. 

● The segment is at least 5 residues away from the chain termini. 

The segment that satisfied all criteria with the lowest distance from the protein surface was 

selected.  

10-Residue “Multiple Segments” benchmark dataset 

The Multiple Segments benchmark dataset consists of 30 structures from the PDB each 

containing a pair of 10-residue interacting target segments. Structures were derived from the 

top8000 dataset [55] using the following criteria: 

● The crystallographic resolution of the experimentally determined structure is equal to 

or better than 2Å. 

● Each segment has less than 3 residues that have regular secondary structure, defined 

as above. 
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● Residues in the segment are at least 4Å away from any chains or copies of the molecule 

in other asymmetric units, to avoid crystal contacts. 

● Each segment is at least 5 residues away from the chain termini. 

● Segments in each pair are within 4Å and are separated by at least 5 residues in primary 

sequence. 

The pair of segments that satisfied all criteria with the lowest distance from the protein surface 

was selected. We also constructed two analogous sets that contain either two 8-residue 

segments or two 12-residue segments (Appendix II: Supplementary Note 2; Table 2.7 and Table 

2.8).  

 

Generation of fragment libraries 

We generated libraries of 9-mer and 3-mer fragments for all benchmark cases using the 

fragment picking method described in ref. [19] (9-and 3-mers are established fragment sizes 

tested in a variety of Rosetta applications). The method selects fragments from a representative 

database of 16,801 protein chains extracted from the PDB and culled such that any two chains 

have at most 60% sequence identity. The fragment database is part of the Rosetta software and 

located in rosetta/tools/fragment_tools/vall.jul19.2011.gz. The fragments selected for each 

segment sequence position span a 3- or 9-residue frame, which overlaps with neighboring 

frames. Moreover, we allow sampling of 1-mer fragments, which consist of a single triplet of 

φ/ψ/ω torsions that are generated on the fly by the respective modeling protocol (see below) 

based on the 3-mer fragment library for the given position. The make_fragments.pl script in the 

rosetta/tools/fragment_tools/ directory integrates several data sources to maximize fragment 
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quality, including sequence similarity and the detection of homologs using PsiBLAST [56], 

predicted secondary structure similarity using PsiPred [57] and prediction of preferred φ/ψ 

torsions and solvent accessibility using SPARKS-X [58]. Importantly, for benchmarking purposes, 

we ran simulations using fragment libraries that excluded homologs to the given query sequence, 

by providing the –nohoms flag to the make_fragments.pl script, which excluded all protein chains 

with a PsiBLAST E-value < 0.05 [56] from the fragment picking process. 

2.6.2 Computational design of new conformations (PIP protocol) 

Overview 

Input files.  

KSI designs were based on PDB structure 1QJG [59]. KSI is an obligate dimer, so we 

included both monomers in our initial structure. To design different loop lengths, we created 

several versions of the initial structure: one for each deletion of up to 6 residues, and one with 

wild-type length. We replaced N38 with a glutamate and relaxed the resulting models 100 times 

in the talaris2013 (version 1) or ref2015 (version 2) score function using FastRelax, with all atom 

coordinates restrained to their starting positions. The best (lowest-scoring) relaxed structure was 

then repacked 100 times, and the lowest-scoring model was used as a template for design. 

The desired position of the E38 sidechain was defined in a restraint file (see below). Each 

atom in the E38 carboxylate group was restrained to the position of the corresponding atom in 

the N38 amide group in the starting structure (1QJG). We visually confirmed that N38 in 1QJG 

had the same rotameric conformation as D38 in wild-type KSI (PDB structure 8CHO). When 

working with the version 1 designs, we noticed that F54 sometimes changed its rotamer 
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conformation, causing subsequent designed mutations to stabilize the altered conformation. For 

version 2, we addressed this issue by placing restraints on the zeta-carbon of F54 in a manner 

similar to the catalytic residue. 

The residues being remodeled were defined in loop files (see below). We chose which 

residues to remodel based on proximity to secondary structure elements and intuition. Our goals 

were (i) to allow sufficient remodeling on either side of E38 to stabilize its new conformation, (ii) 

to anchor the loop in secondary structural elements, and (iii) to minimize loop length. With these 

considerations in mind, we remodeled segments that were 7-13 (version 1) or 12-13 (version 2) 

residues long. (While in principle other segment lengths could be tried, 12-13 residue loops 

resulted in the best designs from round 1, and allowed us to limit the considerable computational 

expense exploring large ensemble of potential conformations and sequences at each length). For 

version 2, we also remodeled a second 4-residue loop on the dimer interface (residues 199-202 

using Rosetta numbering, residues 74-77 on chain B using PDB numbering), hoping to maintain 

favorable contacts between those residues and the catalytic loop.  

The residues that were allowed to design (change amino acid identity) and repack (only 

change rotamer conformation) were specified in a resfile (see below). For version 1, any residue 

that had a sidechain atom within 4Å or 6Å of any loop atom in any model generated in PIP step 

1 was allowed to design or repack, respectively. For version 2, we only allowed Rosetta to design 

residues on the catalytic loop, as well as four residues on the short dimerization loop which 

directly interacts with the catalytic loop (described above). Repackable residues were selected 

using the Rosetta clash-based repack shell selector. F54, A114, and F116 were not allowed to 
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design in either version because they are known to be important for positioning the catalytic 

residue [60]. For version 1, each designed residue was allowed to change to any of the 20 

canonical amino acids except cysteine (due to the potential for disulfide bonds) and histidine 

(due to the potential for pH-dependent behavior). For version 2, we used the LayerDesign task 

operation in Rosetta to determine which residue identities were allowed at each position. Since 

version 2 introduced backbone degrees of freedom during the design step, we specified a fold 

tree to keep conformational changes as local as possible (see below). 

PIP Step 1: Build Models.  

We created models positioning the E38 carboxylate group by running approximately 

20,000 NGK[26] (version 1) or LHKIC (version 2) simulations with restraints as described above. 

Backbone remodeling was limited to the loop defined in the appropriate loop file and design was 

allowed according to the appropriate resfile (see below). In version 1 of PIP, the initial 

coordinates of the loop being remodeled were discarded and rebuilt from scratch. This step was 

skipped for version 2. Only models that put all three restrained atoms within 0.6 Å (version 1) or 

0.7 Å (version 2) of their intended positions were carried on to the next step. 

PIP Step 2: Design Models.  

To stabilize models that correctly positioned E38, we ran 50 fixed-backbone (version 1) or 

10 FastDesign (version 2) simulations per model, or more if there were relatively few models. 

Design was allowed according to the appropriate resfile (see below). For version 1, we picked 200 

designs for PIP step 3 with probability proportional to their Boltzmann-weighted talaris2013 

scores (in Rosetta energy units, REU). For version 2, we used a combination of Pareto fronts and 
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thresholds to pick designs so that we could supplement information from the Rosetta score 

function with additional metrics. The exact parameters used to pick designs are included in a 

“picks” file, described below. The metrics for which we applied thresholds were the E38 restraint 

distance (defined as the maximum distance of the restrained atoms in E38 to their ideal position), 

the number of hydrogen bonds to the E38 sidechain, and the number of oversaturated hydrogen 

bonds. Models that passed these thresholds were included in the Pareto front calculation, whose 

metrics consisted of the total solvent-accessible surface area of the model, two “foldability” 

metrics that perform 60 brief forward-folding simulations on pieces of the loop and report the 

fraction of results that placed the segment’s N-terminus within 4 Å of the concomitant residue in 

the design structure, the E38 restraint distance, a fragment quality metric (see below), and the 

Rosetta fa_attr score. The Foldability metrics remove a portion of the design’s backbone, then 

rebuild it starting from the N-terminus of the deleted segment using fragment-based assembly. 

This is repeated 100 times, and the average distance of the C-terminus of the rebuilt segment to 

its position in the design is reported.  

PIP Step 3: Structure Prediction.  

We computationally assessed our designs by running between 100 and 500 NGK (version 

1) or FKIC (version 2) structure prediction simulations for each design; for version 2, we opted to 

perform fewer structure prediction simulations on a larger number of designs during the early 

rounds of design. Backbone movement was limited to the loop defined in the appropriate loop 

file (see below). The initial coordinates for that loop were discarded and rebuilt from scratch. Any 

design for which the lowest scoring decoy put all three carboxylate atoms within 1.2 Å of their 
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intended positions was carried on to the design selection step. Furthermore, any decoy 

(regardless of score) that put all three carboxylate atoms within 0.6 Å of their intended positions 

was used as input for a second round of design simulations. 

Design Selection.  

We picked designs to experimentally test by comparing quality metrics and visually 

inspecting models. The quality metrics are described in Table 2.9. We paid particular attention 

to the score gap, which measures the difference in the score between the lowest-scoring model 

with under 1 Å restraint satisfaction and the lowest-scoring model with over 2 Å restraint 

satisfaction. Several designs were selected despite having a score gap of 0 REU, as they had 

multiple low-energy conformations. We also made an effort to pick designs from different 

sequence and structure clusters. Design sequences were clustered hierarchically such that inter-

cluster distance was no greater than the mean sequence distance (calculated according to the 

BLOSUM80 substitution matrix) across all designs. Structure clusters were formed hierarchically 

such that the RMSD between any two designs in the same cluster was no greater than 1.2 Å. We 

visually inspected the lowest scoring model for each design to eliminate those with irregular 

backbone or strained sidechain conformations. 

Wildtype Reversions.  

For each design from PIP version 1 selected for experimental validation, we reran the 

structure prediction simulations (PIP Step 3) for each single wildtype reversion mutation. We 

then combined any reversions that had no apparent detrimental effect on our quality metrics 

and again ran the structure prediction simulations. In cases where the combination of all the 
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individually acceptable reversions had a deleterious effect, we selected more conservative 

combinations of reversions for additional structure prediction simulations. If no acceptable 

combination of reversions could be found, no reversions were made (Table 2.9). For PIP version 

2, positions where the backbone was in a similar position to wildtype were reverted, or in some 

cases mutated to a residue picked by visual inspection (Table 2.10), and designs with and without 

those reversions were ordered for experimental validation. 

 

Input files for PIP 

E38 constraints definition. 

We used the following energetic constraints file for PIP Version 1 and Version 2: 

 

CoordinateConstraint CG  38 CA 1 12.159  64.031 -28.170 HARMONIC 0.0 1.0 

CoordinateConstraint OE1 38 CA 1 10.881  63.345 -30.090 HARMONIC 0.0 1.0 

CoordinateConstraint OE2 38 CA 1 11.759  65.409 -30.106 HARMONIC 0.0 1.0 

 

Additional constraint on F54 for PIP version 2. 

For PIP Version 2, we included the following additional constraint to prevent a 

conformational change in the sidechain of F54 that was frequently observed in PIP Version 1: 

 

CoordinateConstraint CZ  54 CA 1 15.196  64.334 -29.952 HARMONIC 0.0 1.0 
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Loop definitions for design V1D8r. 

We used the following loop definition for PIP Version 1 models with a single deletion in 

the loop region: 

 

LOOP 34 45 45 0 1 

 

The loop definition for input models with no deletions included residue 46. 

Loop definitions for design V2D9r. 

For PIP Version 2, we used the following loop definitions: 

 

LOOP  26  51  40 0 0 

LOOP 198 203 200 0 0 

 

Design step resfile for PIP Version 1. 

We used the following resfile for PIP Version 1 (for input models with a single deletion): 

 

NATRO 

START 

# Design residues in the loop itself. Don't move the catalytic residue, 

# because we want to find designs which stabilize that rotamer. 

34 - 37 A NOTAA HC 

38 A NATRO 

39 - 45 A NOTAA HC 

# Design any residue that has a sidechain atom within 4A of any loop atom in 

# any input model. Phe53, Ala113, and Phe115 are excluded because they are 
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# known to be important for positioning the catalytic residue. 

29 A NOTAA HC 

30 A NOTAA HC 

31 A NOTAA HC 

32 A NOTAA HC 

33 A NOTAA HC 

46 A NOTAA HC 

48 A NOTAA HC 

49 A NOTAA HC 

50 A NOTAA HC 

52 A NOTAA HC 

54 A NOTAA HC 

56 A NOTAA HC 

57 A NOTAA HC 

108 A NOTAA HC 

109 A NOTAA HC 

110 A NOTAA HC 

111 A NOTAA HC 

112 A NOTAA HC 

114 A NOTAA HC 

116 A NOTAA HC 

117 A NOTAA HC 

120 A NOTAA HC 

198 B NOTAA HC 

199 B NOTAA HC 

200 B NOTAA HC 

201 B NOTAA HC 

# Repack any residue that has a sidechain atom within 6A of any loop atom in 
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# any input model. 

10 A NATAA 

11 A NATAA 

13 A NATAA 

14 A NATAA 

15 A NATAA 

16 A NATAA 

17 A NATAA 

18 A NATAA 

23 A NATAA 

26 A NATAA 

27 A NATAA 

28 A NATAA 

47 A NATAA 

51 A NATAA 

53 A NATAA 

55 A NATAA 

58 A NATAA 

59 A NATAA 

60 A NATAA 

62 A NATAA 

 

For inputs with no deletions, we included the additional loop residue with the tag 

NOTAA HC and adjusted the residue numbers of post-loop positions accordingly. 
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Design step resfile for PIP Version 2. 

We used the following resfile for PIP version 2: 

 

NATRO 

START 

34      A NOTAA CH 

35      A NOTAA CH 

36      A NOTAA CH 

37      A NOTAA CH 

38      A PIKAA E 

39      A NOTAA CH 

40      A NOTAA CH 

41      A NOTAA CH 

42      A NOTAA CH 

43      A NOTAA CH 

44      A NOTAA CH 

45      A NOTAA CH 

46      A NOTAA CH 

199     B NOTAA CH 

200     B NOTAA CH 

201     B NOTAA CH 

202     B NOTAA CH 

 

# Repack positions 

# ================ 

# The following repack positions were chosen by the clash-based repack 

# shell creator (excluding the ligand).  
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14      A NATAA 

30      A NATAA 

50      A NATAA 

51      A NATAA 

54      A NATAA 

55      A NATAA 

95      A NATAA 

109     A NATAA 

111     A NATAA 

112     A NATAA 

113     A NATAA 

114     A NATAA 

115     A NATAA 

116     A NATAA 

121     A NATAA 

127     B NATAA 

204     B NATAA 

225     B NATAA 

227     B NATAA 

 

# The following repack positions were added after visual inspection of 

# clash-based repack shell. 

 

10      A NATAA 

13      A NATAA 

17      A NATAA 

25      A NATAA 
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52      A NATAA 

53      A NATAA 

56      A NATAA 

57      A NATAA 

58      A NATAA 

108     A NATAA 

110     A NATAA 

117     A NATAA 

118     A NATAA 

126     B NATAA 

128     B NATAA 

228     B NATAA 

 

Picks file. 

Thresholds and Pareto front metrics for PIP version 2 were defined using a YAML-

formatted file. We used the following YAML-formatted file to define the metrics to be used as 

thresholds and in Pareto fronts for picking designs for step 3 in PIP Version 2. Designs which 

meet the criteria defined under “threshold” are passed into the Pareto front. Metrics listed 

under “pareto” are used to define the Pareto front. The “depth” value describes how many 

times the Pareto front is applied, and the “epsilon” value defines how close two points can be 

in all Pareto dimensions being considered before they are considered to be the same and one is 

excluded. Its units are the percent of the range of points between the 10th and 90th percentiles. 

Let restraint_dist_e38 be the E38 restraint distance, h_bonds_to_e38_sidechain be the number 

of hydrogen bonds to E38, oversaturated_h_bonds be the number of oversaturated hydrogen 

bonds, fa_attr be the attractive Van der Waals term in the Rosetta energy function, 
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max_9_residue_fragment_rmsd_c_alpha be the Fragment Quality score (see below), total_sasa 

be the total solvent-accessible surface area, foldability_37_44  be the Foldability score 

(described above) for residues 37 through 44, and foldability_35_41 be the Foldability score for 

residues 35 through 41. 

 

threshold: 

- restraint_dist_e38 < 0.8 

- h_bonds_to_e38_sidechain == 0 

- oversaturated_h_bonds == 0 

 

pareto: 

- fa_attr 

- restraint_dist_e38 

- max_9_residue_fragment_rmsd_c_alpha 

- total_sasa 

- foldability_37_44 

- foldability_35_41 

 

depth: 1 

epsilon: 0.5 

 

Fragment Quality Analysis for Designed Regions 

The fragment quality metric assesses the geometric similarity between 9-residue 

fragments in the designed segments and fragments of natural proteins in the PDB, as described 

in ref. [44]. Specifically, we picked protein fragments from the PDB based on their similarity in 
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sequence, predicted solvent exposure, and predicted secondary structure to the post-

simulation design sequence and determined the RMSD of the backbone atoms in each fragment 

to the final structure. We then determined the lowest RMSD at each position being evaluated 

(assigning the RMSD to position at the center of each nine residue fragment). The fragment 

score filter uses the highest value of these lowest fragment RMSDs at each position. 

 

PIP Step 1: Build Models 

We used the following command line for the Build Models step in PIP Version 1. Let the 

“main” directory in Rosetta be /path/to/rosetta/main/; the (relaxed) input PDB be 

$INPUT_PDB; the (unrelaxed) native PDB be $NATIVE_PDB; the full-atom and centroid 

scorefunction parameters for the talaris2013 scorefunction be “EQU.fa.params” and 

“EQU.cen.params”, respectively; the resfile be $RESFILE; the constriants file be $CONSTRAINTS 

and the loops file be $LOOP. 

 

/path/to/rosetta/main/source/bin/loopmodel.linuxgccrelease \ 

-in:file:s $INPUT_PDB \ 

-in:file:native $NATIVE_PDB \ 

-in:file:extra_res_fa "EQU.fa.params" \ 

-in:file:extra_res_cen "EQU.cen.params" \ 

-in:file:fullatom \ 

-out:overwrite \ 

-out:pdb_gz \ 

-packing:ex1 \ 

-packing:ex2 \ 
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-packing:extrachi_cutoff 0 \ 

-packing:resfile $RESFILE \ 

-constraints:cst_fa_weight 1.0 \ 

-constraints:cst_fa_file $CONSTRAINTS \ 

-loops:loop_file $LOOP \ 

-loops:remodel "perturb_kic" \ 

-loops:refine "refine_kic" \ 

-loops:kic_rama2b \ 

-loops:kic_omega_sampling \ 

-loops:allow_omega_move "true" \ 

-loops:ramp_fa_rep \ 

-loops:ramp_rama \ 

 

For PIP Version 2, we used the following Rosetta script to build new backbone 

geometries. Let the loops file be $LOOPS_PATH. Definitions common to all steps are found in 

“shared_defs.xml”, described below. For all Rosetta scripts, variables are filled in by the PIP 

package. 

 

<ROSETTASCRIPTS> 

 

  {% include "shared_defs.xml" %} 

 

  <TASKOPERATIONS> 

    <RestrictToRepacking name="repackonly"/> 

  </TASKOPERATIONS> 
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  <MOVERS> 

    <LoopModeler name="modeler" 

      config="loophash_kic" 

      scorefxn_fa="scorefxn_cst" 

      task_operations="resfile,repackonly,ex,aro,curr" 

      loops_file="$LOOPS_PATH" 

      loophash_perturb_sequence="yes" 

      loophash_seqposes_no_mutate="38" 

      fast="no" 

    /> 

  </MOVERS> 

 

  <PROTOCOLS> 

    <!-- Constraints read from command line --> 

    <Add mover_name="modeler"/> 

    <Add mover_name="writer"/> 

  </PROTOCOLS> 

 

  <OUTPUT scorefxn="scorefxn"/> 

 

</ROSETTASCRIPTS> 

 

The PIP package also builds the command line, but a representative example is shown 

below. Let the path to the “main” folder in Rosetta be /path/to/rosetta/main/; the (relaxed) 

input PDB be $INPUT_PDB; the (unrelaxed) native PDB be $NATIVE_PDB; the folder where 

models are to be saved be $OUPUT_FOLDER; the name of the particular design be 
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$OUTPUT_NAME; the “build models” Rosetta script be build_models.xml; the resfile path be 

$RESFILE_PATH; the path to the constraints file be $CONSTRAINTS, and the path to the 

loophash database be path_to_loophash_db. 

 

/path/to/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease \ 

-database /path/to/rosetta/main/database/ \ 

-in:file:s $INPUT_PDB \ 

-in:file:native $NATIVE_PDB \ 

-out:prefix $OUTPUT_FOLDER \ 

-out:suffix $OUTPUT_NAME \ 

-out:no_nstruct_label -out:overwrite -out:pdb_gz \ 

-out:mute protocols.loops.loops_main \ 

-parser:protocol build_models.xml \ 

-packing:resfile $RESFILE_PATH \ 

-constraints:cst_fa_file $CONSTRAINTS \ 

-lh:loopsizes 6 7 8 9 10 11 12 13 14 \ 

-lh:db_path path_to_loophash_db 

 

PIP Step 2: Design Models 

We used the following command line to design models in step 2 of PIP Version 1. Let the 

“main” directory in Rosetta be /path/to/rosetta/main/; the (relaxed) input PDB be 

$INPUT_PDB; the full-atom and centroid scorefunction parameters be “EQU.fa.params” and 

“EQU.cen.params”, respectively, and the resfile be $RESFILE. 

 

/path/to/rosetta/main/source/bin/fixbb.linuxgccrelease \ 
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-in:file:s $INPUT_PDB \ 

-in:file:extra_res_fa "EQU.fa.params" \ 

-in:file:extra_res_cen "EQU.cen.params" \ 

-out:overwrite \ 

-out:pdb_gz \ 

-packing:ex1 \ 

-packing:ex2 \ 

-packing:extrachi_cutoff 0 \ 

-packing:use_input_sc \ 

-packing:resfile $RESFILE \ 

 

For PIP Version 2, we defined a custom fold tree for the design step: 

 

FOLD_TREE 

EDGE   1  39 -1 

EDGE 100   1  3 

EDGE 100  40 -1 

EDGE 100 125 -1 

EDGE 100 225  1 

EDGE 100 251  2 

EDGE 126 200 -1 

EDGE 225 126  4 

EDGE 225 201 -1 

EDGE 225 250 -1 
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We then used the following Rosetta script to design sequences for the new backbone 

geometries. Let the path to the fold tree file be $FOLDTREE. Definitions common to all steps are 

found in “shared_defs.xml”, described below. 

 

<ROSETTASCRIPTS> 

 

  {% include "shared_defs.xml" %} 

 

  <RESIDUE_SELECTORS> 

    <Index name="turn" resnums="200-201"/> 

  </RESIDUE_SELECTORS> 

 

  <TASKOPERATIONS> 

    <LayerDesign name="layer" 

        ignore_pikaa_natro="yes"/> 

    <ConsensusLoopDesign name="abego" 

        residue_selector="turn" 

        include_adjacent_residues="no"/> 

  </TASKOPERATIONS> 

 

  <MOVERS> 

    <AtomTree name="foldtree" fold_tree_file="$FOLDTREE"/> 

    <AtomTree name="unfoldtree" simple_ft="yes"/> 

    <AddChainBreak name="break_loop" resnum="39" change_foldtree="no"/> 

    <AddChainBreak name="break_turn" resnum="200" change_foldtree="no"/> 

    <FastDesign name="fastdesign" 

        task_operations="resfile,layer,abego,ex,aro,curr" 
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        scorefxn="scorefxn_cst" > 

      <MoveMap bb="no" chi="yes" jump="no"> 

         <Span begin="26"  end="51"  chi="yes" bb="yes"/> 

         <Span begin="198" end="203" chi="yes" bb="yes"/> 

      </MoveMap> 

    </FastDesign> 

  </MOVERS> 

 

  <PROTOCOLS> 

    <Add mover_name="nativebonus"/> 

    <Add mover_name="cst"/> <!-- Added via mover b/c command-line ignored. --

> 

    <Add mover_name="foldtree"/> 

    <Add mover_name="break_loop"/> 

    <Add mover_name="break_turn"/> 

    <Add mover_name="fastdesign"/> 

    <Add mover_name="unfoldtree"/> <!-- Otherwise Foldability segfaults. --> 

    <Add mover_name="writer"/> 

  </PROTOCOLS> 

 

  <OUTPUT scorefxn="scorefxn"/> 

 

</ROSETTASCRIPTS> 

 

A representative command line is shown below. Let the path to the “main” folder in 

Rosetta be /path/to/rosetta/main/; the (relaxed) input PDB be $INPUT_PDB; the (unrelaxed) 

native PDB be $NATIVE_PDB; the folder where models are to be saved be $OUPUT_FOLDER; 
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the name of the particular design be $OUTPUT_NAME; the “design models” Rosetta script be 

design_models.xml, and the resfile path be $RESFILE_PATH. 

 

/path/to/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease \ 

-database /path/to/rosetta/main/database/ \ 

-in:file:s $INPUT_PDB \ 

-in:file:native $NATIVE_PDB \ 

-out:prefix $OUTPUT_FOLDER \ 

-out:suffix $OUTPUT_NAME \ 

-out:no_nstruct_label -out:overwrite -out:pdb_gz \ 

-out:mute protocols.loops.loops_main \ 

-parser:protocol design_models.xml \ 

-packing:resfile $RESFILE_PATH \ 

 

PIP Step 3: Structure Prediction 

We used the following command line to design models in step 2 of PIP Version 1. Let the 

“main” directory in Rosetta be /path/to/rosetta/main/; the (relaxed) input PDB be 

$INPUT_PDB; the full-atom and centroid scorefunction parameters be “EQU.fa.params” and 

“EQU.cen.params”, respectively, and the loops file be $LOOPS. 

 

/path/to/rosetta/main/source/bin/loopmodel.linuxgccrelease \ 

-in:file:s $INPUT_PDB \ 

-in:file:native $NATIVE_PDB \ 

-in:file:extra_res_fa "EQU.fa.params" \ 

-in:file:extra_res_cen "EQU.cen.params" \ 
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-in:file:fullatom \ 

-out:pdb_gz \ 

-out:overwrite \ 

-packing:ex1 \ 

-packing:ex2 \ 

-packing:extrachi_cutoff 0 \ 

-loops:loop_file $LOOPS \ 

-loops:remodel "perturb_kic" \ 

-loops:refine "refine_kic" \ 

-loops:kic_rama2b \ 

-loops:kic_omega_sampling \ 

-loops:ramp_fa_rep \ 

-loops:ramp_rama \ 

 

For PIP Version 2, we used the following Rosetta script to predict the structures of 

picked designs. Let the loops file be $LOOPS_PATH. Definitions common to all steps are found 

in “shared_defs.xml”, described below. 

 

<ROSETTASCRIPTS> 

 

  {% include "shared_defs.xml" %} 

 

  <MOVERS> 

    <LoopModeler name="modeler" 

      config="kic_with_frags" 

      scorefxn_fa="scorefxn" 

      loops_file="$LOOPS_PATH" 
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      fast="no"> 

        <Build skip="yes"/> 

    </LoopModeler> 

  </MOVERS> 

 

  <PROTOCOLS> 

    <Add mover_name="modeler"/> 

    <Add mover_name="writer"/> 

  </PROTOCOLS> 

 

  <OUTPUT scorefxn="scorefxn"/> 

 

</ROSETTASCRIPTS> 

 

A representative command line for PIP Version 2 is shown below. Let the path to the 

“main” folder in Rosetta be /path/to/rosetta/main/; the (relaxed) input PDB be $INPUT_PDB; 

the (unrelaxed) native PDB be $NATIVE_PDB; the folder where models are to be saved be 

$OUPUT_FOLDER; the name of the particular design be $OUTPUT_NAME; the “predict models” 

Rosetta script be predict_models.xml; the paths to the 9-mer fragments for the first and second 

loop be path_to_9mers_A and path_to_9mers_B, respectively, and the paths to 3-mer 

fragments for the first and second loop be path_to_3mers_A and path_to_3mers_B, 

respectively. 

 

/path/to/rosetta/main/source/bin/rosetta_scripts.linuxgccrelease \ 

-database /path/to/rosetta/main/database/ \ 
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-in:file:s $INPUT_PDB \ 

-in:file:native $NATIVE_PDB \ 

-out:prefix $OUTPUT_FOLDER \ 

-out:suffix $OUTPUT_NAME \ 

-out:no_nstruct_label -out:overwrite -out:pdb_gz \ 

-out:mute protocols.loops.loops_main \ 

-parser:protocol predict_models.xml \ 

-loops:frag_sizes 9 9 3 3 \ 

-loops:frag_files path_to_9mers_A path_to_9mers_B path_to_3mers_A 

path_to_3mers_B 

 

PIP Version 2 Shared Definitions 

Filter, scorefunction, residue selector, and certain Rosetta mover definitions were used 

during every step of the PIP Version 2 protocol. These were stored as separate RosettaScripts 

files and imported into each main step template. Let the path to the scorefunction weights file 

be $SCOREFXN_WEIGHTS and the path to the constraints file be $CONSTRAINTS. The weights 

file was identical to the default weights for the ref2015 scorefunction. 

 

  {% include "filters.xml" %} 

 

  <SCOREFXNS> 

    <ScoreFunction name="scorefxn" weights="$SCOREFXN_WEIGHTS"/> 

    <ScoreFunction name="scorefxn_cst" weights="$SCOREFXN_WEIGHTS"> 

      <Reweight scoretype="coordinate_constraint" weight="1.0"/> 

      <Reweight scoretype="atom_pair_constraint" weight="1.0"/> 

      <Reweight scoretype="angle_constraint" weight="1.0"/> 
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      <Reweight scoretype="dihedral_constraint" weight="1.0"/> 

      <Reweight scoretype="res_type_constraint" weight="1.0"/> 

      <Reweight scoretype="chainbreak" weight="100.0"/> 

    </ScoreFunction> 

  </SCOREFXNS> 

 

  <RESIDUE_SELECTORS> 

    <Chain name="chA" chains="A"/> 

    <Index name="E38" resnums="38"/> 

  </RESIDUE_SELECTORS> 

 

  <TASKOPERATIONS> 

    <ReadResfile name="resfile"/> 

    <ExtraRotamersGeneric name="ex" ex1="yes" ex2="yes" extrachi_cutoff="0"/> 

    <LimitAromaChi2 name="aro" include_trp="yes"/> 

    <IncludeCurrent name="curr"/> 

  </TASKOPERATIONS> 

 

  <MOVERS> 

    <FavorNativeResidue name="nativebonus" /> 

    <ConstraintSetMover name="cst" cst_fa_file="$CONSTRAINTS"/> 

    <WriteFiltersToPose name="writer" prefix="EXTRA_METRIC "/> 

  </MOVERS> 

 

Filters for PIP Version 2 

We used the following Rosetta script to run filters for all three steps in PIP Version 2, 

with the exceptions of the fragment quality metric (FragmentScoreFilter) and the Foldability 
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metric, which were not included in the Structure Prediction step. For fragment picking, several 

variables are defined. Let the folder where fragment picking files are stored be $OUTPUT_DIR; 

the job-specific name of these files be $OUTPUT_NAME; the path to the required CSBLAST, 

BLAST, PSIPRED, and SPARKS-X programs be /path/to/csblast-2.2.3_linux64, /path/to/blast-

2.2.26/bin/blastpgp, /path/to/psipred/runpsipred_single, and /path/to/sparks-x, respectively; 

the path to the BLAST database consisting of FASTA-formatted sequence information for 

proteins in the PDB be /path/to/BLAST/sequences; the weights file for scoring fragments be 

$FRAMGNET_WEIGHTS, and the path to the vall database 

/path/to/Rosetta/database/sampling/vall.jul19.2011.torsions.gz. 

 

<FILTERS> 

  <PackStat 

    name="PackStat Score [+]" 

    threshold="0" 

    chain="0" 

    repeats="1" 

  /> 

  <ResidueIE 

    name="E38 Interaction Energy [-]" 

    scorefxn="scorefxn_cst" 

    score_type="total_score" 

    energy_cutoff="-10" 

    restype3="GLU" 

    interface="0" 

    whole_pose="0" 
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    selector="E38" 

    jump_number="1" 

    interface_distance_cutoff="8.0" 

    max_penalty="1000.0" 

    penalty_factor="1.0" 

  /> 

  <PreProline 

    name="Pre-Proline Potential [-]" 

    use_statistical_potential="true" 

  /> 

  <TotalSasa 

    name="Total SASA [-]" 

    threshold="0" 

    upper_threshold="1000000000000000" 

    hydrophobic="0" 

    polar="0" 

  /> 

  <ExposedHydrophobics 

    name="Exposed Hydrophobic Residue SASA [-]" 

    sasa_cutoff="20" 

    threshold="-1" 

  /> 

  <HbondsToResidue 

    name="H-bonds to E38 [+]" 

    scorefxn="scorefxn_cst" 

    partners="0" 

    energy_cutoff="-0.5" 

    backbone="true" 
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    bb_bb="true" 

    sidechain="true" 

    residue="38" 

    from_other_chains="true" 

    from_same_chain="true" 

  /> 

  <HbondsToResidue 

    name="H-bonds to E38 (Backbone) [+]" 

    scorefxn="scorefxn_cst" 

    partners="0" 

    energy_cutoff="-0.5" 

    backbone="true" 

    bb_bb="true" 

    sidechain="false" 

    residue="38" 

    from_other_chains="true" 

    from_same_chain="true" 

  /> 

  <HbondsToResidue 

    name="H-bonds to E38 (Sidechain) [+]" 

    scorefxn="scorefxn_cst" 

    partners="0" 

    energy_cutoff="-0.5" 

    backbone="false" 

    bb_bb="false" 

    sidechain="true" 

    residue="38" 

    from_other_chains="true" 
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    from_same_chain="true" 

  /> 

  <BuriedUnsatHbonds 

    name="Buried Unsatisfied H-Bonds [-]" 

    scorefxn="scorefxn" 

    print_out_info_to_pdb="true" 

    task_operations="resfile" 

  /> 

  <OversaturatedHbondAcceptorFilter 

    name="Oversaturated H-bonds [-]" 

    scorefxn="scorefxn_cst" 

    max_allowed_oversaturated="0" 

    hbond_energy_cutoff="-0.5" 

    consider_mainchain_only="false" 

  /> 

  <RepackWithoutLigand 

    name="Repack Without Ligand (delta REU) [-]" 

    scorefxn="scorefxn_cst" 

    target_res="all_repacked" 

    rms_threshold="100" 

  /> 

  {% if w.focus_name != 'validate_designs' %} 

  <Foldability 

    name="Foldability (35-41)" 

    tries="60" 

    start_res="35" {# Unaffected by loop length. #} 

    end_res="41"   {# Unaffected by loop length. #} 

  /> 
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  <Foldability 

    name="Foldability (37-44)" 

    tries="60" 

    start_res="37" {# Unaffected by loop length. #} 

    end_res="44"   {# Unaffected by loop length. #} 

  /> 

  <FragmentScoreFilter 

    name="Max 9-Residue Fragment RMSD (C alpha) [-]" 

    scoretype="FragmentCrmsd" 

    sort_by="FragmentCrmsd" 

    threshold="9999" 

    direction="-" 

    start_res="26 " 

    end_res="51" 

    compute="maximum" 

    outputs_folder="$OUTPUT_DIR" 

    outputs_name="$OUTPUT_NAME" 

    csblast="/path/to/csblast-2.2.3_linux64" 

    blast_pgp="/path/to/blast-2.2.26/bin/blastpgp" 

    placeholder_seqs="/path/to/BLAST/sequences" 

    psipred="/path/to/psipred/runpsipred_single" 

    sparks-x="/path/to/sparks-x" 

    sparks-x_query="/path/to/sparks-x/bin/buildinp_query.sh" 

    frags_scoring_config="$FRAGMENTS_WEIGHTS" 

    n_frags="200" 

    n_candidates="1000" 

    fragment_size="9" 
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vall_path="/path/to/Rosetta/main/database/sampling/vall.jul19.2011.torsions.g

z" 

    print_to_pdb="true" 

  /> 

  {% endif %} 

</FILTERS> 

 

The fragment quality filter required the following weights file describing which scores to 

use when picking fragments8 during the structure prediction step: 

 

# score name         priority  wght   min_allowed  extras 

ProfileScoreL1          700     1.0        - 

ProfileScoreStructL1    100     4.0        - 

SolventAccessibility    500     1.5        - 

Phi                     300     1.0        - 

Psi                     200     0.6        - 

SecondarySimilarity     600     1.0        -       predA 

RamaScore               400     0.8        -       predA 

FragmentCrmsd           0       0.0        - 
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2.6.3 Experimental characterization of designs 

Purification of KSI designs 

Cells were lysed in 40 mM potassium phosphate, 2 mM DTT, 1 mM EDTA, and 6 U/mL 

DNAse I, pH 7.2 using a Microfluidics M-110L microfluidizer. Clarified lysate was then passed 

through a 10 mL sodium deoxycholate gravity affinity column, prepared as described in 

reference [46]. The column was washed with 400 mM phosphate, 2 mM DTT, 1 mM EDTA, pH 

7.2 followed by lysis buffer (minus DNAse), then eluted with 40 mM phosphate, 2 mM DTT, 1 

mM EDTA, and 50% ethanol, pH 7.2. Proteins were then either further purified using a HiLoad 

16/600 Superdex 75 pg gel filtration column or dialyzed twice in 1L lysis buffer to remove the 

ethanol. Most other designed proteins expressed in the insoluble fraction, so inclusion bodies 

were first purified from the cell lysate: Cells were grown in 1 L LB broth to an optical density of 

0.6 at 37 °C, followed by overnight expression at 18 °C. Cells were then harvested by 

centrifugation at 3500 rpm for 20 minutes at 4 °C, then resuspended in lysis buffer (40 mM Tris-

HCl, 1 mM EDTA, 25% sucrose w/v, pH 8.5). Suspensions were lysed in a M-110L 

microfluidizer and centrifuged at 20,000 rpm for 20 minutes at 4 °C. The resulting inclusion body 

pellet was washed once in 25 mL of 20 mM Tris-HCl, 1% sodium deoxycholate, 200 mM NaCl, 

and 2 mM EGTA, followed by at least 3 washes of 25 mL 10 mM Tris-HCl, 0.25% sodium 

doxycholate, pH 8.5, followed by at least 3 washes of 25 mL 20 mM Na-HEPES, 500 mM NaCl, 

1 mM EDTA, pH 8.5. Inclusion bodies were centrifuged at 8,000 xg for 10 minutes at 4 °C 

between washes. Proteins in inclusion bodies were solubilized by shaking for 30 minutes with 

10 mL 8 M urea, 20 mM Na-HEPES, 500 mM NaCl, 10 mM DTT, and 1 mM EDTA at pH 8.5, 

then centrifuged at 20,000 rpm for 20 minutes at 4 °C to remove cell debris. Solubilized protein 

was then refolded by stirring for 2 hours at 4 °C in 200 mL of 40 mM KPi, 1 mM EDTA, 2 mM 

DTT. Proteins were then sterile-filtered using 0.4 μm filter paper and further purified via 

deoxycholate column as described above. 
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Size exclusion chromatography 

Six uM of purified wild-type KSI, V1D8r, or V2D9r were loaded onto a Superdex 75 10/300 

GL column from Cytiva which was pre-equilibrated with running buffer (40 mM phosphate, 2 mM 

DTT, and 1 mM EDTA). Samples were run isocratically in an Agilent Technologies 1200 Series 

HPLC for 150 minutes and absorbance was monitored at 280 nm.  

CD spectroscopy 

Samples for CD analysis were prepared at approximately 6 μM enzyme in 40 mM 

phosphate pH 8.5, 2 mM DTT, and 1 mM EDTA. CD spectra were recorded at 25 °C using 2 mm 

cuvettes (Starna, 21-Q-2) in a JASCO J-710 CD spectrometer (Serial #9079119). The bandwidth 

was 2 nm, rate of scanning 20 nm/min, data pitch 0.2 nm, and response time 8 s. Each spectrum 

represents the average of 5 scans. Buffer spectra were subtracted from the sample spectra using 

the Spectra Manager software Version 1.53.01 from JASCO Corporation. Melting temperatures 

were assessed by measuring molar ellipticity at 222 nm and increasing the temperature from 25 

°C to 95 °C at 1 °C per minute, using a data pitch of either 0.1, 0.5, or 1.0 °C.  

 

X-ray data collection and processing 

Prior to X-ray data collection, crystals were cryoprotected and flash-cooled by rapid 

plunging into liquid nitrogen. Crystals that yielded the V1D8r structure were cryoprotected using 

a mixture of 50% glycerol and 50% crystallization mother liquor, and crystals that yielded the 

V2D9r structure were cryoprotected using a mixture of 25% glycerol and 75% crystallization 

mother liquor. We collected single-crystal X-ray diffraction data on beamline 8.3.1 at the 

Advanced Light Source. Data collection for V1D8r was performed while the beamline was 

equipped with a Quantum 315r CCD detector (ADSC), while data collection for the V2D9r 

structure utilized a newer Pilatus3 S 6M photon-counting detector (Dectris). Both data sets were 



 82 

collected using an X-ray energy of 11111 keV, and the crystals were maintained at a cryogenic 

temperature (100 K) throughout the course of data collection. 

We processed the X-ray data using the Xia2 system[61], which performed indexing, 

integration, and scaling with XDS and XSCALE[62], followed by merging with Pointless[63]. For 

the [6UAE] structure, a resolution cutoff (1.93 Å) was taken where the signal-to-noise ratio 

(<I/σI>) of the data fell to a value of approximately 1.0. In the case of the V1D8r structure, the 

data were collected on an older, smaller detector, and the resolution was limited by the detector 

edge and the geometric requirements of the experiment. Although other metrics of data quality 

(such as CC1/2 and <I/σI>) suggest that a more aggressive resolution cutoff would be 

acceptable, we were limited by the data completeness that could be obtained with the minimum 

accessible sample-to-detector distance. Further information regarding data collection and 

processing is presented in Table 2.14. The reduced diffraction data were analyzed with 

phenix.xtriage to check for common crystal pathologies, none of which were identified. 

 

2.7 Appendix II: Supplementary Notes 

2.7.1 Supplementary Note I: Analysis of failure cases 

Despite the performance improvements with FKIC, in particular for the challenging Mixed 

Segment and Multiple Segments datasets, FKIC failed to accurately model 12 of the 45 segments 

in the Standard 12-residue benchmark dataset. In four cases (1cs6, 1msc, 2tgi and 4i1b) no sub-

Å model was generated. In the other eight cases (1arb, 1bhe, 1cyo, 1m3s, 1onc, 1qlw, 1t1d and 

1thg), sub-Å models were generated but could not be identified by energy (the RMSDs of lowest 

energy structures were larger than 1.1Å). These failures could result from deficiencies in sampling 

near-native conformations, from inaccuracies in the energy function and/or from problems with 
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the crystal structure conformation such as effects of crystal packing. Sampling and energy 

function errors are often coupled, as the energy function guides sampling during the simulations. 

To gain insights into potential reasons for the failures we observed, we ran simulations of the 

failed proteins starting from their native structures as inputs. In these simulations, we skipped 

the first build stage (yellow in Fig. 2.5) so that the native bond angles and bond lengths were 

kept. 

The results of these simulations allowed us to classify failure cases into 4 categories (Fig. 

2.6):  

(1) Only the native-input simulations generate sub-Å models, which are correctly 

identified by energy. This occurred in two of the 12 failure cases (1cs6 and 2tgi). As the energies 

of native-like models are much lower than the non-native decoys (Fig. 2.6a), failures in these 

cases are most likely due to the insufficient sampling. 

(2) Both standard and native-input FKIC generate sub-Å models, but these models are 

only correctly identified by lowest energy in the native-input simulations (three of the 12 failure 

cases: 1bhe, 1onc and 1t1d). As the native-input simulations generated a larger number of 

correct models with lower energies (Fig. 2.6b), the failures are likely caused by the failure of 

Rosetta to efficiently sample near-native energy minima. One of the possible explanations is that 

the standard simulation idealizes bond lengths and bond angles in standard FKIC. Because of the 

rugged energy landscape, small conformational changes can result in significant energy 

differences.  

(3) As in (2), both simulations generate sub-Å models and native-input simulations 

correctly identify these models by energy, but standard FKIC generates incorrect models with 
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lower energies (Fig. 2.6c, two of the 12 failure cases: 1arb and 1qlw). This behavior indicates 

linked scoring and sampling deficiencies.  

(4) Neither standard nor native input simulations generate sub-Å models (Fig. 2.6d; five 

of 12 failure cases: 1cyo, 1m3s, 1msc, 1thg and 4i1b). While these simulations start from the 

native backbones, they do not include crystal contacts. Because crystal packing affecting loop 

conformations is well known[64], [65], there is a formal possibility that the failures of 1cyo, 1m3s, 

1msc and 4i1b are due to crystal packing. For the lowest energy models for 1cyo and 4i1b, the 

incorrectly modeled loops would have unfavorable contacts in the crystal lattice. For 1m3s and 

1msc, the native loop conformations make contacts with another monomer in the crystal. For 

1thg, the RMSD of the lowest energy structure improved from 1.86Å to 1.12Å when including 

native bond lengths and angles, so there might be both sampling and energy function problems. 

In sum, in particular for categories (1) and (2), it could be beneficial to incorporate 

sampling of bond lengths and bond angles, which we kept to their idealized values to reduce the 

conformational space to be sampled. Category (3) is indicative of energy function failures 

although we note that sampling and scoring are coupled in our simulations that accept or reject 

models based on their energies. Category (4) identifies a number of cases where crystal packing 

may influence the conformation of the modeled segment in the experimentally determined 

structure. 

2.7.2 Supplementary Note 2: 8-Residue and 12-residue Multiple Segments datasets 

To further benchmark the performance of FKIC on multiple interacting segments, we 

constructed a dataset of 8-residue interacting segments and a dataset of 12-residue interacting 

segments in a similar manner to the construction of the 10-residue Multiple Segments dataset 
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(see Appendix I: Supplementary Methods). On the 8-residue interacting segment dataset, FKIC 

has 0.65Å median accuracy and 59.9% median fraction of sub-Å prediction; NGK has 0.79Å 

median accuracy and 35.6% median fraction of sub-Å prediction (median accuracy and median 

fraction of sub-Å prediction are described in the main text). On the 12-residue interacting 

dataset, FKIC has 1.53Å median accuracy and 0.21% median fraction of sub-Å prediction; NGK 

has 1.94Å median accuracy and 0% median fraction of sub-Å prediction. Thus, FKIC improves 

the prediction accuracy for multiple interacting segments consistently on different segment 

lengths and is able to find correct solutions for large conformational search problems, such as 

the set with two interacting 12-residue segments where previous methods such as NGK and 

CCD frequently fail (Table 2.7 and Table 2.8). 

2.7.3 Supplementary Note 3: Benchmark LHKIC on structure prediction 

The LHKIC method was developed for loop design, but it can also be used for structure 

prediction. We benchmarked the prediction performance of LHKIC on all three benchmark 

datasets (Table 2.2). The performance of LHKIC is comparable to NGK and FKIC in terms of 

median RMSD of lowest scoring models. For the Standard and Mixed Segment datasets, the 

median sub-Å  fraction of LHKIC is 24.35% and 15.40%, better than NGK but worse than FKIC. 

This result indicates that sequence-independent fragments (as in LHKIC) can improve sampling 

in structure predictions over non fragment-based methods such as NGK, but the improvement 

is smaller than when using fragments picked with sequence information as in FKIC (and for the 

Multiple Segments dataset, LHKIC had a median sub-Å fraction of 4.01%, which is lower than for 

both NGK and FKIC.) Note that the absolute energies for LHKIC cannot be directly compared to 
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the other methods since LHKIC was developed in a newer version of Rosetta (revision 60022, 

see Methods). 

2.7.4 Supplementary Note 4: Catalytic activity of KSI designs 

V1D8r and V2D9r were overall less active than both wild-type and D38E KSI (Table 2.1). 

This result might be expected for several reasons: First, while we took steps to avoid mutations 

in residues known to be important for catalysis, we still made extensive changes (19 and 12 

mutations in design V1D8r and V2D9r, respectively) in and around the active site, which could 

change the electrostatic environment as well as affect functional or non-productive dynamics 

that impact catalysis. Second, while wild-type KSI is a dimer, our designs (while modeled as a 

dimer) are monomeric at the concentrations of the enzyme assay (Fig. 2.9) although dimeric in 

the crystal. These differences could affect functional group positioning in solution[66]. Third, 

even though the glutamate side chain placement in V2D9r was close to ideal, it was not perfect; 

even small perturbations towards nonproductive conformations can be significant to catalysis 

and the designed glutamate may only sample catalytic conformations a fraction of the time. 

Finally, there is evidence that the catalytic residue in the homologous Pseudomonas putida KSI 

accesses multiple specific productive conformations to enable its participation throughout the 

catalytic cycle[67], a property which was not considered by our protocol. Despite these 

difficulties, our designed enzymes still enhanced the catalysis of their substrate by 4 to 5 orders 

of magnitude when compared to the water-catalyzed isomerization of the similar 5-androstene-

3,17-dione[36].  
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2.7.5 Supplementary Note 5: Analysis of sequence differences between wildtype KSI 

and V2D9r 

The mutational effects of alanine and wildtype reversion mutations on catalytic activity 

of V2D9r are all rather small, except for mutations at the catalytic E38 to either aspartate or 

alanine. Most of the other changes are within error (Fig. 2.4f, shaded bar). Exceptions are Q41A 

that has slightly decreased activity and T39S that has a slightly increased activity. Q41 is the 

residue with the largest shift in Cα position between aligned wildtype and V2D9r crystal 

structures (Table 2.15). T39S is a manually designed mutation to avoid a potential issue with 

burial of polar groups. Nevertheless, none of the individual side chain mutations (apart from 

mutations to the catalytic glutamate) show more than 2-fold effects on kinetics. This observation 

suggests that there are not individual key side chain-mediated interactions that determine the 

new loop conformation, but that many interactions each contribute to a smaller extent.  

We also analyzed the local sequence-structure compatibility of the sequences of 

wildtype and V2D9r with the two structures in the reshaped segment using the Rosetta 

fragment quality metric (Appendix I: Supplementary Methods). This metric does not consider 

specific side chain interactions but instead evaluates a tertiary-structure-independent 

compatibility of the primary sequence for a given structure. Figure 2.10f shows that the wild-

type sequence has a lower (better) fragment RMSD for the wild-type structure at all positions in 

the reshaped region, whereas the sequence of V2D9r has a lower fragment RMSD for the 

designed structure at most positions in the designed regions. These observations are consistent 

with the idea that the structure of V2D9r in the reshaped region is at least partially dependent 

on local sequence-structure compatibility in addition to tertiary interactions. 



 88 

2.7.6 Supplementary Note 6: Loop modeling on template-based models and 

perturbed datasets  

To test the performance of FKIC in contexts where the environment of the remodeled 

loop is non-native, we benchmarked FKIC on several datasets from ref [27]: a benchmark set from 

template-based modeling, and three sidechain/backbone perturbed loop datasets (Table 2.12). 

On the side chain perturbed datasets, FKIC performs similarly to NGK, and outperforms the other 

methods. This behavior is likely due to the fact that surrounding residues are repacked during 

FKIC or NGK simulations, indicating that these methods can account for slight imperfections in 

the environment that can be resolved by altering side chain conformations. On the backbone-

perturbed dataset, the performance of FKIC is comparable to the reported results of GalaxyLoop-

PS2 [27], with a median RMSD of lowest-scoring models of 1.68Å and 1.65Å for FKIC and Galaxy-

PS2, respectively. On the template-based model dataset, none of the methods performs well, 

with the median RMSD of lowest scoring models above 3 Å for all methods.  

It should be noted that the prediction and evaluation approach described here is not 

suited to appropriately assess the accuracy of loop modeling methods in environments where 

the surrounding backbone is perturbed, since the backbone in the environment is not allowed to 

change during the simulation. In our study, we compare a predicted loop structure to the native 

loop structure after aligning the surrounding environment of the loop. The native loop is the 

correct answer when the surrounding environment is unperturbed. However, the native loop 

conformation may not be compatible with the perturbed backbone and can therefore not be 

identified as the lowest scoring model in simulations where the backbone of the environment 

remains in its (unchanged) perturbed conformation. Our analysis on the dataset containing 
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backbone perturbations after MD simulations from ref[27] supports this argument. For each 

protein in this dataset, we defined the residues within 10 Å from the native loop as surrounding 

residues. We then superimposed the native structure and the perturbed structure by the 

backbone heavy atoms of the surrounding residues and calculated heavy atom steric clashes 

between the native loop and the perturbed surrounding backbone atoms. Two heavy atoms were 

defined as clashing if their interatomic distance was within 2.5 Å. This analysis revealed that 

twelve out of the twenty native loops in the dataset contained clashes with their perturbed 

environments that cannot be resolved with simulations that do not relax the surrounding 

backbone. When excluding these cases, the FKIC and GalaxyLoop-PS2 median RMSDs improved 

to 1.3 Å and 1.4 Å, respectively (Table 2.12). 

These considerations highlight that modeling loops in perturbed environments such as 

homology models remains an important unsolved problem. To adapt the design-centric loop 

modeling methods presented here to the problem of homology modeling should include 

simultaneous or iterative refinement of both loop structures and the environment. 
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2.8 Appendix III: Supplementary Tables 

Table 2.2. Datasets and performance summary 
 
a) Comparison of methods  

Dataset Sampling 
method 

Rosetta 
energy 
function 

Median 
RMSD of 
lowest 
energy 
model 

(Å) 

Median 
RMSD of 
lowest 
RMSD 
model 

(Å) 

Median 
RMSD 

all 
models 

(Å) 

Median 
sub-A 

fraction 

Median 
lowest 
energy 
(REU) 

Median 
time (s) 

Standard KIC* score12 1.05 NA NA 4.30% NA NA 
Standard CCD ref2015 1.26 0.47 3.27 2.00% -709.18 2299 
Standard NGK ref2015 0.64 0.37 2.70 13.00% -712.65 3642 
Standard FKIC ref2015       0.62 0.32 1.16 47.80% -716.78 3456 
Standard LHKIC ref2015    0.55** 0.34 2.66 24.35%     -655.18*** 3057 
Mixed CCD ref2015 1.29 0.67 3.46 0.50% -719.42 4309 
Mixed NGK ref2015 1.07 0.45 4.65 1.15% -728.18 7341 
Mixed FKIC ref2015 0.53 0.34 1.46 52.30% -739.38 7196 
Mixed LHKIC ref2015 0.48 0.35 4.14 15.40% -693.95*** 5322 
Multiple CCD ref2015 1.97 0.90 2.95 0.20% -557.06 5204 
Multiple NGK ref2015 1.29 0.52 2.35 5.50% -573.60 9472 
Multiple FKIC ref2015 1.00 0.41 1.82 28.50% -581.42 8834 
Multiple LHKIC**** ref2015 1.31 0.55 2.50 4.01% -517.69*** 7831 

 
REU, Rosetta energy units 
* taken from ref. [17]; all other simulations were run using the Rosetta energy function “ref2015” as described in ref.25  
** bold numbers denote best performance for given dataset 
*** REU value not directly comparable to other methods as LHKIC was benchmarked using a more recent Rosetta 
version (see Methods).  
**** PDB 1FO9 was excluded from the Multiple Segments benchmark set for LHKIC because for this case simulations 
failed to converge during minimization for the majority of simulations. 

 
b) Inclusion of fragments from homologous structures 

Dataset Sampling 
method 

Rosetta 
energy 
function 

Median 
RMSD of 
lowest 
scoring 
model 

(Å) 

Median 
RMSD of 
lowest 
RMSD 
model 

(Å) 

Median 
RMSD 

all 
models 

(Å) 

Median 
sub-A 

fraction 

Median 
lowest 
energy 
(REU) 

Median 
time 
(s) 

Standard FKIC talaris2013 0.70 0.36 1.19 44.89% -274.50 1646 
Standard FKIC (+ 

homologs) 
talaris2013 0.59 0.33 0.85 66.80% -273.29 1919 
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Table 2.9. Parameters of designs selected for experimental testing. 
Boxes on the left side indicate whether designs were based off of a full-length input structure or 
contained a 1-residue deletion (Del1) in the catalytic loop. Sequence cluster: Designs were 
clustered hierarchically (see Appendix I: Supplementary Methods) according to sequence 
distance, determined using the BLOSUM80 substitution matrix. Struct Cluster: Designs were 
clustered (see Appendix I: Supplementary Methods) according to the C/Cα/N/O RMSD for the 
positions where the backbone was remodeled. Largest Restraint Dist (Å) in lowest scoring model: 
The furthest distance between any of the atoms in the E38 carboxylate (Cδ, Oε1, or Oε2) and 
their target positions, for the lowest scoring loop modeling decoy. Loop RMSD (Å): The average 
RMSD in Å between loop modeling decoys and the input design structure. Score Gap: The 
difference in fa_attr score between the lowest scoring decoy that puts all of the atoms of the E38 
carboxylate less that 1Å from their target positions, and the lowest scoring decoy that puts at least 
one atom of the E38 carboxylate more than 2Å from its target position. A score gap of 0 indicates 
that the lowest-scoring decoy was more than 2Å from its target position. % Sub-Å Restraints: The 
fraction of the loop modeling decoys that are predicted to position the all atoms of the Glu 
carboxylate less than 1Å from their target positions. % Sub-Å Loops: The fraction of loop modeling 
decoys that are predicted to position all backbone atoms (C/Cα/N/O) within 1Å RMSD of the input 
design structure.  
 

Design 
Name 

Sequence 
Cluster 

Struct 
Cluster 

Largest  Restraint Dist (Å) in 
lowest scoring model 

Loop 
RMSD (Å) 

Score Gap 
(REU) 

% Sub-Å 
Restraints 

% Sub-Å 
Loops 

Fu
ll-

le
ng

th
 

V1D1r 1 1 0.83 0.20 3.16 7.60 13.00 
V1D2r 1 1 1.05 0.38 2.05 0.20 12.20 
V1D3r 2 1 0.55 0.20 6.50 7.20 4.60 
V1D4 2 1 0.68 0.24 6.56 6.60 5.20 
V1D5r 2 1 0.92 0.27 11.88 2.20 2.00 
V1D6 3 2 2.37 0.33 0.00 0.00 17.20 
V1D7 3 3 2.63 0.25 0.00 0.00 3.20 

D
el

1 

V1D8r 1 2 0.57 0.09 4.72 11.20 31.80 
V1D9r 1 2 0.80 0.08 5.09 11.40 20.00 
V1D10r 1 2 0.87 0.18 4.51 13.20 19.40 
V1D11 2 1 2.25 0.21 0.00 0.60 10.60 
V1D12r 2 1 2.35 0.32 0.00 3.20 20.40 
V1D13 2 1 2.36 1.22 0.00 1.40 6.80 
V1D14 3 3 2.31 0.23 0.00 0.00 4.60 

Fu
ll-

le
ng

th
 

V2D1 3 2 0.67 0.32 8.16 5.80 7.25 
V2D2 3 2 0.83 0.73 8.97 4.23 7.04 
V2D3 3 2 0.91 0.38 5.54 8.45 14.08 
V2D4 3 2 0.71 0.23 5.35 5.88 5.88 
V2D5 3 2 0.72 0.24 10.31 1.41 1.41 
V2D6 1 4 0.95 0.16 0.90 19.12 63.24 
V2D7 5 1 1.03 0.61 5.52 5.71 32.86 
V2D8 5 1 1.05 0.81 2.92 5.88 35.29 
V2D9 2 3 1.15 0.13 0.22 4.42 71.46 
V2D10 1 1 0.86 0.71 0.09 8.57 61.10 
V2D11 1 1 0.87 0.66 12.02 26.70 54.92 
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Table 2.10a. List of mutations for PIP version 1 designs.  
Designs appended with “r” indicate that mutations were reverted to the wild-type residue based 
on visual inspection; 8/14 designs from version 1 contained reversion mutations. 

Design 
Name 

Mutations 

V1D1r T35K, E37T, D38E, P39D, V40A, S42L, E43G, P44G, R45Y, S46Q, A50W, V74N, L115T 
V1D2r D33N, T35Y, D38E, P39S, V40A, S42Q, E43P, P44K, R45Y, S46W, A49D, E53K, S58Q, V74A, M112A, L115I, E118D 
V1D3r T35K, E37I, D38E, P39T, V40Q, G41Y, S42P, S46K, V74A, M112A 
V1D4 F30Y, D32P, D33N, T35K, E37I, D38E, P39T, V40Q, G41Y, S42P, S46K, T48R, A49D, A50N, N57E, S58A, K60R, 

V74A, A75N, N76G, V109I, V110N, S111Y, M112A, R113Q, L115V, E118P 
V1D5r D33N, T35R, D38E, P39T, V40K, G41Y, S42P, P44D, S46K, S58Q, K60A, V74A, M112A, R113Q 
V1D6 F30Y, A31D, D33T, T35R, V36R, E37N, D38E, P39I, V40G, S42P, E43P, R45L, S46P, T48R, A49D, A50N, E53K, 

N57E, S58D, K60A, V74T, A75N, N76G, V109I, V110S, S111Y, M112A, R113Q, L115V, E118D 
V1D7 F30Y, A31S, D32P, T35I, V36R, E37R, D38E, P39R, V40Y, G41A, S42K, E43A, P44N, R45P, S46R, T48R, A49D, 

E53Q, N57E, S58D, K60A, V74T, A75N, N76G, V109I, V110A, S111E, M112A, R113Q, L115I, E118D 
V1D8r F30Y, D32S, E37T, D38E, P39S, V40F, G41-, S42R, E43P, R45F, S46T, A49E, V74A, A75N, N76G, V109I, S111Y, 

M112A, R113Q 
V1D9r E37R, D38E, P39S, V40F, G41-, S42R, E43P, R45F, S46T, S58N, V74S, A75N, S111E, M112A, R113Q 
V1D10r T35S, E37T, D38E, P39S, V40F, G41-, S42R, E43P, R45F, S46T, S58N, V74S, A75N, M112A 
V1D11 F30Y, D32P, D33N, T35R, V36Y, E37D, D38E, P39I, V40G, G41-, S42F, E43P, P44D, R45T, S46G, A49D, A50N, 

E53A, N57K, S58Q, V74T, A75N, N76G, V109I, V110A, S111E, M112A, L115I, E118D 
V1D12r T35Q, V36Y, E37N, D38E, P39I, V40G, G41-, S42F, E43R, P44G, R45D, S58Q, A75N, N76G, S111Y, M112A 
V1D13 F30Y, A31D, D32S, D33T, T35Q, V36Y, E37D, D38E, P39I, V40G, G41-, S42F, E43D, P44G, R45G, A49E, A50N, 

E53R, N57K, S58Q, V74T, A75N, N76G, V109I, V110A, S111E, M112A, L115I, E118D 
V1D14 F30Y, A31D, D32S, D33T, T35I, V36R, E37Y, D38E, P39Q, V40Y, G41-, S42Y, P44G, R45G, S46K, A49D, A50N, 

E53K, N57M, S58D, V74T, A75N, N76G, V109I, V110A, S111E, M112A, L115I, E118D 
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Table 2.10b. List of mutations for PIP V2 designs.  
Designs appended with “r” indicate that mutations were reverted to the wild-type residue based 
on visual inspection; 11/22 designs from version 2 contained reversion mutations. 

Design 
Name 

Mutations 

V2D1 V27A, A28G, L29F, F30L, D33G, A34I, T35K, V36I, E37D, D38E, P39D, V40Q, G41N, S42R, E43K, P44Q, R45V, 
S46T, G47D, T48A, A50Q, I51K, A73S, A75S 

V2D1r D33G, A34I, V36I, E37D, D38E, P39D, G41N, S42R, E43K, P44Q, R45V, G47D, A50Q, A73S, A75S 
V2D2 V27A, A28G, L29F, F30L, D33G, A34V, T35K, E37D, D38E, P39D, V40Q, G41K, S42K, E43T, P44T, R45V, S46T, 

G47D, T48A, A50Q, I51K, A73S, A75D 
V2D2r D33G, A34V, E37D, D38E, P39D, V40Q, G41K, S42K, E43T, P44T, R45V, G47D, A50Q, A75D 
V2D3 V27A, A28G, L29F, F30L, D33G, A34V, T35Q, V36I, E37D, D38E, P39D, V40Q, G41N, S42K, E43T, P44T, R45V, 

S46T, G47D, T48A, A50Q, I51K, A73S, A75D 
V2D3r D33G, A34V, V36I, E37D, D38E, P39D, V40Q, G41N, S42K, E43T, P44T, R45V, G47D, A50Q, A75D 
V2D4 V27A, A28G, L29F, F30L, D33G, A34V, T35Q, V36I, E37D, D38E, P39D, V40Q, G41Q, S42T, E43S, P44T, R45V, 

S46T, G47D, T48A, A50Q, I51K, A73S, A75K 
V2D4r D33G, A34V, V36I, E37D, D38E, P39D, V40Q, G41Q, S42T, E43S, P44T, R45V, G47D, A50Q, A75K 
V2D5 V27A, A28G, L29F, F30L, D33G, A34V, V36I, E37L, D38E, P39D, V40Q, G41Q, S42K, E43S, P44T, R45V, S46T, 

G47D, T48A, A50Q, I51K, A73S, A75D 
V2D5r D33G, A34V, V36I, E37D, D38E, P39D, V40Q, G41Q, S42K, E43S, P44T, R45V, G47D, A50Q, A75D 
V2D6 F30L, D32S, A34V, V36L, E37W, D38E, P39T, V40S, G41Q, S42D, E43R, P44T, R45Y, S46T, T48N, A49S, A73S, 

V74N, A75R 
V2D6r V36L, E37W, D38E, P39T, V40S, G41Q, S42D, E43R, P44T, R45Y, V74N, A75R 
V2D7 A28G, L29Q, A31G, D32P, D33Q, A34V, V36I, D38E, P39S, V40K, G41F, S42P, E43P, P44A, R45D, S46P, G47D, 

T48L, A49S, A73V, V74Y, A75N, N76Y, E77T, A78T 
V2D7r A31G, D32P, A34V, V36I, D38E, P39S, V40K, G41F, S42P, E43P, P44A, R45D, S46P, G47D, V74Y, A75N 
V2D8 A28G, L29Q, A31G, D32P, D33Q, A34V, T35V, V36I, D38E, P39S, V40K, G41Q, S42P, E43P, P44T, R45D, S46P, 

G47D, T48L, A49S, A73V, V74Y, A75N, E77T, A78T 
V2D8r A31G, D32P, V36I, D38E, P39S, V40K, G41Q, S42P, E43P, P44T, R45D, S46P, G47D, V74Y, A75N 
V2D9 F30L, D32S, A34V, V36L, E37Y, D38E, P39T, V40S, G41Q, S42D, E43R, P44T, R45Y, S46T, T48N, A49S, A73S, 

V74N, A75R, E77T 
V2D9r E37Y, D38E, P39T, V40S, G41Q, S42D, E43R, P44T, R45Y, S46T, V74N, A75R 
V2D10 A28G, L29Q, A31G, D32P, D33Q, A34V, V36L, E37V, D38E, P39S, V40K, A(G)41S, S42P, E43P, P44A, R45D, 

S46P, A(G)47D, T48L, A49S, A73V, V74S, A75Q, E77T, A78T 
V2D11 A28G, L29Q, A31G, D32P, D33Q, A34V, V36L, E37W, D38E, P39S, V40K, G41Y, S42P, E43P, P44A, R45D, S46P, 

G47D, T48L, A49S, A73V, V74S, A75G, A78T 
V2D11r(1) A31G, D32P, A34V, V36L, E37W, D38E, P39S, V40K, G41Y, S42P, E43P, P44A, R45D, S46P, G47D, T448L, A49S, 

V74S, A75G 
V2D11r(2) A31G, D32P, A34V, E37W, D38E, P39S, V40K, G41Y, S42P, E43P, P44A, R45D, S46P, G47D, T448L, A49S, V74S, 

A75G 
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 Table 2.11. Experimental characterization of designs from PIP version 1. 
Mutations: Number of mutations from wild-type KSI, excluding deletions. Expression: Whether the 
design expressed in inclusion bodies (“Insoluble”) or not at all (“None”). Purified: Whether or not 
the design was successfully purified. Solubility: Whether the purified design was soluble after re-
folding from inclusion bodies. Activity: Whether the design had any observable enzymatic activity 
(“+”) or not (“-”); N/A: not applicable as protein could not be purified or was not soluble after 
purification. 
Design Mutations Expression Purified Solubility Activity 

V1D1r 14 Insoluble Yes Soluble - 

V1D2r 18 Insoluble Yes Insoluble N/A 

V1D3r 11 Insoluble Yes Soluble - 

V1D4 28 Insoluble Yes Insoluble N/A 

V1D5r 15 Insoluble Yes Insoluble N/A 

V1D6 31 None No N/A N/A 

V1D7 32 Insoluble No N/A N/A 

V1D8r 19 Insoluble Yes Soluble + 

V1D9r 15 Insoluble Yes Soluble + 

V1D10r 14 Insoluble Yes Soluble + 

V1D11 29 Insoluble Yes Insoluble N/A 

V1D12r 16 None No N/A N/A 

V1D13 29 Insoluble Yes Insoluble N/A 

V1D14 29 None No N/A N/A 
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Table 2.12. Comparison of median RMSD of lowest energy models on perturbed structures.  
References for the different methods are indicated. Bold numbers denote best performance for 
given dataset (excluding FKIC with homologous fragments). 

Method 8 residue 
side chain 
perturbed 

(Å) 

12 residue 
side chain 
perturbed 

(Å) 

template 
based 

models 
(Å) 

12 residue 
backbone 
perturbed 

(Å) 

12 residue 
backbone 

perturbed no 
unavoidable 

clashes  
(Å) 

12 residue 
backbone 
perturbed 

unavoidable 
clashes 

(Å) 

HLP20 * 2.2 2.25 - - - - 

HLP-SS4 * 0.85 1.15 - - - - 

NGK2 * 0.4 0.75 3.9 - - - 

Galaxy-PS126 
* 

1.45 3.05 3.5 - - - 

Galaxy-PS224 
* 

1.05 1.55 3.3 1.65 1.4 1.8 

FKIC 0.45 0.64 3.9 1.68 1.28 2.59 

FKIC with 
homologous 

fragments 

0.42 0.54 - - - - 

* Values reported by ref [27]. 
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Table 2.13. Summary of energy function comparisons 
Dataset Sampling method Rosetta 

energy 
function 

Median 
RMSD of 
lowest 
energy 
model 

(Å) 

Median 
RMSD of 
lowest 
RMSD 
model 

(Å) 

Median 
RMSD 

all 
models 

(Å) 

Median 
sub-Å 

fraction 

Median 
time (s) 

Standard NGK talaris2013 0.74 0.37 2.71 11.40% 2281 
Standard NGK ref2015 0.64 0.37 2.70 13.00% 3642 
Standard FKIC talaris2013 0.70 0.36 1.19 44.89% 1646 
Standard FKIC talaris2014 0.64 0.35 1.27 46.20% 1813 
Standard FKIC ref2015 0.62 0.32 1.16 47.80% 3456 
Mixed NGK talaris2013 1.94 0.45 4.66 1.90% 3788 
Mixed NGK ref2015 1.07 0.45 4.65 1.15% 7341 
Mixed FKIC talaris2013 0.61 0.34 1.74 34.60% 3654 
Mixed FKIC ref2015 0.53 0.34 1.46 52.30% 7196 
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Table 2.14. X-ray crystallography information 
 

 
Structure V1D8r (6UAD) V2D9r (6UAE) 

Wavelength  1.116Å 1.116Å 
Resolution Range  46.03-1.75 (1.80-1.75) 105.00-1.93 (1.96-1.93) 

Unit Cell a=b=53.15Å , c=178.03Å  
𝛂=𝛃=90° 𝜸=120° 

a=73.01Å , b=210.00Å , c=39.64Å  
𝛂=𝛃=𝜸=90° 

Space Group P6522 P21212 
Unique Reflections 15833 (1048) 46239 (2182) 

Multiplicity 9.7 (3.9) 19.1 (17.7) 
Completeness 99.2% (92.0%) 98.1% (94.2%) 

<I/σI> 34.2 (4.0) 9.3 (1.0) 
CC1/2[68]  1.000 (0.939) 0.995 (0.652) 

Rpim[61]  0.013 (0.159) 0.059 (0.818) 
Rwork [69]  0.1742 (0.2083) 0.1752 (0.3041) 

Rfree[69]  0.2095 (0.2852) 0.2122 (0.3916) 
Total Refined Atoms 1244 4662 

Protein Residues 121 495 
Solvent Molecules 163 372 

Refined Ligand Atoms 66 204 
Average B-factor  24.8Å2 37.7Å2 

RMSDbonds 0.014Å 0.006Å 
RMSDangles 1.23°  0.91° 
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Table 2.15. Cα distances between positions of designed residues in the crystal structures 
of V2D9r and WT. 

Residue # WT amino acid V2D9r amino acid Cα Distance (Å) 

34 ALA ALA 0.17 

35 THR THR 0.26 

36 VAL VAL 0.32 

37 GLU TYR 0.48 

38 ASN GLU 1.31 

39 PRO THR 2.47 

40 VAL SER 5.96 

41 GLY GLN 6.55 

42 SER ASP 0.79 

43 GLU ARG 2.47 

44 PRO THR 0.91 

45 ARG TYR 0.50 

46 SER THR 0.22 

74 VAL ASN 0.63 

75 ALA ARG 1.02 
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2.9 Appendix IV: Supplementary figures 

 

Figure 2.5. Detailed FKIC protocol. 
The FKIC / LHKIC modeling protocol has a build stage (yellow), a centroid sampling stage (light 
red) and a full atom sampling stage (red). Both the centroid stage and the full atom stage perform 
simulated annealing which ramp the rama and fa_rep terms of the Rosetta energy function [21], 
[22] in outer cycles and ramp the temperature in inner cycles. 
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Figure 2.6. Examples of failures of FKIC. 
Results of standard FKIC are shown in red (right in each panel) and results of FKIC with native 
input information and native bond lengths and angles are shown in green (left in each panel). 
Each point represents a Rosetta generated model. REU, Rosetta energy units. (a) Sub-Å models 
are generated only with native inputs. (b) Standard FKIC generates a few sub-Å models but they 
are not identified by energy. Using native inputs generates a larger number of near-native 
solutions that can be correctly identified by energy. (c) The simulation with native inputs correctly 
identifies native-like models, but a model generated by standard FKIC has lower energy. (d) 
Neither standard nor native-input simulations correctly identify sub-Å models. 
  



 108 

 

 

Figure 2.7. Computational structure prediction of designs from PIP V1.  
Rosetta total score (in REU) versus loop backbone RMSD (in Å) for designs selected for 
experimental testing from PIP version 1. Vertical dashed lines indicate 1Å loop RMSD. The 
experimentally characterized V1D8r design is highlighted in yellow. Structure prediction was 
performed on both the initial designs and the reversion mutants.  
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Figure 2.8. Computational structure predictions of designs from PIP V2.  
Rosetta total score (in REU) versus loop backbone RMSD (in Å) for designs selected for 
experimental testing from PIP version 2. Plots are shown for the designs excluding the reversion 
mutants. Vertical dashed lines indicate 1Å loop RMSD. V2D9, the design corresponding to the 
experimentally characterized V2D9r reversion mutant, is highlighted in yellow. 
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Figure 2.9. Biophysical and biochemical characterization of designs. 
Circular dichroism (CD) spectra for wild-type (a), V1D8r (b), or V2D9r (c). (d) Normalized 
temperature melting curves, measured via CD at 222 nm, for V1D8r (dark blue) and V2D9r (dark 
red) and their corresponding E38D reversion mutants (light blue and orange, respectively). The 
temperature melts are not reversible. Apparent melting temperatures are as follows: V1D8r: 44 
°C, V1D8r E38D: 43 °C, V2D9r: 67 °C, V2D9r E38D: 67 °C. (e) Normalized absorbance (280 nm) 
from analytical size exclusion chromatography of V1D8r, V2D9r, wild-type KSI or a standards 
mixture with molecular weights as labeled. 
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Figure 2.10. Structural analysis of designs. 
Electron density of reshaped backbone region for V1D8r (a) and V2D9r (b) at 1.0 sigma in mesh 
representation. Comparison of buried (<40 Å2 solvent-accessible surface area) sidechain 
positioning between lowest-energy design model (orange) and crystal structure (blue) for (c) 
V1D8r or (d) V2D9r. Heavy-atom RMSDs for the displayed residues are shown in each panel. (e) 
Electron density of possible alternate conformations of E38 observed in design 2. Density is 
contoured at 0.5 sigma for residues 37-39 in chain B. Residue E38 (teal) and equilenin (purple) 
are shown as sticks. (f) Cα RMSD of the closest 9-residue fragment whose midpoint (5th residue) 
corresponds to the x-axis position. Top: Fragments picked using the WT sequence (blue) or the 
incorrect V2D9r sequence (red) aligned to the corresponding position in the WT crystal structure. 
Bottom: Fragments picked using the V2D9r sequence (blue) or the incorrect WT sequence (red) 
aligned to the corresponding position in the V2D9r crystal structure. The difference in fragment Cα 
RMSD between the correct and incorrect sequences are shown at the bottom of each graph. Blue bars 
(negative change in fragment Cα RMSD) indicate the correct structure is favored. 
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Figure 2.11. Selection of designs for via Pareto fronts in PIP version 2.  
Designs picked for computational structure prediction. Plots of design Lennard-Jones attractive 
(fa_attr) Rosetta score, in REU, vs. restraint satisfaction (longest distance of any restrained atom 
to its ideal position, in Å (Appendix I: Supplementary Methods)) for the first (a), second (b), and 
third (c) iterations of design for PIP version 2. Designs chosen via Pareto fronts for structure 
prediction are shown in red, other designs in blue.  
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Chapter 3 

Generalizable design of protein-protein interfaces using helical 

structural elements 

3.1 Abstract 

Computationally designed protein interfaces have many applications in medicine and 

synthetic biology, but typically require extensive experimental optimization to achieve affinities 

needed for robust in vivo usage. High-affinity protein interfaces require precise interactions with 

high shape complementarity, facilitated by backbone geometries that support favorable 

sidechain orientations. Here we present an approach, in line with these requirements, for the 

design of de novo proteins that bind a specific target protein: Helical ELements Interface eXplorer 

(HELIX) is a bottom-up method for designing protein binders that positions helical fragments that 

are geometrically compatible with the target interface, then thoroughly optimizes the sequences 

of these small helical structures, and finally searches for scaffolds that support as many of these 

structural elements as possible. When combined with systematic sampling of helical geometries 

using methods previously developed in our lab, HELIX produces de novo protein interfaces with 

a high level of shape complementarity at multiple sites along the target protein’s surface, 

including polar regions. To computationally validate the method, we ran HELIX on several 

proteins that have been targeted by other de novo interface design methods and compare their 
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performance. HELIX produces designs with affinity-related metrics that are on par with or better 

than designs created using other interface design methods, while simultaneously creating a 

higher number of well-satisfied interface hydrogen bonds. With computational and experimental 

validation ongoing, we envision HELIX and similar approaches becoming important tools in the 

design of new biologics and protein circuits. 

3.2 Introduction 

The computational design of protein-protein interactions has enabled many applications, 

including the creation of binders to medically-relevant targets [1]–[3], small molecule-sensing 

heterodimers [4], and synthetic protein circuits [5], [6]. While many examples of successfully 

designed protein interfaces exist, it is common that initial binders need to be optimized through 

a combination of affinity maturation and deep mutational scanning to achieve the desired 

affinities. Thus, a generalizable computational method for reliably designing high-affinity de novo 

interfaces would be extremely valuable. 

Difficulties arise due to the strict geometric requirements of high-affinity protein-protein 

interfaces: Highly favorable sidechain interactions must be accommodated by compatible 

backbone segments, and often several noncontiguous backbone segments are necessary to form 

a large high-affinity interface with a protein target (Fig. 3.1a). These cascading geometric 

requirements for protein-protein recognition are congruent with bottom-up design approaches, 

where first residue-level interactions are determined that are then matched or grafted into a 

backbone “scaffold” of a potential binding protein, as opposed to top-down design where an 
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existing protein is first docked against the target followed by design of the interface residues for 

affinity with the target protein. 

Recent methods have partially addressed the protein interface design problem: Yang and 

colleagues developed a method to graft known binding motifs into stable scaffolds to generate 

protein binders and used it to design binders for respiratory syndrome virus (RSV) F and G 

proteins [7]. The same method was later used to design a PD-1 agonist [8], demonstrating a 

degree of generalizability, but only in cases where strong binding motifs are known, and even 

then requiring experimental optimization to reach the desired affinities. More recently, Cao. and 

colleagues designed protein binders from target structure alone by docking a scaffold library to 

a rotamer interaction field (RIF) [9], then focusing design on well-scoring motifs while resampling 

backbones from the scaffold library [10]. Combining this method with combinatorial sequence 

optimization via site-saturation mutagenesis yielded binders with nanomolar affinity for several 

targets, though it remains an unsolved problem to reach these affinities without the need for 

experimental optimization. 

Here, we present a new protein interface design method, Helical ELements Interface 

eXplorer (HELIX, Fig. 3.1b), which specifically aims to optimize the affinity of individual secondary 

structural elements before matching those to a scaffold that already supports the correct 

secondary structure geometry for binding. These secondary structural fragments are obtained 

using information from the geometry, but not sequence, of real structures, reducing reliance on 

known binding motifs while still taking advantage of the wealth of data provided by the Protein 

Databank (PDB). Our approach also splits the problems of sequence and structure optimization 
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into two distinct steps, allowing each one to be more thoroughly optimized by reducing the 

extent of the combinatorial explosion caused by the vastness of sequence and structure space. 

3.3 Results 

3.3.1 HELIX overview 

To design high-affinity protein-protein interfaces, we created a method, HELIX, that builds 

interfaces starting from short protein fragments (Fig. 3.1b). HELIX treats the design of 

interactions with the target protein and the design of the potential binding protein’s backbone 

geometry as two separate challenges, and then looks for the overlap between the two solution 

spaces. The method begins by docking fragments of α-helices such that they enable favorable 

interactions with the target protein. Next, we design the sequences of these protein fragments, 

placing an emphasis on favorable intermolecular energies and shape complementarity. The 

fragmented nature of the budding interface allows us to thoroughly optimize the sequence of 

the protein fragments during this step. The docked protein fragments are then matched against 

a library of scaffolds such that as many fragments as possible are present in the proper 

orientations in the matched backbone. While it would be possible to dock protein fragments with 

any secondary structure in the first step, here we focus on α-helical units for several reasons: (1) 

The geometries of (regular) α-helices can be expressed as a vector, making it possible to match 

their relative orientations to a scaffold library with minimal computational cost; (2) methods exist 

[11] to thoroughly sample helical geometries within a topology, allowing one to match against a 

library of de novo scaffolds with a variety of helical orientations; and (3) approximately 40% of 
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buried interface residues are part of an alpha helix (Appendix Fig. 3.5, Methods), making it the 

most common secondary structure for energetically important positions. 

 

 

Figure 3.1. HELIX motivation and method overview. (a) Protein interfaces (blue & white) 
contain highly specific residue-level interactions such as tight hydrophobic packing and hydrogen 
bonding (left), facilitated by several noncontiguous structural units (center) which are held 
together by a larger backbone scaffold (gray, right). (b) HELIX protocol conceptual overview. First, 
geometries of α-helices that are capable of making favorable residue-level interactions with the 
target protein are determined and the sequences of these geometries are optimized. Next, the 
helical geometries described as vectors, and their relative orientations are matched against a 
database of scaffolds with reshaped helical units. Finally, the optimized sequence is transferred 
from the original helical geometries to the matched scaffold, and the surrounding residues are 
designed. 

 

3.3.2 Docking helices 

We examined two methods for finding fragment geometries of α-helices that are 

compatible with the target interface. First, we used RIFDock [9]. RIFDock creates a rotamer 
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interaction field (RIF), a field of discrete rotamers that make interactions that are predicted to be 

favorable with the target. It does this by placing polar rotamers based on their hydrogen bonding 

geometries and docking hydrophobic residues, which are then filtered based on Rosetta energy. 

In a typical application, RIFDock is used to dock a library of protein scaffolds to a small molecule 

[9] or another protein [10] to find binding geometries that enable a large number of interactions 

with the ligand. By contrast, here we are docking short, ideal α-helices, with the goal of then 

matching those helices to a larger protein scaffold. To bias RIFDock towards extensive coverage 

of the protein surface, we split the protein into surface patches, defined as groups of surface 

residues that are close in space but not necessarily congruent, and allow RIFDock to create up to 

80 docked poses for each patch (Methods). 

Second, we examined the peptide docking protocol PatchMAN [12]. PatchMAN was 

developed for blind peptide docking, which is achieved by leveraging the wealth of tertiary 

interaction data in the PDB [13], [14]. Like our RIFDock protocol, PatchMAN begins by splitting 

the receptor protein’s surface in to patches with a roughly 10 Å radius. For each patch, a 

nonredundant subset of the PDB is searched (using Method of Accelerated Search for Tertiary 

Ensemble Representatives, MASTER) [15] for up to 50 tertiary protein fragments that are 

geometrically similar (<1.5 Å root-mean-square deviation, RMSD) to the receptor protein’s 

surface patch, referred to here as tertiary motifs. PatchMAN then takes a nearby contiguous 

stretch of residues surrounding these tertiary fragments and superimposes it back onto the 

receptor protein surface, resulting in possible peptide docking geometries. For peptide docking 

applications, further refinement is carried out to determine likely docking orientations for a given 
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peptide sequence. For our purposes, it is convenient that PatchMAN results in protein fragments 

with known geometric compatibility with the target protein surface, and that it does so in a way 

that is agnostic to the sequence of the docked peptide, since that sequence will be subject to 

change during later design steps. Because many of these fragments are helical, and because 

PatchMAN exploits geometric data from protein structures, we hoped this would result in more 

realistic helix geometries. 

To compare the ability of RIFDock and PatchMAN to identify favorable helical interactions 

in protein interfaces, we created a benchmark set of helices found in the interfaces of protein-

protein complexes from the PDB (Methods). To minimize bias against RIFDock, which relies on 

Rosetta-scored rotamers, we restricted the benchmark set such that each interface had at least 

2 helices that, when minimized and scored by Rosetta, had more than 4 residues making 

energetically favorable intermolecular contributions to the estimated binding energy (better 

than 1.5 Rosetta energy units, REU). We hoped this approach would increase the likelihood that 

RIFDock would find near-native rotamers when generating the RIF, resulting in docking poses 

that better match the natural interface helices. The final benchmark set consisted of 34 of 

interfaces, with a total of 107 of helices (Table 3.2).  

We ran both RIFDock and PatchMAN on all target proteins in the benchmark set and 

evaluated the ability of each method to recapitulate the natural interface geometries by 

calculating the RMSD between their outputs and each benchmark helix (Fig. 3.2a). For RIFDock 

simulations, we evaluated its performance by docking two backbones, each consisting of a single  
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Figure 3.2. Benchmarking α-helix docking. (a) Target protein surfaces are split into patches, 
each of which is fed into two helix docking protocols. For PatchMAN (top middle & right), the 
surface patch (pink) is queried (top middle) against a database of tertiary motifs (green: matched 
tertiary motif; transparent green: scaffold of tertiary motif). A fragment surrounding the matched 
motif (orange) is then superimposed back onto the target structure (top right, white). For RIFDock 
(bottom left & middle), a rotamer interaction field (RIF, bottom left, orange lines) is generated to 
make favorable interactions with the surface patch (pink). Next, ideal α-helices (orange cartoon) 
are docked into the RIF (bottom middle). For both protocols, the RMSD is computed (bottom 
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right) between the docked fragment and a helix that is part of the target’s native interface (blue). 
(b, c) Results of docking benchmark and impact of homology on PatchMAN interface 
recapitulation. Bars represent the fraction of benchmark helices for which the protocol (RIFDock, 
red, or PatchMAN, blue) found a sub-Å helix. Additional PatchMAN results are shown for various 
levels of sequence identity cutoffs between the (b) target and any chain in the protein from which 
the tertiary fragment was found or (c) the surface patch and the matched tertiary motif.  
 
regular alpha helix: a 4-turn helix (14 residues) and an 8-turn helix (28 residues). Similarly, 

PatchMAN was allowed to return peptides of two lengths, 14 and 28 residues, matching the 

lengths of the helices used by RIFDock. Since the sizes of the benchmark helices and docked 

helices were not necessarily the same, these RMSDs were evaluated for the portion of the longer 

helix that gave the lowest possible value (Methods). RIFDock was able to place a helix within 1 Å 

RMSD of 14% of benchmark helices when docking with a 4-turn helix, and 5% of benchmark 

helices when docking with an 8-turn helix (Fig. 3.2b). Despite not being restricted to returning 

alpha helices, PatchMAN performed better, finding sub-Å fragments 82% of the time for the 14-

residue fragments and 67% of the time for the 28-residue fragments. 

Next, we evaluated the ability of PatchMAN to recapitulate natural interface positions 

without the aid of homologous structures. Since PatchMAN uses existing structures to find 

candidate peptide geometries, it is possible for it to return helical geometries based on the target 

or its homologs. While this is desirable behavior for any design applications where a natural 

interface is being at least partially mimicked, many designable positions might not benefit from 

homology as they are not at known interface positions. We reasoned that if PatchMAN is able to 

place helices at native interface positions without the aid of homology, it is also more likely to be 

capable of placing helices in realistic geometries near positions that are not known to be an 
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interface. We evaluated PatchMAN’s reliance on sequence identity in two ways: first, we 

excluded results where the tertiary motif came from proteins that contained a chain with a 

sequence identity above various cutoffs (Fig. 3.2b). Second, we excluded results whose matched 

fragments had above a certain sequence identity with the target patch (Fig. 3.2c). As expected, 

PatchMAN performs best when it can query homologous proteins. We found that it had the 

sharpest drop in accuracy when it was restricted from using structural information from the 

target protein (100% sequence identity cutoff), and that this effect was particularly pronounced 

for the 28-residue fragments (Fig. 3.2b). When sequence identity cutoffs were applied to the 

tertiary motifs, however, PatchMAN withstood much more aggressive cutoffs (Fig. 3.2c), 

suggesting that global similarities can compensate for local sequence differences. 

3.3.3 Design of docked helices 

The second step in the HELIX protocol is to optimize the amino acid sequences (design) of 

the identified complementary helical backbones. Since PatchMAN produces geometries based 

on known protein structures, we saw an opportunity to utilize the sequence information 

provided by the PatchMAN fragments in addition to their backbone conformation. We tested 

several methods of maintaining this sequence information, each involving a comparison of the 

intermolecular interface residue scores of the docked fragments to those of natural proteins. We 

first minimized the docked fragments with backbone constraints, then compared each docked 

residue to residues from natural protein interfaces with the same amino acid identity, burial, and 

secondary structure (Methods). If the intermolecular Rosetta score of the docked residue was 

better than the median value for natural proteins and was not in contact with any buried 
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unsatisfied polar atoms, this interaction was determined to be “native-like” and we applied one 

of several different types of modifications to our design protocol: (1) We applied a residue type 

constraint to that position, favoring retention of the amino acid type, but not the specific rotamer 

(termed special residue). (2) We disabled packing for each native-like residue (termed residue 

lock). (3) We applied a “special rotamer” score bonus [16] to the fragment’s minimized rotamer 

(termed special residue) to bias Rosetta towards picking the input rotamer. We also tested these 

methods in combination with a pairwise decomposable energy term that penalizes buried 

unsatisfied hydrogen bonds, called 3-Body Oversaturation Penalty (3BOP) [17], and with 3BOP in 

addition to ramping down constraint terms during the course of the simulation. 

We applied each of these design protocols to all docked PatchMAN fragments that were 

within 1.0 Å RMSD of a benchmark helix so that we could evaluate their ability to reproduce 

natural protein sequences. In general, methods that favored the preservation of native-like input 

rotamers (residue lock and special rotamer) performed better at recovering the native sequence 

of the interface helix than those that did not, including methods that attempt to retain sequence 

information, but not rotamer information, via residue type constraints (Fig. 3.3a). Interestingly, 

these methods that preserve rotamer-level information also resulted in a slightly higher number 

of interface hydrogen bonds and a lower number of buried unsatisfied hydrogen bonds, 

indicating that preserving polar interactions from protein fragments is more likely to produce 

well-satisfied hydrogen bonding pairs than Rosetta sampling alone. 

Disabling packing for positions which passed the residue-level filter (residue lock) resulted 

in the highest sequence recovery for docked helices that were within 1 Å of a benchmark helix, 
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even compared to other methods which bias Rosetta towards picking that rotamer (Fig. 3.3a, 

special rotamer). When combined with 3BOP and constraint ramping, we found that residue lock 

also produced the highest number of cross-interface hydrogen bonds. This is particularly useful 

in the context of interface design, as buried protein interface positions are typically more polar 

than protein cores because both partners must be soluble when unbound. Special rotamer, while 

resulting in slightly lower sequence recovery and interface hydrogen bonds than residue lock, 

also had the lowest number of buried unsatisfied hydrogen bonds when the energetic bonus for 

the input rotamer was set to -3.0 and combined with 3BOP and constraint ramping. As buried 

unsatisfied polar atoms can incur large energetic costs, we placed particular emphasis on this 

metric. Moreover, we reasoned that the advantages held by residue lock were less likely to be 

applicable to positions that are not part of a native interface, so we chose to use the special 

rotamer bonus for designing PatchMAN fragments, giving Rosetta the opportunity to sample 

solutions with potentially better Rosetta scores than the input rotamer while still encouraging 

the use of sidechain information from the docked fragments. 

We next filtered the docked helices, hoping to increase the likelihood of matched 

scaffolds having high affinity for the target protein. We used the benchmark dataset to optimize 

the filtering parameters; first, the special rotamer design protocol was run on all PatchMAN 

results (not just sub-Å results) with the 3BOP score term, constraint ramping, and a weight of -3.0. 

Next, several filtering metrics were analyzed for their impact on the coverage of the benchmark 

set; we wanted to maintain recapitulation of natural protein interfaces while reducing the  
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Figure 3.3. Benchmarking α-helix design. (a) Interface metrics for designed PatchMAN 
fragments. Top: Sequence identity distribution between the designed helices and the closest 
benchmark helix segment for various design protocols. Bottom: Average number of interface 
hydrogen bonds (colored bars) or buried unsatisfied hydrogen bonds (gray bars) between the 
PatchMAN fragment and the target interface for each design protocol. (b) Filtered PatchMAN 
fragments (dark blue) show distributions of interface ΔG and CMS scores more similar to native 
proteins (red) than the unfiltered fragments (light blue). (c) PatchMAN helix distributions. 
PatchMAN helices that have been filtered (orange cartoon) cover much of the target surface 
(white). Transparent red: helices eliminated by filtering.  
 
number of helices in the dataset. Specifically, we examined the change in Rosetta score upon 

binding (interface ΔG), a metric that measures shape complementarity while penalizing poor 

packing (contact molecular surface, CMS) [10], the percentage of helical residues, and the 

number of buried unsatisfied hydrogen bond donors and acceptors. We found that necessitating 

that all fragments be at least 70% helical, have at most one buried unsatisfied hydrogen bond, 
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were among the best (lowest) 40% in terms of their interface ΔG, and were among the best 

(highest) 50% in terms of their CMS score resulted in a large decrease in the number of helices 

without significant impact on the number of benchmark helices with a PatchMAN fragment 

within 1.0 Å (Appendix Fig. 3.6). We also analyzed the latter two metrics (interface ΔG and CMS) 

for all benchmark helices and found that after filtering, the docked fragments had scores similar 

to those of natural interface helices (Fig. 3.3b) while still covering the majority of the protein 

surface (Fig. 3.3c). 

3.3.4 Designing de novo protein binders 

We tested our method by designing protein binders for 9 signaling and pathogen-derived 

proteins for which miniprotein binders were recently designed by Cao et. al [10]: fibroblast 

growth factor receptor 2 (FGFR2, PDBID 1DJS), epidermal growth factor receptor (EGFR, PDBID 

1MOX), CD3 delta chain (CD3δ, PDBID 1XIW), angiopoietin-1 receptor (TIE2, PDBID 2GY7), 

tropomycin receptor kinase A (TrkA, PDBID 2IFG), platelet-derived growth factor receptor 

(PDGFR, PDBID 3MJG), Rickettsia typhi VirB8-like protein (VirB8), insulin receptor (InsulinR, 

PDBID 4OGA), and insulin-like growth factor 1 receptor (IGF1R, PDBID 5U8R). While it is possible 

to target certain regions of the target protein by only running PatchMAN on patches that contain 

a specified set of residues, we chose to design binders for the entire protein to evaluate our 

protocol more fully. We designed binders for each of these targets using the protocol outlined 

above (Figs. 3.1b, 3.4a). For each target, we generated an average of 130 surface patches, and 

for each patch a median of 65 fragments were found using PatchMAN (Appendix Table 3.1). We 

designed these fragments using the special rotamer protocol with a weight of -3.0, the 3BOP 
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score term, and ramping down constraints. After filtering, between 114 and 1302 fragments were 

left for matching (Fig. 3.4b, Appendix Table 3.1).  

We next matched the docked fragments to a library of scaffolds created by combinatorial 

sampling of loop-helix-loop (LHL, loop-helix-loop unit combinatorial sampling: LUCS) elements 

within a de novo Rossmann fold topology [11]. This library offered several features that made it 

well-suited for this task: First, the library contains a diverse set of reshaped backbone geometries 

for two of its helices (Fig. 3.4c, right), making it more likely to achieve good alignment with the 

docked fragments. Second, the remainder of the protein consists of a four-stranded β-sheet 

separating the reshaped region from two additional α-helices, giving the scaffold a sizeable stable 

region, which remains largely unchanged during design. Finally, the sequence of each library 

member had previously been optimized for stability (Methods), so only interface regions would 

need to be redesigned. Matching was performed by first defining the binned relative orientations 

of the reshaped helices in both the scaffold library and the set of docked helices (Methods), then 

searching for pairs of helices in the scaffold library that shared the same relative orientation as 

any pair of docked helices. Successful matches were then superimposed into the docked helices 

and passed through a low-resolution clash filter (Methods). Out of 48,187 scaffolds, between 

18,129 and 45,174 (Fig. 3.4b , Table 3.1) were matched to a pair of docked helices, and between 

1,384 and 30,135 passed the initial clash filter. A final filter that included the clash score and the 

RMSD between the docked helices and their match was tuned for each target such that between 

365 and 835 complexes passed, which were subsequently designed to optimize their interactions 

with the target (Methods). Despite the low percentage of scaffolds left at the end of this filtering,  
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Figure 3.4. Design of protein-interacting proteins. (a) Demonstration of design process. Left: 
PatchMAN fragments (orange) in their original context (gray), with their interacting tertiary motif 
(pink). Mid-left: PatchMAN fragments in their new context with the target protein (white) and 
the surface patches (pink). Mid-right: A matched scaffold (blue) with two helices (teal) that have 
similar relative orientations to the PatchMAN fragments (orange). Right: The final sequence of 
the designed scaffold (blue & teal) with target (white) showing complementary packing and polar 
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interactions. (b) Retention of scaffolds and PatchMAN fragments throughout the design process 
for each target. Shown are the fractions of scaffolds (teal, blue & gray bars) or PatchMAN 
fragments (orange, red & gray bars) that were involved in a match (teal, orange), that were 
involved in a match that passed the initial clash filter (blue, red), and that were involved in a 
match that was eventually designed (gray). Numbers above the bars represent the number of 
PatchMAN fragments at the start of matching; for all targets, there were 48,187 scaffolds at the 
start of matching. (c) Distribution of scaffold helical geometries in the designs (left, teal) versus 
the entire library (right, blue). Geometries are represented as vectors, where each arrow 
represents the centroid position and direction of the helix projected onto the β-sheet backbone. 
(d) Interface ΔG and CMS score plots for HELIX designs (teal), experimentally tested miniprotein 
binder designs (yellow), and experimentally optimized miniprotein binder designs (purple 
diamonds) for each target. (e) Distributions of the number of well-satisfied interface hydrogen 
bonds present in the HELIX designs (teal) or miniprotein binder designs (yellow) for each target. 
Bars represent the mean value. Values for the experimentally optimized miniprotein binders are 
shown as diamonds (purple).  
 

the final models still had a wide range of loop-helix-loop geometries (Fig. 3.4c, left; Appendix Fig. 

3.7) and binding modes (Appendix Fig. 3.8a). 

A major advantage of HELIX is that optimizing the sequences of smaller tertiary fragments 

is easier than optimizing the sequences of entire scaffolds. To maintain this advantage, we 

transferred the interface residues of each docked fragment onto the matched scaffold. Because 

we found rotamer-level information to be beneficial when designing the PatchMAN fragments, 

we attempted to preserve the sidechain conformations of the transferred residues by applying 

constraints based on their original conformation, and then designing the surrounding residues 

while minimizing the transferred residues (Methods). In keeping with the lessons learned from 

our design benchmark (Fig. 3.3a), after optimization of the transferred residue positions, we 

either prevented them from repacking or applied a special rotamer bonus with a weight of -3.0. 
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Each match complex was designed 20 times, half with the residue lock protocol and half with the 

special rotamer protocol.  

We next compared our designs to all available models of the experimentally tested 

miniprotein binders, including published models of the final designs that were optimized by in 

vitro site-saturation mutagenesis. We note that because this is the set of all tested designs, they 

presumably represent a well-optimized fraction out of a much larger set of computational 

models, whereas our dataset contained all designs except for the few that had positive interface 

ΔG scores (0.17% of all designs). We also note that design models of miniprotein binders were 

not available for IGF1R except for the final experimentally optimized model. We calculated 

several metrics for both the HELIX designs and the miniprotein binders, including the CMS and 

interface ΔG scores, the number of interface hydrogen bonds, and the number of buried 

unsatisfied hydrogen bonds in the interface. HELIX resulted in designs with similar interface ΔG 

and CMS score distributions compared to the filtered miniprotein binders for most targets (Fig. 

3.4d). For CD3δ and PDGFR, the interface ΔG and CMS scores of the miniprotein binders were 

more favorable (lower interface ΔG and higher CMS) on average compared to those of the HELIX 

outputs; however, given that some HELIX proteins still had scores similar to the best of the 

miniprotein binders, it is possible that this difference could be resolved by scaling up our design 

process and filtering the outputs. For all targets, HELIX produced designs whose interface ΔG and 

CMS scores overlapped with the scores computed for the final optimized miniprotein binders.  

HELIX thoroughly optimizes the interactions between its docked fragments and the target 

protein, including polar interactions, so a possible advantage is that it may be more likely to 
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create interfaces with well-satisfied hydrogen-bonding networks. To test this, we sought to 

examine the prevalence of interfacial hydrogen bonds in our designs compared to the designed 

miniprotein binders. Designs with large numbers of hydrogen bonds are more likely to have 

buried unsatisfied polar groups, which can carry a heavy energetic cost [18], so we first filtered 

each dataset down to designs that had zero buried unsatisfied hydrogen bonds in the interface 

(Methods, Designing matched scaffolds). Additionally, since we are not interested in highly polar 

interfaces that have low predicted affinities, we further filtered the dataset such that only designs 

with an interface ΔG of less than -30 REU were analyzed. When we examined the distribution of 

interface hydrogen bonds in the remaining designs (Fig. 3.4e), we saw that for 6 out of the 8 

targets for which miniprotein binder data was available, HELIX indeed produced a higher average 

number of well-satisfied interface hydrogen bonds. In line with this observation, visual inspection 

of our designs frequently shows well-satisfied hydrogen-bonding networks (Fig. 3.4a, right). Two 

targets, EGFR and TIE2, showed the opposite trend. Interestingly, these two targets had sparse 

coverage of the regions targeted by the miniprotein binders by matched scaffolds, despite 

significant overlap of the targeted region with PatchMAN fragments (Appendix Fig. 3.8b). It is 

possible that these targeted sites are well suited to form hydrogen-bonding interactions, but 

were missed by HELIX due to limited scaffold diversity or structural information about the region 

from which PatchMAN could draw; indeed, these sites were chosen for their proximity to ligand-

binding sites, and hydrogen-bonding networks are involved in native ligand binding for both EGFR 

and TIE2 [19], [20].  
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3.4 Discussion 

Design of de novo protein binders is challenging because of the linked requirements 

between the scaffold and residue-level interactions with the target. Here, we show that bottom-

up interface design starting from protein fragments docked in a sequence-agnostic manner can 

address this challenge. Conceptually, the search for compatible fragment geometries shares 

many similarities with previous approaches to ligand binding design [21], [22]; where these 

methods split a target ligand into fragments so that motif interactions can be mined from the 

PDB, the PatchMAN portion of our protocol does the same for protein surface interactions. This 

mining of sub-structure data is likely an important determinant of HELIX’s ability to create designs 

with favorable metrics, and its success in our docking benchmark (Fig. 3.2) may occur in part as 

a result of structural degeneracy in protein-protein interfaces [23].  

Scaffold placement via HELIX is limited by both the placement of docked helices and the 

variation of the scaffold library, both in terms of relative helix orientations and overall topology. 

In this work, we only matched PatchMAN fragments to a single de novo Rossmann fold with two 

reshaped LHL units generated via LUCS. While this resulted in a wide variety in binding modes, it 

is possible that any given topology will be fundamentally incompatible with certain binding sites 

in our targets, as suggested by the somewhat clustered placement of binding scaffolds seen for 

some targets (Appendix Fig. 3.8b). It is also possible, however, that this clustering represents real 

binding site preferences for these proteins, as is often seen in nature [24]. Nonetheless, the LUCS 

protocol was critical in enabling HELIX’s ability to match scaffolds, and it would be interesting to 
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see how other topologies with reshaped LHL units would change the coverage of the target 

protein.  

HELIX benefits from separating the problem of designing favorable interactions with their 

target into many smaller optimization tasks, reducing the combinatorics of the sequence space 

that must be explored to produce binding modes with many high-affinity interactions. To 

illustrate, we designed on average just 1.0% of our 48,187-scaffold library (Table 3.1). In contrast, 

a naïve top-down approach, even if no docking step were required, might involve exhaustively 

sampling our scaffold library, meaning 96,374 helices (two per scaffold) would need to be 

designed. HELIX, on the other hand, designed only 5,371 fragments on average, while still 

sampling native-like geometries (Fig. 3.2). Docking-based approaches such as [10] similarly 

reduce the size of the search space, but do so by sacrificing resolution in the early stages. Here, 

all fragments are designed at full resolution from the start, helping to facilitate favorable 

interface metrics in the final designs (Fig. 3.4d-e). We believe that this full-resolution 

optimization applied to small fragments helps HELIX to design more polar interactions with the 

target interface (Fig. 3.4e), which is an important consideration owing to the relative scarcity of 

large hydrophobic patches in protein-protein interfaces [25]. 

Several further advantages arise because of HELIX’s fragmented design process: For 

example, by thoroughly optimizing interactions between individual α-helices, it is possible to 

specifically filter for desired interface properties, such as the number of hydrogen bonds, before 

a scaffold is even selected. Such tuning of interface properties could be useful for objectives such 

as avoiding aggregation or minimizing immune response. It may also be possible to combine 
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HELIX with other methods that benefit from having many binding geometries to choose from, 

such as matching of functional sites [21], [26], [27], where combining multiple fragments that 

each meet one of several geometric criteria (e.g., matching a single functional site residue per 

helix) could be more tractable than attempting to find or create a scaffold that meets them all at 

once.  

While we matched PatchMAN fragments to a pre-generated LUCS library, it may be 

desirable to forego scaffold matching altogether, opting instead to utilize recent advances in 

machine learning for protein structure prediction [28], [29] to hallucinate structures [30]–[32] 

that meet the geometric requirements defined by the best-scoring docked fragments. This 

strategy would additionally circumvent the requirement that docked fragments be helical, as 

arbitrary geometries, including loops, can be expressed via the lossfunction. However, it is 

unclear at this time whether hallucinated structures are more likely to be stable, or whether their 

accuracy is sufficient to recapitulate the specific geometries required to facilitate the interactions 

designed into our docked fragments.  

We show here that HELIX is capable of creating protein-binding proteins with 

computational interface metrics in line with or better than designs made using similar methods. 

However, further computational and experimental validation will be important in demonstrating 

its applicability to real design challenges. Nonetheless, we believe HELIX has the potential to be 

a powerful tool for the design of protein-protein interfaces, and its fragmented design workflow 

lends itself to many interesting design applications.  
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3.5 Methods 

3.5.1 Software versions 

All design was carried out using PyRosetta version 2021.11+release.e9f4797. RIFGen and 

RIFDock outputs were generated using commit 

0a30a0971692746359593df0e9674d24a3751254 from https://github.com/rifdock/rifdock.  

HELIX 

HELIX is available as a Python package at 

https://github.com/ckrivacic/helix_matcher/tree/publication. Once installed, HELIX works by 

running a series of commands which outlined below and in the software documentation. 

3.5.2 Generation of helical geometries: PatchMAN 

We used a slightly modified version of the PatchMAN protocol as described in [12] to 

determine geometries of protein fragments, including helical fragments, that were compatible 

with the target geometry. Generating surface patches, searching for local structural motif 

matches using MASTER, and generating initial complexes were carried out as described in [12]. 

The protocol was modified only in the naming convention for the initial complex output files to 

indicate which MASTER hits these complexes originated from. Generation of PatchMAN matches 

was carried out with HELIX using the following command (let “<workspace>” be the directory of 

the HELIX workspace): 

 

helix 01_prep_patchman <workspace> 

helix 02_patchman <workspace> 
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3.5.3 Generation of helical geometries: RIFDock 

Rotamer interaction fields (RIFs) were generated only for the residues in each surface 

patch (defined identically to the PatchMAN protocol). Parametrically generated ideal polyvaline 

alpha helices  with lengths of either 14 or 28 residues were then docked into the rotamer 

interaction field. For each combination of patch and scaffold, up to 80 RIFDocked outputs were 

generated. We used the following flags to generate the RIFs for each surface patch (let “{target}” 

be the path to the target, and “{db}” be the path to the Rosetta database): 

 

-rifgen:data_cache_dir . 

-database {db} 

-rifgen::rif_type RotScore  

-rifgen:target      {target} 

-rifgen:target_res residues.txt 

-rifgen:outdir     . 

-rifgen:outfile    test_out.rif.gz 

-rifgen:score_cut_adjust 0.8 

-rifgen::rosetta_field_resl 0.25   

-rifgen::search_resolutions 3.0 1.5 0.75   

rif gen 

-rifgen:beam_size_M 1000.0 

-rifgen:rif_hbond_dump_fraction 0.01 

-rifgen:rif_apo_dump_fraction 0.01 

-rifgen:extra_rotamers false 
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-rifgen:extra_rif_rotamers true 

-renumber_pdb 

-add_orbitals 

-hbond_cart_sample_hack_range 0.33 

-hbond_cart_sample_hack_resl  0.33 

-rifgen:tip_tol_deg        60.0 # for now, do either 60 or 36 

-rifgen:rot_samp_resl       6.0 

-rifgen:hash_preallocate_mult 0.125 

-rifgen:max_rf_bounding_ratio 4.0 

-rifgen:hash_cart_resls   16.0   8.0   4.0   2.0   1.0 

-rifgen:hash_cart_bounds   512   512   512   512   512 

-rifgen:lever_bounds      16.0   8.0   4.0   2.0   1.0 

-rifgen:hash_ang_resls     38.8  24.4  17.2  13.6  11.8 # yes worky worky 

-rifgen:lever_radii        23.6 18.785501 13.324600  8.425850  4.855575 

 

We used the following flags to dock ideal helices into the RIF (let “{target}” be the path to 

the target protein, “{cache}” be the path to the cache generated by RIFDock, and “{scaffold}” be 

the path to the ideal helix to be docked): 

 

-rif_dock:target_pdb            ./{target}.rif.gz_target.pdb.gz 

-rif_dock:target_rf_resl        0.25 

-rif_dock:target_rf_cache       ./{cache} 

-rif_dock:target_bounding_xmaps ./{target}.rif.gz_BOUNDING_RIF_16.xmap.gz 

-rif_dock:target_bounding_xmaps ./{target}.rif.gz_BOUNDING_RIF_08.xmap.gz 

-rif_dock:target_bounding_xmaps ./{target}.rif.gz_BOUNDING_RIF_04.xmap.gz 

-rif_dock:target_bounding_xmaps ./{target}.rif.gz_BOUNDING_RIF_02.xmap.gz 
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-rif_dock:target_bounding_xmaps ./{target}.rif.gz_BOUNDING_RIF_01.xmap.gz 

-rif_dock:target_rif            ./{target}.rif.gz 

-rif_dock:extra_rotamers        0 

-rif_dock:extra_rif_rotamers    1 

-rif_dock:rot_spec_fname        ./rotamer_index_spec.txt 

-database {db} 

-rif_dock:rotrf_cache_dir cache/ 

-rif_dock:data_cache_dir  . 

-rif_dock:cache_scaffold_data true  

-rif_dock:scaffolds {scaffold}  

-rif_dock:scaffold_res 

-rif_dock:outdir docked_full/ 

-rif_dock:dokfile all.dok 

-rif_dock:n_pdb_out 80  

-rif_dock:align_output_to_scaffold false 

-rif_dock:pdb_info_pikaa false 

-require_satisfaction 0 

 

Generation of RIFDock outputs can be carried out via HELIX using the following commands 

(let “<workspace>” be the directory of the HELIX workspace): 

 

helix prep_rifdock <workspace> 

helix rifdock <workspace> 
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3.5.4 Creation of interfacial helix benchmark set and RMSD calculations 

Proteins from the PDB were analyzed for interfaces containing helices with large energy 

contributions to binding. For each interface residue, we summed the intermolecular Rosetta 

energy terms to estimate its contribution to the binding energy. We then took complexes that 

contained at least two helices, each containing at least 4 residues with at least a -1.5 REU 

intermolecular energy score. We additionally required that all benchmark proteins be X-ray 

structures with less than 2.0 Å resolution. Complexes were then inspected visually, and only 

interfaces that had helices that appeared mostly ideal were included in the final benchmark set. 

We selected a total of 34 protein complexes to include in the benchmark, consisting of 107 

interface helices (Appendix Table 3.2). 

RMSDs between each benchmark helix and the RIFDock or PatchMAN outputs were 

calculated by first determining whether the docked fragment or the benchmark helix contained 

more residues. For the shorter peptide, all residues were used in the RMSD calculation. For a 

shorter peptide n residues long, we calculated the RMSD between each possible stretch of n 

residues of the longer peptide and all residues of the shorter peptide. We used the lowest of 

these values as the final RMSD. 

3.5.5 Summarizing PDB interface residue scores 

31,828 multimeric protein structures from the PDB were minimized with backbone and 

sidechain constraints using PyRosetta. Interface residues were classified based on whether their 

Cβ-Cβ distance was within 8 Å. For each interface residue, we calculated the total cross-chain 

energy using the Ref2015 scorefunction in Rosetta, and saved this information along with the 
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residue’s secondary structure (determined using the dynamic secondary structure prediction 

algorithm, DSSP [33]) and burial (determined by the LayerResidueSelector in Rosetta). To 

summarize the data, we grouped each amino acid by its secondary structure and burial, then 

took the median value to avoid disproportionate influence from unrealistically low or high scores 

from nonphysical structural features (such as multiple alternate conformations occupying the 

same space or interactions with malformed residue types). 

3.5.6 Helix refinement 

The sequences of geometrically compatible helices found by PatchMAN were refined in 

PyRosetta. For all design protocols, we only allowed design of interface positions on the docked 

helix and allowed repacking for all positions on the helix as well as any residues on the target 

protein that could possibly clash with all allowed rotamers for the docked helix. For design 

positions, all residue types were allowed except glycine. PatchMAN outputs were minimized with 

backbone constraints prior to design. For the design of binders of the 9 targets, we also biased 

the simulations towards favorable interface contacts by upweighting cross-chain energy terms 

by a factor of 1.5. On top of these base parameters, we tested several variations of our design 

protocol, described below. Helix refinement was carried out by running the following command, 

appended with options listed for the different protocols, where <workspace> is the path to the 

HELIX workspace. 

 

helix 03_design_patchman <workspace>  

 



151 

 

Special residue: We compared the amino acid sequence of each target surface patch to 

the tertiary motif found via MASTER to generate each PatchMAN output. If the sequence identity 

between the patch and its match was above 70%, we applied a score bonus of -1.5 to all rotamers 

that matched the input residue type. This protocol can be enabled by passing the “--special-res” 

and “--keep-good-rotamers” options. 

Residue lock: For each interface residue in the minimized PatchMAN output, we 

calculated its cross-chain score and compared it to the summarized interface residue scores 

(described above). If the cross-chain score was lower than the median cross-chain score for 

residues with the same amino acid type, burial, and secondary structure (helix, loop, or beta 

sheet), and it did not contain or come in contact with any buried unsatisfied polar atoms, we 

considered that residue to be “native-like” and disallowed packing for that position (Appendix 

Fig. 3.9). This protocol can be enabled by passing the “--keep-good-rotamers” option. 

Special rotamer bonus: Native-like residues were determined as described in Residue 

Lock. Instead of disabling packing entirely, we applied a score bonus to the input rotamer of 

either -1.5 or -3.0. We note that whereas other design protocols used the FastDesign class in 

PyRosetta to carry out design, here we had to build our own Python version of the mover which 

calls the same Rosetta functions as FastDesign, but enables the addition of special rotamers to 

the PackerTask each time it is created. This protocol can be enabled by passing the “--keep-

good-rotamers”, “--special-rot” and “--special-rot-weight=-1.5” or “--special-rot-

weight=-3.0” options. 
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Buried unsatisfied hydrogen-bond penalty: We added the buried unsatisfied hydrogen-

bond penalty (3BOP) [17] to the Ref2015 scorefunction [34], using a penalty value of 5.0, a 

hydrogen-bonding threshold of -0.5 REU, a burial depth of 4.0, and assuming a constant 

backbone composition. This protocol can be enabled by passing the “--buns-penalty” option. 

In addition to these options, ramping down constraints can be enabled by passing the “-

-ramp-cst” option. 

After refining the docked helix sequences, we calculated a number of metrics. We used 

the InterfaceAnalyzerMover in Rosetta to calculate interface ΔG, defined as the difference in 

Rosetta score between the sum of the separated chains and the complex score. We also 

calculated the contact molecular surface between the two chains as described in [10]. Interface 

hydrogen bonds were defined as a pair of intermolecular residues that had a hydrogen-bonding 

score in Rosetta of less than -0.5 REU. Interface buried unsatisfied hydrogen bonds were counted 

using the default burial cutoff of 4.4 Å distance from the surface. 

3.5.7 Filtering helices 

For a given target protein, docked fragments passed filters if they had 1 or fewer buried 

unsatisfied hydrogen bonds for all interface residues and were at least 70% helical. Additionally, 

we only kept fragments that had a change in Rosetta score upon separating the helix from the 

target below the 40th percentile for fragments of the same length and that were above the 50th 

percentile in contact molecular surface area for fragments of the same length. Filtering can be  
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run via the following command, where <workspace> is the path to the HELIX workspace: 

 

helix 04_filter <workspace> 

 

3.5.8 Scaffold library 

Proteins with altered loop-helix-loop (LHL) geometries were created started from a de 

novo designed Rossmann fold [35] as described previously [11]. Briefly, for each reshaped region, 

loops at either end of the LHL unit were systematically sampled from a library of protein loop 

fragments. Helices were then grown from the ends of each loop to meet in the middle, and LHL 

units with suboptimal geometries were discarded. Next, combinations of LHL units were tested 

for clashes. The sequences of the reshaped regions and their surroundings were then designed 

using Rosetta and filtered such that only designs that had Rosetta holes scores [36] of less than 

0 and fragment qualities lower than 2 Å [37], [38]. The resulting scaffolds underwent further 

sequence optimization to produce the 48,187 structures used for matching. 

3.5.9 Matching helical geometries to scaffolds 

All helices, both docked from PatchMAN and from within the scaffold database, were 

vectorized to facilitate matching. To vectorize each helix, we first calculated the direction of each 

consecutive set of C, N, and Ca atoms as their normalized axis of rotation with respect to the next 

set of atoms. The resulting vector was averaged for all residues, scaled up to the length of the 

helix (defined as the distance between the first and last Ca), and translated to the centroid of the 

helix backbone C, N, and Ca atoms. 
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We defined the relative orientation between two helix vectors using two angles, one 

dihedral, and one distance measurement. For two helix vectors AB and CD, we calculated angles 

ABC and BCD, the dihedral ABCD, and the distance between the centroids of AB and CD. These 

values were calculated for each pair of helices within a given scaffold database protein, or each 

pair of helices within the filtered docked helices, and binned with 30 degree/5 Å bin sizes. Bins 

were defined twice for each parameter describing the relative helical orientations, with the 

second bin being offset from the first by half of the bin size (15 degrees or 2.5 Å). This way, any 

pair of helices that had similar relative orientations to another pair of helices would be 

guaranteed to share at least one of the 16 possible bins. Binned values were then placed in a 

hash table (one for query helices and one for database helices), where both an identifier for the 

protein and the bin itself was hashed. Docked helices were only binned if they had a centroid 

distance of greater than 2.0 Å and less than 20 Å to reduce the size of the query database, as 

helices outside these restrictions would likely be either clashing or farther than any pair of helices 

in our scaffold database. 

To match pairs of docked helices to a database protein, the database was queried for the 

binned relative orientation of the pair of docked helices, and the identifier for the database 

protein was saved. This was carried out for all pairs of query proteins. We then constructed a 

graph where the nodes consisted of a tuple representing two helices, one docked helix and one 

database helix, that could be superimposed on one another. An edge was created between nodes 

where the docked helices of each node had the same binned relative orientation as the database 

helices. The maximum number of helices from a database protein that could be superimposed 
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onto docked helices at once can therefore be defined as the maximum dense subgraph, where 

all superpositions are compatible with one another (have the same binned relative orientation). 

For each dense subgraph, we calculated the rotation and translation matrices between the 

matched database helices and the docked helices and applied them to the database protein 

coordinates.  

The scaffold database was prepared by running the following commands, where 

<workspace> is the path to the HELIX workspace, and <pdb_folder> is a folder containing all of 

the scaffold PDBs: 

helix scan_pdb_folder <workspace> <pdb_folder> 

helix bin_database <workspace> --angstroms 2.5 --degrees 15 

 

Matching was carried out using the following command, where <workspace> is the path 

to the HELIX workspace: 

 

helix 05_match <workspace> --angstroms 2.5 --degrees 15 

 

3.5.10 Scoring matches 

We implemented several low-resolution scoring metrics to filter out matches with 

egregious clashes or whose helices were translated compared to the docked helices by half a 

helix turn, which would cause optimized sidechain interactions in the docked helices to be 

incompatible with the match. First, scaffolds were superimposed onto the docked helices to 

which they were matched using the transformation defined by their helix vectors. To filter out 
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clashing proteins, we defined a convex hull around the target chain [39], [40], then counted the 

number of backbone atoms in the matched protein that fell inside the convex hull. Matches with 

more than 20 atoms inside the convex hull were discarded. 

For fragments that had a clash score of less than 20, we next calculated the RMSD 

between each docked helix and its match. Since docked and matched helices are not necessarily 

the same length and could be staggered along their long axis, we first calculated overlapping sets 

of atoms to use in the RMSD calculation. For helices A and B, CA atoms from helix A were included 

if they fell between two planes, both perpendicular to the vector describing B, that intersected 

the start and end points of B. The reverse operation was performed to determine CA atoms to 

include from helix B. If the two resulting atom sets differed in length, we calculated RMSDs for 

all possible starting points of the longer set and chose the lowest of these values. 

For most targets, matches that had a clash score of less than 10 and an RMSD of less than 

1.2 were exported for design. We adjusted these parameters slightly for the following targets: 

For TIE2, we increased the RMSD threshold to 1.25. For VirB8, we decreased the RMSD threshold 

to 1.0 and added an additional constraint that the helical fragments that the scaffold was 

matched to could not have any buried unsatisfied hydrogen bonds in their interface. For PDGFR, 

we increased the RMSD threshold to 1.3. For InsulinR, we increased the RMSD threshold to 1.5. 

For IGF1R, we decreased the RMSD threshold to 1.0.  

Match scoring was carried out using the following command, where <workspace> is the 

path to the HELIX workspace: 

helix 06 score_matches <workspace> 
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Exported complexes were created using the following command, where <workspace> is 

the path to the HELIX workspace: 

 

helix 07 export_matches <workspace> 

 

3.5.11 Designing matched scaffolds 

The design process consists of several stages, with the goal of keeping any interface 

residues already optimized during the PatchMAN design protocol that could be accommodated 

by the scaffold (Appendix Fig. 3.10). First, residues from the designed PatchMAN fragments were 

transferred to the matched scaffold. Second, we attempted to optimize the local environment of 

these transferred residues so that we could determine if they were compatible with the scaffold 

geometry. We performed several rounds of design, keeping compatible transferred residues 

constant or applying a SpecialRotamer score bonus to them. Finally, we relaxed the structures 

and calculated metrics. 

To transfer the residues, we first calculated distance maps between the Cαs in each 

PatchMAN fragment and their corresponding scaffold helix. Interface residues here were defined 

via the InterfaceByVector residue selector in Rosetta: residues on opposite chains whose Cβs 

were within 5.5 Å of each other or whose Cβs were within 11 Å and whose Cα-Cβ vectors pointed 

toward each other within a cone of 75° were considered to be part of the interface. For each 

interface scaffold helix residue whose Cα fell within 1.5 Å of a PatchMAN fragment residue, we 

mutated the scaffold residue to the amino acid type found during the earlier PatchMAN design 
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step using the PackRotamersMover in Rosetta. After all interface residues that were proximal to 

a PatchMAN residue were mutated, we next defined coordinate constraints for the transferred 

residues’ sidechains based on their position in the PatchMAN fragment, and then performed 

another round of repacking, this time allowing repacking of all mutated residues as well as their 

neighbors (defined using the ClashBasedRepackShell residue selector with num_shells=2).  

We next attempted to relieve any remaining clashes between transferred residues and 

the scaffold by performing a single round of FastDesign. Here, the interface definition was 

expanded to include all residues that were within 10 Å of the opposite chain. During this and 

subsequent design steps, backbone constraints were generated, and their weight was ramped 

down during the course of each design run. We also used the 3BOP energy term as described for 

helix refinement, though here we did not assume a constant backbone and had a stricter burial 

cutoff of 3.5 Å. Design was allowed for all interface positions except for the transferred residues, 

giving Rosetta the opportunity to find mutations that stabilize the previously optimized positions. 

After this step, a final list of “native-like” residues that were still favorable in their new context 

was obtained using the logic described above (Methods, Helix refinement). 

Two rounds of FastDesign were then carried out on the scaffold-target complex using the 

InterfaceDesign2019 relax script [41]. Native-like residues were either assigned a SpecialRotamer 

bonus of -3.0 or prevented from repacking as described for helix refinement. Refined sequences 

were then relaxed using a single repeat of Rosetta FastRelax, and metrics were calculated as 

described above with the exception that we used a stricter burial cutoff of 0.1 Å when calculating 

buried unsatisfied hydrogen bonds. 
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Design with the residue lock protocol was carried out using the following command, 

where <workspace> is the path to the HELIX workspace: 

 

helix 08_design_scaffolds <workspace> --suffix _base 

 

Design with the special rotamer protocol was carried out using the following command, 

where <workspace> is the path to the HELIX workspace: 

 

helix 08_design_scaffolds <workspace> --special-rot --suffix _special_rot 

 

3.6 Appendix 

 

Figure 3.5. Analysis of interface positions. (a) Median interface scores for all surface, 
boundary, or buried residues, split by α-helices (light gray), β-sheets (dark gray), or loops (black). 
Error bars represent the standard error. (b) Fraction of surface, boundary, or buried interface 
residues that belong to α-helices (light gray), β-sheets (dark gray), or loops (black).  
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Figure 3.6. Impact of filtering on interface recapitulation. (a) Percentage of benchmark helices 
with a sub-Å PatchMAN fragment (blue) and the fraction of total docked helices (red) in the base 
dataset (left) or the filtered dataset (right). (b) Fraction of docked helices that are within 1 Å of a 
benchmark helix in the full dataset (red) or the filtered dataset (blue). Error bars represent the 
standard among the different benchmark targets. 
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Figure 3.7. Matched scaffold geometry distributions. Helical geometry distributions for 
scaffolds that were matched and designed (teal) versus the entire scaffold library (blue). As 
described in Fig. 3.4c, but separated by target. 
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Figure 3.8. Target surface coverage. (a) Designed scaffolds (blue) and the optimized 
miniprotein binder (yellow) for 7 of the 9 targeted proteins (white). (b) Designed scaffolds (blue), 
optimized miniprotein binder (yellow), and filtered PatchMAN fragments (teal) for the two 
remaining targets (white) that had a lower average number of hydrogen bonds in the HELIX 
designs compared to the miniprotein binders. 
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Figure 3.9. Workflow for determining “native-like” residues. Top: Minimized interface 
residues are scored, binned by secondary structure and burial, and then averaged. Bottom: 
Residues on PatchMAN fragments are minimized, then compared to residues with similar burial 
and secondary structure from the previously created table. Residues whose intermolecular 
(cross-chain) scores are better than the median are treated with one of the design methods that 
emphasize retention of native-like residues. 
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Figure 3.10. Flowchart of scaffold design protocol. Design protocol flowchart as described in 
Methods. Residues are transferred from the optimized fragment sequence to the matched 
scaffold. These are then repacked, and design is run on the remaining interface residues. Next, 
either the residue lock or the special rotamer protocol is applied as described in Methods, 
followed by two rounds of FastDesign with the InterfaceDesign2019 script and one round of 
FastRelax.  
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Table 3.1. Retention of scaffolds and PatchMAN fragments. Patches: Total number of patches 
generated. Depends heavily on protein surface area. Total scaffolds: Number of proteins in the 
scaffold library available for matching. Scaffolds matched: Number of scaffolds that matched at 
least one pair of PatchMAN fragments. Scaffolds passed clash filter: Number of scaffolds that had 
a clash score of less than 20. Scaffolds designed: Number of scaffolds that passed the clash and 
RMSD filters and were fed into the design step. Total fragments: Total number of outputs 
generated by PatchMAN. Filtered fragments: Number of PatchMAN fragments after filtering. 
Fragments matched: Number of fragments involved in a at least one match with a scaffold. 
Fragments passed clash filter: Number of fragments that were involved in at least one match with 
a scaffold that had a clash score of less than 20. Fragments designed: Number of fragments 
involved in a match that led to a designed protein. 
 

Target Patches Total 
scaffolds 

Scaffolds 
matched 

Scaffolds 
passed 
clash 
filter 

Scaffolds 
designed 

Total  
fragments 

Filtered 
fragments 

Fragments 
matched 

Fragments 
passed 
clash filter 

Fragments 
designed 

FGFR2 102 48,187 45,174 14,618 486 3,827 489 443 333 100 

EGFR 247 48,187 38,132 10,062 387 5,393 420 328 225 74 

CD3δ 45 48,187 25,286e 4,462 471 1,142 119 101 59 32 

TIE2 211 48,187 34,977 4,761 453 3,782 229 174 122 54 

TrkA 173 48,187 38,001 7,635 559 4,276 366 304 226 102 

PDGFR 136 48,187 35,657 4,748 365 5,111 304 251 170 58 

VirB8 68 48,187 39,424 30,135 509 7,117 1,094 919 869 126 

Insulin
R 

142 48,187 18,129 1,384 321 2,798 114 52 27 16 

IGF1R 400 48,187 39,421 26,247 835 14,900 1302 1,012 806 259 
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Table 3.2. Benchmark dataset. PDBID: PDB identifier for the complex. Helix chain: Chain of the 
interface helix being recapitulated. Target chain: Chain targeted by PatchMAN or RIFDock. Helix 
residues: Residue numbers of the target helix. Number hotspot residues: Number of residues in 
the helix with an intermolecular Rosetta score of less than -1.5. Helix interface score: Total 
intermolecular Rosetta score of the helix with the target chain.  

PDBID 
Helix 
chain 

Target 
chain Helix residues 

Number 
hotspot 
residues 

1d9c B A ['204', '205', '206', '207', '208', '209', '210', '211', '212', '213', '214'] 4 

1d9c B A 
['242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', 
'258', '259'] 10 

1d9c B A ['303', '304', '305', '306', '307', '308', '309', '310', '311'] 6 

1d9c B A ['313', '314', '315', '316', '317', '318', '319'] 4 

1e7l B A ['59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73'] 5 

1e7l B A ['84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95'] 8 

1e7l B A ['106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118'] 4 

1i36 A B 
['154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', 
'170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182'] 13 

1i36 A B ['186', '187', '188', '189', '190', '191', '192', '193', '194'] 4 

1i36 A B ['238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249'] 4 

1kqp A B ['18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36'] 4 

1kqp A B ['108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', '122'] 7 

1kqp A B 
['128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', 
'144', '145', '146', '147', '148', '149', '150'] 6 

1mty C E ['14', '15', '16', '17', '18', '19', '20', '21', '22', '23'] 4 

1mty C E 
['106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', 
'122', '123', '124', '125', '126', '127', '128', '129'] 8 

1mty C E 
['138', '139', '140', '141', '142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', 
'154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169'] 5 

1mty C E 
['173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', 
'189', '190', '191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203'] 9 

1nh2 D B ['14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28'] 6 

1nh2 D B 
['34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', 
'54'] 7 

1p6x A B 
['91', '92', '93', '94', '95', '96', '97', '98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', 
'109', '110', '111', '112', '113', '114', '115', '116', '117'] 10 

1p6x A B ['160', '161', '162', '163', '164', '165', '166', '167', '168', '169'] 4 

1p6x A B ['285', '286', '287', '288', '289', '290', '291', '292', '293', '294', '295', '296', '297', '298'] 4 

1um0 A D ['106', '107', '108', '109', '110', '111', '112', '113'] 6 

1um0 A D ['229', '230', '231', '232', '233', '234', '235', '236', '237', '238'] 4 

1um0 A D ['251', '252', '253', '254', '255', '256'] 4 

1yg6 G A ['37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53'] 6 

1yg6 G A ['70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82'] 5 

1yg6 G A 
['132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', 
'148', '149', '150', '151', '152', '153', '154', '155', '156', '157'] 4 
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PDBID 
Helix 
chain 

Target 
chain Helix residues 

Number 
hotspot 

residues 

1ykd B A ['61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75'] 13 

1ykd B A ['80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99'] 8 

1ykd B A 

['232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', 
'248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', '262', '263', 
'264', '265', '266'] 14 

1ykd B A 
['414', '415', '416', '417', '418', '419', '420', '421', '422', '423', '424', '425', '426', '427', '428', '429', 
'430', '431', '432', '433', '434', '435', '436', '437', '438', '439', '440'] 5 

2dh4 B A ['3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14'] 5 

2dh4 B A 
['101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', 
'117', '118', '119', '120', '121'] 5 

2dh4 B A 
['126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', 
'142', '143', '144', '145', '146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156'] 7 

2e52 A B 

['227', '228', '229', '230', '231', '232', '233', '234', '235', '236', '237', '238', '239', '240', '241', '242', 
'243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', 
'259', '260', '261'] 10 

2e52 A B ['264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274'] 6 

2e52 A B ['277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', '291', '292'] 10 

2f4m B A ['283', '284', '285', '286', '287', '288', '289', '290', '291', '292', '293', '294'] 5 

2f4m B A ['296', '297', '298', '299', '300', '301', '302', '303', '304', '305', '306', '307', '308', '309'] 4 

2ftx B A ['157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168'] 6 

2ftx B A ['200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211'] 5 

2hp3 B A ['44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56'] 5 

2hp3 B A ['172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185'] 4 

2hp3 B A 
['197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', '209', '210', '211', '212', 
'213', '214', '215', '216', '217', '218'] 6 

2hzl B A ['120', '121', '122', '123', '124', '125', '126', '127', '128', '129'] 4 

2hzl B A 

['259', '260', '261', '262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274', 
'275', '276', '277', '278', '279', '280', '281', '282', '283', '284', '285', '286', '287', '288', '289', '290', 
'291', '292', '293'] 13 

2hzl B A 
['325', '326', '327', '328', '329', '330', '331', '332', '333', '334', '335', '336', '337', '338', '339', '340', 
'341', '342', '343', '344', '345', '346'] 6 

2hzl B A ['348', '349', '350', '351', '352', '353', '354', '355', '356', '357', '358', '359', '360', '361'] 8 

2j91 B A 
['168', '169', '170', '171', '172', '173', '174', '175', '176', '177', '178', '179', '180', '181', '182', '183', 
'184', '185', '186', '187', '188', '189', '190', '191', '192'] 4 

2j91 B A 
['246', '247', '248', '249', '250', '251', '252', '253', '254', '255', '256', '257', '258', '259', '260', '261', 
'262', '263', '264', '265', '266', '267', '268', '269', '270', '271', '272', '273', '274'] 6 

2j91 B A 
['299', '300', '301', '302', '303', '304', '305', '306', '307', '308', '309', '310', '311', '312', '313', '314', 
'315', '316', '317', '318', '319', '320', '321', '322', '323', '324'] 4 

2ov9 B A ['26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43'] 8 

2ov9 B A ['49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67'] 7 

2ov9 B A 
['131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', 
'147', '148'] 5 

2pa8 D L ['22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34'] 4 

2pa8 D L 
['238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', '253', 
'254', '255', '256', '257', '258', '259', '260', '261', '262', '263'] 7 
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PDBID 
Helix 
chain 

Target 
chain Helix residues 

Number 
hotspot 

residues 

2q73 B A 
['16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', 
'36', '37', '38', '39'] 4 

2q73 B A ['55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73'] 9 

2q73 B A ['77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90'] 6 

2qib B A 
['147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', 
'163', '164', '165', '166', '167', '168'] 8 

2qib B A 
['175', '176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188', '189', '190', 
'191', '192', '193', '194'] 6 

2qib B A ['216', '217', '218', '219', '220', '221', '222', '223', '224', '225', '226', '227'] 6 

2qtq D C ['110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120'] 4 

2qtq D C 
['159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', 
'175'] 6 

2qtq D C ['177', '178', '179', '180', '181', '182', '183', '184'] 5 

2qtq D C 
['191', '192', '193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', 
'207', '208', '209'] 5 

2ycl A B 
['237', '238', '239', '240', '241', '242', '243', '244', '245', '246', '247', '248', '249', '250', '251', '252', 
'253'] 6 

2ycl A B ['272', '273', '274', '275', '276', '277', '278', '279', '280', '281', '282', '283', '284'] 5 

2ycl A B ['297', '298', '299', '300', '301', '302', '303', '304', '305', '306', '307', '308', '309', '310', '311'] 8 

2yf3 B A ['10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '20'] 5 

2yf3 B A 
['34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', 
'54', '55', '56', '57', '58', '59', '60', '61', '62', '63'] 11 

2yf3 B A 
['71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', 
'91', '92', '93'] 13 

2yf3 B A 
['98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', 
'114'] 7 

2yxh B A ['3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13', '14', '15'] 5 

2yxh B A ['24', '25', '26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43'] 4 

2yxh B A 
['47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', 
'67', '68', '69', '70', '71', '72'] 12 

2yxh B A ['76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90'] 8 

3bpj C A 
['153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', 
'169', '170'] 8 

3bpj C A ['176', '177', '178', '179', '180', '181', '182', '183', '184', '185', '186', '187', '188'] 7 

3bpj C A 
['193', '194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208', 
'209', '210', '211', '212', '213', '214', '215'] 8 

3dhi B A 
['80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99', 
'100', '101', '102', '103'] 9 

3dhi B A 
['123', '124', '125', '126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', 
'139', '140', '141', '142'] 6 

3dhi B A 
['146', '147', '148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', 
'162', '163', '164', '165', '166', '167', '168', '169', '170', '171', '172', '173', '174', '175', '176'] 10 

3dhi B A ['194', '195', '196', '197', '198', '199', '200', '201', '202', '203', '204', '205', '206', '207', '208'] 5 

3g5o A B ['49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63'] 5 

3g5o A B ['67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79'] 4 

3g5o A B ['86', '87', '88', '89', '90', '91', '92', '93'] 4 
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PDBID 
Helix 
chain 

Target 
chain Helix residues 

Number 
hotspot 

residues 

3ilx B A ['131', '132', '133', '134', '135', '136', '137', '138', '139', '140', '141'] 5 

3ilx B A 
['156', '157', '158', '159', '160', '161', '162', '163', '164', '165', '166', '167', '168', '169', '170', '171', 
'172', '173', '174', '175', '176', '177'] 7 

3ilx B A ['182', '183', '184', '185', '186', '187', '188', '189', '190', '191', '192', '193'] 4 

3kkb B A 
['40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', 
'60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71'] 8 

3kkb B A 
['101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', 
'117', '118', '119'] 4 

3kkb B A 

['132', '133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147', 
'148', '149', '150', '151', '152', '153', '154', '155', '156', '157', '158', '159', '160', '161', '162', '163', 
'164'] 14 

3kra A B 
['106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', '117', '118', '119', '120', '121', 
'122', '123', '124', '125', '126', '127'] 9 

3kra A B ['133', '134', '135', '136', '137', '138', '139', '140', '141', '142', '143', '144', '145', '146', '147'] 5 

3kra A B ['152', '153', '154', '155', '156', '157', '158', '159', '160'] 6 

4g92 B C ['50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60'] 5 

4g92 B C 
['69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', 
'89', '90', '91', '92', '93', '94', '95', '96'] 12 

4g92 B C ['50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60'] 5 

4g92 B C 
['69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86', '87', '88', 
'89', '90', '91', '92', '93', '94', '95', '96'] 12 

4g92 B C ['117', '118', '119', '120', '121', '122', '123', '124', '125', '126', '127', '128', '129', '130', '131'] 8 

4i0x B A 
['11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', 
'31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47'] 14 

4i0x B A 
['53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', 
'73', '74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85', '86'] 11 

4lfg B A 
['101', '102', '103', '104', '105', '106', '107', '108', '109', '110', '111', '112', '113', '114', '115', '116', 
'117', '118', '119', '120', '121'] 9 

4lfg B A ['126', '127', '128', '129', '130', '131', '132', '133', '134', '135', '136', '137', '138', '139', '140'] 6 

4lfg B A ['145', '146', '147', '148', '149', '150', '151', '152', '153', '154'] 5 
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Chapter 4 

Discussion and future directions 

 Here, I have presented two new methods for designing functional proteins, both of which 

place an emphasis on enabling sidechain functional interactions by generating suitable backbone 

geometries. Where these methods differ is in terms of the number of interactions that can be 

accommodated versus the relative irregularity of the backbones generated. We show that PIP is 

capable of placing a single functional residue at a time, and while it may be possible to place 

several, it is unlikely to be able to accommodate many such residues; however, it does so without 

being constrained by any sort of secondary structure requirements. This approach is best paired 

with situations where a few residues have a disproportionate contribution to the designed 

function, such as binding of a small ligand or catalysis. As a result, improvements would be most 

impactful if they addressed scalability: for instance, one could create an algorithm that uses 

residue-residue or tertiary motifs to determine whether a different local backbone geometry 

could accommodate a more favorable functional interaction, then generate that geometry, 

followed by some optimization of the local environment. Currently, such a method would be 

limited by the time it takes to sample both new backbone conformations and sequences, but 

with the rise of machine learning in protein design, it might be possible to quickly generate 

designable backbones [1], or even generate local backbones and surrounding sequences 
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simultaneously. The latter could be achieved by masking both the structure and sequence of a 

local protein environment and using a deep neural net to fill in both the geometry and sequence. 

The strength of HELIX, on the other hand, is in facilitating many functional interactions at 

once, but it is constrained to doing so mainly via α-helices (though other geometries from the 

scaffold can of course interact with the target protein). Thus, enhancements should focus on 

making HELIX compatible with other types of secondary structure. It may be possible to define 

β-sheets in a way that facilitates fast matching, as HELIX has accomplished with α-helices, but the 

more generalizable approach is to combine the placement of functional tertiary motifs with 

constrained hallucination [2]–[4]. Additionally, while HELIX was designed as a means of one-sided 

interface design, the information gained from using PatchMAN [5] to place secondary structural 

units lends itself quite well to the design of orthogonal binding pairs. This could be accomplished 

by modifying the sequence of the target protein to match the sequence of the tertiary motif 

found by MASTER [6], causing both sides of the interface to have known compatibility in terms 

of both their sequences and geometries. 

While on-demand design of protein function remains a distant aspiration, the methods 

herein represent a modest waypoint on the long road towards that goal. It is my heartfelt hope 

as I depart UCSF that they provide some utility and inspiration to the scientific community. 
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