
UCSF
UC San Francisco Previously Published Works

Title
Of sound mind and body: depression, disease, and accelerated aging

Permalink
https://escholarship.org/uc/item/68t6p4pc

Journal
Dialogues in Clinical Neuroscience, 13(1)

ISSN
1294-8322

Authors
Wolkowitz, Owen M
Reus, Victor I
Mellon, Synthia H

Publication Date
2011-03-31

DOI
10.31887/dcns.2011.13.1/owolkowitz
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/68t6p4pc
https://escholarship.org
http://www.cdlib.org/


ajor Depressive Disorder (MDD) is typically
considered a mental illness, yet pathology associated
with MDD is evident in cells and organs throughout the
body. For example, MDD is associated with an increased
risk of developing atherosclerosis, heart disease, hyper-
tension, stroke, cognitive decline, and dementia (includ-
ing Alzheimer’s disease), osteoporosis, immune impair-
ments (eg, “immunosenescence”), obesity, metabolic
syndrome, insulin resistance, and type 2 diabetes,1-4 and
individuals who are afflicted both by MDD and one of
these diseases have a poorer prognosis than individuals
afflicted by either alone.3 This increased risk of serious
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Major depressive disorder (MDD) is associated with a high rate of developing serious medical comorbidities such as car-
diovascular disease, stroke, dementia, osteoporosis, diabetes, and the metabolic syndrome. These are conditions that
typically occur late in life, and it has been suggested that MDD may be associated with “accelerated aging.” We review
several moderators and mediators that may accompany MDD and that may give rise to these comorbid medical con-
ditions. We first review the moderating effects of psychological styles of coping, genetic predisposition, and epigenetic
modifications (eg, secondary to childhood adversity). We then focus on several interlinked mediators occurring in MDD
(or at least in subtypes of MDD) that may contribute to the medical comorbidity burden and to accelerated aging: lim-
bic-hypothalamic-pituitary-adrenal axis alterations, diminution in glucocorticoid receptor function, altered glucose tol-
erance and insulin sensitivity, excitotoxicity, increases in intracellular calcium, oxidative stress, a proinflammatory milieu,
lowered levels of “counter-regulatory” neurosteroids (such as allopregnanolone and dehydroepiandrosterone), dimin-
ished neurotrophic activity, and accelerated cell aging, manifest as alterations in telomerase activity and as shorten-
ing of telomeres, which can lead to apoptosis and cell death. In this model, MDD is characterized by a surfeit of poten-
tially destructive mediators and an insufficiency of protective or restorative ones. These factors interact in increasing
the likelihood of physical disease and of accelerated aging at the cellular level. We conclude with suggestions for novel
mechanism-based therapeutics based on these mediators.  
© 2011, LLS SAS Dialogues Clin Neurosci. 2011;13:25-39
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medical diseases is not fully explained by lifestyle
choices such as diet, exercise, and smoking, and the rea-
sons for the heightened risk remain unknown.4

Moreover, many of the medical comorbidities seen in
MDD are diseases more commonly seen with advanced
age, and MDD has even been characterized as a disease
of “accelerated aging.”1,5,6 In this review article, we
explore certain biological mediators that are dysregu-
lated in MDD and that may contribute to the depressed
state itself, to the comorbid medical conditions, and to
“accelerated aging.” Discovering novel pathological
mediators in MDD could help identify new targets for
treating depression and its comorbid medical conditions
and could help reclassify MDD as a multisystem disor-
der rather than one confined to the brain.

Theoretical model

We propose a model of MDD comprised of certain path-
ogenic processes that are interlinked and often recursive,
that occur in the brain and in the periphery, and that can
culminate in cellular damage, cellular aging, and dis-
ease.6-10 This model is presented schematically in Figure
1 and is briefly described in this introduction; the indi-
vidual moderators and mediators are described in
greater detail in the remainder of this article. This model
is not intended to be complete or all-encompassing but
is meant to highlight and connect certain interesting
findings in the study of depression. It does not propose
that each component is necessary or sufficient, or that
the specified mediators are the sole routes to MDD. It
also does not speak to the directions of causality
between depression and physical pathology. Further,
many of the specified mediators may serve either pro-
tective or destructive functions depending on their con-
text and chronicity.11-13 Nonetheless, the model presented
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Selected abbreviations and acronyms
5-HT serotonin
BDNF brain-derived neurotrophic factor
CRH corticotrophin-releasing hormone
DHEA dehydroepiandrosterone
GC glucocorticoid
GR glucocorticoid receptor
IL interleukin
LHPA limbic-hypothalamic-pituitary-adrenal axis
MDD major depressive disorder
PMDD premenstrual dysphoric disorder

Figure 1. Model of multiple pathways leading to psychiatric and physical
illness and cell aging. In conjunction with genetic and epigenetic
moderators, elevated cortisol levels, associated with downregu-
lation of glucocorticoid receptor (GC) function (GC resistance)
may result in altered immune function, leading to excessive syn-
thesis of proinflammatory cytokines. Changes in glucocorticoid-
mediated activities also result in genomic changes (altered lev-
els of certain neurotransmitters, neurotrophins, and other
mediators), as well as dysregulation of the limbic-hypothalamic-
pituitary adrenal (LHPA) axis that might contribute to neuroen-
dangerment or neurotoxicity, perhaps leading to depressive or
cognitive symptoms. Dysregulation of the LPHA axis can also lead
to intracellular glucose deficiency, glutamatergic hyperactivity,
increased cellular calcium concentrations, mitochondrial damage,
free radial generation, and increased oxidative stress. This cascade
of events, coupled with a milieu of increased inflammatory
cytokines, may lead to accelerated cellular aging via effects on
the telomere/telomerase maintenance system. Dysregulation of
normal compensatory mechanisms, such as increased neuros-
teroid or neurotrophin production, may further result in inability
to reduce cellular damage, and thereby exacerbate destructive
processes. This juxtaposition of enhanced destructive processes
with diminished protective/restorative processes may culminate
in cellular damage, apoptosis, and physical disease. Allopreg, allo-
pregnanolone; BDNF, brain-derived neurotrophic factor; CRH, cor-
ticotrophin releasing hormone; DHEA, dehydroepiandrosterone;
GR, glucocorticoid receptor
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here provides testable hypotheses for further investiga-
tion and provides rationales for considering novel treat-
ment approaches. Earlier reviews of this model have
been published elsewhere.5,6,10

In brief, psychological and physical stressors trigger
physiological responses that are acutely important for
successful adaptation to the stress (“stress arousal”).
However, when stress responses are disrupted or inap-
propriately prolonged, endangering effects may super-
sede the protective ones. The “cost” to the organism of
maintaining these physiological responses over pro-
longed periods has been termed “allostatic load”13 or
“arousal pathology,”14 and it has repeatedly been associ-
ated with poor medical outcomes.12 In addition to
chronicity of the stress response, certain psychological,
environmental, genetic, and epigenetic circumstances
(discussed below) favor dysregulation of two main stress
response effectors, the limbic-hypothalamic-pituitary-
adrenal (LHPA) axis and the locus coeruleus noradren-
ergic (NE) system.15 A particular problem may arise
when these two systems, which are generally counter-
regulatory, activate one another for prolonged periods
of time (as may be seen in melancholic depression).15

The failure of glucocorticoids (GCs) to effectively
counter-regulate stress-induced NE and LHPA activity
may underlie critical aspects of MDD.15 Prolonged
LHPA axis dysregulation can lead to neuroendangering
or neurotoxic effects in vulnerable brain regions (eg, pre-
frontal cortex and hippocampus).16 It can also lead to
energetic disturbances (decreased intracellular glucose
availability and insulin resistance), glutamatergic hyper-
activity/excitotoxicity, increased intracellular calcium
concentrations, mitochondrial damage, free radical gen-
eration and oxidative stress, immune alterations (lead-
ing to a proinflammatory milieu), and accelerated cell
aging (via effects on the telomere/telomerase mainte-
nance system). The nature of cortisol abnormalities in
MDD is complex, however, and will be discussed below.
Prolonged activation of central NE systems, as often
seen in melancholic depression, may be associated with
worsened outcome in cardiovascular diseases and with
accelerated cell aging at the level of the telomere.9,15

In addition to increases in these destructive processes,
normal compensatory or reparative processes may be
diminished, eg, diminution of counter-regulatory neuros-
teroids, eg, dehydroepiandrosterone (DHEA),17 and allo-
pregnanolone,18 decreased antioxidant compounds, dimin-
ished anti-inflammatory/immunomodulatory cytokines,

decreased neurotrophic factor concentrations, eg, brain-
derived neurotrophic factor (BDNF), and altered telom-
erase activity. This juxtaposition of enhanced destructive
processes with diminished (or inadequate) protective or
restorative ones can culminate in cellular damage and
physical disease (Table I). This model will be explored in
greater depth in the following sections.

Moderators

Psychological stress and individual differences

Psychological stress is frequently a precipitant of depres-
sive episodes,19 and under certain circumstances it can ini-
tiate the biochemical cascade described here.7,8,10,13,16,20 It is
apparent, though, that individuals respond very differently
to stress, due, in part, to differences in coping strategies,
disposition, temperament, and cognitive attributional
styles.21-23 These can moderate stress-associated biological
changes such as LHPA axis arousal,23 inflammation,22,24

neurogenesis,25 amygdala arousal,26 and cell aging. In the
first study examining a personality trait and telomere
length, O’Donovan et al found that pessimism was related
to shorter telomere length, as well as higher IL-6 concen-
trations.22 In a study of the effects of early-life parental
loss on later-life depression, the quality of the family and
home’s adaptation to the loss was the single most power-
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Potentially damaging mediators Potentially protective mediators

Increased Decreased

• Hyperactive LHPA axis and • Neurosteroids (eg, DHEA*

hypercortisolemia (with net and allopregnanolone)

hypercortisolism or • Insulin sensitivity

hypocortisolism) • Intracellular glucose

• Synaptic glutamate and • Antioxidants

excitotoxicity • Anti-inflammatory/immuno-

• Intracytoplasmic calcium modulatory cytokines**

• Free radicals with oxidative • Neurotrophic factors

stress (eg, BDNF)

• Inflammatory cytokines • Telomerase***

Table I. Possibly damaging and protective mediators in major depression.
LHPA, limbic-hypothalamic-pituitary-adrenal; DHEA, dehy-
droepiandrosterone; BDNF, brain-derived neurotrophic factor.
* Evidence is mixed as to whether DHEA concentrations are ele-
vated or lowered in depression. ** Evidence is mixed as to
whether the anti-inflammatory/immunomodulatory cytokine, IL-
10, is elevated or lowered in depression. *** Evidence is mixed as
to whether telomerase activity is elevated or lowered in states of
chronic stress and depression. 
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ful predictor of adult psychopathology, and was more
important than the loss itself.27 Biochemical aspects of
resilience vs stress vulnerability will not be covered here
but have recently been reviewed.28

Adverse childhood events

Alexander Pope noted in 1734, that “as the twig is bent,
the tree is inclined.” A rapidly expanding body of evi-
dence suggests that early-life adversity (such as parental
loss, neglect, and abuse) predisposes to adult depres-
sion27,29 as well as to LHPA axis hyper-reactivity to
stress,27,30 increased allostatic load,13,31 diminished hip-
pocampal volume (although this is controversial),32 lower
brain serotonin transporter binding potential,33 and a
myriad of adult physical diseases.34 Childhood adversity
also predisposes to alterations in many of the mediators
presented in our model of stress/depression/illness/cell
aging, such as: inflammation,35,36 oxidative stress,37 neu-
rotrophic factors,38 neurosteroids,39 glucose/insulin/
insulin-like growth factor (IGF-1) regulation,40 telom-
erase activity,41 and telomere length.36,42-44 Alterations in
LHPA axis activity (increased or decreased) have been
well described in victims of childhood adversity, even
when the individuals are not currently depressed.27,30 In
fact, several instances of neurobiological changes
reported in MDD may be more attributable to histories
of early-life adversity,30,32 which are over-represented
among individuals with MDD, than to the MDD itself.
Thus, early-life adversity seems capable of “reprogram-
ming” the individual to a certain lifetime repertoire of
altered physiological responses to stress and to vulnera-
bility to psychiatric and physical illness. This repro-
gramming toward stress arousal and preparedness may
be adaptive when the individual is likely to be con-
fronted with a lifetime of continuous adversity, but is
clearly disadvantageous otherwise. The causes of early
adversity-induced behavioral and biochemical changes,
and the explanation for the very long-lasting effects of
such adversity, are the subject of intense investigation.
One explanation that has attracted much attention is
epigenetic changes,45,46 discussed in the next section.

Genetic and epigenetic moderators

A number of variants in candidate genes have been
implicated in contributing to maladaptive and resilient
responses that underlie alterations in neuronal plastic-

ity and subsequent behavioral depression.47 Evidence is
strongest for genes involved in HPA regulation and
stress (corticotrophin-releasing hormone [CRH]1; glu-
cocorticoid receptor [GR]), regulatory neurotransmit-
ters, transporters, and receptors (serotonin (5-HT)1A, 5-
HT2, 5-HTTLPR, NET), neurotrophic factors,
(brain-derived neurotrophic factor [BDNF], nuclear fac-
tor-kappaB, mitogen-activated protein kinase-1) and
transcription factors (cAMP response element binding,
Re-1 silencing transcription factor, delta FosB), but vari-
ations in other secondary modulatory factors (γ-
aminobutyric acid [GABA], catechol-O-methyl trans-
ferase, monoamine oxidase, dynorphin, neuropeptide-Y)
have also been hypothesized to be important in deter-
mining individual differences in stress response.48 Studies
of the CRH-1 gene in humans, for example, have shown
that specific variants are associated with differential hor-
monal responses to stress, and with differing rates of
depression and suicidal behavior.49 Increasingly, such
genetic effects have themselves been found to be mod-
ulated by individual variation in environmental context
and history (gene x environment, GxE).45 Epigenetics,
which focuses on nongenomic alterations of gene
expression, provides a mechanism for understanding
such findings, through alteration of DNA methylation
and subsequent silencing of gene expression or through
physical changes in DNA packaging into histones.50 A
comprehensive review of this literature is beyond the
scope of this article, but the findings of selective recent
studies in these areas are illustrative of the regulatory
complexity that influences the possible translation of
stressful experiences into depression. Long-lasting epi-
genetic effects of early life experience on hypothalamic-
pituitary-adrenal (HPA) responses have been demon-
strated most clearly in animal models of differential
maternal behavior and social isolation.45,46 Augmented
maternal care was associated with reduced hypothala-
mic response to stress in rat pups and altered expression
of CRH into adulthood.51 Suggestive human data com-
patible with these mechanisms have been reported.28,52

Oberlander et al,53 for example, found that prenatal
exposure to third trimester maternal depression was
associated with increased methylation of the glucocorti-
coid receptor gene at 3 months of age in the newborn
child, while McGowan45 reported decreased levels of GR
expression in the hippocampus of suicide victims with a
history of childhood abuse, in comparison with those
without such history and to controls. Tyrka and col-
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leagues54 have also shown that variants in the CRH1
receptor gene appear to interact with a history of child-
hood abuse in determining cortical response to CRH. A
separate body of research has focused on genetic inves-
tigations in components of serotonergic function, most
commonly on a variant in the serotonin promoter (5-
HTTLPR), and, to a lesser extent, on serotonin receptor
genes.55 In a small-scale study that remains controversial,
Caspi et al56 reported that the effect of a variant in 5-
HTTLPR on increasing risk of depression was depen-
dent upon a history of previous life stresses; several
large-scale attempts at replication failed to support these
conclusions and subsequent meta-analyses have been
both positive and negative.57,58 Ressler et al59 have sug-
gested that gene x gene x environment interactions may
be involved, and reported that 5-HTTLPR alleles inter-
acted with CRH1 haplotypes and child abuse history in
predicting depressive symptoms. Others, however, have
found it hard to demonstrate such effects.55 Yet another
example of a potential GxGxE interaction was found in
a study by Kauffman et al60 of child abuse victims, in
whom BDNF and 5-HTTLPR genotypes interacted with
maltreatment history in predicting depression, with
social support showing some moderating influence.
Despite the persuasive empirical animal data, the clini-
cal relevance of epigenetic effects of stress on human
emotional behavior is yet to be convincingly established. 

Biochemical mediators

Glucocorticoids

Elevated circulating GC levels are often observed in
depressed individuals (especially in those with severe,
melancholic, psychotic, or inpatient depressions),
although considerable variability exists between studies,
between individuals, and even within individuals over
time, and some individuals are even hypocortisolemic.61,62

The physiological significance of increased circulating
GC levels remains unknown, and it is debatable whether
hypercortisolemia results in hypercortisolism at the cel-
lular level, or, rather, in hypocortisolism, perhaps due to
downregulation of the GR (often referred to as “GC
resistance”).20 Thus, determination of “net” GC activity
in depressed individuals at the intracellular level has
remained elusive.63,64 In fact, different subclasses of
depressed individuals may show opposite patterns of
limbic-hypothalamic-pituitary-adrenal (LHPA) axis

activity,15 and levels of LHPA activation may be more
related to individual depressive symptoms than to the
depressive syndrome per se.65 Further, it is possible that
both hypo- and hypercortisolism are related to depres-
sion, in an inverted-U shaped manner.62 Complicating
our understanding of this issue, novel treatment strate-
gies that decrease or increase GC activity may show
antidepressant effects in certain patients.66-69 The
“hypocortisolism” hypothesis is supported by findings
that proinflammatory cytokine levels (eg, tumor necro-
sis factor [TNF]-α, interleukin [IL]-1β and IL-6) tend to
be increased in the serum of depressed patients, and that
proinflammatory cytokines may contribute to depressive
symptomatology. Since cortisol typically has anti-inflam-
matory actions and suppresses proinflammatory
cytokines (although there are instances to the contrary
[eg, ref 70]), the coexistence of elevated cortisol and ele-
vated proinflammatory cytokine levels suggests an
insensitivity to cortisol at the level of the lymphocyte
GR.20 Further supporting this notion, inflammatory
cytokines downregulate GRs.20 Also, antidepressants typ-
ically increase GR binding activity,20 although in so
doing, negative feedback onto the HPA axis is
increased.71 On the other hand, the “hypercortisolism”
hypothesis is supported by certain phenotypic somatic
features suggestive of cortisol excess and end-organ cor-
tisol receptor overactivation in some individuals with
depression, eg, osteoporosis, insulin resistance, type 2
diabetes, a relative hypokalemic alkalosis accompanied
by neutrophilia and lymphocytosis, hypertension, meta-
bolic syndrome, and visceral/intra-abdominal adipos-
ity.72,73 Further support of net GC overactivation is pro-
vided by evidence of altered expression of target genes
such as BDNF, which are believed to be under negative
regulatory control by cortisol.74

Pathologically elevated or diminished GC activity might
have adverse neurobehavioral and physical health
sequellae.72,75 Chronic hypercortisolemia, in particular,
has been proposed by Sapolsky and others16 to result in
a biochemical “cascade,” which can culminate in cell
endangerment or cell death in certain cells, including
cells in the hippocampus. In the simplest description of
this model, GC excess engenders a state of intracellu-
lar glucoprivation (insufficient intracellular glucose
energy stores) in certain cells, impairing the ability of glia
and other cells to clear synaptic glutamate. The resulting
excitotoxicity results in excessive influx and release of
calcium into the cytoplasm, which contributes to oxida-
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tive damage, proteolysis, and cytoskeletal damage.
Unchecked, these processes can culminate in diminished
cell viability or cell death. 

Neurosteroids

Although cortisol concentrations are often reported as
elevated in depression, CSF concentrations of the potent
GABA-A receptor agonist neurosteroid, allopreg-
nanolone, are decreased in unmedicated depressives,
and CSF levels of allopregnanolone increase with treat-
ment in direct proportion to the antidepressant effect.76

Selective serotonin reuptake inhibitor (SSRI) antide-
pressants rapidly increase allopregnanolone synthesis,
and this may contribute to their anxiolytic effects.77,78

Another neurosteroid, DHEA, which may have “anti-
cortisol” effects, has been reported to be both high and
low in depression.17 Notably, both of these neurosteroids
modulate HPA axis activity17,18 and immune system activ-
ity,17,79 antagonize oxidative stress17,80 and have certain
neuroprotective effects.17,81 Depressed patients entering
remission show decreases in plasma cortisol concentra-
tions along with increases in plasma allopregnanolone
concentrations.82 Endogenous decreases in this neuros-
teroid concentrations or exogenously produced
increases in their concentrations might be expected to
have damaging or beneficial effects, respectively, in the
context of depression,17,78,83,84 and treatment trials have
demonstrated significant antidepressant effects of exoge-
nously administered DHEA.17 Animal models suggest
that 3 α hydroxy-5 α reduced steroids (allopregnanolone
and allotetrahydrodeoxycorticosterone) are responsive
to stress85 and may function to restore normal γ-
aminobutyric acid (GABA)-ergic and hypothalamic-
pituitary-adrenal function following stress.18,85 In vitro,
allopregnanolone suppresses release of gonadotropin-
releasing hormone86 or CRH87 via a GABA-A mediated
mechanism. Allopregnanolone or allotetrahydrodeoxy-
corticosterone can also attenuate stress-induced
increases in plasma ACTH and corticosterone and can
affect arginine vasopression transcription in the hypo-
thalamus (paraventricular nucleus).18 Under chronic
stress or in psychiatric disorders, dysregulation of the
HPA axis could be exacerbated if there is insufficient
activity of these “counter-regulatory” neurosteroids. In
addition to protection against acute or chronic stress,
neurosteroids such as allopregnanolone and allote-
trahydrodeoxycorticosterone may be neuroprotective

against early life stressors88 or against deleterious effects
of social isolation.89 In this way, these neurosteroids may
be neuroprotective during development and may affect
future responsiveness to stress.
The detrimental effects of neurosteroid dysregulation on
stress responses has been particularly documented in
women with premenstrual dysphoric disorder
(PMDD).90,91 PMDD is a depressive disorder that is char-
acterized by cyclic recurrence, during the luteal phase of
the menstrual cycle, of a variety of physical and emo-
tional symptoms that are so severe as to interfere with
daily activities. In these studies in women with PMDD,
both high and low concentrations of allopregnanolone
during the luteal phase of the menstrual have been
reported. However, women with PMDD have reduced
responsiveness to neurosteroids (on GABA-A recep-
tors)92 as well as a blunted stress response (failing to
demonstrate an increase in allopregnanolone concen-
trations after acute stress) in women with PMDD and a
prior history of depression.90 Furthermore, women with
PMDD who also had prior histories of depression
showed significant decreases in allopregnanolone after
acute stress.90 These data highlight that long-term histo-
ries of depression may be associated with persistent,
long-term effects on the responsivity of the neurosteroid
system, as well as long-term effects on modulation of the
HPA axis following stress.

Glucose and insulin regulation

Abnormalities of glucose homeostasis (eg, insulin resis-
tance and impaired glucose tolerance) are seen in MDD,
even in individuals who are nonobese and not diabetic. 93

These glucose and insulin abnormalities are most pro-
nounced in hypercortisolemic depressed individuals,94 as
would be predicted based on cortisol’s well-known anti-
insulin effects. Hypercortisolemic depressives, compared
with normocortisolemic ones, are also at increased risk of
having increased abdominal (visceral) fat deposition95 and
the metabolic syndrome,96 which are also risk factors for
cardiovascular disease. Insulin resistance and diminished
cellular glucose uptake can also lead to a dangerous “ener-
getic crisis.”7,16 When this occurs in the hippocampus,16 for
example, hippocampal excitotoxicity may develop, since
there is insufficient energy available to clear glutamate
from the synapse. Thereafter, cytosolic calcium is mobi-
lized, triggering oxygen free radical formation and
cytoskeletal proteolysis. The relevance of this in humans
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was demonstrated in a PET scan study, in which cortisol
administration to normal individuals resulted in significant
reductions in hippocampal glucose utilization.97 The impor-
tance of hippocampal insulin resistance for depression and
cognitive disorders (eg, Alzheimer’s disease) is the subject
of active investigation.98,99

Over and above these direct effects on energy balance,
prolonged exposure to glucose intolerance and insulin
resistance is associated with accelerated biological
aging7,100 including shortened telomere length,101 and vis-
ceral adiposity is associated with increased inflammation
and oxidation,102,103 both of which, themselves, promote
accelerated biological aging.7 These will be further dis-
cussed below in the sections on inflammation, oxidation,
and cell aging.

Immune function

Dysregulation of the LHPA axis contributes to immune
dysregulation in depression, and immune dysregulation,
in turn, can activate the HPA axis and precipitate depres-
sive symptoms.20 Immune dysregulation may be an
important pathway by which depression heightens the
risk of serious medical comorbidity.7,104,105 Several major
proinflammatory cytokines, such as IL-1β, IL-2, IL-6 and
TNF-α, are elevated in depression, either basally or in
response to mitogen stimulation or acute stress.20,106,107

Conversely, certain anti-inflammatory or immunomodu-
latory cytokines, such as IL-1 receptor antagonist and IL-
10 may be decreased or dysregulated.106 Indeed, the ratio
of proinflammatory to anti-inflammatory/ immunomod-
ulatory cytokines may be disturbed in depression and
could result in net increased inflammatory activity106 as
well as in oxidative stress.108 Converging findings suggest
that high peripheral levels of inflammatory cytokines,
such as IL-6, are associated with the activation of central
inflammatory mechanisms that can adversely affect the
hippocampus, where IL-6 receptors are abundantly
expressed.109 High proinflammatory cytokine levels, for
example, may directly contribute to depression,
decreased neurotrophic support, and altered glutamate
release/reuptake and hippocampal neurodegeneration,110

and, plasma IL-6 levels are inversely correlated with hip-
pocampal gray matter in healthy humans.111 Further, inap-
propriately and chronically elevated proinflammatory
cytokines can contribute to accelerated biological aging
(eg, premature shortening of immune cell telomeres112).
Interestingly, the development of immunosenescence (eg,

the loss of the CD28 marker from CD8+ T cells), can 
further aggravate the proinflammatory milieu, since
CD8+CD28- cells hypersecrete IL-6.113 It should be noted,
however, that due to the complexity of cytokine actions
in neurons and glia, the end effect of individual cytokines
may be either detrimental or protective, depending on
the circumstances.106

Oxidation

Stress and increased LHPA axis activity can also
increase oxidative stress and decrease antioxidant
defenses.5,7,114 Oxidative stress often increases with aging
and various disease states, while antioxidant and anti-
inflammatory activities decrease, resulting in a height-
ened likelihood of cellular damage and of a senescent
phenotype.7,115 The co-occurrence of oxidative stress and
inflammation (the so-called “evil twins” of brain
aging115), as may be seen in depression, post-traumatic
stress disorder (PTSD), stroke, Alzheimer’s disease, and
others, can be especially detrimental. Oxidative stress
occurs when the production of oxygen free radicals (and
other oxidized molecules) exceeds the capacity of the
body’s antioxidants to neutralize them. Oxidative stress
damages DNA, protein, lipids, and other macromole-
cules in many tissues, with telomeres (discussed below)
and the brain being particularly sensitive. Elevated
plasma and/or urine oxidative stress markers (eg,
increased F2-isoprostanes and 8-hydroxydeoxyguano-
sine [8-OHdG], along with decreased antioxidant com-
pounds, such as Vitamin C, Vitamin E, and Coenzyme
Q) have been reported in individuals with depression
and in those with chronic psychological stress, and the
concentration of peripheral oxidative stress markers is
positively correlated with the severity and chronicity of
depression.114,116 Further, the ratio of serum oxidized
lipids (F2-isoprostanes) to antioxidants (Vitamin E) is
directly related to psychological stress.8 Importantly, this
ratio (and the ratio of F2-isoprostanes to another anti-
oxidant, Vitamin C) is inversely related to telomere
length in chronically stressed caregivers8 and in individ-
uals with major depression.117 Oxidative stress markers
are also correlated with decreased telomerase activity.118

Further, diminished levels of antioxidants reportedly
lower BDNF activity.119 Interestingly, antidepressants
decrease oxidative stress.120 Since cellular oxidative dam-
age may be an important component of the aging
process, prolonged or repeated exposure to oxidative
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stress might accelerate aspects of biological aging and
promote the development of aging-related diseases in
depressed individuals.114 It is unknown whether antioxi-
dant treatment would retard stress- or depression-
related aging; this is discussed below under “novel treat-
ment implications.”

Brain-derived neurotrophic factor

The “neurotrophic model” of depression74 emphasizes
the centrality of neurogenesis and neuronal plasticity in
the pathophysiology of depression. It posits that dimin-
ished hippocampal BDNF activity, caused by stress or
excessive GCs, impairs the ability of stem cells in the
subgranular zone of the dentate gyrus (as well as cells in
the subventricular zone, projecting to the prefrontal cor-
tex) to remain viable and to proliferate into mature cells.
It is not known whether such effects can cause depres-
sion, but they may be relevant to the mechanism of
action of antidepressant treatments.121 Unmedicated
patients with depression have decreased hippocampal
(at autopsy) and serum concentrations of BDNF.121,122

Over 20 studies have documented decreased serum con-
centrations of BDNF in unmedicated depressed indi-
viduals; this is now one of the most consistently repli-
cated biochemical findings in major depression.121,123

Further, serum BDNF concentrations increase with anti-
depressant treatment.121,123 The relationship of peripheral
BDNF concentrations to central ones is not known, but
even peripherally administered BDNF abrogates
depressive and anxiety-like behaviors and increases hip-
pocampal neurogenesis in mice, suggesting that serum
BDNF concentrations are functionally significant for
brain function and are more than merely a biomarker.124

A role of BDNF in antidepressant mechanisms of action
is supported by findings that hippocampal neurogenesis
(in animals) and serum BDNF concentrations (in
depressed humans) increase with antidepressant treat-
ment,121,123 and that hippocampal neurogenesis and intact
BDNF expression are required for behavioral effects of
antidepressants in animals.125,126

Apart from its direct neurotrophic actions, BDNF also
has anti-inflammatory and antioxidant effects that may
contribute to its neuroprotective efficacy,127 and BDNF,
in concert with telomerase (discussed below) promotes
the growth of developing neurons.128 In addition, BDNF
(despite its name) has significant peripheral actions that
are important for physical health, and the low levels of

BDNF seen in MDD may be involved in certain comor-
bid illnesses such as cardiovascular disease, diabetes,
obesity, and metabolic syndrome.129 For example, BDNF
improves glucose and lipid profiles, enhances glucose uti-
lization, suppresses food intake, has an insulinotropic
effect and protects cells in the islets of Langerhans
(reviewed in ref 129). Plasma levels of BDNF are low in
type 2 diabetes and are inversely correlated with fasting
glucose levels.129 Indeed, BDNF is increasingly consid-
ered not only a neurotrophin but a metabotrophin,129 and
its dysregulation has been proposed as a unifying feature
of several clustered conditions, such as MDD,
Alzheimer’s disease, and diabetes.130

Cell aging: telomeres and telomerase

Telomeres are DNA-protein complexes that cap the
ends of linear DNA strands, protecting DNA from dam-
age.131 When telomeres reach a critically short length, as
may happen when cells undergo repeated mitotic divi-
sions in the absence of adequate telomerase (eg,
immune cells and stem cells, including neurogenic stem
cells in the hippocampus), cells become susceptible to
apoptosis and death. Even in nondividing cells, such as
mature neurons, telomeres can become shortened by
oxidative stress, which preferentially damages telomeres
to a greater extent than nontelomeric DNA. This non-
mitotic type of telomere shortening also increases sus-
ceptibly to apoptosis and cell death. Telomere length is
a robust indicator of “biological age” (as opposed to just
chronological age) and may represent a cumulative log
of the number of cell divisions and a cumulative record
of exposure to genotoxic and cytotoxic processes such as
oxidation.7-9,113,131,132 Telomere length may also represent a
biomarker for assessing an individual's cumulative expo-
sure to, or ability to cope with, depression or stressful
conditions. For example, chronically stressed8,9 or
depressed133-135 individuals show premature leukocyte
telomere shortening, a sign of cellular aging. In the for-
mer study, telomere length was inversely correlated with
perceived stress and with cumulative duration of care-
giving stress.8 The estimated magnitude of the accelera-
tion of biological aging in these studies was not trivial; it
was estimated as approximately 9 to 17 additional years
of chronological aging in the stressed caregivers and
approximately 6 to 10 years in the depressed individu-
als. Preliminary data from our group suggest that telom-
ere loss in MDD is most apparent in those individuals
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with more chronic courses of depression,117 but another
study did not observe that.135 Interestingly, individuals
with histories of early-life adversity or abuse also have
shortened leukocyte telomeres.36,42,43 Since individuals
with MDD are more likely to have experienced early-
life adversity, it remains to be determined how much of
the telomere shortening seen in studies of MDD relate
to the MDD per se vs the histories of early-life adversity.
In individuals with post-traumatic stress disorder
(PTSD), telomere shortening was more closely linked to
adverse childhood events than to the PTSD per se.44

The importance of accelerated telomere shortening for
understanding comorbid medical illnesses and prema-
ture mortality in depressed individuals is highlighted by
multiple studies in nondepressed populations showing
significantly increased medical morbidity and earlier
mortality in those with shortened telomeres.7,136 For
example, shortened leukocyte telomeres are associated
with a greater than 3- fold increase in the risk of myocar-
dial infarction and stroke and with a greater than 8-fold
increase in the risk of death from infectious disease.137

Thus, cell aging (as manifest by shortened telomeres),
may provide a conceptual link between depression and
its associated medical comorbidities and shortened life
span.7,104,132 The causes of accelerated telomere loss in
MDD are not known, but they may include chronic
exposure to inflammation and oxidation, both of which
are commonly seen in MDD and both of which are asso-
ciated with telomere shortening. In our own studies,
telomere length in MDD was inversely correlated with
inflammation (IL-6 concentrations) and oxidative stress
(the F2-isoprostane/ Vitamin C ratio).117

Telomere length is determined by the balance between
telomere shortening stimuli (eg, mitotic divisions and
exposure to inflammation and oxidation) and telomere
lengthening or reparative stimuli. A major enzyme
responsible for protecting, repairing, and lengthening
telomeres is telomerase, a ribonucleoproptein enzyme
that elongates telomeres, thereby counteracting telom-
ere shortening and maintaining cellular viability.131

Telomerase may also have antiaging or cell survival-pro-
moting effects independent of its effects on telomere
length by regulating transcription of growth factors, syn-
ergizing with the neurotrophic effects of BDNF, having
antioxidant effects and intrinsic antiapoptotic effects, pro-
tecting cells from necrosis, and stimulating cell growth in
adverse conditions (eg, ref 128). In one study in which
telomere shortening was observed, telomerase activity

was significantly diminished in stressed (generally non-
depressed) caregivers8 but, in another caregiver study (in
which caregivers were more depressed than controls),
telomerase activity was significantly increased.138 We
recently found that telomerase activity was significantly
increased in unmedicated depressed individuals.139 It is
possible that increased telomerase activity, in the face of
shortened telomeres, is an attempted compensatory
response to telomere shortening.138,139

Pointing to the inter-relatedness of several of the medi-
ators considered in this review, telomerase activity can
be down-regulated by cortisol,140 tumor necrosis factor
(TNF)-α and certain growth factors, and upregulated by
IL-6 and certain other inflammatory cytokines, insulin-
like growth factor-1, fibroblast growth factor-2, vascular
endothelial growth factor, estrogen, and others.141

Novel treatment implications

To the extent the biochemical mediators we have
described are pathophysiologically involved in MDD and
its medical comorbidities, new classes of treatments should
be considered, and certain noncanonical mechanisms of
action of traditional antidepressants should be emphasized
in new drug development. Some of these novel approaches
are already under investigation, while others remain to be
tested. In Table II, we list certain traditional and nontradi-
tional, but mechanism-based, interventions that may ame-
liorate the biochemical mediators we have discussed.
These interventions range from purely behavioral (eg,
exercise and improved fitness, environmental enrichment,
yoga and meditation, dietary macronutrient modifications
and calorie restriction) (see refs 7,142-144 for description
of these behavioral approaches) to more purely medica-
tion-based (see ref 145 for additional descriptions of novel
biological mechanism-based therapeutics). For example,
early work suggests the promise, at least in certain patients,
of antiglucocorticoids,67-69 DHEA supplementation,17

insulin receptor sensitizers,99,146 glutamate antagonists,147 cal-
cium blockers,148 anti-inflammatories,149 antioxidants,150

increased BDNF delivery to the brain, 124,151 and, most spec-
ulatively, telomerase enhancers.152,153

Summary: is depression accompanied by
accelerated aging?

We began this review article by noting that depressed
individuals are at increased risk of developing physical
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illnesses more commonly seen with aging. It remains
unknown whether MDD and these medical conditions
are causally related. This determination will be impor-
tant in considering whether primary treatment of the
depression (eg, with antidepressant medications or psy-
chotherapy) should additionally treat some of the med-
ical comorbidities (and vice versa) or whether the bio-
chemical mediators that are common to both conditions
(eg, inflammation and oxidation) should be a primary
treatment focus. We also discussed the potent influence
that early-life adversity can have on the subsequent
development of depression and medical comorbidities.
We noted that many of the biochemical mediators are
linked to others, and that there are many examples of
bidirectional influence. Finally, we postulated that cer-
tain of these mediators have the potential to accelerate
cellular aging at the level of DNA. In any event, is
important to recognize that MDD may be biologically
heterogeneous, and this model may apply only to certain
subsets of patients with MDD. This reconceptualization

of MDD as a constellation of biochemical features con-
ducive to physical as well as mental distress places MDD
firmly in the taxonomy of physical disease and points to
new types of treatment.  ❏
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Biochemical mediator Potential treatment interventions

Stress vulnerability Stress reduction; meditation; lifestyle changes7,142,154

Epigenetic changes Epigenetic reprogramming155,156

LHPA axis dysregulation Antidepressants upregulate GR function71

(Hypercortisolemia + GC resistance) CRH antagonists157

Cortisol antagonists and GR antagonists or agonists66-69

Glucose/insulin dysregulation Insulin receptor sensitizers99,146

Glutamate/excitotoxicity Glutamate antagonists147

Oxidative stress Antidepressants have antioxidant effects120

Antioxidants150,158

Intracellular calcium Calcium blockers148

Inflammation Antidepressants have anti-inflammatory effects20

Anti-inflammatory drugs, TNF-α antagonists, etc149

Decreased counter-regulatory neurosteroids SSRIs increase allopregnanolone synthesis77,78

DHEA administration17

Decreased BDNF Antidepressants (esp SSRIs) increase BDNF concentrations122,123

Environmental enrichment143,144

Exercise143

Dietary restriction143

BDNF administration via novel routes or vectors124,151

Cell aging (telomeres; telomerase) Telomerase activation152,153

Table II. Potential mechanism-based therapeutic interventions. LHPA, limbic-hypothalamic-pituitary-adrenal; GC, glucocorticoid; GR, glucocorticoid
receptor; CRH, corticotrophin-releasing hormone; DHEA, dehydroepiandrosterone; BDNF brain-derived neurotrophic factor; TNF, tumor necro-
sis factor; SSRI, selective serotonin reuptake inhibitor
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Sanidad del cuerpo y del espíritu: depresión,
enfermedad y envejecimiento acelerado

El trastorno depresivo mayor (TDM) tiene una alta
frecuencia de asociación con el desarrollo de impor-
tantes comorbilidades médicas como enfermedad
cardiovascular, accidentes vasculares, demencia,
osteoporosis, diabetes y síndrome metabólico. Estas
son patologías que de preferencia ocurren en la
edad tardía de la vida y se ha propuesto que el
TDM puede estar asociado con un “envejecimiento
acelerado”. Se revisan algunos moderadores y
mediadores que pueden acompañar al TDM y dar
origen a estas condiciones médicas comórbidas. En
primer lugar se revisan los efectos moderadores de
los estilos psicológicos de adaptación, de la predis-
posición genética y de las modificaciones epigené-
ticas (por ejemplo, secundarias a la adversidad
infantil). A continuación se revisan algunos media-
dores interrelacionados que se presentan en el TDM
(o al menos en algunos subtipos de TDM) que pue-
den incidir en la comorbilidad médica y en el enve-
jecimiento acelerado: alteraciones del eje límbico-
hipotalámico-hipofisiario-adrenal, disminución de
la función de los receptores de glucocorticoides,
alteraciones en la tolerancia a la glucosa y en la sen-
sibilidad a la insulina, excitotoxicidad, aumento del
calcio intracelular, estrés oxidativo, un ambiente
proinflamatorio, reducción de los niveles de neu-
roesteroides “contra-reguladores” (como alopreg-
nanolona y dehidroepiandrosterona), disminución
de la actividad neurotrófica y un envejecimiento
celular acelerado que se manifiesta en alteraciones
de la actividad de la  telomerasa y acortamiento de
los telómeros, lo que puede llevar a la apoptosis y
la muerte celular. En este modelo, el TDM está
caracterizado por un exceso de mediadores poten-
cialmente destructores y una insuficiencia de los
protectores o restauradores. Estos factores interac-
túan aumentando la posibilidad de enfermedad
física y de un envejecimiento acelerado a nivel celu-
lar. Se concluye con propuestas de nuevas terapias
basadas en los mecanismos que regulan estos
mediadores. 

Sain de corps et d’esprit : dépression, mala-
die et vieillissement accéléré

Le trouble dépressif majeur (TDM) est associé à un
taux élevé de comorbidités graves comme les patho-
logies cardiovasculaires, les accidents vasculaires céré-
brauxl (AVC), la démence, l'ostéoporose, le diabète et
le syndrome métabolique. Ces pathologies survien-
nent habituellement tard dans la vie, et c’est pour-
quoi certains ont suggéré que le TDM pourrait être
associé à un « vieillissement accéléré ». Dans cette
revue, nous analysons plusieurs modérateurs et
médiateurs pouvant accompagner le TDM et suscep-
tibles de précipiter ces comorbidités. Tout d'abord,
nous passons en revue les effets modérateurs des stra-
tégies psychologiques d’adaptation (coping), des pré-
dispositions génétiques et des modifications épigé-
nétiques (par ex secondaires à des difficultés dans
l’enfance). Nous nous consacrons ensuite à plusieurs
médiateurs liés entre eux intervenant dans le TDM
(ou au moins dans certains sous-types de TDM) qui
pourraient contribuer à la charge comorbide et à l’ac-
célération du vieillissement : modifications de l’axe
limbo-hypophyso-hypothalamo-surrénalien, diminu-
tion de la fonction du récepteur des glucocorticoïdes,
modification de la tolérance au glucose et de la sen-
sibilité à l’insuline, excitotoxicité, augmentation du
calcium intracellulaire, stress oxydatif, un milieu pro-
inflammatoire, abaissement des taux des neurosté-
roïdes « contre-régulateurs » (comme l’alloprégna-
nolone et la déhydroépiandrostérone), diminution de
l’activité neurotrophique et accélération du vieillisse-
ment cellulaire, se manifestant par des modifications
de l’activité de la télomérase et par un raccourcisse-
ment des télomères, pouvant conduire à l’apoptose
et à la mort cellulaire. Dans ce modèle, le TDM se
caractérise par un excès de médiateurs potentielle-
ment destructeurs et par une insuffisance de média-
teurs protecteurs et restaurateurs. Ces facteurs inter-
agissent en augmentant la probabilité de pathologie
physique et de vieillissement accéléré à un niveau cel-
lulaire. Nous concluons avec des suggestions concer-
nant de mécanismes nouveaux pour des traitements
s’appuyant sur ces médiateurs. 
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