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Abstract

A meta-analytic summary effect estimate often is calculated as an inverse variance weighted 

average of study-specific estimates of association. The variances of published estimates of 

association often are derived from their associated confidence intervals under the assumptions 

typical of Wald-type statistics, such as normality of the parameter. However, in some research 

areas, such as radiation epidemiology, epidemiological results typically are obtained by fitting 

linear relative risk models, and associated likelihood-based confidence intervals are often 

asymmetric; consequently, reasonable estimates of variances associated with study-specific 

estimates of association may be difficult to infer from the standard approach based on the 

assumption of a Wald-type interval. We describe a novel method for meta-analysis of published 

results from linear relative risk models that uses a parametric transformation of published results 

to improve on the normal approximation used to assess confidence intervals. Using simulations, 
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we illustrate that the meta-analytic summary obtained using the proposed approach yields less 

biased summary estimates, with better confidence interval coverage, than the summary obtained 

using the more classical approach to meta-analysis. The proposed approach is illustrated using a 

previously published example of meta-analysis of epidemiological findings regarding circulatory 

disease following exposure to low-level ionizing radiation.

Keywords

meta-analysis; cohort studies; excess relative risk; cancer

In a meta-analysis of epidemiological study results, a summary effect estimate is obtained 

by combining information from a set of study-specific estimates. A common approach is to 

calculate an inverse variance weighted average of the study-specific estimates of association 

(e.g., (Sutton A.J., Abrams K.R. et al. 2000, United Nations Scientific Committee on the 

Effects of Atomic Radiation (UNSCEAR) 2018)). This approach assigns more weight to 

studies with more precise study-specific estimates of association. In the context of unbiased 

linear sums of estimates this approach is justified by the Gauss-Markov theorem (Plackett 

1949).

For epidemiological results obtained from fitting log-linear regression models, it is easy 

to recover reasonable estimates of the variances associated with study-specific estimates 

of association by using the information encoded in the confidence intervals. Standard meta-

analytic techniques typically proceed by assuming that, given reported effect measures and 

associated confidence intervals, one can derive the variances of estimates of association 

based on the assumptions typical of Wald-type statistics; these estimates of study-specific 

variances are used to calculate the inverse-variance weighted average estimate of association 

which is reported as the summary effect estimate (Sutton A.J., Abrams K.R. et al. 2000).

However, such an approach is not straightforward for some estimators for which variances 

are rarely reported. In some application areas effect measures are typically obtained from 

fitting linear relative risk regression models. For example, in epidemiological studies of 

a variety of carcinogens, including asbestos (Hein, Stayner et al. 2007), benzene (Rinsky, 

Hornung et al. 2002), radon progeny (National Research Council (U.S.). Committee on the 

Biological Effects of Ionizing Radiations., United States. Environmental Protection Agency. 

et al. 1988, Lubin, Boice et al. 1995, Darby, Hill et al. 2005), and external ionizing radiation 

(Boice, Blettner et al. 1987, National Research Council (U.S.). Committee on the Biological 

Effects of Ionizing Radiations. 1990, Preston, Shimizu et al. 2003), investigators have 

modeled the relative risk per unit exposure as a linear function of exposure rather than 

an exponential function of exposure. In radiation research, this convention follows from a 

long history of use of the linear relative risk model in analyses of the Life Span Study of 

Japanese atomic bomb survivors (Preston, Ron et al. 2007, Pawel, Preston et al. 2008) for 

which there is a biophysical basis (United Nations Scientific Committee on the Effects of 

Atomic Radiation (UNSCEAR) 1993, Little, Wakeford et al. 2009, Little 2010); and, in the 

contemporary epidemiological literature, the linear relative risk model has been applied in 

analyses of many radiation-exposed populations (Gilbert, Cragle et al. 1993, Cardis, Gilbert 
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et al. 1995, Cardis, Vrijheid et al. 2005, Muirhead, O'Hagan et al. 2009, Metz-Flamant, 

Laurent et al. 2013). The widespread use of the same model form has the advantage that 

it may facilitate comparison of results between studies. Unfortunately, a quantitative meta-

analytic summarization of epidemiological results that have been quantified using linear 

relative risk models is more challenging than doing so with results that have been quantified 

using standard log-linear regression models.

An important challenge in meta-analyses of results that have been quantified using a 

linear relative risk model is deriving reasonable estimates of study-specific variances. The 

methodology developed for quantitative summaries of epidemiological findings has largely 

focused on log-linear model forms, where symmetric Wald-type confidence intervals are 

routinely reported (DerSimonian and Laird 1986). In contrast, likelihood-based confidence 

intervals are commonly reported for estimates of association derived from linear relative 

risk models, and often these intervals are asymmetric (Cox and Hinkley 1974, Meeker and 

Escobar 1995). Consequently, a reasonable estimate of the variance associated with a point 

estimate may be difficult to infer from the information encoded in the likelihood-based 

confidence bounds by simply leveraging the assumptions typical of Wald-type statistics.

In the current paper we describe a method to address these challenges to meta-analysis 

of published studies that report estimates of association derived from linear relative risk 

models. The approach is based on an algebraic transformation of published results to yield 

an estimator with a more symmetrical distributions than those reported in the literature, 

and then derive an expression of variance of this transformed estimator assuming that 

the reported profile-likelihood bounds for the estimate of association in the original scale 

conform well to a re-expression of Wald-type bounds of the transformed estimator. The 

effect on meta-analyses of non-normality in study-specific estimates has been recognized 

by prior authors (Jackson and White 2018); and, the Cochrane Handbook, for example, 

discusses transformation of results as an approach to reduce skew (Higgins and Cochrane 

Collaboration 2020). A meta-analytic summary and associated confidence interval are 

constructed and back transformed to the original scale. We address fixed effect and random 

effects meta-analyses; these approaches employ different assumptions (i.e., under a fixed 

effect model, it is assumed that there is one true association that underlies all the studies in 

the analysis; and, under the random effects model, it is assumed that there is an underlying 

distribution of true associations across studies). For illustration, the proposed methodology 

is implemented using an empirical example.

METHODS

We assume that a systematic literature search was performed, study results (in terms of point 

estimates and associated confidence intervals) extracted, and study quality appraised. We do 

not address these important steps in a meta-analysis. Rather, here we focus on the stage of 

data synthesis during which a quantitative summary of the study findings is calculated. We 

focus on a setting where epidemiological results have been obtained by fitting a model of the 

form

ψ = 1 + βD,
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where ψ denotes the risk ratio or odds ratio, D denotes the continuous exposure of 

interest, and the parameter of primary interest in the meta-analysis, β, denotes the excess 

relative risk or excess odds ratio per unit D (e.g., the excess relative risk per sievert 

(Sv) in a radiation epidemiology study), and likelihood-based confidence intervals have 

been reported. For simplicity we will henceforth assume 95% confidence intervals but the 

approach is readily adapted to other bounds. First, we describe a standard approach to meta-

analytic summarization of epidemiological study results. Second, we describe the proposed 

alternative approach to meta-analytic summarization of epidemiological study results. Third, 

we address how to proceed with a meta-analysis of results that have been quantified using a 

linear risk ratio model when a lower confidence bound was not determined for the reported 

estimate.

A standard approach to meta-analysis of published linear relative risk estimates

The data structure for a standard approach to summarization of epidemiological findings in 

a meta-analysis is a table of point estimates and associated confidence intervals. Let i = 1…k
index the k studies to be summarized in the meta-analysis. Let β i denote the estimated 

excess relative risk or excess odds ratio per unit D for study i; and, let Li and Ui denote the 

associated lower and upper confidence limits for β i.

For each study, i, we derive the standard error of the reported estimate of association, 

denoted se(β i) given the reported associated confidence intervals Li, Ui for the published 

results, by the following calculation: se(β i) = (Ui − Li) ∕ (2 x 1.96).

This approach to estimation of the study-specific standard error follows from considering 

the framework typical of a linear regression model fitting that yields a point estimate 

((β i)) and associated Wald-type confidence bounds (Li, Ui). Given this information, 

an estimate of se(β i) can be derived under the conditions typical of Wald-type 

statistics: Li = β i ‐1.96 × se(β i) and Ui = β i + 1.96 × se(β i). With simple rearrangement we get, 

Li + 1.96 × se(β i) = Ui ‐1.96 × se(β i), and it follows that (Ui ‐ Li) = 2 × (1.96 se(β i)), leading to the 

above expression for se(β i) as a function of (Li, Ui).

Little et al (Little, Azizova et al. 2012) described an approach to deriving a fixed effect 

inverse-variance weighted estimate of the excess relative risk per unit exposure, where the 

meta-analytic summary is calculated as the sum of the study-specific estimates divided by its 

variance, over the sum of the inverse of the study-specific variances, β tot
Fixed =

/se(β i)
2∑i = 1

k β i

/se(β i)
2∑i = 1

k 1 . 

This inverse-variance weighted average estimate of association is reported as the summary 

estimate of association.

Confidence intervals for this fixed effect summary estimate of association are derived by 

calculation of an estimate of the standard error for the meta-analytic summary association. 

The estimate of the standard error is simply the reciprocal of the square-root of the sum of 

the study-specific variances,
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se β tot
Fixed = 1

∕se β i
2∑i = 1

k 1 0.5 ; and,

a Wald-type confidence interval for the summary estimate of association is derived as,

95 % CI(β tot
Fixed) = β tot

Fixed ± 1.96 × se(β tot
Fixed) .

A random-effects summary estimate of association may also be derived. Little et al (Little, 

Azizova et al. 2012) described how to calculate a random effects summary estimate of 

association based on the method proposed by Dersimonian and Laird (DerSimonian and 

Laird 1986) for a one-step estimation of the variance of the random effect, where the 

summary meta-analytic estimate of the association based on a random effects model is 

calculated as,

β tot
Random =

/ se(β i)
2 + Δ2

∑i = 1
k βi

/ se(β i)
2 + Δ2

∑i = 1
k 1 ,

where

Δ2 = max 0, Q − (I − 1)

/ se(β i)
2

∑i = 1
k 1

−
/ se(β i)

4∑i = 1
k 1

/ se(β i)
2∑i = 1

k 1

,

and

Q = ∑1
I β i − β tot

Fixed ∕ se β i
2

.

The associated standard error is calculated as,

se β tot
Random = 1

/ se(β i)
2 + Δ2

∑i = 1
k 1 0.5 .
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An alternative approach to meta-analysis of published linear relative risk estimates

In most contemporary epidemiological analyses that quantify associations under a linear 

relative risk model the reported confidence interval is derived from likelihood-based 

methods rather than calculated as a Wald-type interval (McCullagh and Nelder 1989). 

This is because, in a given study, the distribution of maximum likelihood estimators for 

the parameter β may be far from normal unless the sample size is large. When maximum 

likelihood estimators are not approximately normal (e.g. in small or moderate samples), 

Wald-type intervals may not have nominal coverage (Cox and Hinkley 1974, Meeker and 

Escobar 1995); for this reason, it has become common practice for published results for 

fittings of linear relative risk models to report likelihood-based confidence intervals rather 

than Wald-type intervals (Prentice and Mason 1986, Moolgavkar and Venzon 1987). By 

extension, meta-analytic summaries that proceed under the assumption that typical Wald-

type statistical assumptions hold may not yield an appropriately inverse-variance weighted 

average estimate of association or confidence interval.

We describe an alternative approach to meta-analytic summarization of epidemiological 

study results that have been obtained from fitting of linear relative risk regression models. 

The data structure for the proposed approach is a table of point estimates, associated 

confidence intervals, and maximum observed doses. Letting i = 1…k index study, β i denote 

the point estimate of interest, and Li and Ui denote the associated lower and upper confidence 

bounds for the point estimate reported for study i. Further, let xi denote the maximum value 

of the dose reported in published study i, noting that the value of xi is often known and 

reported in an epidemiological study (or may be obtained from the authors).

For each study, we derive a transformed metric of the estimate of association,

Ai = ln(cβ i + 1)…… . Equation 1

and associated standard error, denoted se(Ai), as a function of reported values Li and Ui,

se(Ai) = ln cUi + 1
cLi + 1 ∕ (2 × 1.96)……… . Equation 2

where c = min[x1:1 ≤ i ≤ k], to ensure that cUi + 1
cLi + 1 > 0 1 ≤ i ≤ k and therefore we can 

calculate se(Ai) for all studies in the meta-analysis. The proposed approach derives a 

variance estimate for this transformed quantity that is based on the reported likelihood-based 

confidence interval for the estimate of association on its original scale; however, estimates of 

the transformed quantity Ai will tend to more closely approximate a normal distribution than 

β i.

The justification for the proposed approach follows from considering that parameter 

transformations can improve asymptotic distributional approximations, as discussed in the 

context of the linear relative risk model by Barlow (Barlow 1985) and by Prentice and 

Mason (Prentice and Mason 1986). Criteria for selecting such transformations have been 
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discussed previously (Sprott 1974) and include removal of range restriction on β i and 

reduction of the asymmetry of the log-likelihood about β i.

The transformation Ai = ln(cβ i + 1) can remove the range restriction on the excess relative 

risk parameters β i. Consider study i in which the dose variable, Di, has compact support 

Ci, for which xi = sup[Ci]. Consequently, the possible range of the estimate of dose-response 

association, β i, under a model RRi = 1 + βiDi, is 1 ∕ ‐xi, infinity). Preston and Mason proposed 

the simple transformation α = ln(β + β0), where β0 = 1
xi

 to remove the range restriction; when 

c = xi, that simple transformation is equivalent to our proposed expression ln(cβ + 1).

The transformation Ai = ln(cβ i + 1) also may reduce log-likelihood skewness, and therefore 

improve symmetry of confidence bounds on the transformed metric. The standard 

approach assumes that typical Wald-type statistical assumptions hold. Prentice and Mason 

illustrated that the simple transformation A = ln(β + β0), yields nearly complete symmetry 

about the transformed metric (Prentice and Mason 1986); and, when c = xi, that simple 

transformation is equivalent to our proposed expression A = ln(cβ + 1). Using Sprott’s index 

as a measure of the normality of the likelihood function, Barlow demonstrated that the 

transformation β i = exp(Ai) − 1, improves the normality of estimates (Barlow 1985). Our 

proposed transformation, cβ i = exp(Ai) − 1, is equivalent to the transformation proposed by 

Barlow (1985) when c = 1. It follows that the proposed transformation will tend to improve 

the symmetry of the likelihood-based confidence bounds on the transformed scale, and upon 

applying this transformation to the reported bounds, L and U, we can better approximate the 

variance by employing assumptions of Wald-type intervals to the likelihood-based bounds 

on this transformed scale than when applied to these bounds on their original scale.

A fixed effect inverse-variance weighted summary of this estimated quantity is calculated as 

follows, Atot
Fixed =

/se(Ai)
2∑i = 1

k Ai

/se(Ai)
2∑i = 1

k 1 .

The standard error of Atot
Fixed

 is given by se Atot
Fixed = 1

∕se(Ai)
2∑i = 1

k 1 0.5 .

We then re-transform to the original scale and obtain the summary fixed effect meta-analytic 

estimate of the association β tot
Fixed

, and associated confidence interval. This summary estimate 

is calculated as:

β tot
Fixed =

exp Atot
Fixed − 1
c ,

and it is this form of the inverse-variance weighted average estimate of association that is 

reported as the meta-analytic summary estimate of association.
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A Wald-type confidence interval for the summary estimate of association is derived based on 

the estimate of se(Atot
Fixed),

95 % CI(β tot
Fixed) =

exp Atot
Fixed ∓ 1.96se Atot

Fixed − 1
c .

A similar approach can be used to calculate a random effects summary meta-analytic 

estimate and associated confidence interval. Let Atot
Random

 denote the random effects inverse-

variance weighted summary, calculated as follows,

Atot
Random =

∕[se(Ai)
2 + Δ2]

∑i = 1
k Ai

∕[se(Ai)
2 + Δ2]

∑i = 1
k 1 , where

Δ2 = max 0, Q − (I − 1)

/ se(Ai)
2

∑i = 1
k 1 / se(Ai)

4∑i = 1
k 1

/ se(Ai)
2∑i = 1

k 1

and

and

Q = ∑1
I Ai − Atot

Fixed ∕ se Ai

2
.

The associated standard error for this meta-analytic summary of the transformed estimates 

is,

se Atot
Random = 1

∕[se(Ai)
2 + Δ2]

∑i = 1
k 1 0.5 .

We then re-transform to the original scale, and obtain the summary random effects meta-

analytic estimate of association and associated confidence interval, calculated as:

β tot
Random =

exp Atot
Random − 1

c ,

with a Wald-type confidence interval for this random effects summary estimate of 

association is derived,
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95 % CI(β tot
Random) =

exp Atot
Random ∓ 1.96se Atot

Random − 1
c .

Simple computer code written for the SAS and R statistical packages is provided that 

calculates fixed and random effects meta-analytic summary estimates as well as associated 

confidence intervals (Appendix).

Meta-analysis when a lower confidence bound was not determined in a published report

Sometimes a likelihood-based lower confidence bound, Li, is not determined in a particular 

analysis because, at the lower constraint on the parameter range (i.e., 1 ∕ ‐xi), the likelihood-

based statistic that defines the lower confidence bound has not reached the specified critical 

value. In such instances, a lower bound is typically not reported; rather, authors may indicate 

that the bound is simply < ‐1 ∕ xi.

To-date practice for how to address this has not been well described in the literature. It 

appears that what is done in standard meta-analyses of linear relative risk estimates is 

to impute a lower bound by assuming that the confidence bounds are symmetrical on 

the original scale (Little, Azizova et al. 2012), such that the imputed lower bound is 

Li
′ = β i − Ui − β i . The standard approach then proceeds using Li

′ in place of the missing 

Li.

When using the proposed alternative method, a lower bound may be imputed by assuming 

symmetry on the transformed scale. If the transformation improves normality as compared 

to the original scale this should be advantageous. For study i with no reported lower bound 

Li, impute the value

Li
′ =

exp Ai − (ln(cUi + 1) − Ai) − 1
c . The data set can proceed with analysis described above 

using the imputed lower bound.

Sensitivity to observed exposure ranges

The proposed transformation involves selection of a constant, c, to ensure that we can 

calculate se(Ai) for all studies in the meta-analysis. Our proposed approach defines 

c = min[xi:1 ≤ i ≤ k]. The sensitivity of results to choice of c can be assessed by recalculating 

the meta-analytic summary measure under an alternative value, c′ under the constraint 

0 < c′ ≤ min[xi:1 ≤ i ≤ k], to ensure calculation of se(Ai). This permits investigation of 

sensitivity of results, for example, to outliers or extreme values of the exposure variable 

in study samples. We suggest such sensitivity analyses proceed by calculating results under a 

value such as, c′ = 0.9c.

Simulations

We compare the proposed approach to meta-analytic summaries to the standard fixed 

effect and random effects approaches in simulated data examples. We simulated 1000 
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meta-analyses under scenarios in which the number of individuals in each study was small 

(1000-1500), moderate (2000-2500), large (4000-4500), or variable size (1000-4500); and, 

we considered examples in which the number of studies in a simulated meta-analysis 

was set to 5, 10, or 15 studies. In each simulation, the number of people in a study 

was drawn from a uniform distribution over the specified range of study size; for each 

cohort member, we generated an independent standard normal covariate Z. We generated 

an exposure, E, by sampling from a uniform distribution (0,5). We generated a binary 

outcome, Y , with dependence of Y  on Z and E encoded by specifying that Y  took a value 

of 1 with odds = exp(log(α) + 0.1Z) × (1 + ηE), where the parameter describing the baseline 

odds of the outcome, α, was set to 0.15, 0.2, or 0.25, and the parameter describing the 

excess odds ratio per unit E, η was set to 1.0, 0.75, or 0.50. The excess odds ratio model 

was used for data generation to avoid numerical issues with generating data from a linear 

relative risk model. We estimated the coefficients associated with E for each study using 

maximum likelihood and obtained profile likelihood confidence bounds. We calculate fixed 

effect and random effects meta-analyses using the standard approach; and, we calculate 

fixed effect and random effects meta-analyses using the proposed approach described above. 

To summarize the results we calculate the average meta-analyzed estimate as well as the 

percentage of associated confidence intervals that cover the specified true effect.

Empirical examples

We illustrate the calculation of a meta-analytic summary using both the standard approach 

and the proposed alternative approach in an empirical data example based on data reported 

in a prior systematic review and meta-analysis of ischemic heart disease following exposure 

to low-level ionizing radiation (Little, Azizova et al. 2012).

RESULTS

Simulations: Fixed effect meta-analyses

Table 1 reports the results of simulations in which we estimated a meta-analytic summary 

estimate of the excess odds ratio per unit exposure using the standard fixed effect meta-

analytic approach and our proposed approach; in table 1 the baseline odds of the outcome 

was set to 0.2 and the excess relative odds of the outcome was set to 1.0. In all simulation 

scenarios, the standard fixed effect meta-analytic approach yielded summary effect measures 

that were null biased and had less than nominal confidence interval coverage. In simulations 

of meta-analyses of large cohorts (i.e., 4000-4500 people per study), the standard fixed 

effect meta-analysis yield a slightly biased meta-analytic summary results with 95% 

confidence interval coverage that was closest to nominal. In simulation scenarios involving 

meta-analyses of smaller cohorts, the standard fixed effect meta-analysis exhibited greater 

null bias and the summary effect measure had less than nominal confidence interval 

coverage. As the number of studies per meta-analysis increased from 5 to 15 studies per 

meta-analysis, and other parameters remained unchanged, the bias in the standard fixed 

effect meta-analysis remained unchanged; however, the confidence interval coverage for the 

standard meta-analytic summary worsened and was substantially less than the nominal level.
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In all simulation scenarios, the proposed approach yielded fixed effect meta-analytic 

summary results that were approximately unbiased and the confidence interval coverage 

for the proposed fixed effect meta-analytic summary measure was close to the nominal 

95% value in all simulation scenarios. Even in simulation scenarios involving meta-analyses 

of small cohorts (N=1000-1500), the proposed meta-analytic summary was approximately 

unbiased and associated confidence interval coverage was close to the nominal 95% value. 

Figure 1 illustrates that the transformed metric of the estimate of association, Ai, appears 

more normally distributed than the excess odd ratio estimates.

Simulations: Random effects meta-analyses

Table 1 also reports the results of simulations in which we estimated a meta-analytic 

summary estimate of the excess odds ratio per unit exposure using the standard random 

effects meta-analytic approach and our proposed approach. Similar to the conclusions drawn 

for the fixed effect meta-analyses, the standard random effects meta-analytic approach 

yielded summary effect measures that were null biased and tended to have less than 

nominal confidence interval coverage. In simulations of meta-analyses of large cohorts (i.e., 

4000-4500 people per study), the standard random effects meta-analysis yield a slightly 

biased meta-analytic summary results with 95% confidence interval coverage that was close 

to nominal. In simulation scenarios involving meta-analyses of smaller cohorts, the standard 

random effects meta-analysis exhibited greater null bias and the summary effect measure 

had less than nominal confidence interval coverage. As the number of studies per meta-

analysis increased from 5 to 15 studies per meta-analysis, and other parameters remained 

unchanged, the confidence interval coverage for the standard random effects meta-analytic 

summary worsened and was substantially less than the nominal level.

The proposed approach yielded random effects meta-analytic summary results that were 

approximately unbiased and the confidence interval coverage for the proposed meta-analytic 

summary effect measure was slightly conservative yet very close to the nominal 95%.

Simulation results: Sensitivity analyses

Simulations also were conducted under scenarios in which baseline odds of the outcome,α, 

was 0.15 and 0.25; again, under those simulation scenarios, the proposed approach yielded 

fixed effect and random effects meta-analytic summary results that were approximately 

unbiased and the confidence interval coverage for the proposed fixed effect and random 

effects meta-analytic summary measures were close to the nominal 95% value (Appendix 

Table A1). In addition, simulations were conducted in which we varied the excess 

relative odds of the outcome per unit exposure was 0.75 and 0.5; under those simulation 

scenarios we also observed that the proposed approach yielded fixed effect and random 

effects meta-analytic summary results that were approximately unbiased and the confidence 

interval coverage for the proposed fixed effect and random effects meta-analytic summary 

measures were close to the nominal 95% value (Appendix Table A2). Finally, simulations 

were conducted in which the number of subjects per study varied from 1000-2500 and 

from 1000-4500; under those simulation scenarios we also observed that the proposed 

approach yielded fixed effect and random effects meta-analytic summary results that were 

approximately unbiased and the confidence interval coverage for the proposed fixed effect 
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and random effects meta-analytic summary measures were close to the nominal 95% value 

(Appendix Table A3).

Sensitivity of the simulation results to the value c = min[max(x)] was assessed by re-

calculating values under the condition c′ = 0.9c and c′ = 0.8c; these sensitivity analyses 

yielded essentially equivalent quantitative values (Appendix Table A4).

Empirical example.

While high doses of ionizing radiation have a fairly well-established association with 

circulatory disease, evidence for an association at lower doses (e.g., <0.5 Sv) remains 

more controversial. Little et al. reported on a meta-analysis of epidemiological findings 

of association between radiation exposure and circulatory disease involving moderate- or 

low-dose whole-body exposure to ionizing radiation (Little, Azizova et al. 2012). Table 

2 shows the point estimates and associated lower and upper confidence bounds for each 

study considered in the meta-analysis of radiation and ischemic heart disease, where the 

estimates represent the estimated excess relative rate per Sv whole-body dose (noting that 

the studies expressed radiation dose in Sv). The standard approach yields a fixed effect 

estimate β tot
Fixed = 0.10 (95%CI: 0.05, 0.15). The proposed alternative approach yields a fixed 

effect estimate β tot
Fixed = 0.10 (95%CI: 0.05, 0.15), similar to the results obtained using the 

standard approach to calculation of a fixed effect estimate. These results correspond to the 

fixed effect meta-analytical result reported by Little et al. (0.10; 95%CI: 0.05, 0.15) (Little, 

Azizova et al. 2012). The similarity of the results is expected given the large sample sizes of 

the studies included in this meta-analysis, demonstrating that the proposed approach is not 

influential in the case when conditions suggest the normality assumption is tenable (Table 

2).

We also report results derived under a random-effects meta-analysis. A standard approach 

to estimation of a random effects estimate β tot
Random = 0.10 (95%CI: 0.04, 0.15). The proposed 

alternative approach yields a random-effects estimate β tot
Random = 0.10 (95%CI: 0.04, 0.16). 

Again, these results correspond closely to the random effects meta-analytical result reported 

by Little et al (0.10; 95%CI: 0.04, 0.15).

Sensitivity of these results to the value c = min[max(x)] was assessed by re-calculating values 

under the condition c′ = 0.9c and c′ = 0.8c. These sensitivity analyses yielded essentially 

equivalent quantitative values under these conditions, the proposed fixed effect meta-analytic 

summary was β tot
Fixed = 0.10 (95%CI: 0.05, 0.15) and the proposed random effects meta-

analytic summary was β tot
Random = 0.10 (95%CI: 0.04, 0.16).

DISCUSSION

Non-linear regression models fitted via maximum likelihood methods are known to suffer 

problems when data are sparse (Greenland, Mansournia et al. 2016). For example, the 

commonly-used logistic and Cox regression models are susceptible to bias in small samples 

(Greenland, Schwartzbaum et al. 2000). These biases translate into bias of meta-analyses 

based on them (Greenland, Mansournia et al. 2016). Maximum likelihood estimates of the 
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linear odds ratio or linear risk ratio per unit exposure are much more prone to bias in small 

samples than standard log-linear regression models (Prentice and Mason 1986); and, unless 

the study size is very large, the resultant parameter estimates may have a profile likelihood-

based confidence intervals that differ substantially from Wald-type intervals (Moolgavkar 

and Venzon 1987).

In the current paper we focus on the implications for meta-analytic summarization of 

epidemiological study results derived from maximum likelihood fittings of linear relative 

risk models. Using simulations, we illustrate the potential for bias and lack of appropriate 

confidence interval coverage in meta-analyses of linear odds ratio models that employ 

a standard approach to fixed effect meta-analysis. We observed that bias increased as 

the size of the studies included in meta-analyses diminished. We further noted that as 

the number of studies included in meta-analyses increased from 5 to 15, while other 

parameters remained unchanged, the bias in the meta-analytic summary remained similar 

but the confidence interval coverage for the meta-analytic summary decreased. This is likely 

because confidence intervals for meta-analytic summary estimates become tighter as the 

number of studies in a meta-analysis increases while the bias remains; a similar phenomenon 

has been reported in simulations of sparse data bias in ordinary (i.e., loglinear) logistic 

regression (Lin 2018).

Barlow (Barlow 1985), and Prentice and Mason (Prentice and Mason 1986), proposed 

reparameterizations of linear relative risk models that substantially reduced bias and 

improved approximations of confidence intervals to those predicted by the asymptotic 

normal distribution. This prior body of work suggested that a transformation applied 

for conducting a meta-analysis of published study results should lead to a distribution 

of estimators for A that tend to more closely approximate a normal density than the 

maximum likelihood estimators for the excess relative risk per unit D (Prentice and Mason 

1986). We apply a similar transformation to existing estimates of excess relative risk to 

better approximate the normality of the meta-analyzed parameter, which is a necessary 

assumption underlying typical inverse-variance weighted meta-analyses. The proposed 

approach is based on the known improved symmetry of the confidence interval for the 

transformed metric relative to the untransformed (Prentice and Mason 1986). When Ai

and sd(Ai) better conform to normal distributions than β i and sd(β i) the proposed analytical 

approach to deriving a meta-analytic summary based on inverse-variance weighting of the 

transformed quantities should improve estimation as the underlying assumptions will be 

better approximated (Barlow 1985, Prentice and Mason 1986). In principle, this should 

provide improved approximations of parameters with asymptotic normal distributions for 

meta-analysis when working with reported results from linear relative risk models than 

working directly with the published values, which may will not conform well to underlying 

distributional assumptions in small and moderately-sized studies (Barlow 1985).

In contrast to standard meta-analytic approaches, the proposed approach requires 

information on the maximum exposure range in each study included in the meta-analysis. 

Often this value is reported; if not, often it can be ascertained from the study authors 
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or inferred (e.g., from the range of observed data in an exposure-response plot, or from 

substantive knowledge about exposure conditions).

We have illustrated the proposed approach with an empirical example. In the example, the 

study sizes are very large and the published likelihood-based confidence intervals are highly 

symmetrical. The empirical example illustrates the important point that when the assumption 

of normality approximately holds, our proposed approach yields essentially equivalent 

results to those of the standard approach. Our simulations using larger sample sizes support 

the finding from our empirical example that this transformation does not distort estimates 

when it is used in settings where normality may a tenable assumption. The situations under 

which the proposed approach is likely to perform much better than the standard approach 

will tend to be meta-analyses that encompass many small studies, as opposed to a few 

large studies. The simulations illustrate that when data are sparse the approaches may yield 

somewhat different meta-analytic summaries of a set of estimates of excess relative risk per 

unit exposure, with substantially different means and associated confidence intervals (Table 

1). Our simulations demonstrate that the proposed transformation improved performance of 

meta-analyses in terms of bias and confidence interval coverage.

It is common in epidemiological analyses that use the linear relative risk model to encounter 

settings in which the lower likelihood-based confidence bound was not determined. This 

poses a challenge for meta-analysis in which published results of point estimates and 

confidence bounds are the basis for deriving estimates of variance that underpin inverse-

variance weighted meta-analytic summaries. It appears that a standard practice in meta-

analysis of excess relative risk per unit dose estimates has been to impute a lower bound 

by assuming that the bounds are symmetrical on the original scale, so that given just 

the reported upper bound and point estimate a lower bound is imputed. In the proposed 

approach, we suggest that a lower bound may be imputed by assuming symmetry on the 

transformed scale. If the transformation does improve normality as compared to the original 

scale, as illustrated in Figure 1, this should be advantageous and improve practice for 

meta-analysis of radiation epidemiology results in settings where a profile likelihood-based 

lower confidence interval is not defined.

The simple approach we describe, that follows from the transformation proposed in 

Barlow(Barlow 1985) and Prentice and Mason (Prentice and Mason 1986), may offer 

a useful complement to standard methods that can be employed when undertaking meta-

analysis of reported results based on linear relative risk models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations:

RR relative rate

CI confidence interval
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ERR excess relative risk

Sv sievert
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Figure 1. 
Probability density functions of excess relative odds and the proposed transformed metric, A, 

across simulated studies with 500-750 subjects per study and 15 studies per meta-analysis.
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Table 2.

Meta-analysis of epidemiological findings regarding associations between ischemic heart disease and exposure 

to low-level radiation. Reported coefficients (βi) refer to estimates of excess relative risk per Sv and are 

indicated along with associated lower (Li) and upper (Ui) 95% confidence intervals, and maximum dose (xi). 

Illustration of data and fixed effect, and random effects, estimates derived in a standard approach to calculation 

and in the proposed alternative approach.

i βi Li Ui xi Persons

1 0.12 0.051 0.186 5.92 12,210

2 0.41 0.05 0.78 0.50 61,017

3 0.15 −0.14 0.58 0.12 16,236

4 4.10 −2.9 13.7 0.60 22,393

5 0.26 −0.05 0.61 0.40 174,541

6 0.02 −0.1 0.15 4.00 86,611

7 −0.01 −0.59 0.69 0.50 275,312

8 0.05 −0.05 0.16 4.00 10,399

Standard approach Proposed approach

Meta-analytic summary Fixed
effect

Random
effects

Fixed
effect

Random
effects

Estimate 
(95% CI)

0.10
(0.05, 0.15)

0.10
(0.04, 0.15)

0.10
(0.05, 0.15)

0.10
(0.04, 0.16)

Study citations, in numerical order: Azizova et al. 2010 (Azizova, Muirhead et al. 2010), Ivanov et al. 2006 (Ivanov, Maksioutov et al. 2006), Lane 
et al. 2010 (Lane, Frost et al. 2010), Laurent et al. 2010 (Laurent, Metz-Flamant et al. 2010), Muirhead et al. 2009 (Muirhead, O'Hagan et al. 2009), 
Shimizu et al. 2010 (Shimizu, Kodama et al. 2010), Vrijheid et al. 2007 (Vrijheid, Cardis et al. 2007), Yamada et al. 2004 (Yamada, Wong et al. 
2004), as reported in Little et al. 2012 (Little, Azizova et al. 2012).
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