UC San Diego

UC San Diego Electronic Theses and Dissertations

Title

The cognitive ecology of Dynapad, a multiscale workspace for managing personal digital
collections

Permalink
https://escholarship.org/uc/item/68v5z210
Author

Bauer, Daniel S.

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/68v5z21b
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

The Cognitive Ecology of Dynapad,
A Multiscale Workspace for Managing
Personal Digital Collections

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy
in
Cognitive Science
by

Daniel S. Bauer

Committee in charge:

Professor Jim Hollan, Chair
Professor David Kirsh, Co-Chair
Professor Richard Belew
Professor William Griswold
Professor Edwin Hutchins

2006

Copyright
Daniel S. Bauer, 2006
All rights reserved.

The dissertation of Daniel S. Bauer is approved,
and it is acceptable in quality and form for publi-

icrofilm:

cation on m ;

Co-Chair

University of California, San Diego

2006

iii

Chair

TABLE OF CONTENTS

Signature Page iii
Table of Contents e iv
List of Figures vii
List of Tables e xii
Acknowledgements xiii
Vita and Publications e xvi
Abstract of the Dissertation L oo xvii
Dynapad and the Ecology of Design 1
1.1 The Problem of Managing Stuff 1
1.1.1 A Very Brief Introduction to Dynapad 2
1.2 A Framework for Design 4
1.2.1 Generating and Evaluating Designs 5
1.2.2 Waiving Optimality, 9
1.2.3 The User’s Activity 11
1.2.4 Negotiating Goals in a Reflective Cycle 16
1.2.5 The Context of Activity 18
1.2.6 Revisiting the Design Cycle 21
1.3 The Road Ahead 23
The Practice and Cost Structure of Managing Paper Collections 25
2.1 Piling as a Model Practice 26
2.2 The Cost Structure of Piling and Filing 28
221 PilesasBundles 29
222 PilesasStacks e 41
2.2.3 The System as a Cost Structure 49
2.3 Redesigning the Cost Structure 50
2.3.1 Related Work on Digital Piles 51
2.3.2 Unstacking the Pile 54
2.3.3 Looking Ahead: Dynapad’s Manipulations 56
The Design and Features of Dynapad 59
3.0.1 Overview of Architecture 60
3.1 Collection Elements, 61
3.1.1 Document Portraits 61
3.2 Interacting with Objects: Selection and Movement 64

v

3.2.1 The Poverty of Input 65

3.2.2 Operational Syntax and Selection 66
3.2.3 Selection boxes and lassos: a micro-ecology 70
3.2.4 Containers and Dragging 75
3.3 Navigation: Zooming and Panning 82
3.3.1 Implementations of Zooming 84
3.3.2 Panning 94
3.3.3 Additional Operations 100
3.3.4 The DiamondTouch Table Interface 100
3.4 The Cue Structure of Collections 103
3.4.1 Importing a Collection 103
3.4.2 Generalizing Linked Brushing 107
3.4.3 Labels 113
3.5 Interlude: Dynapad as a Virtual Tabletop 115
3.5.1 PhotoPad Examples L. 118
3.5.2 Summary: The Variegated Use of Space 122
3.6 Region Tools 123
3.6.1 Clumps e 125
3.6.2 Arrangement Tools: Tray, Stamp, and Lens 128
3.6.3 Generalizing Tools’” Effects 130
3.6.4 Implementation Details 133
3.6.5 Summary of Tools 136
3.7 Generalized Interactive History 137
3.71 An Abstract Model 139
3.7.2 Dynapad’s Implementation 146
3.7.3 Visualization & Interaction 149
3.7.4 The Organizational Impact of Interactive History 153
The Structure of Activity in Dynapad 154
4.1 Methodology e e 155
4.1.1 Participants 155
4.1.2 Participants’ Goals and Expectations. 156
4.1.3 Observing and Recording Sessions 157
4.1.4 Preparing Transcripts 159
4.1.5 External Validity and Ethnographic Practice 161
4.1.6 The Analysis Ahead 162
4.2 The Development of Organization 162
4.2.1 Subject A 163
422 Subject B 201

5 Conclusions, 229

5.1 Dynapad as a Software Artifact, 229
5.1.1 Value of Functionality for End Users 230

5.1.2 Value of Implementation for Designers 233

5.2 Value of the Analysis for Designers 235
Bibliography e 238

vi

Figure 1.1:
Figure 1.2:
Figure 1.3:
Figure 1.4:
Figure 1.5:
Figure 1.6:
Figure 1.7:
Figure 1.8:
Figure 1.9:

Figure 1.10:
Figure 1.11:
Figure 1.12:
Figure 1.13:
Figure 1.14:
Figure 1.15:
Figure 1.16:

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:
Figure 2.20:
Figure 2.21:
Figure 2.22:
Figure 2.23:
Figure 2.24:

LIST OF FIGURES

Dynapad workspace example 2
Artifact vs. Design 4
Example filament designs and evaluation schemes 8
Utility depends on both design and evaluation 8
Simon’s optimization model 9
Simon’s satisficing model L. 10
Designs afford activities 12
A design’s cost structure shapes activity 15
Goals direct activity 16
The reflective loop 17
Cost structure mediates the reflective loop 18
Activity occurs in the context of a practice 19
Negotiated usage e 20
A multi-level ecology 21
Redesign feedback 21
Division of chapters L. 24
A sample influence graph 31
Implicit organization and accessibility 32
Visibility and reminding 0oL oL 33
Premature vs. deferred filing 33
Habituation to clutter L. 34
Reminding and deferral 34
The mechanical cost of filing and deferral 34
Reminding and archive pruning 36
Instability 36
Chaos from disruption 37
Organizational clarity, 38
Chaos from overload 38
Organizational flexibility 39
Piles’ net influence on retrieval 40
Summary of influences oL 41
Preview of stacks’ additional influences. 42
Occlusion e 42
Self-sorting of stacks 43
Competition for available space 44
Cohesion 44
Expressiveness 46
Reducing visibility helps guide attention. 47
Three pile structures varying in attentional demands 48
Serialization 48

vii

Figure 2.25:
Figure 2.26:
Figure 2.27:
Figure 2.28:
Figure 2.29:
Figure 2.30:
Figure 2.31:
Figure 2.32:
Figure 2.33:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:
Figure 3.27:
Figure 3.28:
Figure 3.29:
Figure 3.30:
Figure 3.31:
Figure 3.32:
Figure 3.33:

Aggregation 49
Summary of influences with stacks 50
Apple’spiles 52
Two ways of browsing Apple’spiles. 53
The effects of stacking vs. unstacking 54
Spreading can supplement seriality 56
Viewing cones can supplement exposure 56
Dynapad supplements seriality, cohesion, and space 57
Dynapad breaks conflict between seriality, expressiveness 58
Dynapad’s three levels of functionality 60
Sample PDF document portraits 62
Editing a PDF portrait, 63
Attention required for selection box vs. lasso 71
The salient zone of a selection diagonal 73
The center rule for diagonal selection 73
Selecting overlapping objects 74
Integrated box and lasso selector 74
Dragging a container is ambiguous. 75
Setting a container on other items 76
Selecting from layered items 77
Overloading the meaning of a drag input 78
Dragging or tappingon asolid 78
Dragging or tappingonspace 79
Shift-dragging or tapping asolid 79
Shift-dragging space oo 79
Shift-tapping on space 79
Containers’ hybrid behavior 80
The three “phases” of a container 82
View before zoomingo 84
Three depictions of zooming 84
Guided zooming 86
Interpolated zooming L. 87
Trajectory of view center 88
Strongly “bent” zooming trajectory 90
Gated interpolated zooming, 91
Cursor diverges from zoom focus 91
Zooming in two stageso 92
Implicit cohesion for zooming 92
Implicit cohesion for dragging 94
View-dragging vs. ground-dragging 95
“Tilt” metaphor for zoom/pan overloading 97
Integrated zooming and “gearshift” panning 97

viii

Figure 3.34:
Figure 3.35:
Figure 3.36:
Figure 3.37:
Figure 3.38:
Figure 3.39:
Figure 3.40:
Figure 3.41:
Figure 3.42:
Figure 3.43:
Figure 3.44:
Figure 3.45:
Figure 3.46:
Figure 3.47:
Figure 3.48:
Figure 3.49:
Figure 3.50:
Figure 3.51:
Figure 3.52:
Figure 3.53:
Figure 3.54:
Figure 3.55:
Figure 3.56:
Figure 3.57:
Figure 3.58:
Figure 3.59:
Figure 3.60:
Figure 3.61:
Figure 3.62:
Figure 3.63:
Figure 3.64:
Figure 3.65:
Figure 3.66:

Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:

Some vertical panning techniques 98
Synthetic discrete (“ratchet”) panning 99
Carrying while navigating 100
Ambiguity of multiple touches on DiamondTouch table. 101
Emulating a second button on DiamondTouch table 102
Importing and flattening a collection 105
Importing and preserving directory structures 106
Brushing linked items o L. 107
Examples of brushing relations 111
Moving a diffuse selection can be disruptive 112
Slow-zooming labels o 0oL 114
PhotoPad example 1: multiple levels of organization 119
PhotoPad example 2: extracting and enriching 121
PhotoPad example 3: overlapping spatial roles 121
Dynapad’s self-adjusting “clumps” 125
Ambiguous move of implicit piles 127
Dynapad’s arrangement tools: tray, stamp, and lens 128
Enrichment by grid arrangement 129
Timeline-tool effects 130
Proposed “gathering” clump 131
Callback events for region-tools 133
Partial design space of region-tools 136
A backtracking sequence of actions 140
Chronology vs. heredity 140
The core data model of interactive history 141
Change and wvisit actions 142

Redo follows a path to the active future. 143

Restoring vs. importing Lo oL 145
Logsegments 147
Appending to a terminal state L. 148
Branching at an intermediate state 149
Dynapad’s “history tree” interface 150
Interactions with history tree 151
Synchronizing video recordings with log files. 160
Sample log transcript excerpt 161
A’s first extraction (A1:02:28) 164
A’s first extracted item in context (A1:00:12) 165
Extracting from upper left (A1:18:22) 168
Extracting to active work area (A1:26:44) 170
Workspace at session Alend 176
Consolidating a local batch of related items (42:09:47) 177
More local consolidation (A2:24:23) 178

X

Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:
Figure 4.21:
Figure 4.22:
Figure 4.23:
Figure 4.24:
Figure 4.25:
Figure 4.26:
Figure 4.27:
Figure 4.28:
Figure 4.29:
Figure 4.30:
Figure 4.31:
Figure 4.32:
Figure 4.33:
Figure 4.34:
Figure 4.35:
Figure 4.36:
Figure 4.37:
Figure 4.38:
Figure 4.39:
Figure 4.40:
Figure 4.41:
Figure 4.42:
Figure 4.43:
Figure 4.44:
Figure 4.45:
Figure 4.46:
Figure 4.47:
Figure 4.48:
Figure 4.49:
Figure 4.50:
Figure 4.51:
Figure 4.52:

Still more local consolidation (A2:37:25) 179
Pile spanning (A2:37:25) 181
Moving batches into piles (A2:45:41) 182

Adding a group to a pile can be done badly. 183

Workspace at session A2 end (A2:68:07) 186
Improvised labeling (A3:27:18) 187
Workspace at session A3 end (A43:56:56) 189
Starting clean-up phase (44:30:09) 190
Brushing HCT extractions (A4:30:21) 191
Brushing, extracting, and serializing from HCI 192
Two clumps arranged for aggregate distinctiveness 193
The “eye” of the pyramid 194
Workspace at session A4 end (A4:72:43) 196
A’s labels (A5:37:22) 198
A’s final workspace (A5:110:25) 199
B tries a timeline lens (B1:00:53) 202
Lens replaced with timeline tray (B1:03:46) 203
Drift caused by close-up moving instead of panning (B1:17:54) . . 204
New extractions follow drift (B1:22:06) 204
Incautious dismissal of reservoir (B1:25:01) 205
Pragmatic move, drawing reservoir closer (B1:24:50) 206
Workspace at session Bl end (B1:37:10)) 208
Main workspace area (B2:16:53) 211
Reservoir removed to foreground (B2:34:40) 212
The first sub-batch is returned to center for processing (B2:34:52) 213
Distribution of sub-batch and wrapping of courses pile (B2:43:15) 214
Tidying the courses pile (B2:45:18) 214
Re-centering a second batch (B2:48:02) 215
Workspace at session B2 end (B2:49:40) 216
Starting session B3 (B3:02:48) 217
Extracting ERP portraits to a small timeline tray (B3:04:23) . . . 218
Small tray placed aside (B3:06:33) 218
New pile moved and stretched to receive new items (B3:07:10) . . 219
Stretched disfluency pile and ERP tray (B3:17:58) 219
ERP and disfluency piles merged into research pile (B3:18:50) . . . 220
Return to full workspace view (B3:24:40) 220
B’s original collection fully classified (B3:31:39). 221
New batch after timeline arrangement by stamp (B3:35:47) 222
Workspace at session B3 end (B3:52:35) 222
Pile anchored at corners using duplicates (B4:02:50) 223
Same pile, still anchored, partially emptied (B4:15:49) 224
Author pile moved back to “neat” pile (B4:23:06) 225
Just after deleting “neat” pile (B4:26:24) 226

Figure 4.53: Close-up of “neat” piles contrasted with “messy” pile

Figure 4.54: B’s final state (B4:37:04)

xi

LIST OF TABLES

Table 3.1: Explicit and implicit cohesion for zooming and dragging

Table 3.2: Summary of region-tool syntax variables

Table 4.1: Chronology of subjects’ recorded Dynapad sessions

xii

ACKNOWLEDGEMENTS

Although no list of my appreciation for colleagues, friends, and family will ever
be complete, I find it humbling and gratifying to place on the same page so many people
important to this research and to me.

To begin, I gratefully acknowledge my funding sources: my host institution,
the Cognitive Science Department of UCSD, for many forms of material support, and
the National Science Foundation for grants #0113892 to Jim Hollan and #9873156 to
Jim Hollan, Ed Hutchins, and David Kirsh.

I have enormous respect and gratitude for my dissertation committee. The
intellectual godfather of this work is my advisor and committee chair, Jim Hollan. I
am grateful to him for providing me more support, more opportunities, and more wise
advice than I was ever able to harvest; for serving as a model of profound professional
competence that I hope someday to imitate; for his patience and compassion through my
phases of misdirection; and for believing in me and in this work even when I did not. My
co-chair, David Kirsh, has been a friend and mentor from my first moment of contact
with UCSD. He is to me both a figure of wit and warmth and a model for thinking deeply,
working an idea downward past numerous false landings to hit a bedrock of clarity. I
hope to achieve that even once in these pages. Ed Hutchins has stretched my mind to
reach outside the head, giving me an appreciation for the material context of cognition
and pushing me to new methodologies and ways of thinking. And I am grateful to Rik
Belew and Bill Griswold for their enduring patience and receptivity and for pressing me
on some difficult and important questions.

Dynapad has been a deeply collaborative project. All research is built on the
efforts of others, but some software is particularly so; the process of design and develop-
ment churns and mixes code from each contributor until each line is the work of many.
It is therefore impossible for me to measure and itemize the enormous credit owed to my
collaborators on Dynapad. However, the contributions of three colleagues in particular
are pervasive. First: in countless instances, Ron Stanonik led the way into Dynapad’s
jungle, building the roads that I followed on. He single-handedly built the first Scheme
interface to the original Pad++ core, vigorously implementing while I fretted about how

to begin. Ron has been a programming juggernaut: patiently, methodically, and cheer-

xiii

fully crushing every technical problem in his path. Second: wherever there is elegance
in Dynapad’s hidden entrails, Dr. Ron Hightower deserves much credit. Dr. Ron in-
troduced me to design patterns and honed my engineering aesthetic. His vigilance and
disciplined craftsman’s eye often saved my from my own worst programming instincts,
and my episodes of close collaboration with Dr. Ron have been among the most fertile
of my professional life. And finally, I must again credit Jim Hollan, this time in his
technical roles as producer, director, and master architect of Dynapad. For all of my
exploration on Dynapad’s established themes, Jim’s vision inspired those themes. In
name and in scope and in many small details, Dynapad is Jim’s creation, built upon
years of his work with Ben Bederson and colleagues.

Additional contributions to Dynapad’s pool of code resources were made by
Shaun Haber, Etienne Pelaprat, Ben Shapiro, and Dana Dahlstrom. Especially signifi-
cant was Dana’s work; he implemented critical components of the DiamondTouch table
interface and the first version of generalized brushing. And more generally, I've appre-
ciated Dana as a sounding-board and assistant in the later stages of development. The
DiamondTouch table itself was generously donated by Mitsubishi Electric Research Labs.
Pierre Fastrez and Dev Yamakawa devised and conducted the PhotoPad observations,
paving the way for both the protocol and analysis of my own later observations. Pierre
especially has been an energetic, imaginative, and amiable collaborator.

I am uniquely indebted to my two colleagues and research subjects, A and B,
for their generosity, patience, creativity, and fortitude. They graciously donated their
own bytes and many hours and turned the rickety props into a compelling show of
cognition.

More broadly, I have benefited in countless ways from the intellect and enthusi-
asm of innumerable members of the Cognitive Science department and the DCOG-HCI
lab, including Morana Alac, Amaya Becvar, Monal Chokshi, Deborah Forster, Ankur
Jalota, Christine Johnson, Marta Kutas, Jim Levin, Saeko Nomura, Thomas Rebotier,
Beate Schwichtenberg, and Bob Williams. Special thanks to Ron Stanonik and Mark
Wallen for many years of patient expertise, technical support, and generous disk quotas,
and to Aaron Cicourel, for quietly watching out for me all that time. I am also indebted
to a series of brave graduate coordinators: Gris Arellano-Ramirez, Becky Burrola, and

Beverley Walton, whose collective administrative competence often saved me from my

Xiv

gravitation to disorder.

My experience of graduate school, while often deeply rewarding, has also been
a marathon with an elusive finish, and my well-being and morale are intact only from
the enduring support of dear friends. My network of support over the years extends far
beyond my enumeration here, but I'm compelled to highlight a few names. I am deeply
grateful to: Mike Hayward, a great friend, lab-mate, and hipster extraordinaire, my role
model for surviving graduate school while still living well; Scott Herscher and Carrie
Joyce for cherished evenings of music, mirth, and Henry the porcine aviator; Jacquie
Lowell and the agents of Mission:Improvible for nurturing joyful stoopidness and helping
me laugh despite myself; Esther Pascual, for warming me with relentless optimism and
a cosy hat; Kim Sweeney Wolanyk, a treasured friend, colleague, and commiseratrix
through many seasons, for giving me many carrots and the occasional stick, and for
Sioux, who trained me in the Joy of Dog and convinced my face it needed licking. I owe
a special debt to my great-uncle Billy, who generously and clairvoyantly funded my first
computer, twenty years early.

And finally, as always, I return in the end to my precious family: my parents,
Cynthia, Ward, and now Katherine, my sister Laura and brother-in-law Scott, and the
memory of my brother Doug, who might have done this first. From them I've been
granted the extraordinary privilege of feeling loved no matter what, of being nurtured in
a home of limitless freedom, opportunity, and encouragement to become myself. Thank
you for the many years of loving support, cheer, and patience through my waves of
surliness and dismay and long absences while pursuing this elusive sciencey-computery

thing.

XV

VITA

1993 B.S., Symbolic Systems, Stanford University

2000 M.S., Cognitive Science, University of California, San Diego

2006 Ph.D., Cognitive Science, University of California, San Diego
PUBLICATIONS

Daniel Bauer. Personal information geographies. In CHI 02 extended abstracts on
Human factors in computing systems (CHI’'02 Doctoral Consortium), pages 538-539.
ACM Press, 2002.

Daniel Bauer. A multiscale workspace for managing and exploring personal digital
libraries. In Proceedings of the 16th ACM Symposium on User Interface Software and
Technology (UIST’03 Doctoral Symposium), November 2003.

Daniel Bauer and James D. Hollan. TRYS: A Visualization Tool for Temporal Analy-
sis of Multimodal Interaction. In Proceedings of the 5th International Conference on
Multimodal Interfaces (ICMI’03), pages 285-288. November 2003.

Dan Bauer, Pierre Fastrez, and Jim Hollan. Computationally-enriched ’piles’ for man-
aging digital photo collections. In Proceedings of the 2004 IEEE Symposium on Visual
Languages and Human Centric Computing (VLHCC’04), pages 193-195. IEEE Com-
puter Society, October 2004.

Daniel Bauer, Pierre Fastrez, and Jim Hollan. Spatial tools for managing personal
information collections. In Proceedings of the 38th Hawaii International Conference on
System Sciences (HICSS’05), page 104.2. IEEE Computer Society, 2005.

xXvi

ABSTRACT OF THE DISSERTATION

The Cognitive Ecology of Dynapad,
A Multiscale Workspace for Managing

Personal Digital Collections
by

Daniel S. Bauer

Doctor of Philosophy in Cognitive Science
University of California San Diego, 2006

Professor Jim Hollan, Chair
Professor David Kirsh, Co-Chair

Dynapad is a prototype software application designed to support users in or-
ganizing and exploring personal collections of digital information. It provides a contin-
uously zoomable workspace, essentially an infinite desktop, on which users can arrange
digital photos and document “portraits”, visual summaries of collected PDF documents.

To support users in engaging with their collections, Dynapad offers a unique
combination of affordances. These include: 1) “brushing” media objects to reveal and
highlight others related by various metadata; 2) interactively revisiting any episode in
the history of one’s workspace; and 3) employing portable “region-tools” which are com-
putationally enriched with various forms of localized automation. An important special
case of these region-tools is a digital “pile” which emulates — and augments — the
affordances of paper which make “piling” a ubiquitous complement to “filing” as an
organizational strategy.

The resulting environment is flexible enough that users are left considerable
freedom and responsibility to invent organizational strategies and to structure their own
activity. The tactics they adopt are emergent and exaptive behaviors shaped by small
details of Dynapad’s design, the affordances and cues which together constitute the

environment’s “cost structure” for interaction.

Xvii

My research explores that cognitive ecology through detailed exploratory ob-
servation of two Dynapad users working with collections of their own digital documents.
To analyze those observations, I trace a network of influences from design details to
the behaviors they shape. My representation of that network identifies and dissociates
affordances that participate differently in the cost structure, particularly in their con-
tributions to piling. It is not meant to provide a predictive model of users’ behavior;
instead, it offers a theoretical framework for interpreting and synthesizing my and others’
observations. Such a description is a necessary component of the understanding required
for effective redesign of Dynapad and the design and development of other interactive

Systems.

xviii

Dynapad and the Ecology of
Design

Auguste Rodin’s famous statue The Thinker, inert and introspective, is com-
plicit in a lie; sitting naked is no way to think. The vast majority of “thinking”, of
cognitive activity, happens not in static rumination but in close interaction with the
physical world, engaged with tools in malleable spaces. Our behavior is largely a reac-
tion to our environment; we adopt strategies that the environment makes easy and avoid
those it makes difficult. We rearrange the world to make us smarter. This is the core
principle of design: shaping the world to enhance ourselves.

Software engineering has a unique position among design fields because, for the
first time, we are gods: we have control over the design of the most basic physics of
virtual worlds. This leaves us all the more opportunity and responsibility to design not
simply an artifact or environment but an interactive experience.

This is the story of the design of a virtual environment, Dynapad, and the

experience it creates.

1.1 The Problem of Managing Stuff

Since bytes are cheap, everyone faces a deluge of digital information. It’s bad
enough that public resources (e.g. libraries, the Internet) become overwhelming, but at

least those are somebody else’s problem to manage. For most of us, a bigger challenge

is to manage personal collections of digital information.

One aspect of the problem is retrieval, locating particular items on demand. In
addition to a long lineage of retrieval tools on personal computers, there are now web
services (e.g. gmail, Google Desktop, Picasa) which let individuals “outsource” the effort

of archiving, indexing, and retrieving personal data.

Getting the Big Picture. But the challenge of collection management isn’t just one
of retrieval but of understanding the whole of what we have. The process of organizing
a collection manually offers two benefits: the eventual organization, but also the process
itself. By interacting with a body of materials, we make discoveries, grow familiar,
develop expertise, and learn to see things in new ways.

Dynapad is a virtual environment supporting not only the organization but
the exploration of personal digital collections, to deepen our understanding of our own

materials.

- - - - -
- — % Brastims TESSRS
- e e —

STmew -

- - aSawess -
Sssess sSsesw oo
-Tseseese - aee e

(a) Zoomed out (b) Zoomed in

Figure 1.1: Snapshots of interaction with a photo collection in Dynapad. Here the workspace
is projected onto a tabletop, and the user is gesturing over it.

1.1.1 A Very Brief Introduction to Dynapad

The chapters ahead will discuss both the motivation and features of Dynapad
in great detail. But this chapter is concerned more broadly with the process of design

and will introduce Dynapad only enough to establish its role as a designed artifact in

that process.

For the moment, we can think of Dynapad as a software application, an inte-
grated suite of tools with a user interface. Dynapad creates a virtual spatial environment,
a workspace, much like the “desktop” of many windowing systems. The workspace holds
a collection of digital information such as photos or documents. The user can browse and
rearrange these items, supported by various organizational tools, to explore and manage

the collection.

The User’s Artifact: the Workspace. Over a period of interaction, the user rear-
ranges and annotates the contents of the workspace. For example, a typical strategy is
to organize the collection into various “piles”,! each containing a particular category of
material. The organization in Figure 1.1(a) includes many such groupings, which may
be arranged implicitly, labeled explicitly, or annotated in other ways. This process grad-
ually structures the workspace as a representation of various relationships and themes in
the collection. We can think of this representation, the workspace itself, as a digital ar-
tifact the user develops over time, much like a document produced by a word-processing

program.

The Designer’s Artifact: the Tool. The Dynapad application itself has the same
role as the word processor: it is the software tool with which a user constructs their
artifact. Like all software, Dynapad is implemented as a body of code (the program),
which is itself an artifact crafted by the programmer.

In some sense, both the programmer and user are engaged in processes of design,
the gradual refinement of their respective artifacts. But these two processes are very
different and require different terminology. Throughout these chapters, “designer” will
mean the programmer, “design” will mean the program or the process behind it, and
“activity” or “interaction” will mean the user’s engagement with their own artifact, their
virtual workspace.

So far, we’ve characterized Dynapad as a particular application, but more pre-

cisely it is an infrastructure or toolbox, a set of programming resources and design ele-

"Here the word “pile” is intended in a loose sense. In Dynapad, “piled” items are typically grouped
together but not stacked. Such differences are discussed exhaustively in Chapter 2.

ments which can be combined in different ways to construct different applications. We
can think of each particular application, each configuration of features, as a design in-
stance or design variant. So Dynapad is really a family of designs, related to each other
by shared concerns, resources, and constraints. The term “family” is meant in a very
literal sense: not just a set but a lineage, whose members descend from and inform each

another through an ongoing progress of refinement.

Two Cycles of Change. The gist of this scenario is that there are two participant
roles, each developing an artifact at a separate time scale. A designer shapes Dynapad’s
code and slowly evolves a family of design variants. With a particular variant, a user
develops a personal artifact, their workspace. These two processes are neither indepen-
dent nor strictly nested. In Dynapad’s case, as we will discuss later, the design evolved
in parallel and in response to the users’ ongoing participation. But for the moment, we
may regard the development of a user’s artifact as nested within one iteration of the

longer-term cycle of design, as Figure 1.2 depicts.

\C‘nangi ng Artifact

Evol vi ng Tool (Design)

Figure 1.2: Two time scales of change: a user interactively develops her artifact within one
instance of the designer’s more slowly evolving tool.

1.2 A Framework for Design

The rest of this chapter will refine this basic picture into a more sophisticated
model of the interplay between these two scales of activity. This model is not intended
to be a comprehensive explanation of the complex interaction of people, activities, and
materials involved in design. Nor does it mean to challenge or revise theories of any

of the constituent phenomena it attempts to synthesize, which have been explored in

greater detail in others’ work (cited ahead where appropriate). Instead, this model’s
purpose is to frame the particular story of Dynapad’s design, to act as a conceptual
scaffold on which to hang the elements of that story, detailed in the chapters ahead, as
they are fit together.

The central thread of this chapter is the gradual refinement of two related
questions:
Q1: When is a design good?
Q2: How do we make it that way?

These may sound redundant, but later we’ll see their important difference.

1.2.1 Generating and Evaluating Designs

In his seminal work “Sciences of the Artificial” [68], Herbert Simon reaffirms
Design as a coherent and principled intellectual practice. Design, he argues, has been
marginalized as “soft” and “cookbooky” in academic communities which favor “pure”
theoretical and analytical styles of inquiry. But the great variety of professions, both
academic and “applied”, which practice design tacitly share a theoretical foundation

which Simon attempts to articulate.

A Design Example: Edison’s Lightbulb. Simon’s formulation, elaborated ahead,
will be clearer with an example. For this purpose, let’s draw on an actual historical
design episode: the development of the incandescent light bulb. For simplicity, let’s
consider just one dimension of the bulb’s design, the choice of filament, pretending that
other aspects (e.g. the evacuated bulb, the switch, and the electricity supply) are fixed.
Even within these limits, the design space is huge: Edison and others tried thousands
of potential filaments, of varying materials and diameters, in an effort to achieve both
brightness and longevity. In 1879 Edison’s best candidate, a carbonized bamboo fiber,

burned for 40 hours.

Simon’s Means, Ends, and Laws

With this example in mind, let’s return to Simon’s formalization of Design.

Simon begins from the domain of Optimization Methods, which is concerned with find-

ing the “best” solutions to quantitative engineering problems. Simon’s paradigm, in a
nutshell, is that a design is a means to an end, subject to certain laws. His model’s

components are reflected in these three terms: means, ends, and laws.

Means (Design Instances). A design’s means are simply the properties which con-
stitute it: what it does and how. Simon calls these command variables (i.e. variables
which the designer commands). They might be formalized as attributes with values. A
set of command variables or attributes defines a space of possible designs, and a partic-
ular set of values distinguishes one design instance from others. Searching for a design
means deciding on the values of these variables.

In our lightbulb example, the command variables of the filament choice are ma-
terial (e.g. carbonized bamboo) and shape (i.e. length and diameter). These attributes
define the search space, the scope of the design. A particular set of values (e.g. Mate-
rial=bamboo, Length=>5mm, Diameter=0.5mm) instantiate one design, one “means” to
the goal of incandescent lighting.

A particular design, a set of these values, defines an inner environment: the
space of possible actions available to someone using it. A trivially simple case can be
seen with our light bulb example. A light bulb is not what we would think of as a typical
tool, since its function does not demand the user’s continual engagement. But it still
defines a very simple inner environment: the user chooses when to invoke its function by
turning it on and off. In the simplest case, this inner environment has only two states
(on and off) and the two corresponding actions.

As a complementary example, consider a modern three-way bulb (and accom-
panying switch), which offers a four-state inner environment (three brightness levels plus
“off”). Or if we extend the boundary of the design to include multiple bulbs (possibly
of different intensities) and multiple fixtures, then the user’s inner environment includes

decisions about what bulb to use where, as well as when to activate each.

Laws (Extrinsic Constraints). Simon’s laws are constraints on the design imposed
by the external world, the outer environment. These are assumed to be outside the
control of the designer (and users); otherwise they can be manipulated as part of the

design.

In the lightbulb example, the laws include the immutable physical properties of
materials which dictate both the attainable diameters and lengths for certain materials
and the trade-offs between intensity and longevity for each configuration. And if we
restrict the design problem to include only the filament, then potential variables such
as electrical voltage and bulb vacuum quality can also be considered fixed “laws” in
that scenario. (In practice, of course, the boundaries of a design are often negotiated to

include revision of such assumptions.)

Ends (Goals and Evaluative Measures). A design’s ends are its goals, what the
designer intends to accomplish. We can operationalize these goals as an evaluation
scheme. In Simon’s model, the evaluation scheme has two facets: constraints and utility.
The constraints are fixed criteria that should be satisfied by any design. The utility
or goodness represents preferences beyond these minimum requirements, by which one
design may be judged better or worse than another. To make such comparisons, the
utility must be quantified by a utility function, which gives a utility value for each possible
design. An optimal design is one which meets all constraints and has the highest possible
utility.

The reason for this formulation is that it guarantees a reliable decision rule for
comparing designs. A quantitative utility function creates a transitive relation between
possibilities, so that comparing any two designs can eliminate the weaker one from
consideration, allowing steady progress toward an optimal design.

Consider again the light bulb. It general purpose, clearly, is to illuminate, but
this has two competing facets: brightness and longevity (let’s ignore a third obvious
dimension of affordability). If one filament is bright but burns out quickly, and another
is dim but lasts longer, which do we choose? It depends on what we choose as constraints
and utility, and that depends on exactly how the bulb will be used.

Suppose the user needs lighting for a short-term but highly visual activity (e.g.
reading) which requires a minimum level of illumination. We might then designate that
minimum brightness as a fixed constraint and the bulb’s longevity as a utility function
(i.e. the longer the better). Figure 1.3(a) illustrates this situation.

Now suppose instead that the bulb is to be used to light streets for nighttime

navigation (Figure 1.3(b)). In this case, we might demand that such hard-to-access bulbs

. street
readi ng . .
navi gati on
v v
. 5x20mMm bri ght ness=10cd 1x14mm duration=10K hrs
banboo util =duration() cel |l ul ose util =bright()
40 hours 5 candel a
(a) For nighttime reading, we might demand (b) For street navigation, we might demand
a minimum brightness and choose duration as instead a minimum duration and choose
a utility function to compare filament choices brightness to compare filaments. In this case,
(e.g. bamboo). a different candidate (e.g. cellulose) might

yield higher utility.

Figure 1.3: Two hypothetical choices of filament and evaluation scheme. The evaluation scheme
must reflect the user’s goals. Each combination yields a utility value.

last a minimum duration, and then compare their relative utility by brightness.

Note that any particular design (i.e. filament choice) may have a different
relative utility depending on which evaluation scheme we choose. That is, the utility of
a design is the product of two potentially independent choices: the design itself, and the

standard of evaluation. We might represent this schematically as in Figure 1.4.

Users’
Goal s
v
Desi gn Eval uati on
I nst ance Schene
Uility
Val ue

Figure 1.4: The utility value of a particular design instance depends on the evaluation scheme
(constraints and utility function), which should support the users’ goals.

Of course, in practice these choices are not made independently; a thoughtful
designer will select designs anticipating their value by established utility schemes. And
conversely, designers face a temptation to choose evaluation standards which reflect well

on the designs they favor.

And we must remember that neither choice is fully in the designer’s hands;
both are constrained by laws outside the design space (see Figure 1.5). The incandes-
cent filament’s design space is constrained by material properties that dictate whether,
for example, bamboo fibers may be thinner and longer than, say, extruded cellulose (an-
other of Edison’s candidates). Such laws also constrain the evaluation standards — for
example, by disallowing criteria which cannot be physically achieved (e.g. bright and

long-lasting and cheap all at once).

" . | Extrinsic , \
Laws) ! v
Constraints ' \

) \ ' Ends"

" Means" | B

Figure 1.5: An abstraction of the dependencies in Simon’s basic model.

1.2.2 Waiving Optimality

Figure 1.5 shows the basic dependencies of Simon’s model. All dependencies
flow downward: a design’s utility value is a product of both the design and the goals, but
the goals do not change as a result of the design. Later we will challenge this assumption,

thereby changing the overall dynamics of the model.

Satisficing Criteria. Simon recognizes that this initial formulation is simplistic in
many respects, and he immediately relaxes the goal of finding optimal solutions to find-
ing merely satisfactory or sufficient ones. Combining these words, he coins the term
“satisfice”: a design is judged not to be optimal but to satisfice, to be good enough. (Ex-
tending Simon’s neologism, we might also describe the design as “satisficient”, exhibiting
“satisficiency”.) The simplest form of such a decision rule still relies on an ordinal utility
function: a design satisfices if it meets all constraints and has at least a certain minimum

utility. But Simon’s reformulation obviates the need for a utility function. Instead, the

10

goals of a design are abstracted into satisficing criteria. The decision rule or evalua-
tion of a particular design is simply whether it meets whatever satisficing criteria the
designer adopts. Although these criteria need not be quantitative, they must still be

operationalized, that is, there must be some explicit procedure for making the decision.

Steering Mechanism. Even with a decision rule for evaluating particular designs,
these designs must come from somewhere. Almost always a designer doesn’t postulate
designs blindly but with educated heuristics about what will prove satisficient. Simon
abstracts this component as a steering mechanism, a process of reflecting on the relative
satisficiency of various designs to guide the search for better ones.

Note that these two design considerations correspond to the two questions posed
earlier. They refine our inquiry as follows:
Q1: When is a design good?

— Assuming a user’s goals are fixed, does the design satisfice?

Q2: How do we make it that way?

— What mechanism will steer redesign?

The Design Cycle

Laws Users’
CGoal s
v v
Desi gn Sat I'Sfl C.I ng
L% Criteria

~
1

v . ’, \
Steering Jsatisficient?
Mechani snr™ s

Figure 1.6: Simon’s refined model; a steering mechanism guides new designs by considering how
a design satisfices. This is the basic design cycle.

Upgrading the earlier graph to reflect these additions yields a picture like that
of Figure 1.6. The flow of influence in this structure is not strictly forward but cyclic:
each design leads to another, mediated by an understanding of how each satisfies the

user’s goals. This picture merely makes explicit the iterative process behind all designs.

11

But this representation also highlights a critical assumption behind Simon’s
formulation: that the goals which motivate the entire process are outside the loop,
remaining fixed as the design evolves.

How can we modify Simon’s formulation to describe a design process with a

moving target?

“Generate and Test” in HCI. Borrowing from various empirical sciences, much
work in HCI includes conscientious efforts to evaluate and compare designs quantita-
tively. A typical pattern of such research is “Generate and Test”: first building several
design variants, and then comparing them according to a predetermined “goodness”
measure (e.g. speed. effectiveness, effort, user satisfaction). Ironically, this emulates the
crudest form of Simon’s model, with a prescribed utility function rather than the more

general satisficing criteria.

1.2.3 The User’s Activity

Simon’s model is intentionally very broad, applying to design of all types (toast-
ers, algorithms, etc). But Dynapad belongs to a particularly important class of designs:
those which support prolonged interaction. And for these, Simon’s model makes no ex-
plicit reference to what is the central consideration of such designs: the activity through
which they are put to use. Our next step is to expand this model to include some role

for the user’s activity.

Affordances

In constructing a theoretical framework for understanding activity, let’s begin
with the notion of an affordance, introduced by Gibson [29]. An affordance is an “op-
portunity for action” [43]; an object affords certain actions to certain participants. For
example, a closed drawer affords pulling open — but only to someone who is able to grip
it in the right way. Once open, the drawer affords pushing closed — but again, only to
one who can do so (e.g. who is strong enough and has a free hand or perhaps manages
to use a knee or elbow). These examples illustrate that an affordance is not a property

intrinsic to an object but a three-way relation between the object, an action, and an

12

actor.

The key point is that the affordances around us shape our activity by making
some actions easy and others difficult or impossible. So, at least in principle, we can
design activity by designing the appropriate affordances into the environment.

Additionally, to the extent that we can perceive them, some affordances not
only permit but suggest actions. For example, the clasp of a drawer or cupboard door
makes gripping and pulling a very visible and salient option. But some drawers and
cupboard doors have no handle; they are opened by first pushing in to release a hidden
catch. They afford opening by pushing, but they don’t suggest it; we must rely on prior

experience or exploration to discover that.

Af f ords
(Cost s)

Desi gn Activity

Figure 1.7: Designs afford certain activities by inducing various costs of action.

This basic principle of an affordance, as described here, can be generalized in

three ways.

Costs are Continuous and Qualitative. First, affordances need not be binary (pos-
sible or impossible) but may be continuous: an object affords or cues an action with some
degree of effort. Every action has a cost (possibly infinite). It will be more apt to discuss
the costs of activity rather than merely the possibilities. And eventually we should con-
sider not merely the magnitude but the kind of costs. The cost of action is not merely

a quantitative but a qualitative measure.

Actions may be Complex. Second, especially in the digital world, objects and ac-
tions may be non-physical. In a virtual environment, our repertoire of action is deter-
mined not by our physical bodies but by the input “vocabulary” of a particular interface.
Therefore a virtual “button” affords “pressing” by the relatively small effort of moving
and clicking a physical mouse. By extension, we may think of such affordances, especially
low-cost ones, as primary actions with the potential for further affordances: a window

affords “closing” by pushing its close button.

13

But this risks becoming a slippery slope where the definition of our primary
repertoire grows to include every potential complex interaction. For example, it seems
inapt to claim that a pantry door affords making dinner. But this is one important
reason to define an affordance as a graded rather than an all-or-none relation. The more
complex an activity is and the more elements it involves, the weaker the contributions
of particular physical properties become. The pantry door’s properties contribute to
dinner-making, but they impact only a tiny portion of the total cost of the activity. If
we are to consider this as an affordance, we must qualify it as a very weak one.

And yet, a thoughtful design of a dinner-making environment must consider
such details in how the door participates in that activity. Ultimately, the designer’s goal
— and the goal of this thesis — is to bridge that gap between physical details and the

complex interactions they indirectly support or inhibit.

Elements may be Collective. This brings us to the third generalization of affor-
dances: they must be considered in their context. Objects and actions are rarely isolated
but parts of ensembles: objects constitute environments and actions constitute activity.

Speaking loosely, we might then say that an environment affords various activ-
ities. Likewise, considering a design as an “inner environment,” a design affords various
activities. But the notion of a simple cost, which a single object incurs for a single ac-
tion, must be extended when we interconnect a system of objects and actions, mapping
a environment to an activity. The relation between two sets must itself be multiplex.
T’ll call this relation the environment’s cost structure. Our earlier lemma then becomes:

the degree to which a design affords certain activities depends on its cost structure.

Cost Structure

In one of the earliest uses of the term, Card, Robertson, and Mackinlay [14]
consider the cost structure of information in a typical office. Information is stored in
various locations and formats: papers on the desk (immediate storage) are easy to access,
files in cabinets (secondary storage) are more difficult, and library archives (tertiary
storage) require even more effort. The physical layout of the space imposes differential
costs for accessing information. The individual affordances of the storage areas constitute

(or at least determine) that environment’s cost structure for seeking information. The

14

same environment has a different cost structure for other activities (e.g. dusting) and

for other actors (e.g. someone with impaired mobility).

Activity Landscapes. We can think of the office as a landscape in which different
areas incur different costs. Simon himself [68] appeals to a similar metaphor: an ant
exploring a beach will trace a complex path, not because of any complexity within
the ant, but as a reflection of the complexity of the beach. The ant’s physical landscape
shapes its activity by inducing a corresponding virtual “landscape” of costs and rewards.

We can generalize this principle by adopting a more abstract definition of an
environment. As Simon suggests, the “inner environment” imposed by a design is most
often not a physical space but a problem space or activity space. That is, the user solves
a “problem” by changing the state of her inner environment or “artifact”? to some
“goal” state. The possible states are “locations” in this abstract space, and the possible
actions are the “moves”. The participant tries to “travel” to the goal state while, like
Simon’s ant, continually negotiating the local terrain. The environment’s cost structure
determines that terrain: the difficulty (and consequences) of various moves from various
states or conditions. This cost structure has therefore been called an activity landscape

or affordance landscape [43].

Cue Structure

Earlier we considered two aspects of an affordance: what it allows and what
it suggests. We’ve considered primarily the former, such that a cost structure reflects
the costs of acting in various ways. But to reflect further the variability in the ways an
environment suggests actions, we need the complementary notion of a cue structure [43].

An environment’s cue structure comprises various costs of perception and attention:

e the natural visibility and relative salience of affordances;

e deliberate manipulation of that salience, by either the designer or user, as a way of

encoding heuristics and constraints on activity. Kirsh [42] offers many examples,

2Here “artifact” is meant in the broadest possible sense: it may be an actual mutable object or
representation (e.g. a paper document or Dynapad workspace), the configuration of one’s physical
environment (e.g. opening doors, moving objects) or oneself (e.g. body position), or even a non-physical
representation or conceptualization (e.g. mental computation).

15

which include:

— highlighting affordances or choices which are known to be apt in a particular

state;
— hiding affordances or choices which are known to be inapt;

— making visible the relative value or cost of one’s choices;

e feedback on the progress or status of an activity, which Kirsh calls “task regulating

attributes” or simply “indicators” [43];
e representations to simply perception or computation [42].

These aspects of cue structure are closely interrelated, but their relationships
are not important here. I use the term “cue structure” very broadly to include any aspect
of an environment which biases activity that is difficult to reconcile with the (also loose)
meaning of “cost structure”. If cost structure includes, for example, the direct impact of
an environment during the user’s actions, then the cue structure should encompass the
environment’s role in the “whitespace” between actions.

The key point is this: cost structure and cue structure together introduce a
landscape which shapes the activity of participants. They are a product of both the
design and the physical laws and constraints imposed by the outer environment. But
within these constraints, cost and cue structure can be manipulated indirectly by altering
the design. Cost and cue structure constitute the medium through which a designer
participates in shaping a user’s activity.

In the discussion ahead, cost structure and cue structure often play the same
role in the design ecology and need not be dissociated. In such cases I'll often refer to

them collectively as “cost structure”.

Laws

Structure

7 \ Cost/ Cue
/

Desi gn Activity

Figure 1.8: Designs impose a cost structure and cue structure which shape activity.

16

1.2.4 Negotiating Goals in a Reflective Cycle

Of course, activity is not dictated completely by the affordance landscape; a
user does not mindlessly follow a path of least resistance, but generally works toward
certain goals or intentions. In refining Simon’s model, we’ve temporarily set aside that
key component, the user’s goals, which define the “ends” a design means to serve. Now

let’s reinstate that consideration.

Users’
Coal s

v

Activity

Figure 1.9: Activity is a product of both the user’s goals and the environment’s cost structure.

Earlier we noted that an implicit assumption of Simon’s formulation is that
the goals which give a design its purpose are fixed. Now it’s time to challenge that

assumption.

Reflective Feedback

Consider for the moment a particular class of designs, tools, which support a
user in developing an artifact, either physical or virtual. For example: a woodworking
tool shapes furniture, a word processor generates documents, and Dynapad yields a
spatial organization of documents. As suggested earlier (Figure 1.2), in these cases the
user is acting as a designer in an “inner” activity embedded in an environment which is
itself the product of an “outer” design activity. We’ve seen that the outer activity has
a cyclic nature: the designer reacts to and reflects on the satisficiency of his design (the
inner environment). So we should expect that the inner activity has an analogous cycle.

Such a cycle has been examined in many others’ work, especially that of Don-
ald Schon [63]. Schon characterizes design activity as a “reflective conversation with
materials” in which the designer continually reacts to new discoveries in her developing
artifact. Schon distinguishes two time courses of such feedback. Reflection-on-action is a

designer’s retroactive discovery and consideration of a design’s implications. Reflection-

17

in-action is a real-time awareness of those implications, where the designer’s instinctive
“flow” changes to conscious improvisation. This distinction in timing is not important
for our purpose here, which is merely to recognize the presence of “representational talk-
back” [73] from the artifact produced by activity to the intentions which guide that
activity. That is, the participant’s goals evolve in continuous negotiation with that

activity and its artifacts.

Users’
Goal s
reflective
v | oop
Activity senseneki ng)
EArtifact i—

Figure 1.10: The user’s reflective loop. Goals, activity, and mediating artifacts co-evolve.

Sensemaking. This basic dynamic applies not just to activities that are explicitly
“design” but potentially to any activity. As a participant interacts with the inner en-
vironment (the “problem space”), continually articulating her understanding through
action and re-interpreting the result, she gradually refines that understanding. This
process has been called “sensemaking” [58]. Although defined very broadly, the term is
meant to imply more than merely “learning”. “Sensemaking” emphasizes that the con-
ceptual framework required to assimilate information is itself under continuous revision.
In effect, sensemakers discover what it is they’re trying to learn or accomplish. Therefore

their goals, like a designer’s, evolve in a reflective cycle.

Cost Structure and Goals

We’ve seen that a design’s cost structure influences a user’s activity. Some of
that influence we can ascribe more precisely to an impact on the user’s goals. Specifically,
cue structure makes opportunities differentially visible, and cost structure makes them
differentially appealing. The user will adopt salient goals and easy strategies and avoid
difficult ones.

For our purpose here, it doesn’t matter whether the cost structure impacts

more directly goals or activity. The model of Figure 1.11 is deliberately simplistic,

18

Users’

Coal s
Cost/ Cue / 7

Structure\
Activity

Figure 1.11: The inner environment’s cost structure mediates the reflective loop.

with components which are inadequately dissociated. But it illustrates the essential
dynamics: the user’s behavior is a dynamic process which is largely self-driven, but the

environment’s cost/cue structure has the potential to perturb or mediate that loop.

The Designer’s Reflective Cycle. We’ve identified reflective feedback at two levels:
the user’s loop is within the “inner environment”, and the designer’s loop is iterated
redesign of that environment, the same basic relationship shown in Figure 1.2.
This suggests another refinement of the designer’s “goodness” measure:
Q1: When is a design good?
— Assuming a user’s goals are fixed, does the design satisfice?
— Does the cycle of goals and activity the design imposes satisfice?
The designer’s only means of intervention is indirect: changing the design so

that its cost structure induces a satisficient cycle of behavior.

1.2.5 The Context of Activity

We’ve seen that a user’s goals are a mutable product of activity. But surely
they’re not completely mutable; if they change drastically, at some point the activity
they induce will no longer be appropriate. But appropriate to what? What motivates
those goals in the first place?

The answer is that the user’s activity is always situated in the context of some
“outer” activity taking place in the design’s “outer environment”. I'll refer to this outer
activity as the practice for that design.

As an example, consider Dynapad. Dynapad is a design, an environment with

a cost structure. The resulting activity includes whatever users do in that environment,

19

Users’
Practice

!

Users’
Coal s

Figure 1.12: The user’s practice motivates the goals

while interacting with Dynapad. The surrounding practice includes all of the other habits
and demands in the user’s life for which Dynapad matters, the pattern of when, how,

and why Dynapad is used. We can imagine many examples:

e Using Dynapad as a “shoebox” for digital photographs: throwing them in period-
ically, with little invested effort, and once a year browsing through them to find

selections for a homemade holiday newsletter.

e Using Dynapad extensively and long-term for multiple media types, as a visual

interface to one’s file system.

e Using Dynapad intermittently throughout an intensive summer workshop to man-
age its copious reading material, then revisiting it years later while looking for a

particular article.

e Using Dynapad heavily for a week to organize an accumulated collection of papers

into an annotated bibliography, then adding a paper occasionally afterward.

The satisficiency of a user’s evolving activity must be evaluated with regard to
the practice which motivates it. Loosely stated, the activity must be compatible with its
practice. Borrowing a term from experimental research, we might call this the ezternal

validity of the activity (or the design which invokes it).

Negotiated Usage: The Evolution of Practice

Any of the example practices above will prime a user with certain goals during

usage. Although those goals may change in the reflective cycle, as the user navigates the

20

design’s cost structure and reacts to her developing artifact, the goals will retain some
loyalty to the practice which motivates them.

And yet the practice itself is subject to change. As a user continually rein-
vents her inner activity (e.g. trying new organizational strategies in Dynapad), she also
discovers what else the tool (Dynapad) can be used for — that is, she renegotiates her

usage practice. Thus there is a third cycle in the design ecology: negotiated usage.

Users
Practice

negoti at ed
v usage

Users
Coal s

¥

Activity

Figure 1.13: The cycle of negotiated usage

Interacting Practices. As an activity itself, the practice participates in its own local
ecology. Whatever that environment is, it has a cost structure of its own, which may
itself be the product of design. Figure 1.14 shows multiple levels of activity, where each
serves as a context for the next.

With this representation I do not mean to imply that an activity is situated
within only one practice, nor that the relationship between activity and practice is sub-
ordinate, with the practice “higher than” or “surrounding” the activity. An activity will
negotiate its usage with any number of practices, depending on where we draw their
boundaries, and they may all negotiate with each other as equals in what Hutchins calls
“adaptive interaction among subsystems” [35].

Instead, I mean the different terms “activity” and “practice” to reflect their

different roles relative to a particular design.

21

le

[
/ ‘
v
4 (Quter
Activity)

Practice [*

v

Laws Goal s

v

Activity

N

/

Cost / Cue

/4
/Structure\

Desi gn

Figure 1.14: A multi-level design ecology. Activity at one level serves as the practice for another.

1.2.6 Revisiting the Design Cycle

To come (literally) full circle, let’s reinstate explicitly in the model the design
cycle’s closure, the feedback on which the designer reflects. In Simon’s satisficing model
(Figure 1.6), that feedback is a combination of the satisficing criteria and the steering

mechanism. In our expanded model, that feedback is represented in Figure 1.15.

Ref |l ecti ve
Redesi gn

Figure 1.15: The designer’s reflection steers redesign.

22

Our original two questions have evolved as follows:
Q1: When is a design good?
— Assuming a user’s goals are fixed, does the design satisfice?
— Does the emergent cycle of goals and activity satisfice?
— Is the emergent activity satisficiently compatible with the surrounding prac-
tices?
Q2: How do we make it that way?
— What mechanism will steer redesign?
— How is activity shaped by the user’s reflective cycle and the design’s cost
structure?

Note that we’ve never answered Q1, which still includes an ill-defined satisficing
criterion. We’ve only pushed the problem to a different part of the ecology, away from
the design per se to the interaction of the activity and its practice. But in doing so,
we’ve pushed it out of the way of Q2, beyond the region of the ecology where the design
has the most direct impact. That is, before we need to make any evaluation of whether
our design is “good”, we can learn a great deal about the system of influences we’ll have
to manipulate indirectly through the design.

The goal of this thesis is not to answer question Q1, to decide whether Dynapad
is a “good” design. That would require longitudinal observations to understand how
Dynapad is (or isn’t) adopted by users in their work practices. Although ideal, that
evaluation is beyond the scope of this work.

The goal is instead to make progress on question Q2, to explain why Dynapad
induces the shorter-term reflective cycle of activity that it does. To do so, we must
examine both ends of the cost structure: how the design, subject to certain inviolable
constraints, induces costs and offers cues, and how those costs and cues influence the

reflective cycle.

Dynamics of the Ecology

The dynamics of this ecology arise from the presence of three loops:

e At the shortest time scale is the user’s reflective cycle of sensemaking: each action

modifies the artifact (e.g. the Dynapad workspace), triggering new interpretations

23

and discoveries which push the activity in a new direction. This cycle is significantly

impacted by the tool’s cost structure.

e At alonger time scale is the user’s negotiation of usage: as she grows to understand
the tool’s abilities, she potentially changes what she uses it for. This cycle is
significantly impacted by the user’s outer environment, the daily context in which

she operates.

e At multiple time scales is the designer’s cycle of evaluation and redesign: as his
understanding of the ecology grows, he modifies the design, and thereby the cost

structure, to nudge the user’s activity in a helpful direction.

Ideally, these modifications could reflect an answer to Q1: whether the activity is
compatible with the desired practices, as revealed by the negotiated usage cycle.
For this purpose, the redesign cycle must have an extremely long time course in

order to observe longitudinally that usage cycle.

In the end, the designer’s process seems to have essentially the same structure
as the simple “Generate and Test” paradigm. But treating the process as an ecology,

represented by Figure 1.15, acknowledges three key differences:

e The purpose of the design, the standard by which its effectiveness is measured, is

a moving target.

e The object of evaluation is not a measure of utility or goodness but the activity

induced by the design.

e The evaluation is not quantitative but primarily qualitative. It seeks to understand
not just that one design is better than another, but why. That explanation must

be expressed as an interconnected system of influences, itself an ecology.

1.3 The Road Ahead

This work explores the ecology of a design: how the cost structure of an artifact

shapes behavior, and how consideration of this impact suggests alternative designs. Its

24

— -~

~ - =~ ~
, e Chapter 2 ~ N
!/ \\ Cost structure
\ | of the practice
N / (paper piling)
N /
—_— T T ~N 4
~ O _-
-~ Chapter 3 NS I T —
7 _ FEN ~
/ s N\ AN
/ / \ N\
// \ \ User study:
Dynapad ! } \\ methodol ogy
and its \ \) | and analysis
design space \ \ / / of Dynapad
\ \ / /
N \ / /
N - N 7 /
S~ _ _ _ """~ _Chapter 4 _~

— p—

Figure 1.16: The chapters ahead correspond roughly to these three subsystems of the ecology.

organization approximates the structure of one iteration of a design cycle, which has

roughly three parts, summarized in Figure 1.16.

Envisioning: Chapter 2 establishes the general goals of Dynapad by drawing on the
existing practice of managing paper archives. It also examines the cost structure of
that practice, which will serve as a foundation for understanding the cost structure

of Dynapad.

Designing: Chapter 3 presents the details of Dynapad’s design, including the laws,
trade-offs, and historical precedents that constrain it. Although the design has
evolved through several iterations, we’ll focus on a version or two of the design

family, and situate them in a history of earlier iterations.

From these details, we’ll see how Dynapad changes the cost structure of paper

management.

Evaluating: Chapter 4 describes how that cost structure actually plays out in the
activity of two users. This will expose some unforeseen aspects of the cost structure

and suggest design modifications to alleviate certain breakdowns in the activity.

The Practice and Cost Structure

of Managing Paper Collections

In Chapter 1, we’ve seen that the interactive behavior that emerges in a de-
signed environment is the result of both the cost structure of that environment and the
momentum of an existing practice. This practice includes not only a set of habits but
also explicit and implicit goals and expectations a practitioner brings from it. And of
course, these goals, habits, and expectations are themselves shaped by the cost structure
of that ancestral practice.

The goal of this chapter is to characterize the practice of managing paper!
archives which Dynapad inherits, identify the goals and expectations inherent in this

practice, and illuminate how these emerge from its own cost structure.

Piling vs. Filing in Paper Archives. A seminal work in understanding how people
manage collections of information is Malone’s “exploratory observation” of office workers’
organizational strategies [49]. Malone identifies filing and piling as the two primary
strategies for organizing paper documents. Roughly characterized, filing is a “neat”
strategy of classifying documents systematically into storage cabinets, and piling is a
“messy” strategy of leaving documents in piles around one’s workspace. Malone’s key

insight is that piling is not merely a breakdown of organization, but an adaptation which

'The particular affordances of paper, as opposed to digital documents, have been examined in detail
by Sellen and Harper [66].

25

26

offers unique advantages over filing alone.

2.1 Piling as a Model Practice

Before exploring the details of piling, let’s consider why it’s an appropriate
model practice to draw from. Lansdale cautions that piling per se should not be a design
goal:

The piles that Malone reports are not, in a simple sense, representative of

a need in the user. Quite the reverse, in fact. They are a compensating
strategy for the problems of classification. [46, p.56]

It might seem straightforward to suppose that we can translate observed
strategies of information handling from existing paper-based methods to com-
puters.... In principle, however, this must be a mistake... No one would
suggest the introduction of unstructured ’piles’ of documents in a computer
environment... [46, p.56]

Concentrating upon piles is to caricature what happens when procedures
from office practices are reapplied to computers... [46, p.57]

Lansdale’s core concern is valid: if the strategy of piling is merely a side effect
of the cost structure of managing paper archives, such that it disappears in a changed
(e.g. digital) ecology, we shouldn’t sanctify it when designing that ecology. Instead, we
should work more directly to improve the cost structure which induces it.

But of course, he’s also partly mistaken: subsequent work [50], including this,
has indeed introduced such piles into a computer environment, where they have remained
useful.

Even if we were to do no more than to implement piles literally as Lansdale
describes, we have reasons to expect some utility from them. First, users come to the
computer not as blank slates but as experienced pilers, who expect to reply on piles at
times. The computer should support not just their direct needs but also their habits
and expectations from managing physical collections, even if those habits are vestigial.
Second, the challenges of information management which lead to piling — including but
not limited to categorization — may be mitigated on a computer but probably won’t

go away. Unless we drastically restructure the ecology (which is risky and disorienting),

27

practiced coping strategies should retain some value. And third, piling is not merely a
compensatory by-product, imperfectly serving rigid information-retrieval goals. It is a
legitimate activity in its own right and introduces its own goals, as we shall see.

Furthermore, we are not limited to implementing piles literally. One of the
goals of this work is to dissociate various attributes of piles in order to selectively engineer
affordances that contribute most to a congenial ecology. In other words, we can extend
the metaphor of what a “pile” is to include structures more appropriate to the cost
structure of a computer environment.

And of course, whether we implement any variant of piling or, as Lansdale
suggests, merely attempt to mitigate in software the difficulties which induce piling
with paper, we must first understand those difficulties. Section 2.2 ahead attempts to
characterize the differences between filing and piling, as observed by Malone and others,
and to connect the properties of each with the costs they impose and advantages they

afford.

The Role of Exploratory Observation

Malone’s self-described methodology is one of “Exploratory Observation”. His
intent is not to reach quantitative or definitive conclusions but rather to reveal the
domain’s essential qualitative phenomena and the connections between them.

Extending Malone’s work, Whittaker and Hirschberg [70] focus on the role of
personal archives, information that people maintain over relatively long time periods.
Their own methodology is more quantitative than Malone’s, and they observe statisti-
cally significant trends among their participants.

Nevertheless, for our purpose here, both Malone’s and Whittaker’s contribu-
tions play the same role. Whittaker’s results, while internally valid, may not hold exter-
nally, in a different community of participants or in a changed, computer-based ecology.
But like Malone’s observations, their value is to identify productive units of analysis —
behavioral strategies, hazards, and affordances — and examine potential interactions

between them.

28

2.2 The Cost Structure of Piling and Filing

To begin, let’s examine how Malone distinguishes “filing” and “piling”. Both
strategies group elements (documents) into larger structures (e.g. folders, stacks). Mal-
one avoids an explicit definition of their difference but appeals to our common-sense
understanding of the terms. Files are formal and “neat”, explicitly labeled and system-
atically ordered (alphabetically or chronologically, for example). Piles are casual and
“messy”, unlabeled and often unsorted, both within and between piles; any organization
is implicit.

We can also think of differences in their physical structure and placement: files
are typically enclosed in folders within drawers, and piles are unbound and stacked on
a flat surface. Malone seems to consider these differences to be non-essential (though
not irrelevant, as we shall see). For Malone, the essential difference concerns the orga-
nizational system. For example, he considers books to be “piled” on a shelf, even when

unstacked, if they are placed in groups but not sorted in an explicit way.

Hybrid Structures. Some organizational structures are ambiguous. For example,
“In-" and “Out-” boxes may be explicitly labeled and neatly bounded (i.e. boxed) like
files, but stacked vertically within the workspace like piles. They also play a cognitive
role often taken by piles, as a temporary staging area prior to further evaluation.

Such hybrid examples defy classification in Malone’s dichotomy. But our goal
is eventually to surpass it and instead to characterize various structures as combinations
of dissociable features whose cognitive affordances are brought to light by contrasting

piles and files.

Mixed Strategies. Although Malone divides his subjects into “messy” pilers and
“neat” filers, he recognizes that the two strategies are often used together, and we can
infer than most of his (and Whittaker’s) subjects used both to some degree. Malone’s
concern is to identify the qualitative properties of a system in which either piling or filing
predominates. 1 will take the same approach in the discussion ahead.

It is possible that the differing strengths of filing and piling combine linearly in

a mixed strategy. But it seems more likely that these strategies interact in non-linear

29

ways. A well-integrated mixture of filing and piling may be better in most respects (or
a bad mixture worse) than either pure strategy. Our purpose is to identify the likely

contributions of each strategy to the system as a whole.

2.2.1 Piles as Bundles

Our default image of a pile is a stack. But adopting that model from the
outset makes unnecessary commitments to details of physical structure. In keeping with
Malone’s loose definition, for now let’s consider piles only as indeterminate “bundles”
of items and attribute to them only environmental attributes, regarding their role in a

system of organization and activity.

Exposure: Visibility and Accessibility

We’ve identified piles’ first environmental property as implicit organization:
piles are unlabeled and often unsorted. But besides this difference in organization,
piles and files have another essential difference (which Malone leaves implicit): files are
typically stored compactly out of one’s immediate workspace (in a drawer for example),
while piles are left exposed, lying in the open. This is an example of a differential cost-
structure of information in the sense intended by Card et al. [14]: piles have a generally
lower physical access cost than files. But exposure reduces cost in two ways: piles are
easier both to reach and to see. That is, they have both greater accessibility (reduced cost
of interaction) and greater visibility (reduced cost of perception). Or in the terminology
of Chapter 1, accessibility improves cost-structure and visibility improves cue structure
[43].

But under what conditions are these costs reduced? If one is already engaged in
filing, already looking in a file drawer, needed files can be very easy to see and access. The
access cost of piles is less primarily when switching to document storage or retrieval from
some other activity. Another way of characterizing piles’ exposure is that the space used
to organize and interact with them is shared for other purposes. Piles’ visibility means
they can be seen not only when storing and retrieving documents but when looking for
one’s keys, reading mail, or eating lunch. And piles’ greater accessibility also means they

can be disrupted by such activities.

30

Although Malone [49] and Whittaker & Hirschberg [70] are well aware of these
differences and illustrate them in several explanations, they never explicitly acknowledge
exposure as a property of piles independent of their implicit organization. Especially
for purpose of engineering a digital analog of filing and piling, it is important that
we understand not just what cognitive effects differentiate the two structures, but what
properties give rise to those effects. Our goal in this section is not only to summarize the
effects reported by Malone and Whittaker, but to clarify which properties of files and

piles contribute to these effects. Dissociating organization from exposure is a first step.

An Example of Competing Influences: Retrieval

Let’s pause to look ahead at the one of the goals both piling and filing try to
satisfy: retrieving information from a collection. If we consider retrieval to be, in Lans-
dale’s terms, a primary need of the user, and filing and piling to be adaptive strategies
toward that end, which strategy is ultimately better at supporting retrieval?

On one hand, we can expect the investment in files’ organization to pay off,
making particular documents easier to locate when needed. On the other hand, Whit-

taker reports:

Filing does not always guarantee easy access to information...With complex
data, filing systems can become so arcane that people forget the filing cate-
gories they have already created, leading to duplicate filing categories. Ac-
cessing only these duplicates leads to incomplete retrieval, because informa-
tion in the original files gets overlooked. [70]

Malone and Whittaker agree: neither strategy is objectively and consistently
better. As a measure of retrieval ease, Whittaker estimates the overall number of docu-
ments retrieved by pilers and filers and concludes that they are not significantly different.?

Not only do the strengths of piling and filing differ, they often compete, as
with retrieval. If we measure only their net (and often indeterminate) effect, we fail to

appreciate how their affordances contribute differently and interact.

Keeping Score. As we consider in this section the various cognitive consequences of

piling and filing, we’ll keep track of our progress by incrementally building an “influence

2 Although the overall volume retrieved by pilers and filers was the same, it was a significantly greater
proportion of piled archives because they were generally smaller; see 2.2.1.

31

Attributes of Piles:

Exposure Inplicit
— T O‘gan.i zation
Visibility Accessibility !

\ (internediate effects)

? ? ?

potential
rei nf or cement
v K

Ease of Retrieval

potenti al
i nhibition

Figure 2.1: An influence graph: attributes of piles and some potential cognitive implications.

graph”, as Figure 2.1 suggests. It is intended not to be a predictive or exhaustive
model of archive management but merely an accounting of potential influences. This

representation has three purposes:

1. to clarify the dissociations between attributes (e.g. organization vs. visibility vs.

accessibility);

2. to clarify the contributions of each attribute to the overall cognitive ecology (e.g.

what about piles leads to smaller archives?);
3. to recognize indirect, complementary, contradictory, and reciprocal effects.

For example, we’ve suggested that there are contradictory influences on re-
trieval; soon we’ll see why in detail and identify a set of attributes that contribute to

it.

Mechanical Costs of Piling

As Malone observes, piling has lower mechanical (as opposed to cognitive) costs
than filing for two reasons. The first is a consequence of piles’ accessibility: piles, already
in the workspace, are immediately in reach; no drawers, folders, or other containers need
to be opened. This also makes retrieval easier.

The second cost reduction results from piles’ implicit organization: piling an
item eliminates the effort of obtaining, labeling, and integrating new folders.

Easier categorizing means easier re-categorizing, making the organizational sys-

tem more flexible and thus more likely to remain appropriate and effective as one’s

32

relationship to the collection changes. (We’ll consider this effect later in 2.2.1.)

Implicit
Organi zati on

\
Accessibility

RN

Mechani cal Ease of

Ee_lse Retri eval
of Filing

Figure 2.2: Being both implicitly organized and immediately accessible, piles have lower me-
chanical costs than files. Piles’ accessibility also helps retrieval.

Reminding

Malone emphasizes the difference between retrieving or finding and reminding.?
Finding an item requires prior intent and cognitive recall; discovering an item requires
only recognition. Piles are better than files at reminding us to do things. As one of
Malone’s subject says, “if I don’t put it where I can see it, I won’t do it” [49].

More generally, we use external structures to mediate our activity [35]. For
example, forms help us remember how to carry out certain procedures (e.g. purchasing)
by directing our attention through the constituent subtasks [11].Malone suggests that
filers tend to have more highly structured jobs than pilers [49, p.106]. If this is indeed
the case, there are two reasons to expect it. First, the well-defined structure of “routine”
jobs may make it easier to create and maintain an effective filing scheme. But addition-
ally, workers with less well-defined practices may rely on piles as a mediating structure,
reminding them how to proceed.

Piles are better at reminding than files because of their visibility: they can be
seen when one is doing an unrelated activity in the same space. They remind because
they share visual space with practices unrelated to retrieval. Reminding happens when

separate practices interact because their resources occupy the same space.

3Barreau and Nardi [2] and a critical response by Fertig et al. [23] have also examined the importance
of reminding in computer file systems.

33

Visibility

v
Rem ndi ng

Figure 2.3: Piles’ ability to remind results from their greater visibility.

Premature Filing and Archiving

Whittaker and Hirschberg initially assumed that pilers would tend to accu-
mulate more useless information than filers. But among their participants, the opposite
was true: pilers tended to have smaller archives. Whittaker’s explanation centers around
premature filing. Those accustomed to filing, thereby keeping tidy desktops, feel some
obligation to classify and file new documents immediately and often prematurely. Con-
versely, piles increase visual clutter?, and that precedent for clutter can increase one’s

tolerance to defer filing new documents until their value and role is better understood.

Visibility Visibility
., decreases ylcr eases
.,‘
Ti di ness Clutter
\provokes \;ol erates
Premat ure Def erred
Filing Filing

(a) Habitual tidiness provokes premature fil-
ing. Visibility dampens this effect by reduc-
ing expectations of tidiness.

(b) The same effect in opposite terms: vis-
ibility increases clutter, which establishes a
tolerance for deferred filing.

Figure 2.4: Premature vs. deferred filing

Considered in isolation, there is the potential for a self-reinforcing cycle, a
habituation to clutter: the more one defers, accumulating clutter, the more normal
clutter seems and the more one defers. Of course, this cycle may also correct itself if

growing chaos sufficiently increases pressure to clean up.

4“Clutter” is meant to imply only visually distracting bulk, not necessarily disorder. A desktop full
of immaculate piles is still cluttered in this sense.

34

Clutter

. ol erance
accurnul ation

Def erred
Filing

Figure 2.5: Habituation to Clutter. Increasing clutter and deferral can be mutually reinforcing.

Reminding allows deferral. In addition to the effect of clutter, filing is more easily
deferred when one is assured of being reminded (Figure 2.6). In the words of one of

Malone’s subjects:

“You don’t want to put [a pile on the desk away| because that way you’ll
never come across it again... Leaving them out means that I'm going to
come across them again, and at that time... I'm going to decide what to do
about them.” [49]

Deferred

Remi nding — . .
Filing

Figure 2.6: Reminding ensures later opportunities to file.

Deferring Effort. So far we considered only ways in which piles, by their visibility,
reinforce deferred filing. But an additional influence counters this trend: the mechanical
effort of filing also induces filers to defer (Figure 2.7(a)), and piles therefore reduce this

effect. That is, increased mechanical ease inhibits deferral (Figure 2.7(b)).

Def erred gsfc?gm Ical Deferred l\/écgam cal
Filing Y—17 — teulty Filing We ase
of Filing of Filing
(a) When filing is difficult it is deferred. (b) Conversely, the ease of piling reduces the

need to defer.

Figure 2.7: The mechanical cost of filing and deferral

For example, one of Malone’s subjects

35

had an elaborate (and presumably useful) system of cross-reference sheets in
his... files, but... he had many documents scattered around his office waiting
to be filed. [49, p.107]

Apparently the difficulty of maintaining this complex filing system created considerable

pressure to defer filing and pile documents instead.

Archive Size. An obvious consequences of deferred filing is that items accumulate in
the collection. When one’s archive comprises piles, more piling enlarges that archive.
However, Whittaker observes some opposite forces by which deferral keeps archives small.

First, premature filing demotivates clean-up. Filers are reluctant to discard

information they have invested effort in organizing:

Once you’ve committed something to paper, and it sits in a file, it requires a
separate act of attention and will to take the stuff back out and reduce files
to their bare minimums. [70, p.162]

Deferred filing eliminates this disincentive.

Second, pilers allow themselves more and better-informed opportunities to re-
evaluate and discard information. Deferred filing decisions can prevent low-value items
from entering the archive, and reminding can prevent them from invisibly persisting. As

Whittaker notes:

...pilers, unlike filers, encounter and discard extraneous information while
searching for other information. [70, p.164]

Such opportunistic pruning helps reduce the size and increase the value of archives.
Finally, the tendency of important items to float to the top of piles (see 2.2.2)
offers a convenient heuristic for cleaning out archives: periodically sweep obsolete items

off the bottom of piles.

Organizational Instability

Let’s return to the effects of accessibility. Because piles share space with other
activities, they can be unintentionally disrupted and the information encoded in their

organization lost:

36

Rem ndi ng Def e.rred
Filing
opportunistic
pr uni ng ’
Smal | er
Archi ves

Figure 2.8: Piling can yield smaller archives by reducing premature filing and creating frequent
opportunities for pruning.

Taken to excess... piles can dominate not just working surfaces but all areas
of the office. In clearing floors, tables, and chairs of their accompanying piles,
in order to use them for their normal purposes, urgent piled information can
be lost. [70]

That is, accessibility threatens the stability of organization.

Accessibility

N

Unst abl e
Organi zati on

» v

Appropriate Ease of
Organi zati on Retri eval

Figure 2.9: Piles’ accessibility leaves them susceptible to unintentional disruption; their organi-
zational scheme is potentially unstable. The resulting organization is inappropriate and retrieval
is harder.

Not only unrelated activities but also pragmatic piling actions can disrupt piles’
organization. For example, if I expect to access several items from a pile across the table,
I might move the whole pile closer to make it even more accessible. But doing so may
obscure information reflected in its original position — for example, that it belongs to a
meaningful set of adjacent piles.

Such instability erodes the effectiveness or appropriateness of the organization

(see 2.2.1) and consequently the ease of retrieval.

37

Organizational Clarity

The primary penalty of organizational instability is losing one’s understanding
of how the piles are organized. Physical disruption makes the organization unclear.
Here is the potential for another vicious cycle: the less well understood the organization,
the greater the chance of misplacing or misclassifying items, and the more unstable the

organization.

Unclear s < Unstable
Organi zation Organi zati on

Figure 2.10: Chaos from disruption.

An unstable organization can quickly become misunderstood. Misunderstanding can lead to
misfiling, further disrupting the organization. The more unstable the organization, the faster it
becomes unclear.

Organizational clarity is impacted by factors besides disruption. Piles” implicit
organization especially hinders clarity: the absence of labels not only prevents verifying
one’s understanding of a pile’s meaning but also permits meanings to remain inchoate
and inconsistent. Although this can offer the advantage of greater flexibility (see 2.2.1),

it may also contribute to misinterpretation of the organization.

Cognitive Difficulty of Filing. While implicit organization reduces the mechanical
cost of piling items, the resulting potential for confusion increases the cognitive cost of

piling. This may create a tendency to defer categorization.

Visibility Helps Clarity. Visibility amplifies the cue structure of the organization.
Whatever information is encoded in the spatial layout of piles, when visible, can be used
to verify one’s understanding and perceive existing categories. Visibility reduces the cost
of glances which verify and refresh one’s mental picture of the organization.

Consider again Whittaker’s caution about files:

With complex data, filing systems can become so arcane that people forget
the filing categories they have already created, leading to duplicate filing
categories. [70, p.161]

This cognitive disconnect occurs because files’ organization is less visible.

38

Inplicit
Organi zati on

Visibility .. /

Uncl ear
Organi zation

!

Cogni tive
Difficulty
of Filing

Clutter

Figure 2.11: Piles’ implicit organization, compounded with visible clutter, can obscure the
organization of the system. So piling makes it potentially more difficult cognitively to classify
items, even when mechanically classification is easier. However, piles’ visibility can make the
organization more clear.

Clutter Hurts Clarity. The advantage of visibility is offset by its inevitable byprod-
uct, clutter (i.e. visual bulk and complexity). Visually complex organizations can be-
come overloaded with interpretations, making it more effort to understand the intended

organization.

Clutter Ungl earl
Organi zati on

Deferred Cogni ti ve

Filing Difficulty
of Filing

Figure 2.12: Chaos from overload.
Deferral and misunderstanding contribute to a vicious cycle of disorganization.

Here is yet another potential vicious cycle. The earlier cycle of habituation to
clutter and deferral is made worse by the additional influence of unclear organization.
Deferring can add clutter, and clutter can obscure organization, making it cognitively
more difficult to classify and thus increasingly tempting to defer incoming items. This

cycle may be one facet of the general problem of overload.

Organizational Flexibility

The effectiveness of an organization system depends in part on whether it’s
structured appropriately for the ways it’s used. For example: is the vocabulary used for

retrieval the same used for categorization? Does the overall structure of the organization

39

illuminate the structure of one’s work?

Even if an organization system is appropriate initially, as our work (or our
understanding of it) changes, that system may become inapt and inefficient. It takes
time to understand the flow of one’s own information management, and that practice
may be continually adapting. Therefore we can expect that any particular organization
may become inappropriate or obsolete over time, To mitigate this, a system should be
flexible. That is, the cost of restructuring the organization should be low.

Appropriateness is not the same as understanding: one may understand per-
fectly an organization which is nevertheless inapt and ineffective. And flexibility is not
the same as instability; flexibility is the deliberate restructuring rather than accidental

and possibly invisible disruption.

Def err ed Mechani cal
Fi ling Fase
\ of Filing
Smal.l er Flexibility . Apprqpri qt e
Archi ves (Ease of Reorg.) Organi zation

Figure 2.13: Small archives, deferred filing, and mechanical ease of re-categorizing all afford the
organizational system greater flexibility. This helps the organization stay appropriate to the flow
of work and the structure of information, and the more apt organization facilitates retrieval.

Mechanical Ease Helps Flexibility. We've seen that implicit organization both
eases the mechanics of filing and tolerates ambiguity in categorization, which can hinder
clarity. But these qualities also make the organization more flexible. For example, it
requires no effort to change the meaning of an unlabeled pile. It takes minimal effort to
combine piles, or to move them to areas with established meanings. Piles’ embrace of
ambiguity combined with their low cost of re-categorizing makes them more responsive

as organizational needs change.

Smaller Archives Help Flexibility. The smaller a collection is, the easier it is to

reorganize.

Deferred Filing Helps Flexibility. Besides shrinking archives, deferral also helps

flexibility more directly. Whittaker observed that premature filers were reluctant to

40

throw away information that they went to the work of filing. Similarly, we might expect
a reluctance to break up existing categories to re-categorize the items, especially for
frequently-accessed and well-defined groups. If an organization is well-understood and
the cognitive effort of categorizing is low, the path of least resistance is to reinforce
the existing categories even if they are counter-productive. Ironically, by increasing
the cognitive difficulty of categorization and increasing deferral, piling may slow the
reinforcement of an ineffective system, thus helping flexibility.

Finally, because a flexible system stays more appropriate, it helps retrieval.

Retrieval, Redux

As predicted earlier, piling has both advantages and disadvantages for retrieval.

Now we can see why in detail.

Accessibility Accessibility

C ear St abl e Unl ear Unst abl e
Or gani zati on \Organi zati on Or gani zati on \Organi zati on
\‘ | “‘ v
Appropri ate Ease of Appropri ate Ease of
Organi zati on Retri eval Organi zati on Retri eval
(a) Positive (but incompatible) influences on (b) Piles’ hinder stability and possibly clarity.
retrieval.

Figure 2.14: Piles’ net influence on retrieval ease is indeterminate.

We’ve exposed four positive and direct influences on retrieval: accessibility, plus
an organizational system which is stable, appropriate, and clearly understood. We might
infer from the network of indirect influences that piling generally improves accessibility
and appropriateness, but generally hinders clarity and stability. Thus the overall net
effect of this conflict on retrieval is unpredictable.

Figure 2.15 summarizes the influences we’ve considered so far.

41

Inplicit | e # | nhibition
Exposure Organi zat i on — Rei nforcenent
Visibility .. > Accessibility
\ = Uncl ear Unst abl e
Clutter >

Or gani zation

N S

Organi zation

v Def err ed Cognitive Mechani cal
Reminding —> "o\ 0 T Difficulty Ease
\ v.. of Filing .of Filing
»4 \ / ¥y
Smal | er Flexibility Appropriate Ease of
_— > ——— B
Ar chi ves (Ease of Reorg.) Organi zation Retri eval

Figure 2.15: Summary of potential influences of piles’ organization and exposure.

2.2.2 Piles as Stacks

So far, we’ve considered a largely abstract interpretation of piles, distinguished
only by their implicit organization and exposure to the workspace. Both of these prop-
erties concern the role of piles as abstract “bundles” within a system of bundles, without
regard to their internal structure. Most of the influences above should apply equally well
to non-literal “piles”, such as Malone’s example of books grouped on a shelf.

But of course, the most salient and ubiquitous form of a pile, especially for
paper, is the stack. Next, let’s consider piles as stacks and explore how their internal
structure interacts with the effects we’ve discussed already. Figure 2.16 previews and

situates the upcoming additions to our influence graph.

Stacking and Substructure

The defining property of a stack is serial occlusion: each item occludes, visually
and physically, the item below, such that only the topmost item is directly visible and
accessible. Lower elements can be reached, but only by moving the ones above. The
further down the stack the target lies, the more effort is required to reach it. So occlusion
amounts to a top-down differential negation of visibility and accessibility. Piles are
generally more visible and accessible than files, but occluded piles (i.e. stacks) have

these advantages somewhat neutralized.

42

Ocs(’jrulsa;lon Avai | abl e
e Space
('St acki ng) \ P .
Seriality 4 Cohesi on
; v
""" > '/ % Spatial }

> Aggr egat i on—————=—» EXpr essi veness <—i—

. %, Freedom }

Contiguity

e
Attention
Cui dance

Sel f -
sorting

A

Figure 2.16: Preview of additional influences involving piles’ internal structure

Seri al
Qccl usi on
('St acki ng)

Figure 2.17: Stacking occludes all but the topmost items, reducing overall visibility and acces-
sibility and differentially negating exposure.

Note that occluded items can still be partially visible at their edges, especially
if piles are “ragged” (imperfectly aligned) or if items have sufficient thickness to be

identifiable from the side.

Self-sorting. One helpful byproduct of serial occlusion is that stacks can exhibit self-
organization through our interaction with them. In the simplest case, imagine adding
items to a stack over time without retrieving any. Because it takes extra effort to insert
items within the stack, we naturally add them to the top. So the stack preserves a

historical record of the interaction in the sequence of its members.

43

When we eventually retrieve items from within the sequence (which, due to
occlusion, requires extra effort), and replace them on top, the long-term result is that
important (frequently-used) items float to the top and little-used ones sink to the bottom.

This has several advantages. First, it optimizes the access-cost structure for
retrieval: the most-retrieved items have the lowest cost, so the average cost is minimized.
Second, important items on top serve as reminders (see 2.2.1). Third, it facilitates clean-
up: obsolete items can be “swept” off the bottom of piles (see 2.2.1), keeping archives
trim.

Seria
Cccl usi on
(St acki ng)

L/

Sel f -
sorting

A

Figure 2.18: Piles’ top-first accessibility tends to sort them by usage: frequently-used items
float to the top. This helps retrieval, reminding, and clean-up.

This self-organization could also be true of files, which we can think of as side-
ways stacks within folders. If we consistently access files front-first, they emulate stacks.
But they just as easily afford dropping items in randomly, or turning around to be ac-
cessed back-first. So files require a degree of discipline to match what piles regulate

naturally.

Space Limitations. An obvious advantage to stacking is that it preserves space, which
is usually a limited resource. The more limited the space, the greater the pressure to
stack items and combine piles. Such shuffling can disrupt the organization, thereby
increasing instability. But fortunately this is self-dampening cycle: stacking frees up

space and reduces the pressure for further stacking.

Cohesion. Another important side effect of stacking is cohesion: even without a wrap-
per, the friction and compactness of stacked items makes it easy to pick up and move

a stack without disrupting its structure. This is true for files as well, which also have a

44

B » Limited oorial s available
c USI on — Space c USI on ‘ ----------------------- Space
(St acki ng) conpaction (St acki ng) .

reuse,
di sruption

(a) Limited space forces stacking and dis- (b) Stacking frees more space
placement

Figure 2.19: Competition for available space

protective wrapper. In contrast, a loose heap of papers probably falls apart when moved.

Stacks’ robust portability reduces the impact of potential disruptions. Moving
a stack out of the way, for example, may lose information reflected in its position but
will preserve information within its structure. Thus cohesion reduces organizational
instability.

Seri al
Cccl usi on

(St acki ng) \

Cohesi on

Figure 2.20: Stacking makes piles (and files) cohesive and portable, reducing the effects of
disruption.

Spatial Freedom and Expressiveness

As we’ve seen in the example of self-organization, both piles and files can encode
information in their substructure, the way their members are physically arranged. At
minimum, they each afford one ordinal dimension of encoding (as with stacking), and
more complex structures are possible through nesting: files can contain subfolders, and
piles can include “subpiles” delimited by physical markers (e.g. folders), offsetting, or

rotation. Stacks can be turned sideways, enclosed in a folder, and “filed”. So at first

45

glance, it seems that both structures have the same expressiveness, the ability to encode
information.

But piles are more expressive because they have greater spatial freedom, both
within and between groupings. Meaning can be expressed by position and spacing, and

generally speaking, files are discrete but piles afford continuous placement. For example:

e Within files, items cannot reliably be offset or rotated. Items sink to align their
bottom edge with the folder’s spine, and cannot offset sideways without extra-wide
folders. They cannot rotate except by 90 degrees, and even then may not fit in
their drawer. Within piles, items have greater flexibility of position — for example,

jutting out for greater visibility even when not on top, or rotated as a marking.

e Unlike files, piles preserve empty space between them. This allows visual gestalts
like proximity of related piles and continuation of linear arrangements. It also

allows linear scaling to depict quantitative values.

e Membership in piles can be qualified. Dubious items can be placed near a pile
instead of in it, and ambiguous items can straddle adjacent piles or lie midway
between more distant piles. With files, elements are either in or out and cannot be

shared without copying.®

In summary, piles’ spatial freedom can be used to simplify perception [42] and

optimize the cue structure [43] of collections.

Freedom requires space. Free space does not mean spatial freedom; one can have lots
of empty file drawers, all limited to discrete positioning. But utilizing continuous space
to encode information requires a certain minimum of available space. Gestalt grouping
requires whitespace around the group, and scaled (as opposed to ordinal) linear layouts
require whitespace in their gaps. Nearness is only relative, and crowding from limited

space will obscure it.

5The need for multiple classification arises in both piling and filing, and is adequately solved only by
duplicating items. This cost is presumably the same in both strategies.

46

eron |

Expr essi veness <—Spat| al
. Freedom

Figure 2.21: Expressiveness allows complex representations both within and between piles.
Information within the structure of a pile is protected by cohesion. Complex representations
have the potential both to improve and degrade clarity, and are more fragile (unstable).

Freedom hurts stability. Once space is used to encode information, the organization
is more sensitive to disruption. For example, if deliberate misalignment is used to mark
piles, then displacing a pile accidentally or for pragmatic reasons loads it with unintended

implications.

Cohesion helps expressiveness. In the same way that it helps stability, cohesion
helps preserve expressive arrangements within groups. And by reducing the cost of pile

movement, it reduces the cost of creating and adjusting inter-group arrangements.

Expressiveness both helps and hurts clarity. Carefully arranged workspaces can
help to keep organization clear by optimizing cue structure [43]. But there is a dan-
ger of overdoing it, putting in so many spatial relationships that organization becomes

confusing.

Expressiveness hurts stability. A carefully arranged workspace which is saturated

with meaning is also fragile and susceptible to disruption.

Visibility and Attention

Occlusion, like exposure, has facets of visibility and accessibility. We’ve exam-
ined some consequences of occluded access; now let’s consider occluded visibility. So far

we’ve portrayed visibility as mostly good. Its most negative consequence so far has been

47

clutter, and even that has some potentially beneficial effects (e.g. deferred filing). But
we’ve not yet discussed the most serious cost of visibility: it overloads our attention.
Reminding happens when our attention is distracted by visible items. By re-

ducing visibility, stacking reduces distraction and helps us regulate our attention.

Seri al Seri al
Qccl usi on Qccl usi on

..... * (St acki ng) (St acki ng)

Attention & Attention/

Gui dance ., Qui dance
(a) Stacking limits visibility, which creates (b) In positive terms: stacking guides atten-
distraction. tion by occlusion.

Figure 2.22: Reducing visibility helps guide attention.

Serialization. Stacking helps guide attention in another way: it serializes items in
the group to make it easier to iterate attention over them. Imagine that you’re looking
for a particular item in a large, unsorted pile. The most efficient strategy is to examine
each item once and only once until we find the target. But this procedure requires some
metacognitive effort [43] to plan and execute. That effort is minimized when there is
a serial “path” through the set that visits each item once. A stack is perfect: each
item has only one successor, and it requires no cognitive effort or memory to follow the
sequence. Put another way, a serialized arrangement eliminates decision points in the
problem space [42, 43]. The search task becomes “ballistic”: once started, it steers itself.

Stacking is not the only way that items can be serialized; unoccluded or “open”
groups can be put into rows, for example, as in Figure 2.23(b). Of course, such arrange-
ments are limited in their expressiveness, and richly expressive arrangements may violate

seriality.

Contiguity. Iterating attention through a set is also easier when the items are con-

tiguous, close together without interruption. All the forms of physical piles and files

48

EI/#L/L/

ST VA A

ST T LT 7 S/
a4

(a) Serialized, occluded (b) Serialized, “open” (c) Unserialized; hard to
guide attention.

Figure 2.23: Three pile structures varying in attentional demands

Seri al
Cccl usi on

/ Stackin
Seriality (9

Contiguity

l

Attention
Gui dance

Figure 2.24: Stacking serializes piles. Serial structures, especially when contiguous, help to
guide attention. However, seriality conflicts with expressiveness.

we’ve considered here have contiguity, but it’s easy enough to imagine non-contiguous
alternatives in a computer environment. In a computer workspace, meaningful groups of
items can be distributed across space, possibly interleaved with items not belonging to
the group. Such non-contiguous arrangements can be more expressive and flexible but
may require more cognitive effort.

One technique for facilitating perception of non-contiguous sets is highlighting:
members of the set are depicted with a unique visual attribute that “pops out”, letting

one’s eye more easily travel the set. Highlighting is also used in brushing; see 3.4.2.

Aggregate Features. When the members of a set are visible, and especially when
they are contiguous, the group acquires collective or aggregate (e.g. gestalt) properties.
That is, the visual character of the whole can be qualitatively richer than the sum of its
parts. For example, an unoccluded arrangement of items can have a shape that carries
meaning or serves as a visual landmark in the “geography” of a collection [4].

Visual aggregation is reduced when items are occluded but persists even in

49

a stack. For example, a stack can be tall, implying many members, or ragged (with
misaligned edges), reflecting a history of intermittent interaction rather than a single
episode of tidy construction. In fact, Apple’s proposed design for digital piles [50] uses

raggedness to distinguish user-built piles from computer-built ones.

Seri al
Cccl usi on
('St acki ng)

»
Contiguity » Aggr egat i on——— > Expr essi veness

Figure 2.25: A pile acquires collective properties when its members are visible (and especially
when contiguous) which make it visually distinctive. This can improve clarity and expressiveness.

By making piles more distinctive, and possibly more iconic, aggregation con-

tributes to expressiveness and potentially improves clarity.

2.2.3 The System as a Cost Structure

The network of Figure 2.26 summarizes the influences we’ve considered in this
chapter. It is one possible description of the cost structure of piling. The nodes of the
graph represent several types of phenomena, including intrinsic qualities of individual
piles (e.g. seriality, cohesion) and of the overall collection (e.g. smallness, expressive-
ness). But the majority represent some dynamic of a participant’s interaction with the
collection, such as the time course of organization (e.g. stability, flexibility) or the cost
of various actions (e.g. accessibility, cognitive difficulty). In a loose sense, they’re all
affordances: each invites or deters certain interactions, and each interaction contributes
to additional qualities, themselves affordances.

Chapter 1 sketched a cartoon version of this system: behavior in an environ-
ment is a negotiation between what is easy (its cost structure) and what is needed or
expected (one’s goals and prior practice). But even a relatively detailed and concrete
representation like Figure 2.26 leaves no clean boundary between affordances, goals, and

behaviors. The piler’s strategies and goals, the physical structures and representations

50

Seri al
Cccl usi on

, Available
e Space

Cohesi on

5 \
/ % Spatial i

s Aggregatl on—-.—» ExpreSS| veness <—sx—

Inplicit

. O gani zati on

Seriality 4

Contiguity

Freedom

VISI bility . Accessibility g
\ 1 l W
Attention »~ Uncl ear Unst abl e
. Clutter . .
Gui dance Orgam zatl on _____ Organi zation
K Oogm tive Mechanical .
S Def d :
Remi ndi ng —» Fi lelr :1; Difficulty Ease
/ \ v.. of Filing _.of Filing
/ \ / SN
SeI f- Smal | er Flexibility Appropriate Ease of
sorti ng Archl ves (Ease of Reorg.) Organi zation Retri eval

A

Figure 2.26: The cognitive ecology of piling. Summary of all interdependencies considered
in this chapter.

they produce, and the qualities and affordances of those structures must be considered

as a system.

2.3 Redesigning the Cost Structure

So far in this chapter, we've dissociated several aspects of piles and identified
their contributions to the cognitive system. This description then helps us to selectively
engineer the properties we want in a digital version of piles.

In this final section,we’ll first introduce some related work that has applied
various aspects of piling to digital domains — most notably, Apple’s proposal for digital
piles [50]. Then we’ll assess Apple’s piles in terms of the principles developed in this
chapter.

That analysis has three purposes. First, it aims to validate these principles
by applying them to an independent setting. Second, it will illustrate how digital en-
vironments can deliberately modify the cost structure of piling. Finally, that analysis

will set the stage for Chapter 3, which describes how Dynapad alters that cost structure

o1

differently.

2.3.1 Related Work on Digital Piles

Characterized broadly, this research is about personal information environ-
ments, and that topic has been explored in others’ work too numerous and varied to
review here. Here let’s consider briefly only a narrow subset of that work concerned
with environments in which users emulate piling by organizing information manually by
spatial (2D) position.

Data Mountain [56] and Workscape [48] are environments which are, like the
simplest variant of Dynapad, primarily inert spaces which accommodate arrangements
of document thumbnails.

Similarly, MessyDesk [21] lets users arrange text and images as a background
collage on their system desktop. This essentially gives these items visibility without
accessibility, as if they were under glass.

Henderson and Card’s Rooms [32] environment addresses the problem of main-
taining exposure in limited space. We might characterize their solution as intelligent
occlusion: materials are organized into task-specific “rooms” so that exposure at any
moment is allocated to the most relevant documents. We can also think of a room as an
abstracted “fisheye” view [26] onto the activity structure of the document collection.

Dourish et al.’s Presto system and its Vista browser [19] focus on the flexibility
of organizations. Presto offers ”multivalent” documents which can appear in multiple
places and dynamic piles which update their content automatically.

In addition to several environments for managing digital photo collections [57,
30, 8, 39|, empirical work has compared various pile-like arrangements that users employ

with photographs [31].

Apple’s Piles

A seminal contribution to digital piles is from the Human Interface Group at
Apple, as reported by Mander, Salomon, and Wong [50]. Mander et al. proposed several
designs for a “pile” structure in the Macintosh desktop environment. Although these

ideas are now nearly fifteen years old, they have yet to be integrated into the Macintosh

92

(or any other) desktop environment.®

>
NF

Figure 2.27: Apple’s proposed piles: user-generated (ragged) and computer-generated (neat)
(Images are taken from [50])

¢

¢
-

Apple’s piles appear as axonometric-projected (3D-looking) stacks of document
thumbnails (Figure 2.27). These stacks could be assembled either by hand (by dropping
individual documents over each other) or by the computer (perhaps as the result of
a search). To indicate this difference, user-built piles are left looking “ragged” and
computed piles are aligned to look “neat”. Although stacks have limited aggregation,
this quality of raggedness is one such aggregate property, made more visible by the
axonometric view.

The axonometric view has another advantage: it allows the user to index into
the pile’s depth using the mouse pointer, either to extract or to view individual docu-

ments within the stack.

Design Variants. Apple compared several design variants differing primarily in two
dimensions: whether the pile coheres together when stacked, and how the pile can be

browsed or “opened”.

Cohesion: Piles could be either “document-centric” or “pile-centric”. With the document-
centric version, dragging a piled item with the mouse would move just that item
(possibly removing it from the pile). With the pile-centric variant, dragging a piled

item would move the entire pile.

Mander et al. considered these choices to be exclusive and assumed that all piles

SRecently Saffer [59] partially implemented a prototype similar to Apple’s design.

93

would behave the same way. We'll see later how Dynapad attempts to reconcile

this whole-vs-part dilemma.

(a) “Scattering” a pile temporarily exposes all its members.

(b) Browsing a still-stacked pile with a “viewing cone”.

Figure 2.28: Two ways of browsing Apple’s piles (Images are taken from [50].)

Browsing: Piles could be browsed in either of two ways. Rubbing sideways with the
mouse would trigger scattering (Figure 2.28(a)), in which the pile contents would

be temporarily unstacked and spread out to be visible and accessible all at once.

Rubbing vertically with the mouse would trigger a viewing cone (Figure 2.28(b))
which would display (and perhaps enlarge) one item at a time as the pointer was

moved vertically through the stack. In this case, items would remain stacked; each

o4

could be seen but not all at once.

Apple also proposed several sub-variants of viewing cones differing in how the oc-
cluding items above the target are displaced. Additional proposals include turning
occluders transparent [59]. For our purposes here, all of these variants can be

considered equivalent.

2.3.2 Unstacking the Pile

We’ve seen that stacking entails tradeoffs; it improves some properties of piles
at the cost of others. Specifically, stacking provides seriality, cohesion, and space, but
limits aggregation and exposure (Figure 2.29(a)). Conversely, unstacking piles does the
opposite, giving up seriality, cohesion, and space to improve aggregation and exposure

(Figure 2.29(b)).

St acki ng Avail abl e Stacking ———» Available
. i os Space / R Space
Seriality p Seriality P
y Cohesi on o g K Cohesi on
. Aggr egat i on Aggr egat i on
& p) s 4 o

Visibility Accessibility Visibility Accessibility

(a) Stacking (b) Unstacking

Figure 2.29: The effects of stacking vs. unstacking

This means that certain pairs of features are effectively in competition (e.g.
accessibility and cohesion) but stacking can be used to mediate between them, to favor
one or the other.

This interpretation helps us understand the design space of Apple’s piles: each
variation is a manifestation of that tradeoff. Let’s reexamine each design variant in this

light.

Pile-centric vs. Document-centric. The only reason for Apple to entertain both
the pile- and document-centric variants, rather than combine them into a unified design,
is that they represent a conflict.

One source of this conflict is an under-expressive input device. Specifically,

95

direct-manipulation with a pointer (i.e. the mouse) has an ambiguous scope (i.e. one
member vs. the entire pile). We can imagine the same problem trying to manipulate
physical piles of paper with, say, a chopstick. But even then, we’d have several dimensions
of control (e.g. angle, pressure, grip) that are unavailable in a mouse-driven interface.
There are several ways of solving the resulting ambiguity, including ways of specifying
more precisely the target of movement and other operations (see 3.2.2).

But there is another conflict at work here: when we depend on stacking for cohe-
sion, cohesion competes against accessibility. Apple’s pile-centric version offers cohesion,
but poor accessibility. The document-centric version offers accessibility, the ability to
manipulate documents individually, but no cohesion.

Splitting the design of piles into two separate variants attempts to address both
the scoping ambiguity and this conflict. But that solution is unsatisfying: it resolves the

ambiguities, but forces us to choose exclusively one affordance or the other.

Browsing by Scattering. Another solution is to trade-off cohesion and accessibility
not into separate designs but into separate temporary modes — that is, to temporarily
unstack piles.

“Scattering” the pile, as in Figure 2.28(a), is in effect a temporary unstacking,
changing that pile’s properties to those of Figure 2.29(b). The result is what we’d expect:
increased visibility and accessibility, but at the cost of cohesion (the pile is no longer
portable), available space (spreading takes up room), and seriality (items are disarrayed).

But let’s consider more closely the last aspect, seriality. Although the scattered
items in Apple’s design are jumbled (perhaps to mirror the raggedness of the stacked
pile?), they could just as easily be arranged into a serialized layout, such as a grid. That
is, although stacking gives us certain properties for free, we don’t always have to depend
on stacking to get them. Often we can synthesize the desired properties (e.g. seriality)
through an independent mechanism (e.g. regulated layout).

In doing so, we can eliminate conflicts between properties which are incompat-
ible through stacking alone. In this example, we gain exposure by unstacking the pile,
and then supplement its damaged “natural” seriality with a “synthetic” seriality. Figure

2.30 illustrates this manipulation.

o6

aut onati on

l

Seriality

Figure 2.30: Regulated layout can supplement seriality

Browsing by Viewing Cone. Apple’s other browsing mechanism, the viewing cone
(Figure 2.28(b)), offers a similar manipulation: it synthesizes wvisibility in a pile which
remains stacked. This lets visibility coexist with the benefits of stacking (seriality, cohe-
sion, and space). To the extent that a user can also “act through” the viewing cone (for
example, extracting a viewed document), this manipulation also augments accessibility,

as in Figure 2.31.

Visibilit Accessibilit
y T~ viewing _—" y

cone

Figure 2.31: Viewing cones can supplement exposure

Note that neither visibility nor accessibility are as high as if the pile were
unstacked: each document can be seen, but not without some effort both to initiate
browsing and to locate the target. The cost of access or viewing is somewhere between

that of a normally-occluded stack and a completely open “spread”.

2.3.3 Looking Ahead: Dynapad’s Manipulations

We’ve seen how Apple’s design for digital piles manipulates the cost structure
it inherits from paper piling to eliminate certain incompatibilities between desirable
affordances. Dynapad employs this same basic strategy to manipulate the cost structure
in additional ways. We’ll see the details of Dynapad’s design in Chapter 3, but now we

can outline the basic approach.

o7

Dynapad’s approach is to unstack or “open” all piles and mitigate through
other means the resulting damage to seriality, cohesion, and available space. Figure 2.32

summarizes these changes:

Seriality: Dynapad provides automated layout to serialize initially haphazard arrange-

ments into grids and various linear formats.

Cohesion: Dynapad provides containers which protect the structure of exposed ar-
rangements and let them travel as a group even while members remain individually

accessible.

Space: Dynapad offers effectively infinite free space, made manageable by easily-controlled

target-oriented zooming.

aut onation contai ners zoom ng
v
Avai | abl e
Space
Seriality _
Cohesi on

Figure 2.32: Dynapad supplements unstacked piles with features to improve seriality, cohesion,
and space.

Indirect Effects. We must remember, of course, that these affordances occupy a po-
sition at the top of a watershed of influences, summarized in Figure 2.26. Every manip-
ulation we make has the potential to change the cost structure downstream.

For example, consider the indirect effect of the changes above on expressiveness.
Dynapad amplifies all of the properties which contribute to expressiveness (e.g. aggre-
gation, cohesion), so we should expect expressiveness to improve also. But even before
these manipulations, expressiveness has a tension with seriality, which we’ve magnified
also. So now we can expect that tension to be even greater. How might we relieve it?

Dynapad’s solution is to introduce lenses which allow alternative views of the
same piles. One can be expressive while another is serialized. In this way, lenses help to

decouple the mutual inhibition of seriality and expressiveness (Figure 2.33).

o8

| enses

Seriality 4

—>EXxpr essi veness

Figure 2.33: Dynapad also breaks the conflict between expressiveness and seriality by adding
lenses.

Of course, Dynapad inherits other conflicts inherent in the system, as illustrated
in Figure 2.26, and it introduces additional interactions and costs. Chapter 3 explores

these features and trade-offs in agonizing detail.

The Design and Features of
Dynapad

This chapter gives a detailed description of the functionality and interface of
Dynapad’s current design. Whenever possible, the description of each design choice

includes its rationale, which may include several facets:

e historical precedents and development history;

potential cognitive consequences;

a characterization or design space of possible alternatives;

abstract principles and constraints on that space;
e any conflicts, inconsistencies, or coordinations with other design aspects.

As with any cognitive environment, details matter. Although many of the
details presented here are not critical to the overall functionality, they have implications
for users’ activity which will become apparent in Chapter 4. Therefore a second goal of
this chapter is to provide a framework for discussing those details.

Dynapad’s functionality can be abstracted into three levels:

Sections 3.1 - 3.5 present Dynapad’s basic functionality as a largely inert virtual table-

top. Digital collections can be arranged in a two-dimensional space just as papers

99

60

are arranged on a table. The resulting activity has largely the same cognitive

ecology as that described in Chapter 2.

Section 3.6 introduces region-tools which augment space. They offer a protocol by
which the user can apply automation to certain areas of the workspace. (Much of

this section has also been included in earlier work [3, 5].)

Section 3.7 introduces a history mechanism which augments time, allowing users to
revisit earlier versions of a workspace and visualize the long-term evolution of their

collection.

.--~7" Basic Features (Inert Space) _:_ BRI
//“Portraits "\/'Mani pul ation. / Navigation™/ Structure 5
o R o "\ Cues ;O
NeB 1N 32 8.3 hBa

P Tcontainers) T TTTToee-

N Regi on Tool s (Enhanced Space) 3.6

Figure 3.1: Three levels of functionality and the sections of this chapter.

3.0.1 Overview of Architecture

My primary purpose in this chapter is to describe Dynapad’s functionality and
its rationale. However, some readers will benefit first from a quick overview of Dynapad’s
implementation and architecture.

Dynapad is currently implemented in two semi-autonomous layers. The first
layer, written in C++, is the renderer, which is responsible for drawing the workspace
and all objects in it. It uses the X11 [62] graphics libraries and therefore requires an
X-Windows server running locally. The renderer controls the real-time display of zoom-
ing, panning, and animation, and it maintains a model of all graphics primitives which
compose the objects in the workspace.

The renderer is a direct descendent of Pad++ [7], written by Bederson, Hollan,

61

and colleagues. Many modifications to this version of Pad++ were contributed by Ron
Stanonik and Ron Hightower.

Dynapad’s second layer is the physics manager, which maintains a model of
the collection’s media elements and metadata and also controls Dynapad’s interactivity
and most of the features described in this chapter. It is primarily this layer which
represents Dynapad’s “design” as considered in this document and which dictates the
affordances guiding users’ behavior. In order to explore the design space more easily, we
have implemented this layer in PLT Scheme [24], a lightweight object-oriented language
convenient for prototyping. I have been the primary developer of this layer, and it
is in that respect that I refer to myself as “the designer”. However, Dynapad is a
deeply collaborative effort, in both design and implementation, and owes much to the
inseparable contributions of Hollan, Stanonik, Hightower, and others.!

With that glimpse into Dynapad’s implementation, let us turn now to its func-

tionality.

3.1 Collection Elements

Our research emphasizes the value of visual access to information. So a natural
medium for Dynapad is one which is already visual: digital photographs. Like many
other applications for browsing digital photo collections [57, 30, 39, 8], Dynapad displays
photos as thumbnails which can be arranged and “piled” around the workspace, as we
saw earlier in Figure 1.1. Section 3.5 describes some of our preliminary studies of users

organizing their photo collections in Dynapad.

3.1.1 Document Portraits

However, we intend for Dynapad to support many other types of content, which
must then be converted into a graphical form. So far, Dynapad supports not only images
but PDF documents. Because images from these papers can be effective retrieval cues,
Dynapad extracts the component images and collages them into “portraits” or “enriched

thumbnails” [71] of the documents. Figure 3.2 shows several sample portraits.

1See page xiii for specific acknowledgments.

62

®®

000006 |

MPERGAMON

Figure 3.2: Sample PDF document portraits. These are Dynapad’s default portraits for a
sample of “ERP-related” documents belonging to subject B.

The value of such portraits can be illustrated with an example? from our ob-
servational data. The portraits in Figure 3.2 are of documents belonging to B, one of
our research subjects. B selected this particular set when looking for “ERP3-related”
research papers in her collection. In her view at that time, these portraits were only
about 92 pixels high, about the same size shown here. Yet from these representations,
B was able to recognize a very complex category of content, based on visual features

evocative of that genre (e.g. clusters of waveforms and brightly-colored brain “maps”).

Generating and Editing Portraits

Currently, the algorithm Dynapad uses to generate document portraits applies

very simple heuristics:

1. Extract all embedded images and sort them by file size. This reflects both the size

and complexity of an image, and therefore its probable information value.

2. Discard any images smaller than 5KB or with aspect ratios more extreme than

5-to-1 (which are usually background textures).

2For details of this episode, see page 216.
SERP (“Event Related Potentials”) refers to a cognitive neuroscience methodology for analyzing brain
activity from electrodes on the scalp.

63

3. Rescale and arrange the top few images in a pre-set pattern (e.g. one alone is
centered, two are stacked, etc.) over a background image of the document’s cover
page. This usually leaves visible its title, authors, and basic typographic style,
which often suggests “family resemblances” to other documents from the same

source.

Clearly, much more sophisticated techniques could be applied, including the judicious
enlargement of important text like keywords (as with [71], for example).

But of course, no algorithm can always guess correctly what will be the most
effective portrait for a given paper. Therefore, after making its best guess at a default
portrait, Dynapad lets the user edit any portrait, to emphasize the elements she finds
most informative. The process of “unlocking” and editing a portrait is demonstrated in

Figure 3.3.

Using Spatial

(a) An initial locked por- (b) Portrait is unlocked, allow- (¢) New arrangement is
trait. ing rearrangement of its im- cropped and locked.

ages and additional hidden im-

ages.

Figure 3.3: Editing a PDF portrait of [56]

When a portrait is unlocked, all component images (and any hidden images)
may be moved and resized (although they are forced to stay contiguous with the back-
ground image). When locked again, the collage is cropped to the boundaries of the
background and unused images are “stored” out of sight and may be accessed later if

the collage is again unlocked.

64

Interactivity

Both photos and portraits (which are themselves images) display as low-resolution
thumbnails most of the time, since they are usually too small to show details anyway.
However, they automatically substitute a high-resolution version when the user zooms
into them.

Two zooming events will trigger the high-resolution version: double-clicking an
image, which zooms in automatically, or “pulling” it manually closer until it stops, as

described in section 3.3.1.

Browsing Documents. Additionally, portraits and images can be made to launch
“helper” applications when clicked (for example, an image-editor for photos). Currently,
Dynapad launches a PDF-browser application when a portrait is double-clicked with the
second (navigation) mouse button, or through a pop-up menu. The browsing application
opens the PDF document corresponding to that portrait.

While this feature has proven very useful, we have noticed a cognitive hazard
with it. Because there is no visual continuity between Dynapad and the browsing ap-
plication, once the browser is closed, the user may have trouble re-locating in Dynapad
the portrait that triggered it. A solution may be to zoom automatically to a browsed

portrait, or else to select or highlight it uniquely.

3.2 Interacting with Objects: Selection and Movement

Now that we’ve considered the basic properties of a workspace’s primary con-
tents (photos and portraits) let’s turn to the basic physics of interaction: navigating
around the workspace and moving those objects within it.

We might regard this as the “whitespace” of activity: gripping and moving
objects and redirecting our attention is a fluency we take for granted in the physical
world, not a salient or glamorous “feature” of the environment. But that whitespace
consumes a sizeable fraction of the overall effort of interaction, and it must be as carefully
designed as any explicit feature. Details matter.

Dynapad is by no means the first to address these problems; indeed, one of

the design constraints is to be consistent with the expectations established by countless

65

other applications. But to understand the impact of these details on the overall ecology,
it’s helpful to return to first principles and examine why so many direct-manipulation

interfaces are designed as they are.

3.2.1 The Poverty of Input

In a natural ecology, one of the principles useful for understanding complex
interactions is that of competition for limited resources. A similar constraint is present
in a software interface: any input device has only a small number of degrees of freedom.
For example, a typical three-button mouse (without a scroll-wheel) has five independent
variables: two continuous (X and Y position) and three binary (the buttons). These
define the device’s input space (also called its “movement vocabulary” [15]).

Input vocabulary is a scare resource. The number of operations needed to inter-
act richly with a world far exceed the number of independent input channels. Therefore
each input action must be overloaded, assigned multiple meanings in different contexts.
Context can vary in many ways, including location (e.g. clicking a button vs. an ob-
ject), timing (e.g. double-clicking or gesture strokes), and modes (i.e. earlier inputs
establish special “states”). Dynapad’s interface must be understood as a product of this

competition and overloading.

Alternative Input Devices. Dynapad’s default interface is designed for the three-
button mouse, and the descriptions throughout this chapter will focus primarily on this
configuration. Nevertheless, we anticipate the need to adapt the interface to other devices
which may have different (and often fewer) input channels, and occasionally the interface
description will include these variants.

Most obvious is the two-button mouse of Windows and Linux systems. The
third button is a luxury but not necessary; we intend Dynapad to work unimpaired with

only two. One button, however, will be difficult, as we shall see.

The DiamondTouch Table. Additionally, we have begun to adapt Dynapad to work
with various tabletop devices, most notably the DiamondTouch table [17]. This is a

touch-sensitive horizontal surface which replaces the mouse by sensing contact from a

66

user’s bare hands. The computer’s display is projected onto the surface and users interact
directly with that space.

Although this style of interaction has several advantages, the table’s current
version is designed to emulate only a one-button mouse.* We adapt it to essentially two
buttons by “stealing” a binary value from the edge of the continuous position variable.

See section 3.3.4 for details.

Modifier Keys. The scarcity of input variables on a mouse or table can be relieved
without overloading by using modifier keys (like Shift or Control) on the keyboard. But
this requires two hands and is inconvenient, especially when using a table input. In our
experience, it increases the cost of those actions enough to deter their use if there is
a one-handed alternative. Dynapad’s goal is to provide keyboard shortcuts but require

only a mouse (or table) for all elemental actions.

3.2.2 Operational Syntax and Selection

Another theme is the need for operational syntax, the conventions for how
operations are applied to objects. For example: in most text editors, copying text
requires two actions, first selecting the text fragment, then specifying a copy operation,
via menu or keystroke. The operation (what to do) and object (where to do it) are
specified in two separate actions, the object first in this case. This example has a
“postfix” or “serial object-verb” syntax.

The reverse syntax, “prefix” or “serial verb-object”, is also common. For ex-
ample, the tool palettes in many graphics applications require selecting first a tool (e.g.
“fill”) and then a location to apply it.

Operational syntax need not be serial. Consider the ToolGlass [12] interface:
one hand moves a semi-transparent virtual palette, and the other controls a pointer. An
action and object are specified at the same time by superimposing a particular tool on the
palette over an object, then “clicking through” with the pointer. That tool (operation)
is applied to that object with a single action. Similarly,