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ABSTRACT OF THE DISSERTATION

Improving matrix product state methods for long-range interactions

By

Mingru Yang

Doctor of Philosophy in Physics

University of California, Irvine, 2020

Distinguished Porfessor Steven R. White, Chair

We study one dimensional models of diatomic molecules where both the electrons and nuclei

are treated as quantum particles, going beyond the usual Born-Oppenheimer approximation.

The continuous system is approximated by a grid which computationally resembles a ladder,

with the electrons living on one leg and the nuclei on the other. To simulate DMRG efficiently

with this system, a three-site algorithm has been implemented. We also use a compression

method to treat the long-range interactions between charged particles. We find that 1D

diatomic molecules with spin-1/2 nuclei in the spin-triplet state will unbind when the mass

of the nuclei reduces to only a few times larger than the electron mass, while the molecule

with nuclei in the singlet state always binds, given the two electrons in their singlet state in

both cases.

We propose an improved scheme to do the time dependent variational principle (TDVP) in

finite matrix product states (MPS) for two-dimensional systems or one-dimensional systems

with long range interactions. We present a method to represent the time-evolving state in a

MPS with its basis enriched by state-averaging with global Krylov vectors. We show that the

projection error is significantly reduced so that precise time evolution can still be obtained

even if a larger time step is used. Combined with the one-site TDVP, our approach provides

a way to dynamically increase the bond dimension while still preserving unitarity for real

xi



time evolution. Our method can be more accurate and exhibit slower bond dimension growth

than the conventional two-site TDVP.

We apply our improved TDVP method to investigate the spin squeezing dynamics of the XXZ

model of 1/rα interaction in two dimension. Comparing with the spin squeezing parameter

and other observables obtained from discrete truncated Wigner approximation (DTWA), we

verify the validity of DTWA and unveil the potential for this method to study dynamics

of large-scale spin systems. Our results confirm the existence of large collective regime

when α > 2, which can be a guide for future experimental realizations. Combined with the

purification method, our improved TDVP method is proved to be also useful to study the

thermalization of the long-range interacting system.
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Chapter 1

Preliminaries

1.1 Introduction

The field of tensor networks was started from the invention of the density matrix renormal-

ization group (DMRG) method. In the paper[1] by White in 1992, DMRG was proved to be

effective to solve the ground state of Heisenberg chains, which overcame the drawbacks of

the Wilson’s numerical renormalization group[2, 3] in this problem. After various numerical

experiments of DMRG on one-dimensional and two-dimensional systems, it was found that

while DMRG appears to be perfect for one-dimensional gapped ground states, it is only

partially successful for two-dimensional systems and critical systems. Borrowing concepts

from quantum information, people realized[4, 5, 6, 7] that the efficiency of DMRG on one

dimensional gapped ground states relies on the constant entanglement entropy which does

not scale with system size in one dimension according to the entanglement area law[8, 9].

In the past two decades, there has been tremendous development of tensor network theories

and algorithms. In the late 90’s, people began to reformulate[10, 11] DMRG in terms of ma-

trix product states (MPS), which actually have a long history in analytical calculations[12,
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13, 14], although under different names. Rethinking in the MPS language boosted the inven-

tions of various new extensions of DMRG at the beginning of this century. For example, the

time evolution methods[15, 16, 17, 18], infinite-system algorithms[19, 20, 21, 22], continuous

systems[23], and higher-dimensional tensor networks such as projected entangled pair states

(PEPS)[24, 25, 26] and multi-scale entanglement renormalization ansatz (MERA)[27] as well

as continuous extensions of them[28, 29].

Tensor networks not only serve as a mathematical representation of quantum states, but

also have been proved to be useful in exploring the physics in many problems by numerical

simulations. For example, it has been used to study the properties of the ground state of

Hubbard model to understand high-Tc superconductivity[30]. It has been also applied to

searching for topological ordered states like spin liquids[31] and fractional quantum Hall

ground states[32]. Along with the development of compact basis functions[33] and effective

compression of matrix product operators, it further shows the ability to tackle quantum

chemistry problems[34, 35]. In addition, tensor networks interact actively with machine

learning[36, 37] and quantum computation[38].

Long in the history of quantum chemistry and condensed matter physics, the nuclear de-

grees of freedom of atoms has been separated out from the electronic states by the Born-

Oppenheimer approximation. However, the non-adiabatic effects due to nuclei has been

proved to be important[39, 40] in chemical reactions when conical intersections occur in po-

tential energy surfaces[41] and exotic molecules with the mass of the nucleus close to that

of the electron. We thus utilized the matrix product states techniques to study the ground

states of the system with two types of fermions, including the nuclear degrees of freedom

by full quantum mechanical treatment[42] and discovered an unconventional binding mech-

anism. In this work, we extend the conventional two-site DMRG to three-site in order to

handle this special system which has no hopping between the nuclei and electrons, hence

avoiding the local-minimum problem. When the mass ratio between the nuclei and electrons

2



is large, there is a problem of slow convergence in DMRG due to the existence of two distinct

energy scales. We came up with the idea to use different lattice spacing for each species of

particle, which solves the problem after combining it with swap gates. Similar pitfall also

exists in time-dependent variational princple, especially for long-range interactions and two-

dimensional systems. Not like ground-state calculations, where only the final convergence

to the ground state energy is important, in the time evolution, every time step (sweep) need

to be accurate since we are interested in the whole dynamical process. Then we would ask

if the tricks in DMRG could also be used in TDVP to solve the problem. It is not clear im-

mediately how to integrate the swap gates into the derivation of effective TDVP equations,

and extension to more center sites will increase the complexity. Alternatively, inspired by

the multi-state targeting in DMRG[43], we found that subspace expansion combined with

single-site TDVP appears to be quite efficient and reliable[44] and successfully applied it to

study the spin squeezing dynamics of long-range XXZ model in two dimension.

In this chapter, we will briefly review the MPS techniques for ground state calculation and

time evolution, as preliminary to the chapters followed. For more details, we recommend the

reader to refer to Ref. [45].

1.2 Entanglement entropy

For a bipartition of a quantum system into A and B, the von Neumann entropy is defined

as

SA|B = −TrρA log2 ρA, (1.1)

3



where ρA is the reduced density matrix of A by tracing out the subsystem B, i.e.

ρA = TrBρ, (1.2)

where ρ is the density matrix of the whole system. For a pure state |ψ〉, we have ρ = |ψ〉〈ψ|.

If we write the pure state as

|ψ〉 =

DA∑
i=1

DB∑
j=1

Ψij|i〉A|j〉B, (1.3)

where |i〉A and |j〉B form orthonormal bases of A and B respectively, then ρA can be repre-

sented as a positive-semidefinite matrix in the subsystem basis |i〉A and |j〉B

ρA = ΨΨ†. (1.4)

We can diagonalize the reduced density matrix ρA

ρA = Udiag(w1, w2, ...)U
† =

r∑
a=1

wa|a〉AA〈a|, (1.5)

where U = (|1〉A, |2〉A, ...) and r = min (DA, DB). If the whole system is in a pure state,

equivalently we can obtain the Schmidt decomposition

|ψ〉 =
r∑

a=1

sa|a〉A|a〉B, (1.6)

where |a〉A =
∑

i Uia|i〉A and |a〉B =
∑

j V
∗
ja|j〉A, by performing a singular value decomposi-

tion (SVD) to Ψ, i.e.

Ψ = USV †, (1.7)
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where S = diag(s1, s2, ...) = diag(
√
w1,
√
w2, ...); U has orthonormal columns (left orthonor-

mal), i.e. U †U = I; V † has orthonormal rows (right orthonormal), i.e. V †V = I. If

DA > DB, V V † = I and UU † = PL, where PL is the projection operator into the column

space of Ψ. If DA < DB, UU † = I and V V † = PR, where PR is the projection operator

into the row space of Ψ. Therefore the von Neumann entropy is directly represented by the

eigenvalues of the reduced density matrix or the singular values from SVD of the pure state,

i.e.

SA|B = −
∑
a

wa log2wa. (1.8)

If the system is in pure state, the von Neumann entropy1 characterizes the entanglement

between the subsystem A and B. For a mixed state, the von Neumann entropy contains a

thermal contribution in addition to the entanglement. While the thermal entropy is exten-

sive, it is not necessarily true for the entanglement entropy. In the thermodynamic limit, the

scaling of the entanglement entropy of a ground state obeys the area law[7, 8, 9] if the ground

state is gapped out from excitations for a short-ranged Hamiltonian. So SA|B ∼ const in 1D

and SA|B ∼ L in 2D, where L is the length of the boundary between A and B. At criti-

cal point, SA|B has a logarithmic correction c+c̄
6

log2 L in 1D from conformal field theory[4]

analysis, and distinct behaviors are shown[46] for bosonic[47] and fermionic[48] systems in

higher dimensions.

If the local Hilbert space of a quantum lattice system is d dimensional, generally we need

dr Schmidt states to represent a pure state |ψ〉 exactly, which scales exponentially with the

system size. For the ground states, however, the speciality of area laws make it possible to

efficiently and accurately approximate them in computationally reachable finite number of

Schmidt states, which is the key to the success of the density matrix renormalization group

1The second Renyi entropy is another choice which is more popular in analytical calculations. The von
Neumann entropy is more sensitive to small tails of singular values
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(DMRG) and matrix product states (MPS).

If we use D ≤ r Schmidt states to approximate a pure state |ψ〉, the maximal entanglement

it can encode is SA|B = log2D when all the eigenvalues of the reduced density matrix ρA are

equal. This implies we need to use at least D = 2const (D = 2L) number of Schmidt states to

encode a 1D (2D) gapped ground state, and D = L
c+c̄

6 for a 1D critical system. Increase in

1D gapped system size does not affect the lower bound, while the infinite lower bound when

L→∞ means the thermodynamic limit is not reachable for 1D critical system. Increase in

the boundary length between partitions of 2D gapped systems will lead to an exponential

increase in D. Although the real distribution of eigenvalues of ρA are generally far from

uniform[49], the lower bound D still provides a good estimate of the necessary number of

Schmidt states, which is verified by the fact that the eigenvalues wa decay exponentially for

gapped chains and stripes with an increasing decay length as the width of the system grows.

1.3 Matrix product states

A many-body state with open boundary conditions for a lattice of N number of sites with

the local physical degrees of freedom labeled by sn is given by

|ψ〉 =
∑
s1...sN

cs1...sN |s1 . . . sN〉, (1.9)

which can be decomposed as an finite matrix product state (MPS) as

|ψ[M ]〉 =
∑
s1...sN

M s1
1 · · ·M sN

N |s1 . . . sN〉, (1.10)

where Mn (∀n ∈ {1, . . . , N}) are rank-3 tensors. An entry of it can be written as [Mn]snbn−1bn
,

where sn is the physical index of dimension dn and bn−1 and bn are the left and right virtual
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=
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=
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bi−1bi

=

=

=
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|ψ⟩ =

=

=

(g)

(h)

Ci

Di

|ϕL
bi−1⟩ |ϕR

bi
⟩

si

si

si

bi−1

bi−1

bi−1 bi

bi

bi

Figure 1.1: Graphic notations for an MPS.

indices of dimension mn−1 and mn respectively. Usually dn ≡ d but mn varies with n. For

finite MPS, m0 = mN+1 = 1 and max{mn} is reached in the middle of the lattice. mn is

conventionally called the bond dimension for the nth bond of the MPS.

The MPS representation has a redundancy called gauge freedom, i.e. the physical state |ψ〉

is invariant under the gauge transformation

M sn
n 7→M ′sn

n = GL
nM

sn
n G

R
n , (1.11)

where GR
n−1G

L
n = I and GL

1 = GR
N = I. We can bring the MPS to canonical forms by fixing

the gauge. For example, to get the mixed canonical form with the orthogonality center at

site i

|ψ〉 =
∑
s1...sN

As11 · · ·Asi−1

i−1 C
si
i B

si+1

i+1 · · ·BsN
N |s1 . . . sN〉, (1.12)

where Asnn is left-orthonormal and Bsn
n is right-orthonormal, i.e.

∑
sn

(A†n)snAsnn = I,

∑
sn

Bsn
n (B†n)sn = I,

(1.13)

we can fix the gauge by the singular value decomposition (SVD) of the site tensors first from

7



n = 1 to n = N iteratively, i.e.

Asnn G
L
n+1 = UnSnVn = GL

nM
sn
n , (1.14)

where GL
n = Sn−1Vn−1 to get the left-canonical form, and then SVD from n = N to n = i

iteratively, i.e.

GR
n−1B

sn
n = UnSnVn = Asnn G

R
n , (1.15)

where GR
n = Un+1Sn+1 and we have

Csi
i = Asii Di = Di−1B

si
i , (1.16)

where Di = Ui+1Si+1. Eq (1.12) can also be rewritten as

|ψ〉 =
∑

bi−1sibi

[Ci]
si
bi−1bi
|φLbi−1

〉|si〉|φRbi〉, (1.17)

where

|φLbi−1
〉 =

∑
s1...si−1

(As11 . . . A
si−1

i−1 )bi−1
|s1 . . . si−1〉

=
∑

bi−2,si−1

∑
s1...si−2

(As11 . . . A
si−2

i−2 )bi−2
|s1 . . . si−2〉(Asi−1

i−1 )bi−2,bi−1
|si−1〉

=
∑

bi−2,si−1

(A
si−1

i−1 )bi−2,bi−1
|φLbi−2

〉|si−1〉

(1.18)

and similarly

|φRbi〉 =
∑

si+1...sN

(B
si+1

i+1 . . . B
sN
N )bi |si+1 . . . sN〉

=
∑

si+1,bi+1

(B
si+1

i+1 )bi,bi+1
|si+1〉|φRbi+1

〉
(1.19)
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Figure 1.2: Quantum number currents in the canonical form of a MPS.

are automatically orthonormal bases for the left and right partition of the lattice respectively.

For later discussions, we introduce here how a global Abelian symmetry is implemented in

the MPS formulation. Let us consider the magnetization U(1) symmetry as an example.

Suppose that the local basis |si〉 at each site is chosen as a eigenstate of Ŝzi with eigenvalue

Msi , and the left (right) bond basis |φLbi−1
〉 (|φRbi〉) is chosen as a eigenstate of

∑i−1
i=1 Ŝ

z
j

(
∑N

i=i+1 Ŝ
z
j ) with eigenvalue ML

bi−1
(MR

bi
). We then have

i−1∑
i=1

Ŝzj |φLbi−1
〉 = ML

bi−1
|φLbi−1

〉 =
∑

bi−2,si−1

ML
bi−1

(A
si−1

i−1 )bi−2,bi−1
|φLbi−2

〉|si−1〉

= (
i−2∑
i=1

Ŝzj + Ŝzi )
∑

bi−2,si−1

(A
si−1

i−1 )bi−2,bi−1
|φLbi−2

〉|si−1〉

=
∑

bi−2,si−1

(ML
bi−2

+Msi−1
)(A

si−1

i−1 )bi−2,bi−1
|φLbi−2

〉|si−1〉,

(1.20)

which actually imposes a condition for the non-vanishing entries of (A
si−1

i−1 )bi−2,bi−1
, i.e.

ML
bi−1

= ML
bi−2

+Msi−1
. (1.21)

Similarly we have

MR
bi

= MR
bi+1

+Msi+1
. (1.22)

It implies that the matrices [Ai−1]bi−2si−1,bi−1
and [Bi+1]bi,si+1bi+1

take a block structure. The

above equations can be regarded as the continuity equation if we think of the quantum

9
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−1/2
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−1/2
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1/2

3/2

−1/2
−1/2 −3/21/2

1/2

3/2

−1/2
1/2 3/2−1/2

(a) (b)

Figure 1.3: (a) An example of the quantum number blocks of the orthogonality center of a
MPS that has M = 0. After rearrangement of the column and rows, the orthogonality center
becomes block diagonal. (b) The quantum number structure is unchanged after a SVD.

numbers as “curents” (see FIG. 1.2). If |ψ〉 has a total magnetization M , we will have

N∑
j=1

Ŝzj |ψ〉 = M |ψ〉

= (
i−1∑
i=1

Ŝzj + Ŝzi +
N∑

i=i+1

Ŝzj )
∑

bi−1sibi

[Ci]
si
bi−1bi
|φLbi−1

〉|si〉|φRbi〉

=
∑

bi−1sibi

(ML
bi−1

+Msi +MR
bi

)[Ci]
si
bi−1bi
|φLbi−1

〉|si〉|φRbi〉,

(1.23)

i.e. for each non-zero element [Ci]
si
bi−1bi

, we need

M = ML
bi−1

+Msi +MR
bi
, (1.24)

which means the orthogonality center is the “source” of the quantum number “currents”.

The conditions Eq. (1.21), (1.22), and (1.24) guarantees that the site tensors can be taken to

be block diagonal (FIG. 1.3(a)). Thus a SVD of Ci is also in fact carried out block-diagonally,

thus retaining the quantum number structure (FIG. 1.3(b)).
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1.4 MPS compression methods

There are three ways[45, 50] to compress a MPS of bond dimension D to D′. They are

SVD compression[45], density-matrix compression[51], and variational compression[52, 45].

Those compression methods are not limited to the situation of having two MPSs, but can be

adapted slightly in e.g. MPO application[50, 53] to an MPS and summation of MPSs[45].

The SVD compression is suitable for the case when the compression is slight and the MPS

has already in its canonical form. It has the disadvantage of one-sided dependence which

becomes especially serious if the compression is strong. The typical complexity is O(dD′D2)

The density-matrix compression is equivalent to SVD when the MPS is canonical, but it

can also work for a non-canonical MPS, for example in the MPO-MPS application. Similar

issue of one-sided dependence happens in the density-matrix compression if the compression

is strong2. The time and space complexity of this method is the highest (O(dD3)), due to

the construction of the edge tensors.

The variational way works similar as DMRG. It variationally optimize the 2-norm distance

‖|ψ〉 − |ψ̃〉‖2. When the MPS is kept in the canonical form, we do not need to solve a linear

equation. Although generally the time complexity for the matrix-vector multiplication is still

O(dD′D2), in specific cases like MPS summation[45] and MPO-MPS application[50], there

are tricks to reduce the complexity by utilizing their special structure. Just like DMRG, the

variational compression has a pitfall to get stuck in the local minimum and its convergence

speed largely depends on the initial guess. One can use the two-site variant but the local

minimum problem is not guaranteed to be solved for some systems. Usually we can first do a

SVD compression to get a good ansatz and use it as the input for the variational compression.

2In our GSE-TDVP calculation of the 2D long-range XXZ model, we actually found the side-dependence
of 〈Ŝx

i 〉 for α > 3 near the Heisenberg point, which indicates that a smaller truncation should be used in the
global subspace expansion.

11



We also noticed recently there is a tangent space method to compress the uniform MPS[54].

1.5 Matrix product operators

There is also a similar MPO representation for an operator

Ô =
∑

s1...sN ,s
′
1...s

′
N

W
s1s′1
1 · · ·W sNs

′
N

N |s1 . . . sN〉〈s′1 . . . s′N |. (1.25)

Especially we consider the MPO representation of a Hamiltonian. Any Hamiltonian for a

1D finite lattice system can be decomposed[17] as

Ĥ = ĤLi ⊗ 1̂Ri + 1̂Li ⊗ ĤRi +

ni∑
ai=1

ĥLi,ai ⊗ ĥRi,ai , (1.26)

where Li (Ri) is the part of the system left (right) to the bond between site i and i+ 1. The

recursion relation
ĤRi−1

ĥRi−1

1̂Ri−1

 =


1̂i Ĉi D̂i

0 Âi B̂i

0 0 1̂i

⊗


ĤRi

ĥRi

1̂Ri

 (1.27)

can be used to generate the site tensor Wi of the MPO of the Hamiltonian. The genera-

tion of the MPO through the recursion relation (1.27) can be interpreted as a finite state

automaton[55, 56, 45], as illustrated in FIG. 1.4. The MPO constructed in this way will

have a bond dimension DW = ni + 2.

The bond dimension DW of an MPO can grow rapidly with the interaction range. However,
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n + 2

n + 1

1

2

3

1̂ 1̂
Ĉ B̂

D̂

̂A

Figure 1.4: Finite state automaton to construct the MPO of the Hamiltonian Ĥ. The nodes
denote the ni + 2 bond indices of Wi, and the directed edges are the matrix operator entries
of Wi. Each path started from node 1 and ended at node n + 2 gives a string of matrix
operators at each site. The summation of all the paths generates the Hamiltonian.

there are exceptions. For example, if Ĥ =
∑

ij Ŝ
z
i Ŝ

z
j , we will have

Wi =


1̂i 2Ŝzi (Ŝzi )2

0 1̂i Ŝzi

0 0 1̂i

 , (1.28)

i.e. the bond dimension DW = 3 although the interaction is infinite-range. Another impor-

tant exception is the exponentially decaying interaction. Consider Ĥ =
∑

ij e
−|i−j|/ξŜzi Ŝ

z
j ,

and we will have an MPO of DW = 3, i.e.

Wi =


1̂i 2λŜzi (Ŝzi )2

0 λ1̂i Ŝzi

0 0 1̂i

 , (1.29)

where λ = e−1/ξ. More generally, we need to compress the MPO for long-range interactions

for computation efficiency. One option[55, 57] is approximating the interaction strength J(r)

by a sum of exponentials and minimizing the 2-norm distance ‖J(r) −∑m
i=1 αiλ

r
i‖, where

13



(a)

=H(i)

(b)

K(i) =

Figure 1.5: Graphic notations for the single-site and zero-site effective Hamiltonians.

m depends on the accuracy required and the targeting DW . Another option[58] would be

adapting the MPS compression methods to reduce the bond dimension of the MPO.

We can also project the Hamiltonian to the space spanned by the bond basis (orthonormal

Schmidt states) and get the effective Hamiltonians (as shown in FIG. 1.5). In terms of the

canonical form of the MPS, the single-site effective Hamiltonian H(i) can be written as

[H(i)]b′i−1s
′
ib
′
i;bi−1sibi = 〈φRb′i |〈s

′
i|〈φLb′i−1

|Ĥ|φLbi−1
〉|si〉|φRbi〉. (1.30)

Similarly using Eq (1.16) we can rewrite

|ψ〉 =
∑
aibi

[Di]aibi |φLai〉|φRbi〉, (1.31)

and get the zero-site effective Hamiltonian K(i)

[K(i)]a′ib′i;aibi = 〈φRb′i |〈φ
L
a′i
|Ĥ|φLai〉|φRbi〉. (1.32)
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1.6 Density matrix renormalization group

DMRG is a powerful algorithm to find the ground state of 1D systems and 2D stripes, the

success of which is based on the representability of MPSs for states that obey the entan-

glement area law. Here we will only focus on the DMRG for finite MPSs. The goal is to

variationally optimize an MPS |ψ〉 to minimize the energy

E =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 , (1.33)

i.e. we need to minimize 〈ψ|Ĥ|ψ〉 with the constraint 〈ψ|ψ〉 = 1. We can transform it into

an unconstrained optimization problem by introducing a Lagrange multiplier

L = 〈ψ|Ĥ|ψ〉 − λ〈ψ|ψ〉. (1.34)

The single-site DMRG considers as variational parameters only one site tensor of the MPS

at a step. If the MPS is not in its canonical form, ∂L/∂Mi = 0 will give us a generalized

eigenvalue problem

H(i)Mi − λN(i)Mi = 0, (1.35)

where H(i) = Li−1WiRi and N(i) = (M †
i−1 · · ·M †

1M1 · · ·Mi−1)(Mi+1 · · ·MNM
†
N · · ·M †

i+1).

However, if we maintain the canonical form of the MPS which is centered at site i, we will

have N(i) = I so we only need to solve a standard eigenvalue problem

H(i)Ci − λCi = 0 (1.36)

by iterative large sparse matrix eigensolvers like Lanczos or Jacobi-Davidson and get the

smallest eigenvalue and the corresponding eigenvector. Then we can use the gauge transfor-
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mation in Eq. (1.16) to move the orthogonality center to the next site, which not only keeps

the canonical form at each step but also yields a valid starting vector at the next step. We

repeat this procedure by sweeping back and forth in the system until convergence has been

reached3.

This single-site version can suffer seriously from the local minimum problem. As we have

known, neither the SVD nor the Lanczos can increase the bond dimension of each quantum

number sector or introduce new quantum number sectors to the subsystem. There are several

ways to solve the problem. The simplest thing one can do is artificially enlarging the bond

dimension by filling up zeros, but in practice it usually does not work well since it does not

effectively introduce the necessary quantum number sectors. One can of course use the two-

site variant of DMRG to allow bond dimension growth and new quantum number sectors4

in the middle bond of the two center sites in the Lanczos and SVD, but at a cost of O(d)

times complexity.

Keeping in the one-site frame, there is a trick called the noise term[59] or equivalently

the subspace expansion[60] in the MPS language, which can effectively help get out of the

local minimum. The key observation is that the quantum number of the subsystem A is

changed by quantum fluctuations due to the interaction between A and B. The MPO of the

Hamiltonian can be decomposed as

Ĥ =

DW∑
ai=1

ĤA
ai
ĤB
ai
, (1.37)

3We can check 〈ψ|Ĥ2|ψ〉 − 〈ψ|Ĥ|ψ〉2 to see if the MPS has been a good eigenstate
4Whether this strategy works also depends on the Hamiltonian. It can introduce quantum number

fluctuation for nearest-neighbor interactions, but there is a problem if the shortest-range interaction is the
next-nearest-neighbor.
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where

ĤA
ai

=
∑

s1...si,s′1...s
′
i

(W
s1s′1
1 · · ·W sis

′
i

i )ai |s1 . . . si〉〈s′1 . . . s′i|,

ĤB
ai

=
∑

si+1...sN ,s
′
i+1...s

′
N

(W
si+1s

′
i+1

i+1 · · ·W sNs
′
N

N )ai |si+1 . . . sN〉〈s′i+1 . . . s
′
N |.

(1.38)

After a Lanczos optimization at site i, we can project the action of ĤA
ai

on |ψ〉 to the space

spanned by {|φLbi−1
〉|si〉|φRbi〉} and get

[PĤA
ai
|ψ〉]b′i−1s

′
i,bi

= [HA
ai

]b′i−1s
′
i,bi−1si [Ci]

si
bi−1bi

, (1.39)

where [HA
ai

]b′i−1s
′
i,bi−1si = 〈s′i|〈φLb′i−1

|ĤA
ai
|φLbi−1

〉|si〉 = Li−1Wi. We can form a density matrix

from it

ρ̃A =

DW∑
ai=1

TrB

[
PĤA

ai
|ψ〉〈ψ|ĤA

ai
P
]
. (1.40)

Then diagonalizing

ρ′A = ρA + αρ̃A = AiS
2
iA
†
i (1.41)

is equivalent to SVD

(
Ci
√
αLi−1WiCi

)
= AiSiVi, (1.42)

which will enlarge the column space of Ci and thus introduce new basis to the ith bond if

originally bi−1si < bi and HA
ai

takes Ci out of the original column space. α is chosen to be a

small number to make sure not too many weights coming from the original reduced density

matrix ρA = TrB|ψ〉〈ψ| are dropped out in the truncation. To move the orthogonality center
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to the next site, we need

Ci+1 = A†iCiBi+1. (1.43)

Notice that we cannot multiply SiVi directly to Bi+1 as in the ordinary way since their index

dimensions do not match.

1.7 Time evolution methods

There are various methods to time evolve a MPS which can be classified into two classes.

One class of methods like time-evolving block decimation (TEBD) or MPO W I,II is trying

to approximate the time evolution operator, while the other class of methods aim to solve

the time-dependent Schrödinger equation globally or locally.

1.7.1 Time-evolving block decimation

TEBD can be implemented in the MPS language[16] and the classical system-environment

DMRG language (tDMRG)[61]. The key idea is the Trotter-Suzuki decomposition of the

time evolution operator Û(δ) = e−iδĤ of a time step δ.

Suppose we have a Hamiltonian that consists nearest-neighbor interactions

Ĥ =
N−1∑
i=1

ĥi,i+1, (1.44)

which can be further decomposed as

Ĥ = Ĥodd + Ĥeven =
∑
i odd

ĥi,i+1 +
∑
i even

ĥi,i+1. (1.45)
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To leading order, the Baker-Campbell-Hausdorff formula gives

e−iδĤ = e−iδ(Ĥodd+Ĥeven) ≈ e−iδĤodde−iδĤevene
δ2

2
[Ĥodd,Ĥeven]

≈ e−iδĤodde−iδĤeven

(
1 +

δ2

2
[Ĥodd, Ĥeven]

)
= e−iδĤodde−iδĤeven +O(δ2).

(1.46)

Inside Ĥodd, each term commutes with each other, so

e−iδĤodd =
∏
i odd

e−iδĥi,i+1 , (1.47)

and similarly for Ĥeven. We actually obtain a first-order TEBD time stepper

ÛTEBD1(δ) = e−iδĤodde−iδĤeven (1.48)

The second-order time stepper (O(δ3) error per time step) can be obtained by symmetrizing

the decomposition

ÛTEBD2(δ) = e−iδ/2Ĥodde−iδĤevene−iδ/2Ĥodd . (1.49)

Similarly we can get the fourth-order time stepper (O(δ5) error per time step)

ÛTEBD4(δ) = ÛTEBD2(δ1)ÛTEBD2(δ1)ÛTEBD2(δ2)ÛTEBD2(δ1)ÛTEBD2(δ1) (1.50)

with

δ1 =
1

4− 41/3
δ, δ2 = δ − 4δ1. (1.51)

This strategy can be generalized to divisions of the Hamiltonian intoNh internally-commuting
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summands

Ĥ =

Nh∑
α=1

Ĥα (1.52)

and each term in Ĥα can involve more than two sites as long as its exponential can be

evaluated efficiently. We have

ÛTEBD1(δ) = e−iδĤ1e−iδĤ2 · · · e−iδĤNh (1.53)

and

ÛTEBD2(δ) = e−iδ/2Ĥ1e−iδ/2Ĥ2 · · · e−iδ/2ĤNh−1e−iδĤNhe−iδ/2ĤNh−1 · · · e−iδ/2Ĥ2e−iδ/2Ĥ1 . (1.54)

1.7.2 MPO W I,II

Different from the TEBD, the MPO W I,II methods do not use the Trotter-Suzuki decom-

position but constructs an MPO of the approximate time evolution operator. Suppose the

Hamiltonian of a length L system can be written as Ĥ =
∑

x Ĥx. The time evolution

operator Û(iδ) can be Taylor expanded as

eδĤ = 1 + δ
∑
j

Ĥx + δ2/2
∑
xy

ĤxĤy + . . . . (1.55)

The W I method corresponds to applying the MPO of the approximate time evolution oper-

ator

Û I(δ) = 1 + δ
∑
x

Ĥx + δ2
∑
x≺y

ĤxĤy + δ3
∑
x≺y≺z

ĤxĤyĤz + . . . , (1.56)
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where x ≺ y means the sites that support Ĥx are strictly left to those of Ĥy. The first error

appears in the δ2 term. Contrary to the finding in Ref. [17], we notice that there can be far

more than O(L) terms omitted in δ2. Let us consider Ĥ =
∑3

i=1

∑3
j=1 Ŝ

z
i Ŝ

z
j for example.

The δ2 term in Û I(δ) for this Hamiltonian will be

(Ŝz1)2(Ŝz2)2 + (Ŝz1)2(Ŝz3)2 + (Ŝz2)2(Ŝz3)2 + (2Ŝz1 Ŝ
z
2)(Ŝz3)2 + (Ŝz1)2(2Ŝz2 Ŝ

z
3), (1.57)

which ignores 16 contributions: 6 self-interacting terms 1/2Ĥ2
x, 9 terms that Ĥx and Ĥy have

overlap with each other, and 1 non-overlapping term (2Ŝz1 Ŝ
z
3)(Ŝz2)2. So this approximation

is generally very unstable, especially for long-range interactions. A finite state automaton

can be used to construct the site tensor of Û I(δ)

W I
i =

 1̂i + δD̂i

√
δĈi

√
δB̂i Âi

 . (1.58)

The W II method gives a better approximation to the time evolution operator. It approxi-

mates the following operator to O(Lδ3) error

Û II = 1 + δ
∑
x

Ĥx +
δ2

2

∑
〈x,y〉

ĤxĤy +
δ3

6

∑
〈x,y,z〉

ĤxĤyĤz + . . . , (1.59)

where 〈x, . . . , z〉 means that for any two terms in the collection they do not cross the same

bond. As an improvement of Û I, onsite terms are captured to all orders in Û II. Additional

δ2 terms show up for the example Hamiltonian5

1

2

(
(Ŝz1)4 + (Ŝz2)4 + (Ŝz3)4

)
+

(Ŝz1)2(2Ŝz1 Ŝ
z
2) + (2Ŝz1 Ŝ

z
2)(Ŝz2)2 + (Ŝz1)2(2Ŝz1 Ŝ

z
3) + (2Ŝz1 Ŝ

z
3)(Ŝz3)2 + (Ŝz2)2(2Ŝz2 Ŝ

z
3) + (2Ŝz2 Ŝ

z
3)(Ŝz3)2

+ (2Ŝz1 Ŝ
z
2)(2Ŝz2 Ŝ

z
3),

5There is no error to useW II to construct Û II for the example Hamiltonian, since the terms in it commutes.
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(1.60)

so there are only 6 terms missing now. The site tensor takes the form

W II
i =

 Ŵ II
Di

Ŵ II
Ci

Ŵ II
Bi

Ŵ II
Ai

 . (1.61)

Using auxiliary boson fields φa and φ̄ā (a = 1, . . . , ni−1 and ā = 1, . . . , ni), the blocks in W II

are generated by the Gaussian operator defined in the space Hφ ⊗Hφ̄ ⊗Hphysical

eφ·Â·φ̄+φ·
√
δB̂+

√
δĈ·φ̄+δD̂ = Ŵ II

D + Ŵ II
C · φ̄+ φ · Ŵ II

B + φ · Ŵ II
A · φ̄+ . . . , (1.62)

where Ŵ II
D is simply the onsite term eδD̂. Since our approximation is to leading order, we can

truncate Hφa and Hφ̄ā to limit maximum occupancy to be one, i.e. φ2
a = φ̄2

ā = 0. Replacing

the fields by hard-core boson creation operators

φa → c†a, φ̄ā → c̄†ā, (1.63)

we have the operator entries in W II are the transition amplitudes in Hφ ⊗Hφ̄

Ŵ II
A;aā = 〈0, 0̄|cac̄āec

†·Â·c̄†+c†·
√
δB̂+

√
δĈ·c̄†+δD̂|0, 0̄〉

= 〈0, 0̄|cac̄āec
†
ac̄
†
āÂaā+c†a

√
δB̂a+

√
δĈāc̄

†
ā+δD̂|0, 0̄〉

Ŵ II
B;a = 〈0, 0̄|caec

†
ac̄
†
āÂaā+c†a

√
δB̂a+

√
δĈāc̄

†
ā+δD̂|0, 0̄〉

= 〈0, 0̄|caec
†
a

√
δB̂a+δD̂|0, 0̄〉

Ŵ II
C;ā = 〈0, 0̄|c̄āec

†
ac̄
†
āÂaā+c†a

√
δB̂a+

√
δĈāc̄

†
ā+δD̂|0, 0̄〉

= 〈0, 0̄|c̄āe
√
δĈāc̄

†
ā+δD̂|0, 0̄〉.

(1.64)

In the fundamental representation of the hard-core bosons, the transition amplitudes become
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Ŵ II
S =

(
δS,D δS,C;ā δS,B;a δS,A;aā

)
exp



δD̂ 0 0 0
√
δĈā δD̂ 0 0
√
δB̂a 0 δD̂ 0

Âaā
√
δB̂a

√
δĈā δD̂





1

0

0

0


. (1.65)

For a Hamiltonian that is a sum of commuting terms, we actually can utilize the auxiliary

boson fields to construct the exact MPO of the time evolution operator provided that we

keep the maximum occupancy to be large enough. In fact, the maximum occupancy of a

boson for the ith bond is equal to one plus the number of Ĥx that can across that bond in a

term
∏

x Ĥx of the Taylor expansion of the time evolution operator. Consider the example

Hamiltonian again, we can actually use a larger maximum occupancy to construct a better

approximation of Û(iδ) than the W II method. Also notice that in TEBD there is no Trotter

error for a Hamiltonian that consists of commuting terms, since e
∑
x Ĥx =

∏
x e

Ĥx . So TEBD

is exact and efficient if Ĥx is a nearest-neighbor interaction like ŜzxŜ
z
x+1. However, for all-to-

all interacting Hamiltonian like
∑

ij Ŝ
z
i Ŝ

z
j , we will need O(L3) number of SWAP operations

which make TEBD quite inefficient although it is exact.

1.7.3 Time-dependent variational principle

The time-dependent variational principle (TDVP)[62] corresponds to project the time-dependent

Schrödinger equation to the tangent space of the MPS manifoldM|ψ[M ]〉 at the current time

t, i.e.

i
d

dt
|ψ[M ]〉 = P̂TM|ψ[M ]〉Ĥ|ψ[M ]〉. (1.66)
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The one-site tangent space projector can be decomposed as

P̂TM|ψ[M ]〉 =
N∑
n=1

P̂L
n−1 ⊗ 1̂n ⊗ P̂R

n+1 −
N−1∑
n=1

P̂L
n ⊗ P̂R

n+1, (1.67)

where

P̂L
n =

mn∑
bn=1

|φLbn〉〈φLbn|,

P̂R
n =

mn−1∑
bn−1=1

|φRbn−1
〉〈φRbn−1

|.
(1.68)

With the tangent space projector, the right hand side of Eq (1.66) becomes

P̂TM|ψ[M ]〉Ĥ|ψ[M ]〉 =
N∑
n=1

∑
b′n−1s

′
nb
′
n;bn−1snbn

|φLb′n−1
〉|s′n〉|φRb′n〉[H(n)]b′n−1s

′
nb
′
n;bn−1snbn [Cn]snbn−1bn

−
N−1∑
n=1

∑
a′nb
′
n;anbn

|φLa′n〉|φ
R
b′n
〉[K(n)]a′nb′n;anbn [Dn]anbn .

(1.69)

Actually Eq (1.66) can be integrated into the form

|ψ(t+ ∆t)〉 = exp [−iP̂TM|ψ[M ]〉Ĥ∆t]|ψ(t)〉. (1.70)

The exponential operator in the right hand side can be splitted by the Lie-Trotter decom-

position. To first order, it formally becomes

exp [−iP̂TM|ψ[M ]〉Ĥ∆t] = exp

[
−i

N∑
n=1

P̂L
n−1 ⊗ 1̂n ⊗ P̂R

n+1Ĥ∆t+ i
N−1∑
n=1

P̂L
n ⊗ P̂R

n+1Ĥ∆t

]

= exp [−iP̂L
N−1 ⊗ 1̂NĤ∆t] exp [iP̂L

N−1 ⊗ P̂R
N Ĥ∆t]

exp [−iP̂L
N−2 ⊗ 1̂N−1 ⊗ P̂R

N Ĥ∆t] . . .

exp [iP̂L
1 ⊗ P̂R

2 Ĥ∆t] exp [−i1̂1 ⊗ P̂R
2 Ĥ∆t] +O(∆t2).

(1.71)
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Higher order decomposition can be derived accordingly. The decomposition above enables

us to integrate the differential equation iteratively, i.e. at step n we assume only Cn is

time-dependent so we only need to solve the local effective equations

i
d

dt
Cn(t) = H(n)Cn(t),

−i
d

dt
Dn(t) = K(n)Dn(t).

(1.72)

Besides the Trotter error, there are errors from the projection to the tangent space, i.e.

‖(1̂− P̂TM|ψ[M ]〉)Ĥ|ψ[M ]〉‖. (1.73)

The projection error can be estimated according to section III. F of [63] and [64]. The

key observation is that both the projection error and the Trotter error dependend on the

tangent space projector. Consider the limit that the states of which the projector consists

form a complete basis. Then the projector is simply an identity operator. Consequently

Eq. (1.73) becomes zero and each term in the Lie-Trotter splitting commutes with each

other so the Trotter error also becomes zero. In other words, Ĥ|ψ[M ]〉 is still in the same

manifold MMPS so the projection does not take any effect and the equation becomes the

exact Schrödinger equation and the left hand side can be exactly equal to the right hand side

of (1.66). However, exactly complete basis is not reachable when the system size becomes

large and we always need to compress the MPS to have a finite bond dimension. To reduce

the errors, the key is to get an approximate projector of certain bond dimension as close to

the identity as possible. Since P̂T|ψ[M ]〉MMPS
originates from the variational ansatz itself, the

problem becomes how to obtain a good enough basis set for the variational ansatz. Although

the physical variational ansatz is always the time-evolving state which is unchangeable, the

MPS representation of it can indeed be varied through the gauge freedom. For example, the

MPS representation of a product state do not necessarily have bond dimension to be one but

can have the maximum bond dimension allowed at each bond with the orthogonality center
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being rank one, and therefore we can have complete bases for P̂L and P̂R even for a product

state. If we re-orthogonalize the MPS, the bond dimension will shrink back to one, but if a

time evolution is immediately followed at the orthogonality center, the bond dimension can

be maintained.

1.8 Finite temperature

Using time evolution methods to simulate a thermal ensemble at finite temperature requires

to deal with the mixed states. One can imaginary time evolve the MPO of identity[65] to

get the density matrix e−βĤ of a mixed state at temperature T = 1/β. Two alternative ways

exist within the MPS framework based on representation of pure states, which we described

below.

1.8.1 Purification

A mixed state on the Hilbert space HP of a physical system P can be understood as the

partial trace of the density matrix of a pure state on HP ⊗ HQ, where the ancilla Q is a

replica of P . We call

|ψ〉 =
r∑

a=1

sa|a〉p|a〉Q (1.74)

a purification of

ρP =
r∑

a=1

s2
a|a〉PP 〈a| = TrQ|ψ〉〈ψ|. (1.75)
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A thermal density matrix can be written as

ρβ = Z(β)−1e−βĤ = Z(β)−1e−βĤ/21̂e−βĤ/2 =
Z(0)

Z(β)
e−βĤ/2ρ0e

−βĤ/2, (1.76)

where ρ0 is the thermal density matrix at infinite temperature and can be purified as

ρ0 = TrQ|ψ0〉〈ψ0|. (1.77)

Therefore we have

ρβ =
Z(0)

Z(β)
TrQ

[
e−βĤ/2|ψ0〉〈ψ0|e−βĤ/2

]
. (1.78)

A thermofield double state is defined as

|TFD〉 =
1√
Z(β)

e−βĤ/2|ψ0〉. (1.79)

The weights of a density matrix should be summed to one, so

1 = TrPρβ = Z(0)TrPTrQ|TFD〉〈TFD| = Z(0)〈TFD|TFD〉 (1.80)

and thus Z(0) = 1/〈TFD|TFD〉. Then the expectation value of an operator is given by

〈Ô〉β = TrP

[
Ôρβ

]
= Z(0)TrPTrQ

[
Ô|TFD〉〈TFD|

]
=
〈TFD|Ô|TFD〉
〈TFD|TFD〉 . (1.81)

Now we need to determine the the purified state at infinite temperature, |ψ0〉. All dN weights

in ρ0 should be equal

ρ0 = Z(0)−11̂ = Z(0)−1
∑
s1...sN

|s1 . . . sN〉PP 〈s1 . . . sN |, (1.82)
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so Z(0) = dN . The identity matrix can be factorized as tensor products of local identity

matrices

ρ0 =
1

dN
1̂ =

N⊗
i=1

(
1

d
1̂i

)
, (1.83)

where 1̂i can be understood as the partial trace over the ancilla of a physical site

1

d
1̂i =

∑
si

1

d
|si〉PP 〈si| = TrQ

[(∑
si

1√
d
|si〉P |si〉Q

)(∑
si

1√
d
P 〈si|Q〈si|

)]
, (1.84)

i.e. the purification |ψ0〉 should be a state that maximally entangles P and Q

|ψ0〉 =
N⊗
i=1

(∑
si

1√
d
|si〉P |si〉Q

)
=
∑
s1...sN

1√
dN
|s1 . . . sN〉P |s1 . . . sN〉Q. (1.85)

Notice that there is a freedom to perform unitary transformations on the ancilla which leaves

the physics unchanged. This freedom can be used to reduce the entanglement[66, 67, 68, 69]

of |TFD〉 and in further real time evolution (e.g. to calculate Green’s functions).

Naive purification can have problems at low temperature T → 0. Assume the ground state

energy of P is zero. When T → 0, i.e. β →∞, the action of e−βĤ/2 will project |ψ0〉 to the

ground state of P . In the energy representation,

|ψ0〉 =
1√
dN

∑
n

|En〉P |En〉Q

lim
β→∞

e−βĤ/2|ψ0〉 =
1√
dN
|E0〉P |E0〉Q,

(1.86)

i.e |TFD〉 becomes a product state between P and Q at zero temperature. If |E0〉P can be

accommodated in an MPS of bond dimension D, then |E0〉P |E0〉Q will need an MPS of bond

dimension D2 if we take a zigzag path in the ladder (purification of a chain), i.e. alternate

P site and Q site. Then the Lanczos and SVD will have a complexity O(D6), compared to
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O(D3) for the DMRG to search for a pure state |E0〉P . But this problem can in principle

disappear, since purification is not unique and we can do a unitary transformation on Q to

disentangle |E0〉Q to a product state without affecting the physical observables in P .

Contrary to what have been claimed in Ref. [45], there should be no big problem for

purification at high T . Although the equal Schmidt values 1/
√
dN at T =∞ can be evolved

to be unequal but similar, this does not mean it cannot be encoded efficiently by an MPS.

This can be obvious if we regard site i of P and site i of Q as one effective “supersite”.

Starting from a product state between the supersites at T =∞, the amount of entanglement

introduced by the action of e−βĤ/2 at short time β (high T ) should be small.

Let us take as an example a spin-1/2 system of 2 P sites and 2 Q sites with Ĥ = 3/4+ Ŝ1 · Ŝ2.

At infinite temperature β = 0, the purification

|ψ〉 =
1

2
(| ↑↑〉P | ↑↑〉Q + | ↑↓〉P | ↑↓〉Q + | ↓↑〉P | ↓↑〉Q + | ↓↓〉P | ↓↓〉Q)

=
1

2
(| ↑↑〉+ | ↓↓〉)1 ⊗ (| ↑↑〉+ | ↓↓〉)2 .

(1.87)

e−βĤ/2 can be diagonalized as

e−βĤ/2 =
3∑

n=0

e−βEn/2|n〉〈n|, (1.88)

where E0 = 0 and E1 = E2 = E3 = 1 with

|0〉 =
1√
2

(| ↑↓〉P − | ↓↑〉P )

|1〉 = | ↓↓〉P

|2〉 =
1√
2

(| ↑↓〉P + | ↓↑〉P )

|3〉 = | ↑↑〉P .

(1.89)
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Then

e−βĤ/2|ψ〉 =
1

2

[
e−β/2| ↑↑〉P | ↑↑〉Q

+
1

2
(1 + e−β/2)| ↑↓〉P | ↑↓〉Q +

1

2
(−1 + e−β/2)| ↓↑〉P | ↑↓〉Q

+
1

2
(−1 + e−β/2)| ↑↓〉P | ↓↑〉Q +

1

2
(1 + e−β/2)| ↓↑〉P | ↓↑〉Q

+ e−β/2| ↓↓〉P | ↓↓〉Q
]
,

(1.90)

which can be rearranged as

e−βĤ/2|ψ〉 =
1

2

[
| ↑↑〉1

(
e−β/2| ↑↑〉2 +

1

2
(1 + e−β/2)| ↓↓〉2

)
+

1

2
(−1 + e−β/2) (| ↓↑〉1| ↑↓〉2 + | ↑↓〉1| ↓↑〉2)

+ | ↓↓〉1
(

1

2
(1 + e−β/2)| ↑↑〉2 + e−β/2| ↓↓〉2

)]
.

(1.91)

To calculate the entanglement between (PQ)1 and (PQ)2, we only need to SVD the matrix



e−β/2 0 0 1
2
(1 + e−β/2)

0 0 1
2
(−1 + e−β/2) 0

0 1
2
(−1 + e−β/2) 0 0

1
2
(1 + e−β/2) 0 0 e−β/2


. (1.92)

At high temperature β = 0.1, the singular values are 1.927, 0.024, 0.024, 0.024. This means

we can drop out the latter three Schmidt states with truncation error about 10−4. This

example shows that unless long tails are developed in the singular value distribution, MPS

is still capable to encode the entanglement growth at small β, even though the weights in

Eq. (1.90) are similar but unequal.
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1.8.2 Minimally entangled typical thermal states

To avoid the problem of purification when T → 0, we can use instead a method[70, 71]

called minimally entangled typical thermal states (METTS), which is based on Monte Carlo

sampling over a cleverly chosen set of states that can be represented efficiently by MPSs.

The thermal average of an operator Ô at temperature 1/β is given by

〈Ô〉β =
1

Z(β)
Tr
[
Ôe−βĤ

]
=

1

Z(β)

∑
n

e−βEn〈n|Ô|n〉, (1.93)

where |n〉 is a energy eigenstate of En. In Monte Carlo, it is standard to write 〈Ô〉β as

〈Ô〉β =
1

Z(β)

∑
i

〈i|e−βĤ/2Ôe−βĤ/2|i〉 =
∑
i

Pβ(i)

Z(β)
〈φβ(i)|Ô|φβ(i)〉 = 〈φβ(i)|Ô|φβ(i)〉, (1.94)

where {|i〉} is a set of orthonormal basis of the system and

|φβ(i)〉 = Pβ(i)−1/2e−βĤ/2|i〉 (1.95)

with normalization factor Pβ(i)−1/2 = 〈i|e−βĤ |i〉. Since
∑

i Pβ(i)/Z(β) = Z(β)−1Tre−βĤ = 1,

we can estimate the expectation 〈Ô〉β by sampling |φβ(i)〉 with the probability Pβ(i)/Z(β)

and calculate the average of 〈φβ(i)|Ô|φβ(i)〉 in a random experiment. |φβ(i)〉 is called a

METTS if |i〉 is chosen to be a classical product state

|i〉 = |si1〉|si2〉 . . . |siN〉, (1.96)

which can be represented by an MPS with bond dimension D = 1.

To sample with the correct probability distribution at β, we can generate a Markov chain of
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states with the transition probability

Tβ(i→ i′) = |〈i′|φβ(i)〉|2 (1.97)

which satisfies the detailed balance

Pβ(i)Tβ(i→ i′) = Pβ(i′)Tβ(i′ → i). (1.98)

Start from a random classical state i1, the kth iteration of the algorithm proceeds as follows:

1. Do imaginary time evolution and normalization to |ik〉 and get |φβ(ik)〉.

2. Evaluate 〈φβ(ik)|Ô|φβ(ik)〉.

3. Collapse the state |φβ(ik)〉 to a new classical product state |ik+1〉 by quantum measure-

ments according to the transition probability Tβ(ik → ik+1).

Notice the collapse in step 3 can be done very efficiently with MPS by using the canonical

form and the fact that the resulting state after a collapse is a product state of local states

on all collapsed sites and the uncollapsed remainder[45]. We repeat the above steps until we

get a Markov chain of enough length R. The thermal average is then approximated by

〈Ô〉 ≈ 1

R

R∑
k=1

〈φβ(ik)|Ô|φβ(ik)〉. (1.99)
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Chapter 2

Density-matrix-renormalization-group

study of a one-dimensional diatomic

molecule beyond the

Born-Oppenheimer approximation

The content of this chapter is from Ref. [42].

2.1 Introduction

The Born-Oppenheimer (BO) approximation[72] has been the starting point of solid state

physics and quantum chemistry since it was first introduced in 1927. Treating the degrees of

freedom of the nuclei adiabatically turns out to be a satisfactory approximation because the

mass of the nucleus is more than 103 times of the electron mass even for the lightest atom -

hydrogen.
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However, the BO approximation is no longer valid for exotic systems such as the positronium

molecule[73, 74, 75] which consists of two positrons and two electrons, and the emergent

biexciton molecule[76] which consists of two holes and two electrons in semiconductors,

because their masses are equal or nearly so. In high precision spectroscopy experiments

or in systems where energy levels cross, non-adiabatic effects involving the motions of the

nuclei require a theoretical treatment beyond the BO approximation[77]. Such systems

are difficult to treat analytically. Various numerical approaches, such as the stochastic

variational method (SVM)[78, 79, 80], quantum Monte Carlo (QMC) methods[81, 82], and

Exact Factorization[77, 83, 84] combined with Density Functional Theory (DFT), have been

applied to explore the spectrum of the systems in two or three dimensions and have correctly

predicted the bound ground state[74] and possible bound excited states[79, 80] later proved

by experiments[75].

The hydrogen molecule (H2) and the positronium molecule (Ps2) are in nearly opposite limits

of mass ratios between the nuclei and electrons, 1836:1 vs 1:1, corresponding to adiabatic

and non-adiabatic limits, respectively. Unlike H2, for which the BO approximation can be

used to simplify the numerical treatments[85], the non-adiabatic features of Ps2 requires

a complete four-body treatment. The electrons in H2 can be in either a bonding or anti-

bonding state, corresponding to a spin singlet or triplet respectively, and the anti-bonding

state is unstable against dissociation into two atoms. There are also two types of nuclear spin

states, called spin isomers, with the singlet known as para-hydrogen and the triplet known

as ortho-hydrogen. In Ps2, if both the electrons and positrons are in spin singlet states,

the molecule is bound, while the triplet-triplet excited state is unbound[78, 79, 80, 86, 87].

Similar behavior is found for the biexciton, which has a typical mass ratio me/mh = 0.67.

Therefore, a crossover where the spin state of the “nuclei” starts to influence the binding

of the molecule should exist when one tunes the mass ratio from that of H2 to that of Ps2,

corresponding to the breakdown of the BO approximation.
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Recently, Fisher and Radzihovsky have argued that nuclear spin can cause significant changes

in chemical reactions even at room temperature[88]. In this article, we use the density matrix

renormalization group (DMRG) method[1, 89] to study a 1D version of H2 with mass ratio

1 ≤ mp/me ≤ 1000 with high precision1. While systems with four quantum particles have

previously been studied for 2D and 3D, our technique can easily extend to dozens of 1D

particles, beyond the reach of many 2D and 3D techniques.

Using DMRG, we are able to find the ground state of a one dimensional fermionic four-

body system, i.e. the diatomic molecule with tunable mass ratio, and measure its physical

observables such as the ground state energy, density-density correlation, and entanglement

between particles. In the regime of mass ratio mp/me � 1 as a benchmark, the results

match the BO approximation, as expected. At mass ratio mp/me = 1, our results match

the behavior of 3D Ps2: its singlet-singlet four-body ground state is bound while the triplet-

triplet state is unbound in 1D. However, contradicting with previous SVM results in 3D[87,

86, 80], the triplet-singlet state is unbound in 1D. (Note that it is not an eigenstate of Ps2

because of the requirement of symmetry of charge conjugation. Our nuclei and electrons

are always distinguishable particles). We find that the mass ratio where these unbound

states become bound is mp/me = 2.73 for our chosen parameters of the interaction, while

the singlet-singlet state is bound for all the mass ratios. Obtaining the energies and the

average separations of nuclei at different mass ratios mp/me of the singlet-singlet state and

the triplet-singlet state, we study the passage between the adiabatic and non-adiabatic limit.

The outline of this article is as follows: first, we will introduce the microscopic model and

explain the numerical techniques; then, the results from our DMRG calculations will be

illustrated and a comparison to the Hartree-Fock mean field calculation will be made; finally,

we will discuss the potential of our method to be used in other 1D few-body systems and

many-body systems.

1We did not remove the center of mass motion because it will lead to additional coupling terms in the
Hamiltonian[84, 90, 87].
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Figure 2.1: Ladder arrangement of grid points describing the discretized 1D systems. A
DMRG sweep is along the zig-zag route (black arrows), where the red grid points in the
upper leg represent the lattice sites for the nuclei and the blue in the bottom leg represents
the electrons. The total number of sites is 2NL, where NL = L/∆x, L is the size of the 1D
system, and ∆x is the grid spacing. The dashed outline shows three adjacent sites grouped
together as part of the three-site DMRG algorithm.

2.2 Model

The Hamiltonian for a 1D system of interacting spin-1
2

nuclei (“protons” with coordinates

Xi and mass mp) and electrons (with coordinates xi and mass me) is given by

H = −
Ne∑
i=1

1

2me

d2

dx2
i

−
Np∑
i=1

1

2mp

d2

dX2
i

+
∑
i≥j

V (xi − xj) +
∑
i≥j

V (Xi −Xj) −
∑
ij

V (xi −Xj), (2.1)

where the spin index has been omitted. Ne and Np are the total number of electrons and

nuclei respectively. For our H2-like diatomic system, we have Ne = 2 and Np = 2. V is the

“Coulomb” interaction whose form will be given in the next section, with the intra-species

interactions being repulsive and inter-species interactions being attractive. We use atomic

units, so ~ = 1 and e = 1. The mass of the particle is measured in units of me, so if we

denote the mass ratio mp/me = M , then me = 1,mp = M .
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V
<latexit sha1_base64="jXVIAD75cCzMbV4GaC5BODvi1Yw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF48t2A9oQ91sJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJb3ZpqgH9GR5CFn1Fip2R6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqD3kcRTiDc7gED2pQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Au7eM+A==</latexit><latexit sha1_base64="jXVIAD75cCzMbV4GaC5BODvi1Yw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF48t2A9oQ91sJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJb3ZpqgH9GR5CFn1Fip2R6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqD3kcRTiDc7gED2pQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Au7eM+A==</latexit><latexit sha1_base64="jXVIAD75cCzMbV4GaC5BODvi1Yw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF48t2A9oQ91sJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJb3ZpqgH9GR5CFn1Fip2R6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqD3kcRTiDc7gED2pQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Au7eM+A==</latexit><latexit sha1_base64="jXVIAD75cCzMbV4GaC5BODvi1Yw=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeCF48t2A9oQ91sJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJb3ZpqgH9GR5CFn1Fip2R6UK27VXYCsEy8nFcjRGJS/+sOYpRFKwwTVuue5ifEzqgxnAmelfqoxoWxCR9izVNIItZ8tDp2RC6sMSRgrW9KQhfp7IqOR1tMosJ0RNWO96s3F/7xeasIbP+MySQ1KtlwUpoKYmMy/JkOukBkxtYQyxe2thI2poszYbEo2BG/15XXSvqp6btVrXlfqD3kcRTiDc7gED2pQhztoQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4Au7eM+A==</latexit>

�V
<latexit sha1_base64="lAqkZiXrpuBTdpsGUfFV1UZQV4Y=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4McyI6y3gxWMUs0AyxJ5OT9Kkp2forhHCkD/w4kERr/6RN//GziK4Pih4vFdFVb0gkcKg6747ubn5hcWl/HJhZXVtfaO4uVU3caoZr7FYxroZUMOlULyGAiVvJprTKJC8EQwuxn7jjmsjYnWDw4T7Ee0pEQpG0UrXB/VOseSWj13v/MQjv4lXdicowQzVTvGt3Y1ZGnGFTFJjWp6boJ9RjYJJPiq0U8MTyga0x1uWKhpx42eTS0dkzypdEsbalkIyUb9OZDQyZhgFtjOi2Dc/vbH4l9dKMTzzM6GSFLli00VhKgnGZPw26QrNGcqhJZRpYW8lrE81ZWjDKdgQPj8l/5P6Ydlzy97VUalyO4sjDzuwC/vgwSlU4BKqUAMGIdzDIzw5A+fBeXZepq05ZzazDd/gvH4AhIeNcQ==</latexit><latexit sha1_base64="lAqkZiXrpuBTdpsGUfFV1UZQV4Y=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4McyI6y3gxWMUs0AyxJ5OT9Kkp2forhHCkD/w4kERr/6RN//GziK4Pih4vFdFVb0gkcKg6747ubn5hcWl/HJhZXVtfaO4uVU3caoZr7FYxroZUMOlULyGAiVvJprTKJC8EQwuxn7jjmsjYnWDw4T7Ee0pEQpG0UrXB/VOseSWj13v/MQjv4lXdicowQzVTvGt3Y1ZGnGFTFJjWp6boJ9RjYJJPiq0U8MTyga0x1uWKhpx42eTS0dkzypdEsbalkIyUb9OZDQyZhgFtjOi2Dc/vbH4l9dKMTzzM6GSFLli00VhKgnGZPw26QrNGcqhJZRpYW8lrE81ZWjDKdgQPj8l/5P6Ydlzy97VUalyO4sjDzuwC/vgwSlU4BKqUAMGIdzDIzw5A+fBeXZepq05ZzazDd/gvH4AhIeNcQ==</latexit><latexit sha1_base64="lAqkZiXrpuBTdpsGUfFV1UZQV4Y=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4McyI6y3gxWMUs0AyxJ5OT9Kkp2forhHCkD/w4kERr/6RN//GziK4Pih4vFdFVb0gkcKg6747ubn5hcWl/HJhZXVtfaO4uVU3caoZr7FYxroZUMOlULyGAiVvJprTKJC8EQwuxn7jjmsjYnWDw4T7Ee0pEQpG0UrXB/VOseSWj13v/MQjv4lXdicowQzVTvGt3Y1ZGnGFTFJjWp6boJ9RjYJJPiq0U8MTyga0x1uWKhpx42eTS0dkzypdEsbalkIyUb9OZDQyZhgFtjOi2Dc/vbH4l9dKMTzzM6GSFLli00VhKgnGZPw26QrNGcqhJZRpYW8lrE81ZWjDKdgQPj8l/5P6Ydlzy97VUalyO4sjDzuwC/vgwSlU4BKqUAMGIdzDIzw5A+fBeXZepq05ZzazDd/gvH4AhIeNcQ==</latexit><latexit sha1_base64="lAqkZiXrpuBTdpsGUfFV1UZQV4Y=">AAAB6XicdVDJSgNBEK2JW4xb1KOXxiB4McyI6y3gxWMUs0AyxJ5OT9Kkp2forhHCkD/w4kERr/6RN//GziK4Pih4vFdFVb0gkcKg6747ubn5hcWl/HJhZXVtfaO4uVU3caoZr7FYxroZUMOlULyGAiVvJprTKJC8EQwuxn7jjmsjYnWDw4T7Ee0pEQpG0UrXB/VOseSWj13v/MQjv4lXdicowQzVTvGt3Y1ZGnGFTFJjWp6boJ9RjYJJPiq0U8MTyga0x1uWKhpx42eTS0dkzypdEsbalkIyUb9OZDQyZhgFtjOi2Dc/vbH4l9dKMTzzM6GSFLli00VhKgnGZPw26QrNGcqhJZRpYW8lrE81ZWjDKdgQPj8l/5P6Ydlzy97VUalyO4sjDzuwC/vgwSlU4BKqUAMGIdzDIzw5A+fBeXZepq05ZzazDd/gvH4AhIeNcQ==</latexit>

...<latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit><latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit><latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit><latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit>...<latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit><latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit><latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit><latexit sha1_base64="ElEPiqyP3whhRzVoJv3FjSa5oaM=">AAAB6nicdVDJSgNBEK2JW4xb1KOXxiB4GmbE9Rbw4jGiWSAZQk+nJmnS0zN09whhyCd48aCIV7/Im39jZxFcHxQ83quiql6YCq6N5707hYXFpeWV4mppbX1jc6u8vdPQSaYY1lkiEtUKqUbBJdYNNwJbqUIahwKb4fBy4jfvUGmeyFszSjGIaV/yiDNqrHTjum63XPHcE8+/OPXJb+K73hQVmKPWLb91egnLYpSGCap12/dSE+RUGc4EjkudTGNK2ZD2sW2ppDHqIJ+eOiYHVumRKFG2pCFT9etETmOtR3FoO2NqBvqnNxH/8tqZic6DnMs0MyjZbFGUCWISMvmb9LhCZsTIEsoUt7cSNqCKMmPTKdkQPj8l/5PGket7rn99XKnyeRxF2IN9OAQfzqAKV1CDOjDowz08wpMjnAfn2XmZtRac+cwufIPz+gG3G42L</latexit>

...<latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit><latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit><latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit><latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit>...<latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit><latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit><latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit><latexit sha1_base64="dQTcNJsos67DVxaPpNT8A9TOlRo=">AAAB6nicdVDLSgNBEOyNrxhfUY9eBoPgaZmNSxJvAS8eI5oHJEuYncwmQ2YfzMwKYcknePGgiFe/yJt/42wSQUULGoqqbrq7/ERwpTH+sApr6xubW8Xt0s7u3v5B+fCoo+JUUtamsYhlzyeKCR6xtuZasF4iGQl9wbr+9Cr3u/dMKh5Hd3qWMC8k44gHnBJtpFvbtoflCrYvG7WqW0PYxrjuVJ2cVOvuhYsco+SowAqtYfl9MIppGrJIU0GU6js40V5GpOZUsHlpkCqWEDolY9Y3NCIhU162OHWOzowyQkEsTUUaLdTvExkJlZqFvukMiZ6o314u/uX1Ux00vIxHSapZRJeLglQgHaP8bzTiklEtZoYQKrm5FdEJkYRqk07JhPD1KfqfdKq2g23nxq00+SqOIpzAKZyDA3VowjW0oA0UxvAAT/BsCevRerFel60FazVzDD9gvX0Ct66Niw==</latexit>
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Figure 2.2: Illustration of the hopping and the interaction parameters. tp and te are the
hopping parameters which can be the nearest-neighbor or the next-nearest-neighbor for the
nuclei and electrons respectively.

2.3 Numerical Techniques

We need first to discretize the continuous system into a lattice in order to use DMRG to

study it. First, we write the Hamiltonian (2.1) in second quantized form in terms of field

operators

H =

∫
dxφ†α,s(x)

[
− 1

2mα

d2

dx2

]
φα,s(x)

+
1

2

∫∫
dxdx′Vαβ(x − x′)φ†α,s(x)φ†β,s′(x

′)φβ,s′(x
′)φα,s(x), (2.2)

where α, β ∈ {p, e}, s, s′ ∈ {↑, ↓}, and Vαβ = V if α = β and Vαβ = −V if α 6= β. The

Einstein summation convention has been used. The field operators satisfy the canonical

anti-commutation relation for fermions

{φ†α,s(x), φβ,s′(y)} = δ(x− y)δαβδss′ .

Notice that we choose the interspecies operators to anti-commute. This does not matter as

long as we keep the different species of particles distinguishable in the implementation.

The discretization of the field operator φ†α,s(x = xi = (i − 1
2
)∆x) = 1√

∆x
c†i,α,s with grid
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spacing ∆x can be understood as an approximate canonical transformation

φ†α,s(x) ≈
NL∑
i=1

ψi(x)c†i,αs (2.3)

with the orthonormal (approximately complete) basis set being

ψi(x) =


1√
∆x

, if (i− 1)∆x ≤ x < i∆x;

0, otherwise,

(2.4)

and thus the the density operator being

ρα,s(x) ≡ φ†α,sφα,s ≈
1

∆x
c†i,αsci,αs ≡

1

∆x
ni,αs (2.5)

for (i− 1)∆x ≤ x < i∆x.

Combined with the fourth order finite-difference formula for the second derivative

d2φ(x)

dx2
=

1

12(∆x)2

[
− φ(x+ 2∆x) + 16φ(x+ ∆x)

− 30φ(x) + 16φ(x −∆x) − φ(x − 2∆x)
]

+ O((∆x)4),

the Hamiltonian is discretized to be

H =
∑
i,α

tα0ni,α +
∑
〈i,j〉,αs

tα1 c
†
i,αscj,αs +

∑
〈〈i,j〉〉,αs

tα2 c
†
i,αscj,αs

+
∑
i,α

V (0)ni,α↑ni,α↓ −
∑
i

V (0)ni,pni,e +
∑
i>j,αβ

V αβ
ij ni,αnj,β, (2.6)

where ni,α = niα↑ + niα↓ = ∆x
∑

s ρα,s(xi) ≡ ∆x
∑

s φ
†
α,s(xi)φα,s(xi) =

∑
s c
†
i,αsci,αs, t

α
0 = 5

4η
,

tα1 = − 2
3η

, tα2 = 1
24η

, with η ≡ mα(∆x)2, and V αβ
ij = Vαβ((i − j)∆x). Notice that now

1 ≤ i, j ≤ NL label the site points. To fourth order in ∆x, only hoppings up to next-nearest
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neighbor remain. The discretization actually introduces a length scale ∆x into the system,

which corresponds to a cutoff in the energy scale. The larger the ∆x is, the lower is the

energy cutoff, which means we truncate the Hamiltonian to lower energy sectors. There is

an upper bound for ∆x, since it can not exceed the wavelength of the low-energy excitations.

NL = L/∆x actually limits the maximum number of particles we can put into the system,

which has similar function to the maximum number of bands in the Hubbard model within

the BO approximation. For the molecule, we use a grid spacing ∆x = 0.1, which we find is

accurate for energies to a relative error of about 10−4.

To accommodate the two oppositely charged species of particles, the geometry of the system

is represented by a two-leg ladder(FIG. 2.1), with each species living in one of the legs.

Hopping is only along the legs and the interactions can be either along the legs (repulsive)

or between the legs (attractive).

Now we explain the form of the Coulomb interaction V we use. The 1/x form of the

Coulomb potential in 1D is numerically difficult and unphysical because of its singularity

at x = 0. Instead, there are some conventional choice for one dimensional systems, e.g.

the soft Coulomb potential 1/
√
x2 + a2, which is still long ranged and has no singularity at

the origin if a 6= 0. If we are only concerned about short-range properties, an exponential

form can well approximate the long-range potential and meanwhile reduce the computational

complexity[91]. Therefore as a convenient choice, here we use a exponential potential of the

form[91]

V (x) = A exp(−κ|x|), (2.7)

where A = 1.071295 and κ−1 = 2.385345 have been shown to optimally approximate the soft

Coulomb potential with a = 1 at short range[91]. This exponential potential nicely mimics

some three dimensional electronic properties[91]. In our work, A and κ are also varied to see
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their influence on the results.

To use DMRG in the two dimensional ladder system, we take as usual the zig-zag path to

form a one dimensional Matrix Product State (MPS), i.e. the p−leg being the odd sites and

the e−leg being the even sites. In such a way, there is no hopping between nearest neighbors,

i.e. a p−site and a e−site, so the number of particles in each block cannot readily fluctuate in

a conventional 2-site DMRG sweep and the optimization will get stuck. We could introduce

a special noise term in the Hamiltonian to solve this problem[59]. Here, instead, we use

a 3-site algorithm which naturally fits the hopping structure of the system and introduces

“communication” between the next-nearest neighbors at each 3-site local update. At each

local update, a singular value decomposition (SVD) is done once only at the left bond of

the 3 sites for a left-to-right half-sweep, or the right bond for a right-to-left half-sweep. The

computational complexity comes mainly from applying the Matrix Product Operator (MPO)

to the MPS in the mixed canonical form[45]. For the two-site algorithm, the complexity is

O(D3DWd
2 + D2D2

Wd
3), where D,DW , d are respectively the bond dimension of the MPS,

MPO, and the dimension of the local Hilbert space at each site; for the three-site algorithm,

the complexity is O(D3DWd
3 + D2D2

Wd
4). So the complexity of the three-site algorithm is

about O(d) times of that of the two-site one, which is acceptable. For the singlet-singlet

state in a grid of L = 40, the number of states m needed to to achieve a truncation error of

10−10 is about 70, and the number of sweeps needed to reach energy convergence with error

smaller than 10−6 is about 160 (see FIG. 2.3). The large number of sweeps needed is due to

the fine grid spacing and large associated kinetic energy scale 1/(∆x)2.

To accelerate the calculation, we utilize a compression algorithm[35] which uses singular

value decompositions (SVDs) to reduce the bond dimension of the MPO. The factorizability

of the exponential function

Vij = λ−|i−j| = λ−iλj (i > j) (2.8)
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Figure 2.3: Comparison of the performance of 2-site algorithm with noise, without noise,
and the 3-site algorithm (without noise). Data are taken from a DMRG simulation of system
in the singlet-singlet state with M = 3, L = 40, ∆x = 0.1 with 200 sweeps. Here E0 is the
converged ground state energy calculated by DMRG after 240 sweeps.
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singlet (upper) and the triplet-singlet (bottom) ground states at different M .

indicates its MPO can be maximally compressed by SVDs. Other forms of long-range in-

teractions can be expressed in terms of a sum of exponentials and the number of significant

singular values is still controllable[35].

Unlike the Ps2 molecule, which has a charge conjugation symmetry between the electron

and positron, the nuclei and electrons in our system are distinguishable particles and the

total spin S of each species should be conserved individually. Instead of dealing with the

implementation of the global SU(2) symmetry[92], a S2
tot operator for species of particles

in the singlet state is added to the Hamiltonian for optimization in order to achieve its

conservation.

Errors of our calculation can come from: 1) discretization of the continuous system with a

grid spacing ∆x = 0.1; 2) finite size effects of order π2/4(M +1)L2 for the energy; 3) DMRG

truncation errors of order 10−10; 4) errors from incomplete convergence in the number of

sweeps, which are about 10−5.
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2.4 Results

By measuring the density of particles (FIG. 2.4) and the density-density correlations of the

nuclei (FIG. 2.5), keeping the electrons in the singlet state, we find that the triplet nuclei

system gradually becomes unbound when we decrease the mass ratio M from 5 to 1 while

the singlet nuclei system is always bound.

To characterize the binding of the molecule quantitively, we define the average separation of

the nuclei d, i.e.

d =

√∑
i(xi − xc)2ρ(xi, xc)∑

i ρ(xi, xc)
, (2.9)

where xi = i∆x, xc is the center site, and ρ(xi, xc) = 〈Φ|ρp(xi)ρp(xc)|Φ〉 is the density-density

correlation for the nuclei in ground state |Φ〉, and the binding energy Ebind, i.e.

Ebind = E(2)− 2E(1), (2.10)

where E(1) is the ground state energy of one atom consisting of one electron and one nucleus

and E(2) is the ground state energy of the diatomic molecule.

From now on, we denote the triplet-singlet state as |10〉 and the singlet-singlet state as |00〉.

For the |10〉 state, the average separation d of nuclei scales linearly with the box size L

approaching M = 1, which indicates that d → ∞ as L → ∞ at small M , i.e. the system

is unbound at small mass ratios. The error of the binding energy Ebind of the diatomic

molecule due to finite-size effects can be estimated by the ground state energy of a particle

in a box, π2/4(M + 1)L2. If we use a system size of L = 120, the error is of order 10−4

even for the smallest mass ratio M = 1, which is negligible. From the data of systems of

length L ≥ 120, it is roughly observed that the binding energy is positive when M = 3

but approaching 0− when M ≤ 2.5, which means that there should be some critical mass
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Figure 2.6: Binding energy Ebind and average separation d versus mass ratio M . The critical
mass ratio where the molecule just binds is Mc = 2.731 by extrapolation. Both the data of
the binding energy Ebind (blue square) and the average separation d (red star) for the triplet-
singlet state |10〉 are taken from systems of L = 120, while for the singlet-singlet state |00〉
the data of d are from systems of L = 40 and the data of Ebind are from extrapolation to
infinite size L. The fitting curves are Ebind = a(M −Mc) and d = b/

√
M(M −Mc) + dBO,

where a = 0.005918, b = 8.456, and dBO = 1.571.

ratio between 2.5 and 3 where the system changes from bound to unbound. To give an

upper bound on the value of the critical mass ratio, we extrapolate Ebind from the bound

side to get the critical mass ratio Mc = 2.731, which is consistent with the divergence of

d approaching Mc from the right side, as shown in FIG. 2.6. This divergent behavior of

d near Mc can also be fitted. Near unbinding, the size of the bound state becomes much

larger than the exponential potential’s decay length, so the potential becomes irrelevant and

the scaling of the binding energy is only related to the kinetic energy, i.e. Ebind ∼ 1/Md2

or d ∼ 1/
√
EbindM . Combined with the extrapolation formula Ebind = a(M −Mc), where

a = 0.005918, we get the fitting formula for d near Mc is d = b/
√
M(M −Mc) + dBO, where

b = 8.456 and dBO = 1.571. It accurately[93] predicts dBO, which is the separation of the

nuclei in the BO limit M → ∞. For the |00〉 state, by observing its binding energy Ebind

and the average separation d of the nuclei, we can conclude that it always binds.
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becomes unbound.

As we mentioned before, many studies have shown that in 3D the |00〉 ground state of Ps2

is bound and the |11〉 is unbound, with which our results at M = 1 in 1D are consistent.

However, while they predicted the |10〉 excited state is bound in 3D, we conclude in 1D it is

unbound.

In FIG. 2.7, we show the energy of the |00〉 and |10〉 states at different mass ratio M . The

energy gap ∆ between the two closes to 10−4 when M is increased to 50, where the influence

of nuclei’s spin on the binding energy is negligible.

The binding of the molecule can also be qualitatively illustrated in the adiabatic potential

energy surface (PES) Ee(X). Under the BO approximation, it is obtained by solving the

clamped-nuclei Schrödinger equation

He(X)χn,X(x) = Ee
n(X)χn,X(x) (2.11)

45



for each fixed configuration of nuclei X = (X1, ..., XNp), where x = (x1, ..., xNe) is the

coordinate of the electrons and He(X) is the Hamiltonian after separating the nuclei’s kinetic

part of the full Hamiltonian H, i.e.

H = T p +He(X)

He(X) = V pp(X) + T e + V ee + V pe(X)

(2.12)

with the nuclei fixed to certain configuration X. This separation can only be done when

M � 1 and no level crossing happens for the PES of different energy levels Ee
n so that

the nuclei are almost stationary compared to electrons and the adiabatic theorem is valid.

Nevertheless, for diatomic molecule at small mass ratio, we can still give an effective definition

of the PES:

Ee(R) =
〈Φ′|He|Φ′〉
〈Φ′|Φ′〉 , (2.13)

where

|Φ′〉 = ρ̂p(xc +R/2)ρ̂p(xc −R/2)|Φ〉 (2.14)

is the state after successively measuring (projecting) the density of nuclei at xc + R/2 and

xc+R/2 in the eigenstate |Φ〉 of H (here |Φ〉 is the ground state calculated by DMRG). This

measurement projects |Φ〉 to the Hilbert subspace that has one nucleus at xc−R/2 and the

other one at xc + R/2. When M � 1, Ee is equivalent to Ee in the BO approximation, as

illustrated in FIG. 2.8. At smaller M , however, T p + Ee is only part of an effective nuclear

Hamiltonian and feedback from the nuclei’s motion needs to be taken into consideration[84,

94]. Nevertheless, we can still infer some information from FIG. 2.8 about the binding of

the molecule at small M .

For the |10〉 state, the overlap between the curves obtained from the BO approximation and
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Figure 2.8: Potential energy surfaces (PES) at different mass ratio and box size. M =
mp/me is the mass ratio and L is the box size. |10〉 and |00〉 denotes the triplet-singlet
state and singlet-singlet state respectively. BO denotes the PES in the Born-Oppenheimer
approximation.

from DMRG when M ≥ 10 implies that the BO approximation works pretty well in that

regime. For M ∼ 1, the depth of the PES decreases and the minimum of the PES moves

farther away from the equilibrium position of the BO approximation. Considerable finite

size effect appears when M = 1, which can be seen by comparing the curves before and

after increasing the box size. These two qualitative facts indicate that the molecule in |10〉

might be unbound when M ∼ 1, although it should not be conclusive since Ee defined by

Eq. (2.13) ignores part of the non-adiabatic effects from the motion of the nuclei.

For the |00〉 state, the curves coincide with that of the |10〉 state when M > 10, which

indicates in that regime the spin of the nuclei does not affect the binding of the molecule

and can be treated classically. When M = 1, however, the PES of the |00〉 state differs from

that of the |10〉 state by being much deeper and having a minimum closer to the origin,

which verifies the binding nature of the |00〉 state.

By tuning the parameters A and κ of the exponential potential and using other forms such

as the soft-Coulomb or rounded exponential V (x) = A exp(−κ
√
x2 + 1/4) (not illustrated
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are all taken from system of L = 40.

here), we find that |00〉 is always bound for all M independent of the specific form of the

interaction. For |10〉, the critical mass ratio Mc where the molecule becomes unbound is

changed with the shape of the potential, i.e. κ and A, and the form of the potential.

We also investigated the case of spinless bosonic nuclei, which turns out to be equivalent to

the singlet fermion nuclei case because they have the same symmetry requirement for the

spatial part of the wavefunction.

In a molecule, the Hartree-Fock (HF) approximation is often a good starting point. However,

without the BO approximation, the separation between an electron and a nucleus appears

as a two-particle correlation, rather than a single-particle effect. This fact makes a simple

generalization of HF a poor approximation, which is illustrated in FIG. 2.9, where we did

unrestricted Hartree-Fock mean field calculations both within and beyond the BO approx-

imation in a discretized grid for the diatomic molecule as a comparison. Unlike HF under
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BO, which includes the nuclei’s interaction with electrons by introducing an external po-

tential after fixing the position of the nuclei at the equilibrium positions and optimizes the

electrons’ orbitals, our non-BO UHF ansatz of the whole diatomic molecule is a factorization

into Slater determinants of electrons and nuclei, where the single-particle wavefunctions of

both species are optimized.

At the large mass ratio M = 103, the energy of the BO-DMRG and DMRG calculations agree

quite well. Correlations result in an expected small energy difference between BO-DMRG

and BO-HF. Perhaps less expected is a small but noticeable disagreement between the BO-

HF and non-BO HF calculations. While the BO-HF gives a satisfactory approximation

of electrons’ wavefunction in the BO limit, the non-BO UHF assumption to factorize the

wavefunction of the whole molecule into the electrons and nuclei’s parts fails because of the

attractive nature of the interaction and the non-adiabatic movement of the electrons with

the nuclei at small M , as illustrated by the large discrepancy between the non-BO UHF

and DMRG at small M in FIG. 2.9. To explain this point, let us consider the simpler case

of a single hydrogen atom with the mass ratio M being tuned, where we do not change to

center of mass or relative coordinates (since this is much less useful for our discussion of the

molecule). In this case BO-HF is exact at M →∞, since the wavefunction is single-particle,

i.e. φ(x), where x is the electron’s coordinate; non-BO HF at small M is not exact, since

it approximates the wavefunction of the whole atom φ(x,X) as the product of two orbitals,

ψ(x)χ(X), where x and X are the electron’s and nucleus’s coordinates respectively. As we

mentioned before, it indicates that while the single-particle picture works well for electrons

at large M when the BO approximation is valid, it fails to predict the correct behavior of

the four-body system at small M .
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Chapter 3

Time-dependent variational principle

with ancillary Krylov space

The content of this chapter is from Ref. [44].

3.1 Introduction

At the heart of the success of the density matrix renormalization group (DMRG)[1, 89] for

approximating the ground states of one- and two-dimensional lattice systems is the matrix

product state (MPS) representation underlying it. MPS are ideal for one-dimensional gapped

ground states[5, 6], and are also a powerful approximation for one-dimensional gapless ground

states and ground states of finite-width two-dimensional[95] cylinders and strips.

MPS are also useful in solving the time-dependent Schrödinger equation. Vidal’s time-

evolving block decimation (TEBD) method[15, 16, 19] can be framed as a slight change

to the DMRG sweeping algorithm, called the time-dependent DMRG method (tDMRG)[61].

Since the invention of TEBD, a number of variations have been developed, and have been
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Figure 3.1: (a) Interactions in the rung-decoupled Heisenberg ladder after mapping the
lattice to a one-dimensional geometry by using zigzag or snake path. Black(white) circles
are sites in the first(second) leg. Only circles connected by lines have interactions between
them. (b) Interactions in the rung-coupled Heisenberg ladder. (c) Failure of the one-site
TDVP (TDVP1) and two-site TDVP (TDVP2) for the imaginary time evolution of the
rung-decoupled Heisenberg ladder of leg length 100. GSE-TDVP1 is our method. The
zigzag path is used.

widely used, for example in computing spectral functions[96] and in simulating the dynamics

of cold atom systems[97].

Treating the time evolution of systems with long-range interactions is more difficult. In

its original form, TEBD handles only nearest-neighbor interactions. A simple modification,

exploiting swap gates to move sites which are not next to each other to be temporarily

adjacent, is effective for systems with only a modest number of beyond-nearest-neighbor

interactions. Alternatively, an approach[17] to approximate the time evolution operator in

terms of a matrix product operator (MPO) was developed to treat long-range interactions

efficiently, and has proven successful in calculating the response function of the spin-1/2

Haldane-Shastry model[17]. Another approach[43] allowing the simulation of dynamics with

long-range interactions is based on Runge-Kutta, and an improved version of it was recently

found useful in treating the dynamics of chemical systems[98].

Some of the most attractive MPS time evolution methods which can deal with long-range

interactions are based on the time dependent variational principle (TDVP)[99, 18], where

the time-dependent Schrödinger equation is projected to the tangent space of the MPS
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manifold of fixed bond dimension at the current time. The manifold of all possible MPS’s

with a particular bond dimension can be thought of as a constraining surface for the time

evolution, which in the case of real time can be thought of analogously to classical motion

under a constraint. As in classical mechanics, which possesses a symplectic structure, the

probability and energy is automatically conserved, and so are the other integrals of motion

provided that the corresponding symmetry transformation does not take the state out of the

manifold[63]. Energy and probability are not conserved in most other time dependent MPS

methods due to the necessity of truncation to keep an efficient MPS representation.

The initial implementation[18] of TDVP simultaneously updates all MPS tensors and suffers

from numerical instability. The difficulties were overcome later by an alternative integration

scheme[62] based on a Lie-Trotter decomposition of the tangent space projector. This algo-

rithm, in the imaginary time case, as the time step goes to infinity, is equivalent to DMRG.

The integration scheme, like DMRG, can be based either on one site or two sites. In the

one-site method, the symplectic property is retained, but the bond dimension of the MPS

cannot increase to accommodate increased entanglement. The two-site scheme involves a

truncation process that allows evolution to a manifold with higher or lower bond dimension,

although the symplectic property is lost.

A highly desirable feature of TEBD methods is that, aside from well-understood Trotter

decomposition errors, the errors in the evolution all stem from the singular value decomposi-

tion (SVD) truncation of an MPS bond, which is precisely quantified and controlled. This is

a much better situation than in ground-state DMRG, where the search for the ground state

may get stuck in a local minimum1[59, 60, 42].

Unfortunately, TDVP methods can fail in an uncontrolled manner, in some ways similar

to DMRG. This failure in a simple situation is illustrated in Fig. 3.1(c). The system is a

1In DMRG, we can alleviate the problem using density matrix perturbation[59], subspace expansion[60],
more center sites[42], or swap gates.
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rung-decoupled Heisenberg ladder–when starting the time evolution in a product state, both

the one- and two-site schemes fail to time-evolve at all.

This example illustrates some of the significant projection errors that can arise in TDVP.

In the one-site scheme, TDVP evolution of a product state stays in a product state for any

Hamiltonian. In addition, after being mapped to a one-dimensional geometry by using the

zigzag (or snake) path, there exist two subsets of sites that are disconnected by interactions

(Fig. 3.1(a)). The two sites involved in the local update at each bond (or each odd bond

for the snake path) belong to the two disconnected subsets respectively, so two-site TDVP

fails to build up the intra-leg entanglement unless the tangent space of the MPS manifold

already contains the necessary degrees of freedom. When the initial state is a product state,

i.e. an MPS of bond dimension one, the limitations of the tangent space are the most severe.

In a more typical system, e.g. with the rung coupling turned on, as shown in Fig. 3.1(b), no

disconnected subsets exist–although the two sites at even bonds are not directly connected

by nearest-neighbor interactions, they are connected through a remote site. Therefore, in

such situations the errors of two-site TDVP can be reduced by using a smaller time step.

There have been some tricks to enlarge the bond dimension of the product state to be time

evolved by the one-site TDVP. The original MPS can be embedded in a MPS with larger

bond dimension by filling up zeros[100, 101], but this approach does not help to immediately

reduce the projection errors[63]. Another way is to use several DMRG sweeps to introduce

some noise which artificially increases the bond dimension[50]. But our test shows that

for two-dimensional systems and long-range interactions, large errors emerge after a short

time even though the bond dimension has been enlarged substantially. Increasing the bond

dimension to a large value at the beginning and keeping it through the whole time evolution

is in fact very inefficient, since the bond dimension needed for the initial time might otherwise

be much smaller than at later times. So it is suggested[102, 50] to first use two-site TDVP

to increase the bond dimension for the initial sweeps and then switch to the one-site TDVP.
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However, in the example in Fig. 3.1(c), two-site TDVP also fails.

In this paper we provide an effective way to fix the projection errors in TDVP methods,

which works for both the extreme case above and other systems with long-range interactions

even if a large time step is used. We show how one can expand the MPS manifold thereby

enlarging the tangent space before a TDVP time step, to make it contain the true direction

of motion. This enlargement is based on a subspace expansion[103, 60] by global Krylov

vectors. Unlike in the exact diagonalization[104, 105], in our algorithm the global Krylov

vectors serve as ancillary MPS’s to enrich the basis of the time-evolving MPS through the

gauge degree of freedom, thus avoiding the problems of loss of orthogonality and production

of unnecessarily highly entangled state[50]. Our method has a modest computational cost

compared to that of a TDVP time step. Also, it is easy to turn off the tangent space

enlargement in regimes where ordinary TDVP methods work well.

3.2 Algorithms

Normally, in working with MPS, we always seek the smallest MPS to represent a particular

state. Here, we find that it is very useful to temporarily create an inefficient MPS repre-

sentation of the current time-evolved state by expanding the MPS to represent both the

current state and a short Krylov expansion of it. The Krylov expansion is generated with a

standard MPS algorithm[53, 50] which is capable of producing nonlocal entanglement. With

the expanded manifold coming from this inefficient representation, a subsequent TDVP time

step is accurate and reliable.

In this section, we first introduce the basis extension of an MPS by another one and discuss

the trick to exactly preserve the information of the original time-evolved state. Then we

discuss several issues of generating the global Krylov vectors. The algorithm is summarized
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bond has the larger bond dimension.

in section 3.2.3.

3.2.1 Basis extension

The MPS representation of a physical state is not unique. We can utilize the gauge degrees

of freedom to extend the basis at each bond so as to get an MPS with enlarged bond

dimension without changing the physical state. Specifically, this property is used in our

method to yield an MPS with its basis extended by other MPS’s, which is reminiscent of

the multi-state targeting[96, 106] approach frequently used in the early days of DMRG to

deal with excited states simultaneously with the ground state. In the old DMRG language,

targetting more than one state (also called state-averaging) is like having a mixed state, and

one averages density matrices at each DMRG step. In the modern MPS language, the state-

averaging is done by creating an extra index to label the states involved. In the description

of our algorithm, we incorporate both formulations, which are equivalent.
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Suppose we have an MPS of a state |ψ〉, and we wish to extend the MPS bond basis of |ψ〉

by that of another state |ψ̃〉. Suppose both states are in left-canonical form (Fig. 3.2),

|ψ〉 =
∑
s1···sN

As11 · · ·AsN−1

N−1C
sN
N |s1 · · · sN〉, (3.1)

and similarly for |ψ̃〉. Here As11 is a 1×m1 matrix and CsN
N is a mN−1 × 1 matrix, where mi

is the bond dimension between site i and i+ 1. First we write the direct sum formally,

 |ψ〉
|ψ̃〉

 =
∑
s1···sN

A′s11 · · ·A′sN−1

N−1 C
′sN
N |s1 · · · sN〉

=
∑
s1···sN

 As11 0

0 Ãs11

 · · ·
 A

sN−1

N−1 0

0 Ã
sN−1

N−1


 CsN

N

C̃sN
N

 |s1 · · · sN〉,

(3.2)

where the second line defines the primed matrices in the first line. Now A′s11 is 2×(m1 +m̃1),

and the product of matrices gives a 2 × 1 coefficient matrix (for each set of s1 · · · sN). The

extra two-dimensional index, attached to the first site, picks either |ψ〉 or |ψ̃〉. We can now

compress the expanded MPS by doing SVD with truncation iteratively from the right end

to the left. At site i, we perform C ′sii = U ′iS
′
iB
′si
i . We continue at the next site i− 1 with

C ′i−1 =

 Ci−1

C̃i−1

 =

 Ai−1CiB
′†
i

Ãi−1C̃iB
′†
i

 , (3.3)

where the local physical indices have been omitted. Note that it is unnecessary to explicitly

implement the form in Eq. (3.2). Because of the block diagonal form of A′i−1, it will be more

efficient to move the orthogonality center to site i − 1 separately for |ψ〉 and |ψ̃〉 as in Eq.
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(3.3) than simply doing C ′i−1 = A′i−1U
′
iS
′
i. Eventually we will end up with

 |ψ〉
|ψ̃〉

 =
∑
s1···sN

 Cs1
1

C̃s1
1

B′s22 · · ·B′sNN |s1 · · · sN〉. (3.4)

Note that this common representation for both states can be used to sum them, with ar-

bitrary coefficients, a|ψ〉 + b|ψ̃〉, by performing the same operation on Cs1
1 and C̃s1

1 . (One

would then want to reorthogonalize from left to right, if one were only interested in the sum.)

In our case, we want only |ψ〉, so we simply throw out C̃s1
1 , which gives us a right-canonical

MPS of |ψ〉 with its bond basis extended by |ψ̃〉 and its orthogonality center C1 not full

column rank.

However, the algorithm in this form has a drawback–it is not convenient to treat |ψ̃〉 less

accurately than |ψ〉, or, in particular, to retain |ψ〉 exactly. To solve this problem, at each

site i, instead of simply SVDing and truncating C ′i, we select the most important basis from

|ψ̃〉 and orthogonalize them against the existing basis of |ψ〉 before combining them.

In the following we explain the reformed algorithm in more generic settings, with more than

just two states—suppose we have k MPS’s now and want to use the latter k − 1 MPS’s,

|ψ̃l〉, to extend the basis of the first one, |ψ〉. The extra time complexity to deal with k

MPS’s will be larger by O(k). At site i (suppressing the index i below), we first SVD the

site tensor of |ψ〉 without truncation, i.e. C = USB, and form the null-space projection

operator P = 1−B†B. We sum the reduced density matrices of the other k − 1 MPS’s

ρ̃ =
k−1∑
l=1

ρ̃l, (3.5)

where ρ̃l = C̃†l C̃l. If P 6= 0, we then project ρ̃ by P ,

ρ̄ ≡ P ρ̃P. (3.6)
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Diagonalizing and truncating, ρ̄ = B̄†S̄2B̄. (This is equivalent to projecting each C̃l by P

and SVDing the direct sum of them.) The rows of B̄ are orthogonal to those of B, i.e.

B̄B† = 0, so we can enlarge the row space of B by the direct sum

B′ =

 B

B̄

 , (3.7)

forming the new right-orthonormal MPS tensor at site i in Eq. (3.4).

3.2.2 Krylov subspace

What states do we use to enlarge the basis for |ψ〉? It is natural to consider the time evolution

which TDVP is implementing. Consider the wavefunction evolved for a short time:

|ψ(t+ ∆t)〉 = exp (−iĤ∆t)|ψ(t)〉 ≈
k−1∑
l=0

(−i∆t)l
l!

Ĥ l|ψ(t)〉, (3.8)

where t+ ∆t can be either imaginary or real. A problem with utilizing Eq. (3.8) directly for

the time evolution is that the expression converges slowly in k. Instead, we use only a few

of the terms appearing in Eq. (3.8) to extend the basis set of |ψ(t)〉 before time evolution by

a following TDVP sweep. Specifically, in the algorithm presented here we consider an MPS

extended to represent the Krylov subspace of order k

Kk(Ĥ, |ψ〉) = span{|ψ〉, Ĥ|ψ〉 . . . , Ĥk−1|ψ〉}, (3.9)

where the order k of the Krylov subspace is quite small.

There are three technical issues which need further elaboration. First, since the norm of

Ĥ l|ψ(t)〉 grows exponentially with l, for numerical stability, we either normalize each MPS

separately, or, motivated by the first-order expansion of the time evolution operator, replace
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them by

(1− iτĤ)|ψ(t)〉, . . . , (1− iτĤ)k−1|ψ(t)〉, (3.10)

where τ is a small parameter to be tuned to make sure the norm of (1− iτĤ)l|ψ(t)〉 do not

blow up. For imaginary time evolution, we can choose iτ to be λ−1, where λ is approximately

the highest energy of the excited states. For real time evolution, the choice of τ does not

matter as much and we can simply set τ = ∆t. Note the states in Eq. (3.10) still span the

Krylov subspace.

The second issue is, how do we apply Ĥ efficiently? When the bond dimension of the MPO

of Ĥ is small, we can use the density matrix approach[53] (which is exact if not truncated);

otherwise we can use the variational approach[50]. The complexity of applying Ĥ at each

site is comparable to one Lanczos iteration used to integrate the local effective equations at

a site in TDVP. Usually the number of iterations needed at a site in TDVP is much larger

than k, so the time cost of the application of Ĥ is subleading.

The third issue is, how do we control the bond dimension of Ĥ l|ψ(t)〉, which grows fast with

increasing l? Fortunately, we have found that for a reasonable choice of time step size, k = 3

can already provide good accuracy. Furthermore, we do not need as high an accuracy in

Ĥ l|ψ(t)〉 as compared to |ψ(t)〉 itself. Therefore we utilize a considerable truncation cutoff

εK in applying Ĥ l.

There are a few other places in our algorithm where truncation is necessary. When diago-

nalizing the projected mixing of reduced density matrices in Eq. (3.6), we use a truncation

cutoff εM . This truncation controls the number of states added into |ψ(t)〉. We also define

a truncation cutoff ε which is applied during the TDVP time step. This cutoff is only used

when we do not require the time evolution to be exactly unitary, such as in imaginary time

evolution.
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3.2.3 Subspace expansion

We now describe our global subspace expansion (GSE) TDVP algorithm. Because of the

Krylov subspace expansion, we do not need to use a two-site method. Combined with the

one-site TDVP, one time step of our algorithm (GSE-TDVP1) consists of

1. Construct the MPO for 1− iτĤ, and apply it k − 1 times to |ψ(t)〉 and get the set of

MPS’s in Eq. (3.10). (Controlled by εK .)

2. Do basis extension for |ψ(t)〉 as described in 3.2.1, ending with the orthogonality center

at the first site. (Controlled by εM .)

3. From left to right, do a conventional one-site TDVP sweep, and then sweep from right

to left. (Controlled by ε.)

Let the bond dimension of |ψ(t)〉 before step 1 be m and the bond dimension of the MPO

for 1− iτĤ be w. Usually we choose εK to make the bond dimension of each of the Krylov

vectors in Eq. (3.10) no bigger than m. Then, if we apply the MPO variationally[50], the

complexity of step 1 is O(km3wd). Let the bond dimension of |ψ(t)〉 after step 2 be m′.

Then the complexity of step 2 is O(km′3d2 + m′3d3). The one-site TDVP has a complexity

O(lm′3wd), where l is the number of Lanczos steps used at each local update. As described

in the last section, usually l � k so the cost of step 1 and 2 will be comparable to or less

than step 3. In our benchmarks for real time evolution, we find that if we use k = 5 and get

m′ ≈ 3m, the time taken for step 1 and 2 is about 1/3 of that for step 3; given the same

bond dimension m′, the time taken for one GSE-TDVP1 time step is about 36% of that for

a conventional two-site TDVP step.
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Figure 3.3: Benchmark results of the imaginary time evolution for the rung-decoupled
Heisenberg ladder. In all methods, ε = 10−10. For MPO W I, ε is the truncation error
in applying the MPO. For GSE-TDVP1, we use the optimal settings iτ = 1/40, k = 3,
εM = 10−8, and ε is the truncation error in the follow-up TDVP1 sweep. (a) Absolute energy
error ∆E = E − Eexact scaled by the ground-state energy E0, where the reference energy
Eexact is obtained by doubling the energy of a single chain from TDVP2 with ∆t = 0.01. (b)
Bond dimension growth versus time. All methods except TDVP2 (which stays in a product
state) show similar bond dimension growth.

3.3 Benchmarks

3.3.1 Imaginary time evolution

We first consider imaginary time evolution of the rung-decoupled spin-1/2 Heisenberg ladder

of Fig. 3.1, with Hamiltonian

Ĥ =
∑
r,〈i,j〉

Ŝr,i · Ŝr,j, (3.11)

where r ∈ {1, 2} denotes which leg it is and 〈i, j〉 denotes the nearest-neighbor sites along

each leg.

We evolve in imaginary time starting from a Neel (product) state |ψ(0)〉. Measuring the

energy versus time provides a reasonable test of the evolution. In Fig. 3.3 we show a
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comparison of our method with two other methods. The first one is an MPO method of Ref.

[17], specifically the W I method, where complex time steps have been used to make the error

second-order. The second is the conventional TDVP2. In our method, we use εK = 10−12

when applying 1− iτĤ with the density matrix approach2. We show results for iτ = 1/40,

k = 3, and εM = 10−8, which turns out to be near optimal parameter settings in this case.

We found that higher order k or smaller truncation εM in the subspace expansion do not

improve the accuracy (not shown). While TDVP2 fails as expected, GSE-TDVP1 (with

ε = 10−10) has an accuracy 10 times better than the MPO W I method with a comparable

bond dimension growth. We also show GSE results with a larger time step ∆t = 0.4, which

exhibit a still reasonable error of 10−3. Not shown are results for ε = 10−12, which are slightly

more accurate than ε = 10−10, but which also exhibit faster bond dimension growth.

3.3.2 Real time evolution

The one-axis twisting (OAT) model[107] has been widely studied for the use of quantum

metrology[108]. This model has infinite-range interactions, making it a challenge for MPS

methods, but it also has an exact solution. We study the real time evolution of N = 100

spin-1/2’s with the Hamiltonian

Ĥ = χ(Ŝz)2, (3.12)

where Ŝz =
∑N

i=1 Ŝ
z
i and we set the energy scale χ = 1. The MPO representation of the

Hamiltonian is rather simple, with a bond dimension w = 3. We take as initial state all

spins polarized in the +x direction. During the time evolution the spin is squeezed[109].

2The variational approach faces the same local minimum problem as DMRG does, which can be solved
by ways suggested before.
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Figure 3.4: Benchmark results of the real time evolution for the OAT model for a variety of
methods, versus exact results (solid grey lines). (a) shows 〈Ŝx(t)〉. GSE-TDVP1 is the most
accurate method. The apparent accuracy of one of the MPO W II calculations appears to
be accidental. TDVP2 becomes more accurate with a smaller time step. (b) shows the spin
squeezing parameter. Again, GSE-TDVP1 is the most accurate. (c) shows relative errors
in the energy. Curves for GSE-TDVP1 and for TDVP2 with ε = 10−15 are all below 10−10

and are not shown. Errors for the MPO W II are particularly large. (d) shows the bond
dimension growth. The smallest bond dimensions come from the MPO W II methods but
this is due to their large errors. TDVP2 with smaller time step has particularly large bond
dimension growth. Note that in both (a) and (b) the TDVP2 data points for ε = 10−15 (not
shown) and ε = 10−7 coincide.

63



The exact solution for the x-moment is

〈Ŝx(t)〉 =
N

2
cosN−1(t), (3.13)

with 〈Ŝy(t)〉 = 〈Ŝz(t)〉 = 0.

An important property is the spin squeezing parameter, defined[110] as

ξ2 = N min
n⊥

〈(Ŝ · n⊥)2〉 − 〈Ŝ · n⊥〉2
〈Ŝ〉2

, (3.14)

where Ŝµ =
∑

i Ŝ
µ
i and n⊥ is a unit vector perpendicular to 〈Ŝ〉 = 〈Ŝx〉nx. Minimizing over

n⊥, ξ2 can be expressed in terms of correlation functions

ξ2

N
=
σ2
yy + σ2

zz −
√

(σ2
yy − σ2

zz)
2 + (σ2

yz + σ2
zy)

2

2〈Ŝx〉2
, (3.15)

where σ2
xy ≡ 〈Ŝx(t)Ŝy(t)〉, etc. The optimal spin squeezing ξ2

opt is expected to appear at

topt = 12
1
6 (N/2)−

2
3/2 ≈ 0.05. We continue the time evolution to t = 0.25, or about 5topt.

In Fig. 3.4, we compare our method with TDVP2 and MPO W II (which is expected to work

better than W I here). To preserve exact unitarity, for GSE-TDVP1 we set ε = 0, which

turns out to have a minimal extra cost in bond dimension, with the bond dimension already

controlled by εK and εM . Since w is small, we use the density matrix approach to apply the

MPO. For time step ∆t = 0.025, we find optimal parameters τ = ∆t, k = 3, εK = 10−4,

and εM = 10−4, which balance cost and accuracy. For time step ∆t = 0.05, we use τ = ∆t,

k = 5, εK = 10−4, and εM = 10−8. Our method is the most accurate and preserves unitarity

exactly, while also having slower bond dimension growth than TDVP2. For MPO W II, the

conservation of energy is very poor and the overall shape of ξ2 is wrong. Reducing the time

step size to ∆t = 0.0005 (yellow curves in Fig. 3.4) helps initially, but the evolution soon

becomes unstable after topt ≈ 0.05.
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Chapter 4

Spin squeezing dynamics on

two-dimensionl long-range XXZ

model

This work to be published is a collaboration with Sean R. Muleady and Prof. Ana Maria

Rey at University of Colorado, Boulder.

4.1 Introduction

Quantum spin squeezing[108] is useful in detecting quantum entanglement and improving

the precision of measurements such as in Ramsey spectroscopy[110], atomic clocks[111], and

gravitational-wave interferometers[112, 113].
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4.1.1 Coherent spin state

Let us first review how coherent states are defined for bosons and then go to the spins.

The Heisenberg uncertainty relation gives

∆X∆P ≥ 1, (4.1)

where ∆A =
√
〈A2〉 − 〈A〉2 is the standard deviation, and

X ≡ a† + a, P ≡ i(a† − a) (4.2)

with a and a† being the bosonic creation and annihilation operators that satisfy

[a, a†] = 1. (4.3)

A coherent state defined as

a|α〉 = α|α〉 (4.4)

is the minimum-uncertainty state that obeys

∆X = ∆P = 1. (4.5)

For example, the vacuum state |0〉 is a coherent state.

Now we switch to spin systems. In the field of ultra cold atoms, a two-level atom interacting

with a radiation field can be treated as a spin-1/2 particle in a magnetic field. The coherent

spin state (CSS) for N spin-1/2 particles is defined as a product of single spin states with
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all spins point to the same direction

|θ, φ〉 =
N⊗
l=1

[
Rl(θ, φ)| ↑〉l

]
=

N⊗
l=1

[
exp

(
−iθσl·n/2

)
| ↑〉l

]
=

N⊗
l=1

[
cos

θ

2
| ↑〉l + eiφ sin

θ

2
| ↓〉l

]
,

(4.6)

where σl = (σlx, σ
l
y, σ

l
z) are the Pauli matrices for the lth particle and n = (− sinφ, cosφ, 0).

We can use the angular momentum operator of N spin-1/2 particles

Jα =
1

2

N∑
l=1

σlα, α = x, y, z (4.7)

to further write the CSS as

|θ, φ〉 = R(θ, φ)|j, j〉 = exp (−iθJ · n)|j, j〉, (4.8)

where |j, j〉 =
⊗N

l=1 | ↑〉l is the eigenstate of Jz with eigenvalue j = N/2. We can express

the CSS in terms of the Dicke states |j,m〉

|θ, φ〉 =

j∑
m=−j

|j,m〉〈j,m|θ, φ〉 = (1 + |η|2)−j
j∑

m=−j

 2j

j +m


1/2

ηj+m|j,m〉, (4.9)

where η = − tan θ
2

exp (−iφ). When θ = π/2, |〈j,m|θ, φ〉|2 is called projection noise which

obeys a binomial distribution (approximating to Gaussian when j → ∞ according to the

central limit theorem).
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4.1.2 Spin squeezing

We first review the basics of bosonic squeezed states and then show how the spin squeezing

can be defined analogously.

A bosonic state which makes ∆X (or ∆P ) smaller than one is called a squeezed state. The

operator

Xθ = eiθa†aXeiθa†a = ae−iθ + a†eiθ (4.10)

is obtained by rotating X in the X − P plane. X0 = X and Xπ
2

= P are the special cases.

The principal-quadrature squeezing parameter is defined as

ξ2
B = min

θ
(∆Xθ)

2 = 1 + 2(〈a†a〉 − |〈a〉|2)− 2|〈a2〉 − 〈a〉2|. (4.11)

A bosonic state is squeezed if ξ2
B < 1. A bosonic squeezed state can be generated by the real

time evolution of a coherent state with a nonlinear Hamiltonian

H = −i(ga†2 − g∗a2) (4.12)

or the Kerr interaction[114]

H = κ(a†a)2. (4.13)

There are several definitions of spin squeezing. One definition ξ2
S was inspired by photon

squeezing[107]. Another well-known definition ξ2
R was proposed naturally in standard Ram-

sey spectroscopy[110], which directly associated with quantum metrology.
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Consider the uncertainty relation for angular momentum operators

(∆Jα)2(∆Jβ)2 ≥ |〈Jγ〉|
2

4
, (4.14)

where α, β, and γ denotes the components in any three orthogonal directions. In analogy

to bosonic squeezed states, a spin squeezed state can be defined as a state that makes one

component of the angular momentum satisfy

(∆Jα)2 <
|〈Jγ〉|2

2
, (4.15)

and the corresponding spin squeezing parameter will be

ξ2
H =

2(∆Jα)2

|〈Jγ〉|2
, α⊥γ. (4.16)

However in this definition a CSS can also have ξ2
H < 1. So the definition need to be fixed.

Different from bosonic systems, for a CSS (∆Jα)2 depends on the direction α. The spin

squeezing parameter in Ref. [107] is defined as

ξ2
S =

minn⊥(∆J2
n⊥

)

j/2
=

4 minn⊥ (∆J2
n⊥

)

N
, (4.17)

where n⊥ is the direction perpendicular to the mean spin direction (MSD)

n0 =
〈J〉
|〈J〉| (4.18)

so 〈Jn⊥〉 = 0. Now for a CSS ξ2
S = 1 since (∆Jn⊥)2 = j/2 if the state is a CSS.

Ref. [110] defined another type of spin squeezing parameter which is the ratio of the phase
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resolution between a correlated state and a CSS, i.e.

ξ2
R =

(∆φ)2

(∆φCSS)2
, (4.19)

where ∆φ is the phase resolution of the resonance frequency in Ramsey spectroscopy. ξ2
R < 1

characterizes the improvement of the sensitivity to a rotation angle φ for a spin squeezed

state compared to a CSS. If we rotate a general spin state with MSD n0 = z about the x-axis

by angle φ, we will get

〈Jy〉′ = − sinφ〈Jz〉,

(∆J ′y)
2 = cos2 φ(∆Jy)

2 + sin2 φ(∆Jz)
2 − 1

2
sin(2φ)〈{Jy, Jz}〉.

(4.20)

The phase sensitivity ∆φ is calculated by the error propagation

∆φ =
∆J ′y

|∂〈Jy〉′/∂φ|
=

∆J ′y
| cosφ〈Jz〉|

. (4.21)

For tiny rotation angle φ, ∆J ′y ∼ ∆Jy and cosφ ∼ 1, so we have

∆φ =
∆Jy
|〈Jz〉|

. (4.22)

More generally when n0 6= z, we have

∆φ =
∆Jn⊥
|〈J〉| , (4.23)

so the spin squeezing parameter can be further written as

ξ2
R =

N minn⊥(∆Jn⊥)2

|〈J〉|2 , (4.24)
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where we already use the standard quantum limit

∆φCSS =
1√
N
. (4.25)

There is also a lower bound ∆φ ≥ 1/N , called the Heisenberg limit, when the equality in

the uncertainty relation is reached.

For a general spin state |ψ〉 with MSD n0, we can expand it in terms of the Dicke states in

a n⊥ direction, i.e.

|ψ〉 =

j∑
m=−j

|j,m〉n⊥n⊥〈j,m|ψ〉, (4.26)

and we call P (m) = |n⊥〈j,m|ψ〉|2 projection noise, which gives the probability of getting a

angular momentum m in n⊥ direction in measurements. Since

〈Jn⊥〉 =

j∑
m=−j

〈ψ|Jn⊥|j,m〉n⊥n⊥〈j,m|ψ〉 =

j∑
m=−j

P (m)m,

〈J2
n⊥
〉 =

j∑
m=−j

〈ψ|J2
n⊥
|j,m〉n⊥n⊥〈j,m|ψ〉 =

j∑
m=−j

P (m)m2,

(4.27)

the variance (∆Jn⊥)2 or the phase sensitivity ∆φ purely depends on the distribution of P (m)

along the direction n⊥. For a CSS, P (m) is binomial and identical in any direction n⊥; for

a coherent spin state, P (m) might be sub-binomial[115] and there is a direction that the

distribution has the minimal width.

The spin squeezing parameter is actually a demonstration of quantum correlations since it

is smaller than one only when correlations (entanglement) are built among the spins, which

results in a reduced fluctuation in certain direction.
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4.1.3 One-axis twisting model

The one-axis twisting (OAT) model[107] was inspired by the nonlinear Hamiltonian to gen-

erate squeezed photon. In the following we show some relevant analytical results[108] about

the spin squeezing dynamics under the one-axis twisting Hamiltonian.

The one-axis twisting Hamiltonian

H = χ(Jz)2, (4.28)

is nonlinear and involves all pairwise interactions. The initial state is taken to be a CSS |ψ0〉

with all N spins polarized to the +x direction. Since

[H,Px] = 0, (4.29)

where Px is the reflection operator about the y − z plane, it can be easily proved that

〈ψ0|eiHtJye
−iHt|ψ0〉 = 〈ψ0|eiHtJze

−iHt|ψ0〉 = 0. So the MSD n0 = x throughout the time

evolution. Using the commutation relation for Pauli matrices and exchange symmetry of

spins, we can get

〈ψ0|eiHtJxe
−iHt|ψ0〉 =

N

2
cosN−1(χt). (4.30)

Minimizing over n⊥, the spin squeezing parameter ξ2
R becomes

ξ2
R =

N
(
σ2
yy + σ2

zz −
√

(σ2
yy − σ2

zz)
2 + (σ2

yz + σ2
zy)

2
)

2〈Jx〉2 (4.31)

with the minimization direction

n⊥ = (0, cos θ, sin θ) (4.32)

72



where

tan θ =
σ2
yy − σ2

zz

σ2
yz + σ2

zy

(4.33)

and

σ2
yz + σ2

zy ≡ 〈ψ0|eiHt(JyJz + JzJy)e
−iHt|ψ0〉 =

N(N − 1)

2
sin(χt) cosN−2(χt),

σ2
yy ≡ 〈ψ0|eiHtJyJye

−iHt|ψ0〉 =
N

4
+
N(N − 1)

8

(
1− cosN−2(2χt)

)
,

σ2
zz ≡ 〈ψ0|eiHtJzJze

−iHt|ψ0〉 =
N

4
.

(4.34)

The optimal squeezing happens at

topt =
3

1
6

N
2
3χ
. (4.35)

The amount of squeezing scales with system size, which is a desirable property of the OAT

model. When N is very large, ξ2
R ∼ N−2/3 and θ ∼ 1/2 arctan(N−1/3) at topt.

4.2 XXZ model with 1/rα interaction

Although the OAT model can be realized experimentally in a two-component Bose-Einstein

condensation by using large-detuned light-atom interactions[108], it is still quite difficult to

realize such all-to-all interactions in practice[109].

People have considered[116] the Ising model with power-law decaying interactions

HIsing =
∑
i 6=j

J

|ri − rj|α
sz,isz,j. (4.36)

However, the amount of squeezing only scales with system size when α < D and is indepen-
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dent of system size when α > D, where D is the space dimension of the system. We still

face the experimental difficulty to realize α < D interactions.

Researches[117, 118, 119] have shown that collective behavior like that in OAT can be en-

ergetically protected by an additional spin-exchange term in the Ising model. Then it is

natural to ask the question if scalable spin squeezing can be achieved in this variant with

α > D interactions.

Our collaborators proposed a XXZ model with power-law decaying interactions

HXXZ =
∑
i 6=j

J⊥si · sj + (Jz − J⊥)sz,isz,j
|ri − rj|α

, (4.37)

with the hope to interpolate between the OAT and the Ising model. When α ≤ D and

near the Heisenberg point Jz = J⊥, the Dicke manifold is gapped away from all other

states by an energy difference ∆ & |J⊥|, which allows for a perturbative treatment of the

Ising term[109]. When α > D, ∆ → 0 as N → ∞, perturbation theory becomes invalid,

so our collaborators[109] numerically explored this regime by discrete truncated Wigner

approximation (DTWA)[120, 121, 122] which can reach system size of O(103). However, the

validity of this classical method is remained to check. So we use our GSE-TDVP method to

study the same model and compare with their results.

4.3 Discrete truncated Wigner approximation

In this section, we give a short introduction to the DTWA method.

Wigner function[122] is a one-to-one mapping between the density matrix operator to an

ordinary function defined in the phase space. The truncated Wigner approximation (TWA)

replaces the quantum-mechanical time evolution by a semi-classical evolution via classical
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trajectories. The quantum uncertainty in the initial state is accounted for by an average

over different initial conditions determined by a continuous Wigner function. DTWA[120]

is a semiclassical method which is based on the Monte Carlo sampling of a discrete Wigner

function in the phase space, which involves a factorization of the density matrix as ρ̂ ≈ ⊗iρ̂i,

where ρ̂i is a local density matrix at lattice site i. The use of discrete Wigner functions enables

us to quantitatively access dynamics in generic spin lattice models, including oscillations

and revivals of single particle observables and correlation functions that are not captured by

TWA.

In mean-field theory, the correlators are approximated by their mean-field values

〈Ŝαi Ŝβj 〉 ≈ sαi s
β
j , sαi = 〈Ŝαi 〉. (4.38)

If the Hamiltonian has the form

H =
∑
i 6=j,αβ

Ŝαi Ŝ
β
j , (4.39)

we will arrive at a set of classical equations of motion

ṡαi =
∑
j 6=i,βγ

Cαβγ
ij sβi s

γ
j , (4.40)

where

Cαβγ
ij = −

∑
ν

εαβν(hνγij + hγνji ). (4.41)

DTWA also involves solving such classical equation of motions. Nevertheless, different from

mean-field theory, in DTWA the initial values of sαi are set to its classical values according

to a probability distribution that reproduces the correct 〈Ŝαi 〉 at the initial time. So it is

able to build up non-trivial covariances between the spins, i.e. 〈Ŝαi Ŝβj 〉 ≈ sαi s
β
j 6= s̄αi s̄

β
j , where
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the overline denotes the statistical average over different classical trajectories.

4.4 Comparison results

Our collaborator’s DTWA simulation[109] on various system sizes up to 64×64 showed that

collective behavior and thus considerable amount of spin squeezing can still happen in a

large parameter regime when α > 2. The optimal spin squeezing parameter in this regime

has the favorable scaling with system size.

Since the system has long-range interactions, we use our GSE-TDVP1 method with k = 3,

εK = 10−8, and εM = 10−4 for the initial 5 sweeps and then switch to the two-site TDVP

method with a truncation error 10−8 for the following sweeps. Since topt can be qualitatively

regarded as a measure of the speed of entanglement growth. We fix the number of sweeps

from t = 0 to t = topt to be 24 and the time step size is determined accordingly. By comparing

with GSE-TDVP1 simulations with larger k, we can estimate the error in the spin squeezing

parameter ξ2
R is about 10−2. We simulate on system sizes up to 10 × 10. FIG. 4.1 shows

various comparisons between GSE-TDVP and DTWA. We can see an improving agreement

between the two different methods, which indicates the effectiveness of the DTWA on even

larger systems.

An interesting question is about the steady state the spin dynamics approaches after long

time. A generalized Mermin-Wagner theorem[123] allows for the existence of long-range order

in the thermodynamic limit below the critical temperature when α < 4 in two dimension.

And only when α > 2 is the energy an extensive quantity. So in the regime 2 < α < 4 we may

expect the system to thermalize[124] to an equilibrium ordered phase in the long-time limit

as long as the corresponding temperature is below the critical value. If we regard 〈Ŝ2
tot〉 as

an order parameter, FIG. 2 in Ref. [109] will be reminiscent of the zero phase diagram[125]
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(a) 8 × 4 (b) 6 × 6 (c) 8 × 8

Figure 4.1: Comparisons of the spin squeezing parameter ξ2
R, the expectation value of 〈Ŝ2

tot〉
at topt, and topt between GSE-TDVP and DTWA for ∆ = (Jz − J⊥)/J⊥ from −3 to 2 and
system sizes (a) 8 × 4, (b) 6 × 6, and (c) 8 × 8. The cross symbols are data points from
GSE-TDVP and the circles are from DTWA. The colors follow the convention in FIG. 4.2.
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Figure 4.2: (a) The von Neumann entanglement entropy growth for a 8 × 8 system with
α = 3 calculated by GSE-TDVP. (b) The coefficient extracted from the linear fitting of
SvN(t) for the same system.

of the same HXXZ with J⊥ < 0.

The entanglement entropy calculated by our GSE-TDVP method shows an almost linear

growth after a short time (FIG. 4.2), which is an indication of thermalization. Assuming

that the system thermalizes, the equilibrium ensemble it thermalizes to should be unique. So

we only to obtain the thermodynamic observables in the corresponding equilibrium ensemble

and see if they match the values given by the spin squeezing dynamics. For a 6×6 system, we

use our GSE-TDVP method combined with purification to imaginary time evolve the mixed

state at infinite temperature to lower temperatures until its energy matches the conserved

energy in the real time dynamics, calculating (Ŝxtot)
2 + (Ŝytot)

2 and (Ŝztot)
2, which can be

understood as the XY order parameter and the ferromagnetic order parameter respectively.

From FIG. 4.3(b), we can see that when ∆ < 0 the thermal average of (Ŝztot)
2 match pretty

well with its conserved real time value N/4 = 9, but they deviate from each other when

∆ > 0, which indicates we use the wrong ensemble in this case. Since [(Ŝztot)
2, H] = 0,

we should impose en extra Lagrange multiplier in the Hamiltonian to take the conserved

operator into account. For ∆ > 0, long-range ferromagnetic order might exist1, so it would

1〈Ŝz
tot〉 is approximately zero all ∆ in the imaginary time evolution, since we do not apply a pinning field,

even when ∆ > 0 it might spontaneously symmetry breaks to a ferromagnetic phase.
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Figure 4.3: Comparison of the XY order parameter (Ŝxtot)
2 + (Ŝytot)

2 and ferromagnetic order
parameter (Ŝztot)

2 between the long-time limit of the spin squeezing dynamics and the thermal
average of a canonical ensemble at the corresponding temperature 1/β for a 6 × 6 system.
The cross symbols are data points from GSE-TDVP calculation on the equilibrium ensemble
and the circles are from DTWA for steady state of the spin squeezing dynamics. The colors
in (a) and (b) follow the convention in FIG. 4.2.

be a problem if the extra λ(Ŝztot)
2 were not used. It is not expected that the thermal averages

of (Ŝxtot)
2 + (Ŝytot)

2 do not match their long-time limit values when −3/2 . ∆ < 0 for α ≥ 3

(FIG. 4.3(a)). The system might get stuck in a prethermal state. Notice the difference

between 2 < α < 4 and other alpha’s only show up in the thermodynamic limit, which

should be much larger than 6× 6.
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Chapter 5

Conclusion

We developed a DMRG approach to study continuum multi-species systems in one dimension,

interacting with non-local Coulomb-like potentials. In order to get good convergence with

the number of sweeps, we implemented a three-site DMRG algorithm, which performs well.

As a first application, we have applied it to a model of 1D diatomic molecules, where we

consider effects beyond the Born-Oppenheimer approximation. The most interesting effect

we find is that the nuclear triplet state of the “H2” molecule is unbound when the masses

of electrons and nuclei are similar, while it is bound for large mass ratios. This strong

dependence of binding on nuclear spin is absent in 3D.

Our approach can be applied to systems with dozens of particles without modifying the

algorithm. More complicated sets of particles could also be treated with relatively minor

changes. A very interesting direction would be to study larger systems, progressing towards

1D solids, with phonons emerging as the number of particles increase. In our approach, one

would not need to make approximations in deriving an electron-phonon interaction, and one

could study contributions of the phonons to entanglement entropies.

We discussed how TDVP can fail in simple situations, and present a new algorithm, a modi-
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fication of TDVP, which appears to work in all situations, including long-range interactions.

The key modification is the enlargement of the tangent space before each time step using

global Krylov vectors. The enlarged space introduces the degrees of freedom for the correct

time evolution, allowing us to combine it with the single-site TDVP method. For real-time

evolution we can maintain exact unitarity, even as the bond dimension is allowed to grow.

(The two-site TDVP method can be viewed as a simpler attempt to enlarge the tangent

space, which may not work well with non-nearest-neighbor interactions.) The new method

does not require the time step to be made particularly small, and works correctly for evo-

lution starting with a product state. Finally, our method has excellent efficiency, with a

calculation-time cost between that of one- and two-site conventional TDVP.

We expect it to be a valuable tool for out-of-equilibrium dynamics and finite-temperature

simulations in systems with long-range interactions and in two dimensional systems, which

has been corroborated in our study on the spin squeezing dynamics of the XXZ model with

power-law decaying interactions in two dimension.
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Appendix A

Details of the calculations in the

problem of a one-dimensional

diatomic molecule beyond the

Born-Oppenheimer approximation

A.1 Generalization of the Hartree-Fock approximation

to go beyond the Born-Oppenheimer approxima-

tion

The Hamiltonian for a one-dimensional system of N nuclei with charge +e and N electrons

with charge −e reads

H =

∫
dx
∑
α,s

φ†α,s(x)

[
− ~2

2mα

d2

dx2

]
φα,s(x)

+
1

2

∫
dxdy

∑
αβ

Vαβ(x− y)
∑
ss′

φ†α,s(x)φ†β,s′(y)φβ,s′(y)φα,s(x),

(A.1)

93



≈ +

≈ +

(a)

(b)

Figure A.1: (A) Diagram for the self-consistent self energy in the Hartree-Fock approxima-
tion. (b) Diagram for the self-consistent Green’s function in the Hartree-Fock approximation.

where α ∈ {p, e} denotes the nuclei or electrons and s the spin index, and Vαβ(x − y) =

V (x− y)Mαβ and M takes the form

M =

 1 −1

−1 1

 . (A.2)

The Hartree-Fock approximation assumes that each particle moves in a single-particle po-

tential that comes from its average interaction with all of the other particles. Then the

single-particle energy should be the unperturbed energy plus the potential energy of interac-

tion averaged over the states occupied by all of the other particles. In field theory language,

the Hartree-Fock approximation corresponds to solve the Dyson-Schwinger equation for the

Green’s function and the proper self energy self-consistently, with diagrams to the first order,

i.e. including only the direct interaction and the exchange interaction.

To go beyond the Born-Oppenheimer approximation, to treat the two species of fermions,

we only need to treat the species as a degree of freedom similar to spin and allow the

interaction to be species dependent. From now on, we use x to denote (t,x). The Hartree-
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Fock approximation (FIG. A.1) for this system gives the self-consistent Green’s function

Gαβ,sσ(x, y) ≈ G0
αβ,sσ(x, y)+

∫
dx1dx′1

∑
λγ,ην

G0
αλ,sη(x, x1)Σ∗λγ,ην(x1, x

′
1)Gγβ,νσ(x′1, y), (A.3)

and the self-consistent proper self energy

Σ∗λγ,ην(x1, x
′
1) ≈− i

~
δ(x1 − x′1)

∫
dx2

∑
λ′µµ′,η′ρρ′

Uληλ′η′,µρµ′ρ′(x1, x2)Gµµ′,ρρ′(x2, x2)δλ′γδη′ν

+
i

~
∑

λ′µµ′,η′ρρ′

Uληλ′η′,µρµ′ρ′(x1, x
′
1)Gλ′µ,η′ρ(x1, x

′
1)δµ′γδρ′ν

(A.4)

where Uληλ′η′,µρµ′ρ′(x1, x
′
1) = δηη′δρρ′V (x1 − x′1)Mλµδλλ′δµµ′ and the Green’s function should

be diagonal in both the spin index and the species index, due to charge conservation and

spin conservation in each species.

In the restricted Hartree-Fock, we requires the same orbital for different spins but allows

different orbitals for different species. So we have

Gαβ,sσ(x, y) = Gα(x, y)δαβδsσ, (A.5)

and similarly for G0
αβ,sσ(x, y). The expressions of G and Σ∗ are simplified to

Gα(x, y) ≈ G0
α(x, y) +

∫
dx1dx′1G

0
α(x, x1)Σ∗α(x1, x

′
1)Gα(x′1, y) (A.6)

and

Σ∗α(x1, x
′
1) ≈− i

~
δ(t1 − t′1)

[
(2s+ 1)δ(x1 − x′1)

∫
dx2

∑
µ

MαµGµ(x2, x2)V (x1 − x2)

− V (x1 − x′1)Gα(x1, x
′
1)

]
,

(A.7)
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where s = 1/2. Fourier transform in time gives

Gα(x,y;ω) ≈ G0
α(x,y;ω) +

∫
dx1dx′1G

0
α(x,x1;ω)Σ∗α(x1,x

′
1)Gα(x′1,y;ω) (A.8)

and

Σ∗α(x1,x
′
1) ≈− i

~

[
(2s+ 1)δ(x1 − x′1)

∫
dx2V (x1 − x2)

∑
µ

Mαµ

∫
dω

2π
eiωηGµ(x2,x2;ω)

− V (x1 − x′1)

∫
dω

2π
eiωηGα(x1,x

′
1;ω)

]
.

(A.9)

Consider a complete set of single-particle orthonormal eigenstates of H0, which is spin-

independent,

[
−~2∇2

2mα

]
φ0
j,α(x) = ε0j,αφ

0
j,α(x). (A.10)

The non-interacting Green’s function becomes

iG0
α(x, x′) =

∑
j

φ0
j,α(x)φ0∗

j,α(x′)e−iε0j,α(t−t′)/~
[
θ(t−t′)θ(ε0j,α−ε0F,α)−θ(t′−t)θ(ε0F,α−ε0j,α)

]
, (A.11)

where ε0F,α is the energy of the last filled single-particle state for α. The Fourier transform

gives

G0
α(x,x′;ω) =

∑
j

φ0
j,α(x)φ0∗

j,α(x′)

[
θ(ε0j,α − ε0F,α)

ω − ε0j,α/~ + iη
+

θ(ε0F,α − ε0j,α)

ω − ε0j,α/~− iη

]
. (A.12)

Hartree-Fock seeks a solution for Gα in the same form as G0
α, i.e.

Gα(x,x′;ω) =
∑
j

φj,α(x)φ∗j,α(x′)

[
θ(εj,α − εF,α)

ω − εj,α/~ + iη
+

θ(εF,α − εj,α)

ω − εj,α/~− iη

]
, (A.13)
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where {φj,α(x)} denotes a complete set of single-particle wavefunctions with energy εj,α. The

Dyson equation for the Green’s function then becomes the self-consistent equation for the

single-particle wavefunctions in the restricted Hartree-Fock

[
−~2∇2

2mα

]
φj,α(x) +

∫
dx′~Σ∗α(x,x′)φj,α(x′) = εjαφj,α(x), (A.14)

where

~Σ∗α(x,x′) =δ(x− x′)

∫
dx1V (x− x1)

∑
µ

Mαµnµ(x1)

− V (x− x′)
∑
j

φj,α(x)φ∗j,α(x′)θ(εF,α − εj,α),

(A.15)

which consists of a local direct term proportional to the particle density nµ(x) = (2s +

1)
∑

j |φj,µ(x)|2θ(εF,µ − εj,µ) and a nonlocal exchange term.

In the unrestricted Hartree-Fock, we allows different orbitals both for different spins and

different species. So we have

Gαβ,sσ(x, y) = Gα,s(x, y)δαβδsσ, (A.16)

and the single particle states are also both spin- and species-dependent. Similarly, we have

[
−~2∇2

2mα

]
φj,α,s(x) +

∫
dx′~Σ∗α,s(x,x

′)φj,α,s(x
′) = εjαsφj,α,s(x) (A.17)

for the unrestricted Hartree-Fock, where

~Σ∗α,s(x,x
′) =δ(x− x′)

∫
dx1V (x− x1)

∑
µ

Mαµnµ(x1)

− V (x− x′)
∑
j′

φj′,α,s(x)φ∗j′,α,s(x
′)θ(εF,α,s − εj′,α,s)

(A.18)
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with nµ(x) =
∑

σ,j |φj,µ,σ(x)|2θ(εF,µ,σ − εj,µ,σ).

For the unrestricted Hartree-Fock, we define

ĥα(x) = − ~2

2mα

d2

dx2
(A.19)

and the Coulomb operator

Ĵα(x) =

∫
dx′V (x− x′)

∑
µ

Mαµnµ(x′) (A.20)

and the exchange operator

K̂j′,αs(x) =

∫
dx′V (x− x′)φj′,α,s(x)φ∗j′,α,s(x

′)θ(εF,α,s − εj′,α,s), (A.21)

which nontrivially acts on a not-yet-converged φ̃j,α,s(x), i.e.

K̂j′,αs(x)φ̃j,α,s(x) =

[∫
dx′V (x− x′)φ̃j,α,s(x

′)φ∗j′,α,s(x
′)θ(εF,α,s − εj′,α,s)

]
φj′,α,s(x). (A.22)

So the Fock operator is given by

F̂αs(x) = ĥα(x) + Ĵα(x)−
∑
j′

K̂j′,αs(x). (A.23)

Therefore, solving Eq. (A.17) for a given self energy Σ∗α,s is equivalent to solving the eigen-

value problem

F̂αs(x)φj,α,s(x) = εjαsφj,α,s(x). (A.24)

The generalized unrestricted Hartree-Fock proceeds1 as follows:

1For good convergence, we use the method introduced in Ref. [126]
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1. Initialize φj,α,s(x) with the non-interacting single-particle eigenfunctions φ0
j,α,s(x), for

j = 1, . . . , F ;

2. Calculate the Fock operator from φj,α,s(x);

3. Given the Fock operator calculated in step (2), for j = 1, . . . , F , solve the eigenvalue

problem in Eq. (A.24) and get a new φ̃j,α,s(x) corresponding to the single-particle

eigenenergy ε̃jαs. If a convergence in energy has been reached, stop the iterations,

otherwise go back to step (2).

In the one-dimensional diatomic molecule problem, we have two electrons and two nuclei.

If we want to get the Hartree-Fock state for the singlet-singlet state, we only need to solve

φ1,p,↑(x), φ1,p,↓(x), φ1,e,↑(x), φ1,e,↓(x), since we have only one particle for each α, s. If the

nuclei are in | ↑↑〉 state and the electrons are in singlet, then we need to solve φ1,p,↑(x),

φ2,p,↑(x), φ1,e,↑(x), φ1,e,↓(x). To compare with DMRG, which is of finite size, we also use

a hard wall boundary condition at edges for the Hartree-Fock calculation. So the non-

interacting single particle eigenfunctions can be taken as the eigenfunctions for the problem

of one particle in a one-dimensional infinitely deep square well.

We still need to calculate the ground state energy

E = −1

2
i

∫
dx lim

t′→t+
lim
x′→x

∑
α,s

[
i~
∂

∂t
− ~2∇2

2mα

]
Gα,s(x, x

′) (A.25)

or in terms of the single-particle wavefunctions

E =
∑
j,α,s

θ(εF,α,s − εj,α,s)
[
εj,α,s −

1

2

∫
dxdx′φ∗j,α,s(x)~Σ∗α,s(x,x

′)φj,α,s(x
′)

]
(A.26)

To work with lattice, we need to discretize the unrestricted Hartree-Fock equation. The
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fourth order finite difference formula gives

d2φj,α,s(x)

dx2
≈ 1

12(∆x)2

NL∑
q=1

[
− δp+2,q + 16δp+1,q− 30δp,q + 16δp−1,q− δp−2,q

]
φj,α,s;q, (A.27)

where NL is the lattice size. We can also discretize the integral in the Coulomb and exchange

operator, and the unrestricted Hartree-Fock equation becomes

∑
q

(hα;pq + Jα;pδpq −Kα,s;pq)φj,α,s;q = εjαsφj,α,s;p, (A.28)

which is a matrix equation with

hα;pq = − ~2

2mα

1

12(∆x)2

[
− δp+2,q + 16δp+1,q − 30δp,q + 16δp−1,q − δp−2,q

]
,

Jα;p = ∆x
∑
q′

Vpq′
∑
µ

Mαµnµ;q′ ,

Kα,s;pq = ∆xVpqnα,s;pq,

(A.29)

where Vpq = V (xp−xq), nµ;q′ = nµ(xq′), and nα,s;pq =
∑

j′ φj′,α,s(xp)φ
∗
j′,α,s(xq)θ(εF,α,s−εj′,α,s).

The ground state energy in Eq. (A.26) can also be discretized similarly.

A.2 Tricks to facilitate the convergence of DMRG for

a system of two energy scales

When the mass ratio M between the two species of particles are very large, the kinetic energy

becomes much smaller for one type of particle than the other, which makes it difficult for

DMRG to converge especially when the number of particles & 10. The simplest thing one

could do is to start with a better initial state. For example the ground state obtained in

the BO limit will be a good ansatz. One can also start with small mass ratios and slowly
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electron 
nuclei

ΔX = MΔxΔx

M

(a)

(b)

Figure A.2: (a) Geometry of the MPS if we make the electron’s lattice spacing M times
large than the nuclei. (b) Geometry of the comb tensor network.

increase the mass ratio in the DMRG sweeps.

One technique to facilitate the convergence of DMRG for systems with multiple length scales

is called the multigrid algorithm[127]. Suppose we would like to get results on a grid with a

lattice spacing ∆x. In the algorithm, we start with a coarser grid and do DMRG. Then we

interpolate the wavefunction to a finer grid and do DMRG again. We repeat this procedure

until we reach the targeted fine grid with the lattice spacing ∆x. This interpolation can be

done by applying an isometry[27] T̂ σ̃σ1...σn
to each site tensor of the MPS, followed by a SVD,

if we want to expand 1 site to n sites. This isometry can also be understood as a wavelet

transformation[128]. The simplest isometry is then a Haar gate[129]. Higher order wavelet

transformations can be applied to improve the smoothness of the interpolation[130]. For

fermionic systems, the signs due to permutation of fermions need to be taken care of for the

wavelet transformations. However, we found that this method does not work very well. Our

experience is that after interpolating to a finer grid, we cannot do many sweeps until the

DMRG gets stuck in a local minimum.

Alternatively, it would be natural to use different lattice spacing for nuclei and electrons

when discretizing the system, since the lattice spacing should be irrelevant to the low-energy

physics as long as it is fine enough. Then the number of nuclei sites will be M times of the
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electron sites. Since there is no hopping between electrons and nuclei, we actually face a

worse situation in getting trapped in a local minimum. To solve the problem, one could use

swap gates to permute the electron sites to be adjacent and do a local DMRG update and

then permute it back (FIG. A.2(a)). Alternately, we can also use a tree tensor network which

has the comb[131] geometry (FIG. A.2(b)), so the number of swap operations needed will

be much smaller. We found this method works much better than the multigrid algorithm in

improving the convergence of DMRG.
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Appendix B

Details of the GSE-TDVP algorithm

B.1 Proof of the equivalence between the MPS and the

density matrix formulation

In the following we prove that SVD C ′i in Eq. (3.2) is equivalent to diagonalizing the sum

of the right reduced density matrix ρi + ρ̃i.

At site N , if C ′N = U ′NS
′
NV

′
N , then

ρ′N = C ′N
†
C ′N =

[
C†N C̃†N

] CN

C̃N


= C†NCN + C̃†N C̃N = ρN + ρ̃N

= V ′N
†
S ′N

2
V ′N .

(B.1)

So at site N , we get the same V ′N in diagonalization of ρN + ρ̃N as in SVD of C ′N . We can
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write U ′N into a block form

U ′N =

 UN

ŨN

 (B.2)

so CN = UNS
′
NV

′
N and C̃N = ŨNS

′
NV

′
N . Absorbing U ′NS

′
N into A′N−1 is equivalent to moving

the orthogonality center to site N − 1 separately for |ψ〉 and |ψ̃〉, i.e.

C ′N−1 = A′N−1U
′
NS
′
N

=

 AN−1 0

0 ÃN−1


 UN

ŨN

S ′N
=

 AN−1UNS
′
N

ÃN−1ŨNS
′
N

 =

 AN−1CNV
′
N
†

ÃN−1C̃NV
′
N
†


=

 CN−1

C̃N−1

 .

(B.3)

Similar to B.1, SVD C ′N−1 is equivalent to diagonalizing ρN−1 + ρ̃N−1 and so on for all other

sites. This proof can be extended to the cases of k > 2 MPS’s.

B.2 Global subspace expansion

In the following we summarize the step 2 of the global subspace expansion. It deals with

how to extend the basis of the left canonical MPS of |ψ〉 by the left canonical MPS’s of

|ψ̃1〉, . . . , |ψ̃k−1〉.

The ith iteration is described as follows:

1. Form the one-site right reduced density matrix ρi, ρ̃1,i, . . . , ρ̃k−1,i from the orthogonality
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center Ci, C̃1,i, . . . , C̃k−1,i at site i for |ψ〉, |ψ̃1〉, . . . , |ψ̃k−1〉 respectively.

2. Diagonalize ρi and get ρi = V †i S
2
i Vi. Not truncate here.

3. Form a projection operator onto the null space of Ci, i.e. Pi = 1− V †i Vi.

4. If Pi 6= 0, do the summation ρ̃i = ρ̃1,i + · · ·+ ρ̃k−1,i, and project ρ̃i by ρ̃⊥i = Piρ̃iPi.

5. Diagonalize ρ̃⊥i and get ρ̃⊥i = Ṽ ⊥†i S̃⊥2
i Ṽ ⊥i . Truncate η weights.

6. Enlarge the row space of Vi by direct sum with Ṽ ⊥i and get V ′i = [Vi Ṽ
⊥
i ]T .

7. Multiply V ′†i with Ai−1Ci, Ã1,i−1C̃1,i, . . . , Ãk−1,i−1C̃k−1,i respectively and get the next

orthogonality center Ci, C̃1,i−1, . . . , C̃k−1,i−1 at site i− 1.

B.3 Local subspace expansion

Local subspace expansion has the advantage that edge tensors are not reconstructed each

time after a subspace expansion. However, the accuracy improved by this way is worse than

the global subspace expansion given the same enlarged bond dimension and higher order of

application of Li−1Wi does not further improve the accuracy.

In the following we will take the left-to-right single-site TDVP sweep as an example to

illustrate the local subspace expansion and the adjoint right-to-left sweep can be formulated

similarly.

Just like the subspace expansion for the single-site DMRG, we use the expansion term with

dimension (mi−1, di, wimi)

Ri = αLi−1WiCi. (B.4)
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where α is a constant to be tuned, Li−1 is the left edge tensor of the local effective Hamiltonian

H(i), and Wi is the tensor of the MPO of Ĥ at site i.

The ith iteration is as follows:

1. Integrate the equation idCi(t)
dt

= H(i)Ci(t) and get Ci(t+ ∆t).

2. SVD Ci and get Ci = UiSiVi. Not truncate here.

3. Form a projector to the orthogonal complement of the column space of Ci, i.e. Pi =

1− UiU †i .

4. If Pi 6= 0, project Ri = αLi−1WiCi by R⊥i = PiRi.

5. SVD R⊥i and get R⊥i = U⊥i S
⊥
i V

⊥
i . Truncate if necessary.

6. Enlarge the column space of Ui by direct sum with U⊥i , i.e. U ′i = [Ui U⊥i ].

7. Multiply U ′†i with Ci and get Di = U ′†iCi.

8. Integrate the equation −idDi(t)
dt

= K(i)Di(t) and get Di(t).

9. Multiply Di with the next site tensor Bi+1 and get the orthogonality center Ci+1 at

the next site.

Higher orders can be obtained by doing step 3 to 6 recursively.
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