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Abstract

Background—Models that predict the risk of estrogen receptor (ER)-positive breast cancers may 

improve our ability to target chemoprevention. We investigated the contributions of sex hormones 

to the discrimination of the Breast Cancer Surveillance Consortium (BCSC) risk model and a 

polygenic risk score comprised of 83 single nucleotide polymorphisms.

Methods—We conducted a nested case-control study of 110 women with ER-positive breast 

cancers and 214 matched controls within a mammography screening cohort. Participants were 
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postmenopausal and not on hormonal therapy. The associations of estradiol, estrone, testosterone, 

and sex hormone binding globulin with ER-positive breast cancer were evaluated using conditional 

logistic regression. We assessed the individual and combined discrimination of estradiol, the 

BCSC risk score, and polygenic risk score using the area under the receiver operating 

characteristic curve (AUROC).

Results—Of the sex hormones assessed, estradiol (OR 3.64, 95% CI 1.64–8.06 for top vs bottom 

quartile), and to a lesser degree estrone, was most strongly associated with ER-positive breast 

cancer in unadjusted analysis. The BCSC risk score (OR 1.32, 95% CI 1.00–1.75 per 1% increase) 

and polygenic risk score (OR 1.58, 95% CI 1.06–2.36 per standard deviation) were also associated 

with ER-positive cancers. A model containing the BCSC risk score, polygenic risk score, and 

estradiol levels showed good discrimination for ER-positive cancers (AUROC 0.72, 95% CI 0.65–

0.79), representing a significant improvement over the BCSC risk score (AUROC 0.58, 95% CI 

0.50–0.65).

Conclusion—Adding estradiol and a polygenic risk score to a clinical risk model improves 

discrimination for postmenopausal ER-positive breast cancers.

Keywords

Breast cancer; single nucleotide polymorphisms; sex hormones; risk assessment; cancer 
surveillance and screening; chemoprevention

Introduction

ER-positive cancers represent at least 80% of breast cancers diagnosed in the United States 

[1]. Preventive medications such as tamoxifen and raloxifene can reduce the risk of estrogen 

receptor (ER)-positive breast cancers in high-risk women but have potential adverse effects 

[2]. Uptake is partially limited by the ability to identify high-risk women with the most 

favorable benefit-harm tradeoff [3,4].

The United States Preventive Services Task Force (USPSTF) recommends using risk 

prediction models to identify candidates for chemoprevention but acknowledges that current 

models have modest discrimination [3]. Validated models such as the Breast Cancer Risk 

Assessment Tool and Tyrer-Cuzick model incorporate clinical risk factors such as age, race/

ethnicity, family history, history of prior breast biopsy and history of benign breast disease 

[3,5–7]. The Breast Cancer Surveillance Consortium (BCSC) risk model also includes 

mammographic breast density, a strong risk factor, and tends to have the highest 

discrimination of available models [8,9].

Single nucleotide polymorphisms (SNPs) can improve the performance of clinical risk 

models. Individual SNPs have modest impacts on risk, but polygenic risk scores (PRS) 

representing the cumulative effects of multiple SNPs exhibit strong associations with risk 

that are largely independent from clinical risk factors [10–12]. PRS have been shown to 

improve the discrimination of the BCSC [11,12] and other [13] risk models. The magnitude 

of improvement in the area under the receiver operating characteristic curve (AUROC) of 

these models is modest [11,12].
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Circulating sex hormone levels may improve prediction beyond SNPs and clinical models 

[7,14,15]. Estrone and estradiol have been most robustly associated with breast cancer, 

particularly ER-positive cancers. Elevated estradiol levels are positively associated with 

breast cancer risk [14–20], while undetectable levels are strongly protective against ER-

positive cancers [21]. Sex hormone binding globulin (SHBG) binds estradiol, affecting 

bioavailable levels, and has been inversely associated with risk of invasive breast cancer 

[14]. The reported effects of testosterone on breast cancer risk have been heterogeneous 

[14,18,19,22–24].

Many prior studies have examined the relationships between individual hormones and breast 

cancer risk [14–16,18–20,22,24]. Fewer studies have assessed the combined effects of 

hormones in risk prediction, particularly in conjunction with risk prediction models. In one 

study, sex hormones (with the most parsimonious combination being estrone sulfate, 

testosterone, and prolactin) improved the performance of the Gail and Rosner-Colditz risk 

models by AUROC of 0.06 and 0.03 (relative improvements of 11% and 6%), respectively 

[25]. This analysis did not account for breast density or SNPs.

A prediction model for ER-positive breast cancer that includes sex hormones, SNPs, and 

clinical risk factors could potentially improve on the discrimination of more restrictive 

models and help identify women most likely to benefit from chemoprevention by virtue of 

their risk of ER-positive breast cancer. To investigate this hypothesis, we studied the 

associations of four sex hormones – estrone, estradiol, testosterone, and SHBG – with ER-

positive breast cancer in postmenopausal women. We assessed whether the addition of one 

or a combination of sex hormones improved the discrimination of the BCSC risk score 

alone, and the BCSC risk score modified by an 83-SNP PRS.

Methods

Study population

We conducted a nested case-control study [12] within the California Pacific Medical Center 

(CPMC) Research Institute cohort, comprised of women undergoing screening 

mammography at the Breast Health Center at CPMC. Between 2004 and 2011, women were 

asked to provide blood samples for research. Women who provided informed consent for 

blood collection completed a questionnaire with demographic information and risk factor 

data, which were collected and pooled by the San Francisco Mammography Registry 

(SFMR). The protocol was approved by the institutional review boards at CPMC and the 

University of California, San Francisco.

Blood samples were collected from 19,276 women without a diagnosis of invasive or pre-

invasive breast cancer at the time of blood draw. A nested case-control study was performed 

on 324 participants with blood collected between 9/3/2004 and 11/30/2011. We excluded 

women self-identified as premenopausal, perimenopausal, or post-menopausal as a direct 

result of surgery or medical treatments such as chemotherapy. Women on hormonal therapy 

or selective estrogen receptor modulators at the time of blood draw were also excluded. 

Cases were ascertained by linkage to the California Cancer Registry (CCR) and defined as 

pathologically-confirmed diagnoses of invasive breast cancers with positive/elevated ER 
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expression on immunohistochemical staining. ER-negative cases and those with unavailable 

ER status were excluded. Women without breast cancer as of last linkage to the CCR on 

10/31/2013 were matched as controls in a 2:1 ratio to cases based on age, race/ethnicity, and 

date of index mammogram. Six cases were matched 1:1 with controls due to missing data, 

resulting in 110 cases and 214 controls.

Sex hormone measurement

Blood samples for sex hormone measurements were collected at the time of consent. Whole 

blood was centrifuged within 15 minutes of venipuncture and serum was aliquoted into 1 

mL tubes stored at −80°C. Samples were shipped on dry ice by overnight courier to Mayo 

Medical Laboratory (Rochester, MN) for hormone measurement. Liquid chromatography-

mass spectrometry (LC-MS, Agilent Technologies, Santa Clara, CA) was used to measure 

estrone, estradiol, and testosterone levels. Prior to LC-MS, estradiol and estrone were 

extracted with methylene chloride, and underwent derivization with dansyl chloride 

followed by high-pressure liquid chromatography. SHBG was measured using a Siemens 

chemiluminescent assay (Siemens Healthcare Diagnostics, Deerfield, IL). The inter- and 

intra-assay coefficients of variation for each assay are shown in Supplementary Table S1. 

Women with estradiol levels over 25 pg/ml were excluded from the analysis given the 

possibility that extreme values were due to unreported or incorrectly ascertained exogenous 

hormone usage or menopausal status. The free estradiol index was calculated by dividing the 

total estradiol level by the SHBG level and multiplying by 100.

SNP genotyping and calculation of polygenic risk score

Whole blood was sent to the Genomics Core at the University of Minnesota for DNA 

extraction. A total of 113 cases and 113 matched controls randomly selected from the overall 

dataset were genotyped using an OncoArray platform (Illumina, San Diego, CA), resulting 

in 1:1 matching within the genotyped subgroup. We included 83 SNPs (Supplementary 

Table S2) selected based on review of the genome-wide association study (GWAS) catalogue 

and published associations with invasive breast cancer in Caucasian, Asian, or Hispanic 

populations, as previously described [12]. The PRS was calculated using a previously 

described method using published odds ratios and allele frequencies [12]. In brief, it is the 

composite likelihood ratio (LR) of breast cancer representing the individual effects of each 

SNP assuming the SNPs are inherited independently (in linkage equilibrium) and that there 

are no interactions between them.

BCSC Model

The BCSC risk model provides estimates of 5-year absolute risk using age, race/ethnicity, 

presence of a first-degree relative with breast cancer, history of breast biopsy, and breast 

density [8,9]. Community radiologists participating in the SFMR assessed breast density on 

the index mammogram (acquired 1997–2011) according to the Breast Imaging Reporting 

and Data System (BI-RADS) fourth edition or earlier categories: almost entirely fat (a), 

scattered fibroglandular densities (b), heterogeneously dense (c), and extremely dense (d) 

[26]. Although an updated version of the BCSC model has been published [9], we used 

version 1.0 [8] to allow the calculation of risk estimates for women older than 74 years.
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Statistical analysis

Demographic data and risk factors were compared between cases and controls using the chi-

squared test for categorical measures and the unpaired t-test for body mass index. The 

median hormone levels across cases and controls were compared using the non-parametric 

k-sample equality of medians test. Statistical tests were two-sided, with α = .05.

To examine the effects of individual hormones on ER-positive breast cancer risk, we 

performed univariate conditional logistic regression. Hormone levels were categorized into 

quartiles based on their respective distributions in controls. We compared point estimates 

across quartiles using tests of linear trend.

To examine the relative contributions of sex hormone levels, the BCSC risk score, and PRS 

to ER-positive risk, we performed conditional logistic regression using univariate and 

multivariable models within the subset of data (n = 218, i.e. 109 matched case-control pairs) 

with complete genotype, hormone, density, and clinical data. Hormone levels were log2-

transformed so that a one-unit increase represented a doubling of levels. The PRS was 

standardized according to the mean and standard deviation of the PRS in controls. The 5-

year risk estimate generated by BCSC version 1.0 was used as a continuous variable in 

logistic regression models.

Area under the receiver operating characteristic curve (AUROC) was used to compare 

discrimination. To avoid the bias introduced when the same data are used to both fit and 

evaluate the model, we performed 10-fold cross-validation to confirm the internal validity of 

the model. Briefly, we split the dataset into 10 equally-sized groups containing randomly-

selected case-control pairs, used 9/10 as a training dataset to fit a regression model, then 

used the fitted model to generate predicted probabilities in the remaining 1/10. We repeated 

this process 10 times so that each 1/10 of the dataset was used once as a validation set, and 

then used the aggregate predicted probabilities to calculate the final cross-validated AUC 

and 95% CI using a stratified bootstrap approach (n = 1000 replications) accounting for 

matched case-control clusters. Reported AUROCs represent cross-validated estimates. We 

compared AUROCs using a Wald test with bootstrap variance and covariance estimates.

Primary statistical analysis was performed using STATA 14.1 (StataCorp, College Station, 

TX, USA). The PRS was generated using R (R Foundation, Vienna, Austria), and the BCSC 

risk estimate was generated using SAS Version 9.3 (SAS Institute, Cary, NC, USA).

Results

We identified 110 post-menopausal women with ER-positive, invasive breast cancers and 

214 matched controls. Approximately 80% of cases and controls were Caucasian/White by 

self-report (Table 1). Cases were more likely to have a positive family history of breast 

cancer, prior breast biopsy, and higher body mass index, although the absolute difference 

was 1 kg/m2. The distribution of breast density was generally similar between cases and 

controls, with most women having scattered fibroglandular densities (BI-RADS b) or 

heterogeneously dense (BI-RADS c) breasts. Fatty breasts (BI-RADS a) were more common 
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in cases, while extremely dense breasts (BI-RADS d) were more common in controls. The 

overall difference in density did not reach statistical significance (p = 0.087).

Cases had higher median estrone and estradiol levels while controls had higher SHBG 

(Table 1). Cases and controls had similar testosterone levels. The distributions of all 

hormone levels were right-skewed, while log-transformed levels approximated a normal 

distribution (Supplementary Figure S1).

We examined the associations between individual sex hormones and ER-positive breast 

cancer using univariate logistic regression (Table 2). Estradiol had the strongest association 

with ER-positive breast cancer, with increasing levels corresponding to higher risk. The 

associations reached statistical significance in the highest (OR 3.64, 95% CI 1.64–8.06) and 

second-highest (OR 3.12, 95% CI 1.41–6.90) quartiles relative to the bottom quartile, and 

followed a linear trend. Free estradiol index showed a similar trend. Estrone levels above 14 

pg/ml were associated with an approximately 2-fold increase in risk. SHBG was inversely 

associated with risk, though no quartile associations reached statistical significance. The 

second-highest quartile of testosterone was associated with elevated risk (OR 2.55, 95% CI 

1.23–5.26) but a null effect could not be excluded for the other quartiles.

The individual and combined contributions of the BCSC risk score, PRS, and estradiol levels 

to risk prediction were evaluated in a subset of 218 women representing 109 cases and 109 

matched controls who were genotyped in addition to having hormone levels and breast 

density measured. We selected estradiol because it was most robustly associated with ER-

positive breast cancer in univariate logistic regression.

In univariate analysis, estradiol was associated with ER-positive cancer, as were the PRS and 

BCSC risk score (Table 3, column 1). In a model containing the BCSC risk score and 

estradiol levels, the OR per doubling of estradiol levels slightly increased from 1.57 (95% CI 

1.13–2.19) to 1.79 (95% CI 1.24–2.58). The ORs and confidence intervals per 1% increase 

in the BCSC risk score and per doubling of estradiol also modestly increased when 

combined in a joint model (Table 3, column 2), but remained similar when the PRS was 

added to the model (Table 3, column 3). Adjustment for BMI slightly attenuated the 

associations between estradiol and ER-positive cancer but did not have a substantial effect 

on the BCSC risk score or PRS (Supplementary Table S3).

We compared the discrimination of the above models using ROC curve analysis generated 

by 10-fold cross-validation (Table 4). AUROCs for estradiol and the PRS were higher than 

that of the BCSC risk score, though differences did not reach statistical significance. Adding 

estradiol to the BCSC risk score resulted in modestly improved discrimination from AUROC 

0.58 (95% CI 0.50–0.64) to 0.67 (95% CI 0.57–0.71), p = 0.02, while the AUROC increase 

with adding PRS to the BCSC risk score was of borderline statistical significance. The 

combination of the BCSC risk score, PRS, and estradiol levels had the highest 

discrimination out of all models, with AUROC 0.72 (95% CI 0.65–0.79), representing an 

AUROC increase of 0.14 (24%) relative to the BCSC risk score alone, p < 0.001. 

Furthermore, the model including BCSC risk score, PRS, and estradiol had improved 

discrimination relative to the BCSC-PRS (p = 0.01) and BCSC-estradiol models (p = 0.02). 
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The ROC curves for the BCSC risk score alone and with the addition of the PRS and/or 

estradiol levels is shown in Figure 1. We confirmed that inclusion of estrone, testosterone, or 

SHBG to models containing the BCSC risk score and estradiol levels did not further 

improve model performance (Supplementary Table S4).

We further examined the physiologic relationship between estradiol and ER-positive breast 

cancer using a cubic splines model (Figure S2). The risk of ER-positive breast cancers 

increased linearly with rising estradiol levels until a threshold of approximately 5 pg/ml, 

beyond which there was no further risk elevation associated with higher estradiol levels. The 

precision of our OR estimate was limited in the upper range of estradiol levels due to 

scarcity of data.

Discussion

The addition of estradiol levels and the PRS to the BCSC model improved its performance, 

with the combined model having an AUROC of 0.72 (95% CI 0.65–0.79) for ER-positive 

cancers, representing a statistically significant improvement from the BCSC risk score, both 

alone and in combination with estradiol or an 83-SNP polygenic risk score. The sample size 

and retrospective nature of the analysis limits our ability to definitively assess discrimination 

and calibration, particularly the precision of our AUROC point estimates. Nevertheless, our 

results contribute to the growing body of literature showing that the addition of circulating 

measures such as SNPs and hormone levels can improve the performance of clinical risk 

models.

While the PRS has been shown to improve the discrimination of the BCSC model in several 

reports [11,12], these analyses focused on invasive breast cancer overall. Differential effects 

of clinical risk factors [27], breast density [28,29], and SNPs [30,31] with ER subtype have 

been reported. Neither the BCSC model nor PRS are fitted to receptor subtype, but these 

models are likely well-fitted to ER-positive cancers given that at least 80% of breast cancers 

diagnosed in the United States are ER-positive [27], with the proportion rising with older 

age [1]. In our study, it is possible that both the PRS and estradiol levels contributed 

subtype-specific prediction, suggesting that measurement of both biomarkers may be of 

clinical value.

Our study is the first to investigate the combined contributions of clinical risk factors, breast 

density, SNPs (as represented by a PRS), and sex hormones to breast cancer risk prediction. 

The most comparable study examined the contributions of seven sex hormones to the Gail 

and Rosner-Colditz risk models [25]. The authors used stepwise regression to identify a 

subset of hormones (estrone, testosterone, and prolactin) that maximized predictive power of 

the respective models. Direct comparison of the AUROCs in our study to those reported by 

Twroger, et al [25] is limited by differences in study design, statistical analysis, and 

performance of risk models evaluated in each study. Neither the Gail nor Rosner-Colditz 

models incorporate breast density, and the study [25] did not evaluate the effects of genetic 

variants.
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Our findings around the association of the individual sex hormones with breast cancer risk 

are qualitatively consistent with previous studies. Estradiol has been robustly associated with 

risk. In our study, estradiol had the strongest association with ER-positive breast cancer in 

univariate analyses, and the results of our cubic splines analysis suggested a threshold effect. 

Estrone has also been associated with breast cancer risk in numerous studies [14,19,20], 

consistent with our results. Our results suggest that SHBG (which modulates estradiol’s 

physiologic effects) provides a small improvement in prediction, but our analysis was not 

powered to definitively assess this observation. Testosterone did not meaningfully contribute 

to risk prediction in our dataset, which is unsurprising given the heterogeneous results in the 

literature [14,18,19,22–24].

Our findings should be interpreted in light of several considerations. First, the discrimination 

of the BCSC risk score in our dataset was lower than in previous studies, where the 

AUROCs ranged from 0.65–0.66 [8,9]. The lower AUROC we observed was likely due to 

matching based on age and race/ethnicity (both strong predictors of invasive breast cancer in 

the BCSC model). However, the distribution of breast density did not differ significantly 

between cases and controls, possibly due to a combination of chance and the restriction of 

our analysis to postmenopausal women with ER-positive breast cancers, a group where the 

association with breast density is attenuated with increasing age [27]. The discrimination of 

the BCSC risk score would likely be higher in larger, unmatched studies.

Importantly, the sample size of our study limited the precision of our point estimates and 

comparisons. In particular, the AUROC for the PRS was higher than previously reported, 

though the latter studies’ AUROCs ranged from 0.60–0.62, which overlaps with our 

confidence intervals [10,11]. The AUROC for the PRS in combination with the BCSC risk 

score was slightly lower than that of the PRS alone possibly due to sample splitting for 

cross-validation, and relative insensitivity of the AUROC for improvements in 

discrimination with the addition of risk factors [32]. Our AUROC comparisons must also be 

interpreted in light of an underlying assumption of the Wald test, that the differences in 

AUROC estimators follows a normal distribution. Due to our small sample size, this 

assumption may not have been satisfied [33].

Additionally, the case-control design limited our ability to assess calibration. Careful 

evaluation of model calibration in independent, preferably unmatched, datasets is essential 

prior to adoption of such a tool into clinical practice. Lastly, our population was 

predominantly white, creating the need for further assessment of discrimination and 

calibration in a multiracial, multiethnic population.

Our statistical approach differed from those described by others. We did not adjust our main 

analysis for additional covariates beyond those included in the BCSC model. Previously 

published studies have conditioned on such variables as parity, number of live births, age at 

menarche, and time since menopause [14]. These analytical approaches tend to isolate the 

causal effect of the hormonal pathway by controlling for potential mediators, likely leading 

to a conservative estimate of the hormone’s effect. In contrast, our goal was to investigate 

the net predictive power of sex hormones, which encompasses the effects of mediating and 

confounding pathways. We examined hormones without adjustment for covariates to 
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determine whether they improved the prediction of our models. For example, we did not 

adjust for BMI because the relationship between obesity and breast cancer risk is primarily 

mediated through its effect on circulating estrogen levels [34–36]. Supporting this 

assumption, adjusting for BMI in secondary analyses minimally attenuated the association 

between estradiol and ER-positive breast cancer.

We chose ER-positive cancers as our endpoint given the direct causal relationship between 

estradiol (and other sex hormones) with these cancers. In the clinical setting, our results are 

therefore most applicable to chemoprevention. Guidelines empirically recommend using risk 

prediction models to identify high-risk women eligible for chemoprevention [3,37], although 

such models are not specific to particular subtypes of breast cancer. Selective estrogen 

receptor modulators (SERMs) and aromatase inhibitors have established efficacy in 

preventing the development of ER-positive cancers in high-risk women. Improving risk 

prediction for ER-positive cancers may improve our ability to identify women who may 

specifically benefit from chemoprevention, although this approach merits further evaluation 

in specimens stored from randomized trials.

The threshold effect of estradiol is consistent with prior studies showing that high-risk 

women with undetectable estradiol levels were not at elevated risk of developing breast 

cancers, and did not benefit from chemoprevention with raloxifene, a selective estrogen 

receptor modulator [21]. Although our splines analysis is purely exploratory and limited by 

sample size, future studies could further investigate whether a threshold relationship exists 

and attempt to identify an estradiol level cutoff that could be used alone, or in conjunction 

with risk models, to risk-stratify women for ER-positive cancer.

Our results suggest that the addition of estradiol to clinical risk factors, breast density, and a 

PRS may improve the prediction of ER-positive breast cancer in postmenopausal women. 

This combination of predictors may improve the identification of postmenopausal women 

who are most likely to benefit from chemoprevention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AUROC area under the receiver operating characteristic curve

BCSC Breast Cancer Surveillance Consortium

BI-RADS Breast Imaging Reporting and Data System

BMI body mass index

CCR California Cancer Registry

CPMC California Pacific Medical Center

GWAS genome-wide association study

LR likelihood ratio

OR odds ratio

PRS polygenic risk score

SFMR San Francisco Mammography Registry

SHBG sex hormone binding globulin

SNPs single nucleotide polymorphisms

USPSTF United States Preventive Services Task Force
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Fig. 1. 
Receiver operating characteristic curves for estrogen receptor-positive breast cancers are 

shown for the Breast Cancer Surveillance Consortium (BCSC) model alone and in 

combination with estradiol level, polygenic risk score (PRS), or both. The dashed reference 

line corresponds to an area under the curve of 0.5.
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Table 1

Study demographics, all patients

Characteristic Controls (n = 214) Cases (N = 110) p-value

Matched variables

Age, years – median (I.Q.R.a) 62 (57–67) 61.5 (57–67)

Race – no. (%)

 White 172 (80.4) 89 (80.9)

 Hispanic 9 (4.2) 5 (4.6)

 Asian 30 (14.0) 15 (13.6)

 Mixed 2 (0.9) 1 (0.9)

 Other (Non-Asian) 1 (0.4) 0 (0)

Unmatched variables

First-degree relative with breast cancer – no. (%) 32 (15.0) 36 (32.7) <0.001

History of breast biopsy – no. (%) 49 (22.9) 36 (32.7) 0.06

Mean Body Mass Index – median (I.Q.R.a) 24.3 (21.6–27.3) 25.8 (23.0–28.3) 0.05

Breast density, BI-RADSb category – no. (%)

 a, almost entirely fat 26 (12.2) 18 (16.4) 0.12

 b, scattered fibroglandular densities 99 (46.3) 49 (44.5)

 c, heterogeneously dense 69 (32.2) 40 (36.4)

 d, extremely dense 20 (9.4) 3 (2.7)

Sex hormone levels – median (I.Q.R.a)

 Estrone (pg/ml) 14 (10–19) 16 (12–22) 0.002

 Estradiol (pg/ml) 2.8 (1.9–4.3) 3.5 (2.3–4.8) 0.005

 Free estradiol index 5.5 (3.2–9.9) 7.2 (4.3–12) 0.014

 Testosterone (pg/ml) 10 (7.5–16) 12 (8.4–16) 0.32

 Sex hormone binding globulin (nmol/L) 51.4 (37.5–70.8) 44.7 (36.1–65.2) 0.20

a
I.Q.R = Interquartile Range

b
BI-RADS = Breast Imaging Reporting and Data System
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Table 2

Unadjusted associations between hormone levels and estrogen receptor-positive breast cancer

Hormone level, by quartiles Controls n (%) Cases n (%) O.R. (95% CI) Ptrend

Estrone (pg/ml) 0.002

 <10 57 (26.2) 17 (15.5) 1.0 (ref)

 10–14 55 (25.7) 19 (17.3) 1.23 (0.58–2.61) 0.59

 14–19 58 (27.1) 41 (37.3) 2.49 (1.23–5.03) 0.011

 ≥19 45 (21.0) 33 (30.0) 2.61 (1.27–5.39) 0.009

Estradiol, total (pg/ml) <0.001

 <1.9 53 (24.8) 12 (10.9) 1.0 (ref)

 1.9–2.8 53 (24.8) 23 (20.9) 2.20 (0.95–5.11) 0.066

 2.8–4.3 50 (23.4) 33 (30.0) 3.12 (1.41–6.90) 0.005

 ≥4.3 58 (27.1) 42 (38.2) 3.64 (1.64–8.06) 0.001

Free estradiol index 0.004

 <3.2 62 (29.0) 19 (17.3) 1.0 (ref)

 3.2–5.5 56 (26.2) 25 (22.7) 1.52 (0.76–3.05) 0.24

 5.5–9.9 52 (24.3) 29 (26.4) 1.85 (0.91–3.76) 0.089

 ≥9.9 44 (20.6) 37 (33.6) 2.64 (1.36–5.13) 0.004

Testosterone (pg/ml) 0.12

 <7.5 51 (23.8) 17 (15.5) 1.0 (ref)

 7.5–10 60 (28.0) 27 (24.6) 1.41 (0.66–3.00) 0.37

 10–16 54 (25.2) 42 (38.2) 2.55 (1.23–5.26) 0.012

 ≥16 49 (22.9) 24 (21.8) 1.57 (0.71–3.43) 0.26

Sex hormone binding globulin (nmol/L) 0.093

 <37.5 54 (25.2) 31 (28.2) 1.0 (ref)

 37.5–51.4 53 (24.8) 35 (31.8) 1.16 (0.62–2.18) 0.63

 51.4–70.8 54 (25.2) 27 (24.6) 0.86 (0.44–1.66) 0.65

 ≥70.8 53 (24.8) 17 (15.5) 0.60 (0.30–1.18) 0.14
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Table 4

Areas under the receiver operating characteristic curve for models containing the BCSC model, polygenic risk 

score, and sex hormones

Model Area under the curve 95% CI p-valuea

BCSC 0.58 0.50–0.65 --

PRS 0.68 0.61–0.75 0.07

Estradiol only 0.65 0.58–0.72 0.21

BCSC-PRS 0.64 0.57–0.71 0.07

BCSC-estradiol 0.67 0.60–0.74 0.02

BCSC-PRS-estradiol 0.72 0.65–0.79 <0.001b, c

a
compared with BCSC model alone

b
p = 0.01 versus BCSC-estradiol model

c
p = 0.02 versus BCSC-PRS model
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