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Abstract Distinct anatomical and spectral channels are thought to play specialized roles in the

communication within cortical networks. While activity in the alpha and beta frequency range (7 –

40 Hz) is thought to predominantly originate from infragranular cortical layers conveying feedback-

related information, activity in the gamma range (>40 Hz) dominates in supragranular layers

communicating feedforward signals. We leveraged high precision MEG to test this proposal,

directly and non-invasively, in human participants performing visually cued actions. We found that

visual alpha mapped onto deep cortical laminae, whereas visual gamma predominantly occurred

more superficially. This lamina-specificity was echoed in movement-related sensorimotor beta and

gamma activity. These lamina-specific pre- and post- movement changes in sensorimotor beta and

gamma activity suggest a more complex functional role than the proposed feedback and

feedforward communication in sensory cortex. Distinct frequency channels thus operate in a

lamina-specific manner across cortex, but may fulfill distinct functional roles in sensory and motor

processes.

DOI: https://doi.org/10.7554/eLife.33977.001

Introduction
The cerebral cortex is hierarchically organized via feedback and feedforward connections that origi-

nate predominantly from deep and superficial layers, respectively (Felleman and Van Essen, 1991;

Barone et al., 2000; Markov et al., 2013; Markov et al., 2014a; Markov et al., 2014b). Evidence

from non-human animal models suggests that information along those pathways is carried via dis-

tinct frequency channels: lower frequency (<40 Hz) signals predominantly arise from deeper, infra-

granular layers, whereas higher frequency (>40 Hz) signals stem largely from more superficial,

supragranular layers (Roopun et al., 2006; Roopun et al., 2010; Bollimunta et al., 2008;

Bollimunta et al., 2011; Sun and Dan, 2009; Maier et al., 2010; Buffalo et al., 2011; Spaak et al.,

2012; Xing et al., 2012; Smith et al., 2013; van Kerkoerle et al., 2014; Bastos et al., 2015;

Haegens et al., 2015; Sotero et al., 2015). These data have inspired general theories of the func-

tional organization of cortex which ascribe specific computational roles to these pathways and fre-

quency channels (Fries, 2005; Fries, 2015; Friston and Kiebel, 2009; Wang, 2010; Jensen and

Mazaheri, 2010; Donner and Siegel, 2011; Arnal and Giraud, 2012; Bastos et al., 2012;

Adams et al., 2013; Jensen et al., 2015; Stephan et al., 2017). In these proposals, lower frequency
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activity subserves feedback, top-down communication conveyed predominantly via infragranular

layers, whereas high-frequency activity is predominantly carried via projections from supragranular

layers and conveys feedforward, bottom-up information.

However, evidence for these proposals in humans is largely indirect, and focused on visual and

auditory areas (Koopmans et al., 2010; Olman et al., 2012; Fontolan et al., 2014; Kok et al.,

2016; Michalareas et al., 2016; Scheeringa and Fries, 2017). Whether it is indeed possible to attri-

bute low and high frequency activity in humans to lamina-specific sources, throughout the cortical

hierarchy, remains unclear. Here we leverage recent advances in high precision magnetoencephalog-

raphy (Troebinger et al., 2014b; Meyer et al., 2017a) to address this issue directly and non-inva-

sively across human visual and sensorimotor cortices.

MEG is a direct measure of neural activity (Hämäläinen et al., 1993; Baillet, 2017), with millisec-

ond temporal precision that allows for delineation of brain activity across distinct frequency bands.

Recently developed 3D printed head-cast technology gives us more stability in head positioning as

well as highly precise models of the underlying cortical anatomy. Together, this allows recording of

higher signal-to-noise ratio (SNR) MEG data than previously achievable (Troebinger et al., 2014b;

Meyer et al., 2017a). Theoretical and simulation work shows that these gains allow, in principle, for

distinguishing the MEG signal originating from either deep or superficial laminae (Troebinger et al.,

2014a), in a time-resolved and spatially localized manner (Bonaiuto et al., 2018). Demonstrating

such lamina-specificity non-invasively in healthy human participants would provide important physio-

logical constraints to the development of theoretical accounts about the functional roles of different

frequency channels, in particular with regards to the proposed mechanism of inter-regional commu-

nication in hierarchical cortical networks. Here, we employed this approach to acquire high SNR

MEG data, and directly test for the proposed lamina-specificity of distinct frequency channels in

human cortex.

eLife digest As we interact with the world around us, signals flow from neuron to neuron and

from one brain area to the next. When we look at an object, for example, signals pass along a

pathway of areas in the outermost part of the brain, called the cortex. Each area along this visual

pathway performs more complex processing than the one before it. But information also flows in the

opposite direction along such cortical pathways. These feedback signals enable areas further along

the pathway to influence the activity of those before them.

Studies in animals suggest that much like a highway, information is travelling in opposite

directions within the cortex along different lanes. In mammals, these lanes consist of distinct layers

of cells. In the visual cortex of monkeys, feedback signals travel via deeper layers of cortex, whereas

feedforward signals travel via the upper layers. Brain activity in the upper layers also has a higher

frequency than that in the lower layers.

But is this also the case in our own brains? Bonaiuto et al. used a technique called MEG to

measure the frequency of brain activity within the upper and lower layers of cortex in healthy

volunteers. The volunteers had to look at images on a screen and then respond by pressing a

button. Bonaiuto et al. observed that activity in deeper layers of cortex occurred mostly at lower

frequencies, while activity in upper layers mostly happened at higher frequencies. This pattern,

which matches that seen in monkeys, was found in both visual cortex and in areas of cortex that help

plan and execute movements. In visual cortex, the activity in the upper layers appeared to carry

feedforward signals. But in movement-related areas, feedback and feedforward signals were less

clearly related to cortical layers.

These findings lend support to current theories about how the cortex is organized. They also

show that MEG can reveal rapidly changing brain activity at a high spatial resolution. The findings

may also provide clues to the origins of brain disorders called oscillopathies. These involve changes

in specific frequencies of brain activity, and include schizophrenia and epilepsy, among others.

DOI: https://doi.org/10.7554/eLife.33977.002
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Results

Behavioral responses vary with perceptual evidence and cue
congruence
We investigated the laminar and spectral specificity of induced visual and sensorimotor activity dur-

ing a visually cued action selection task. The task was designed to induce well-studied patterns of

low- and high-frequency activity in visual (Müller et al., 1996; Hari, 1997; Fries et al., 2001;

Busch et al., 2004; Sauseng et al., 2005; Yamagishi et al., 2005; Hoogenboom et al., 2006;

Thut et al., 2006; Muthukumaraswamy and Singh, 2013; Mazaheri et al., 2014) and sensorimotor

cortices (Pfurtscheller et al., 1996; Pfurtscheller and Neuper, 1997; Crone et al., 1998;

Cheyne et al., 2008; Donner et al., 2009; Huo et al., 2010; Gaetz et al., 2011; Haegens et al.,

2011; de Lange et al., 2013; Tan et al., 2016; Tan et al., 2014; Torrecillos et al., 2015). Partici-

pants first viewed a random dot kinematogram (RDK) with coherent motion to the left or the right,

which in most trials (70%) was congruent to the direction of the following instruction cue indicating

the required motor response (an arrow pointing left equated to an instruction to press the left but-

ton, and vice versa; Figure 1A). Participants could therefore accumulate the sensory evidence from

the RDK to anticipate the likely required response in advance of the instruction cue. However, in

incongruent trials, the instruction cue pointed in the opposite direction from the direction of coher-

ent motion of the RDK, and so the opposite response from the expected one was required. The

strength of the motion coherence varied between trials, thereby influencing the predictability of the

instructed response (Figure 1B; Donner et al., 2009; de Lange et al., 2013).

As expected, particpants responded more accurately and quickly during congruent trials, with

additional gains in respond speed when the RDK motion coherence was strongest. By contrast,

responses were generally slower and participants made more mistakes during incongruent trials

(Figure 1C,D). This was demonstrated by a significant interaction between congruence and coher-

ence for accuracy (�2(2) = 363.21, p<0.001), and RT (F(2,16187) = 25.83, p<0.001). Pairwise compari-

sons (Tukey corrected) showed that accuracy was higher and RTs were faster during congruent trials

than incongruent trials at low (accuracy: Z = 7.83, p<0.001; RT: t(16181.94) = �8.25, p<0.0001),

medium (accuracy: Z = 23.71, p<0.001; RT: t(16181.94) = �13.94, p<0.001) and high coherence lev-

els (accuracy: Z = 29.96, p<0.001; RT: t(16181.94) = �18.39, p<0.001). Participants were thus faster

and more accurate when the cued action matched the action they had prepared (congruent trials),

and slower and less accurate when these actions were incongruent.

High SNR MEG recordings using individualized head-casts
Participant-specific head-casts minimize both within-session movement and co-registration error

(Troebinger et al., 2014b; Meyer et al., 2017a). This ensures that when MEG data are recorded

over separate days, the brain remains in the same location with respect to the MEG sensors. In all

participants, within-session movement was <0.2 mm in the x and y dimensions, and <1.5 mm in the

z dimension, while co-registration error was <1.5 mm in any dimension (estimated by calculating the

within-participant standard deviation of the absolute coil locations across recording blocks; Fig-

ure 2—figure supplement 1). To assess the between-session reproducibility of our data, we exam-

ined topographic maps, event-related fields (ERFs), and time-frequency (TF) decompositions for the

different task epochs. These data were analyzed in three ways: aligned to the onset of the RDK

(Figure 2A), instruction cue (Figure 2B), or button response (Figure 2C). Topographic maps and

event-related fields from individual MEG sensors and time-frequency spectra from sensor clusters

were indeed highly reproducible across different days of recording within an individual. For the par-

ticipant shown in Figure 2, the intra-class correlation coefficient (ICC), a measure of test-retest reli-

ability, was greater than 0.9 for all task epochs, and the three measures used to assess

reproducibility (topographic map, RDK, mean within-session ICC = 0.95, between-session

ICC = 0.94; topographic map, instruction cue, mean within-session ICC = 0.94, between-session

ICC = 0.97; topographic map, button response, mean within-session ICC = 0.97, between-session

ICC = 0.99; ERF, RDK, mean within-session ICC = 0.94, between-session ICC = 0.97; ERF, instruction

cue, mean within-session ICC = 0.96, between-session ICC = 0.96; ERF, button response, mean

within-session ICC = 0.96, between-session ICC = 0.98; TF, RDK, mean within-session ICC = 0.97,

between-session ICC = 0.97; TF, instruction cue, mean within-session ICC = 0.97, between-session
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ICC = 0.98; TF, button response, mean within-session ICC = 0.99, between-session ICC = 0.99).

Across all subjects, the mean ICC for all task epochs and reproducibility measures was greater than

0.85 (topographic map, RDK, within-session ICC, M = 0.94, SD = 0.03, between-session ICC,

M = 0.96, SD = 0.02; topographic map, instruction cue, within-session ICC, M = 0.97, SD = 0.03,

between-session ICC, M = 0.98, SD = 0.02; topographic map, button response, within-session ICC,

M = 0.96, SD = 0.03, between-session ICC, M = 0.95, SD = 0.06; ERF, RDK, within-session ICC,
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Figure 1. Task structure and participant behavior. (A) Each trial consisted of a fixation baseline (1 – 2 s), random dot kinematogram (RDK; 2 s), delay (0.5

s), and instruction cue interval, followed by a motor response (left/right button press) in response to the instruction cue (an arrow pointing in the

direction of the required button press). During congruent trials the coherent motion of the RDK was in the same direction that the arrow pointed in the

instruction cue, while in incongruent trials the instruction cue pointed in the opposite direction. (B) The task involved a factorial design, with three levels

of motion coherence in the RDK and congruent or incongruent instruction cues. Most of the trials (70%) were congruent. (C) Mean accuracy over

participants during each condition. Error bars denote the standard error. Accuracy increased with increasing coherence in congruent trials, and

worsened with increasing coherence in incongruent trials. (D) The mean response time (RT) decreased with increasing coherence in congruent trials

(***p<0.001). See Figure 1 – source data for raw data.

DOI: https://doi.org/10.7554/eLife.33977.003

The following source data is available for figure 1:

Source data 1. Accuracy and response time data.

DOI: https://doi.org/10.7554/eLife.33977.004
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Figure 2. Cross-session reproducibility.Topographic maps (left column), event-related fields (ERFs, middle column), and time-frequency

decompositions (right column). (A) aligned to the onset of the random dot kinematogram (RDK), (B) aligned to onset of the instruction cue, (C) aligned

to the participant’s response (button press). Data shown are for a single representative participant, with four sessions recorded on different days spaced

at least a week apart (each including three, 15 min blocks with 180 trials per block). The white circles on the topographic maps denote the sensor from

which the ERFs in the middle are recorded. Each blue line in the ERF plots represents a single session (average of 540 trials), with shading representing

the standard error (within-session variability) and the red lines showing the time point that the topographic maps are plotted for (150 ms for the RDK

and instruction cue, 35 ms for the response). The insets show a magnified view of the data plotted within the black square. The time-frequency

decompositions are baseline corrected (RDK-aligned: [�500, 0 ms]; instruction cue-aligned: [�3 s, �2.5 s]; response-aligned: [�500 ms, 0 ms relative to

the RDK]) and averaged over the sensors shown in the insets. See Figure 2 – source data for raw data.

Figure 2 continued on next page
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M = 0.88, SD = 0.08, between-session ICC, M = 0.94, SD = 0.05; ERF, instruction cue, within-session

ICC, M = 0.93, SD = 0.03, between-session ICC, M = 0.94, SD = 0.03; ERF, button response, within-

session ICC, M = 0.94, SD = 0.02, between-session ICC, M = 0.97, SD = 0.02; TF, RDK, within-ses-

sion ICC, M = 0.95, SD = 0.03, between-session ICC, M = 0.97, SD = 0.01; TF, instruction cue,

within-session ICC, M = 0.96, SD = 0.02, between-session ICC, M = 0.98, SD = 0.01; TF, button

response, within-session ICC, M = 0.98, SD = 0.004, between-session ICC, M = 0.99, SD = 0.004).

Task-related changes in low and high frequency activity
To address our main question about the laminar specificity of different frequency channels in human

cortex, we first examined task-related low- and high-frequency activity from sensors overlying visual

and sensorimotor cortices. Attention to visual stimuli is associated with decreases in alpha

(Hari, 1997; Sauseng et al., 2005; Yamagishi et al., 2005; Thut et al., 2006; Mazaheri et al.,

2014) and increases in gamma activity in visual cortex (Müller et al., 1996; Fries et al., 2001;

Busch et al., 2004; Hoogenboom et al., 2006; Muthukumaraswamy and Singh, 2013). In line with

previous research, sensors overlying the visual cortex revealed a significant decrease in alpha (7–13

Hz) and increase in gamma (60 – 90 Hz) power following the onset of the RDK and lasting for its

duration (Siegel et al., 2007). In addition, we observed a burst of gamma activity following the onset

of the instruction cue (Figure 3A; significant time-frequency windows marked, p<0.05, Bonferroni

corrected).

Motor responses are associated with a characteristic pattern of spectral activity in contralateral

sensorimotor cortex, with a stereotypical decrease in average beta power prior to movement, fol-

lowed by a rebound in average beta activity after the response. Moreover, a burst of gamma activity

typically occurs around movement onset (Pfurtscheller et al., 1996; Pfurtscheller and Neuper,

1997; Crone et al., 1998; Cheyne et al., 2008; Huo et al., 2010; Gaetz et al., 2011). At the sen-

sor-level, we indeed observed these classic average power changes, with a significant decrease in

beta power (15 – 30 Hz) prior to and during the participant’s response along with a subsequent

rebound, and a burst of response-aligned gamma (60 – 90 Hz) activity (Figure 3B; significant time-

frequency windows marked, p<0.05, Bonferroni corrected). These signals are relevant for testing the

proposed role of low and high frequency activity, respectively, for the following reasons. First, the

average beta power decrease prior to movement has been linked to various processes related to

the preparation and specification of movement (Donner et al., 2009; Engel and Fries, 2010;

Aron et al., 2016; Khanna and Carmena, 2017; Spitzer and Haegens, 2017). Moreover, gamma

bursts at movement onset are thought to originate from motor cortex, are effector-specific, and are

thought to reflect processes related to the feedback control of movements (Cheyne et al., 2008;

Muthukumaraswamy, 2010) and updating of motor plans (Mehrkanoon et al., 2014). However, we

note that the proposed roles of pre- and post-movement beta and movement-onset gamma compli-

cate the idea of these frequency channels conveying feedback and feedforward control, as seen in

sensory cortices (Bauer et al., 2014; Fontolan et al., 2014; van Kerkoerle et al., 2014;

Bastos et al., 2015; Jensen et al., 2015; Michalareas et al., 2016). This is because (a) the dynamics

of beta activity occur both prior to and after the event (i.e., movement), whereas corresponding

activity changes in sensory cortices are stimulus-driven; (b) the movement-onset gamma bursts have

been linked to the initiation of movement and hence with descending corticospinal communication

(Cheyne et al., 2008; Cheyne and Ferrari, 2013); and (c) motor cortex is agranular, which blurs the

proposed laminar dissociation between feedback and feedforward information channels. This opens

the possibility that movement-related beta and gamma activity may not be organized in the same

lamina-specific manner as in sensory cortices. Alternatively, the same lamina-specific organization

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.33977.005

The following source data and figure supplement are available for figure 2:

Source data 1. Topographic, ERP, and time-frequency data for a representative participant across four recording sessions.

DOI: https://doi.org/10.7554/eLife.33977.007

Figure supplement 1. Within- and between-block fiducial coil variability.

DOI: https://doi.org/10.7554/eLife.33977.006

Bonaiuto et al. eLife 2018;7:e33977. DOI: https://doi.org/10.7554/eLife.33977 6 of 32

Research article Neuroscience

https://doi.org/10.7554/eLife.33977.005
https://doi.org/10.7554/eLife.33977.007
https://doi.org/10.7554/eLife.33977.006
https://doi.org/10.7554/eLife.33977


may have functional roles that are distinct from the proposed feedback and feedforward communi-

cation in sensory cortex.

Low and high frequency activity localize to different cortical laminae
Having identified low- and high-frequency visual and sensorimotor signals at the sensor-level, we

next asked whether these frequency channels indeed arise predominantly from deep or superficial

cortical laminae. Localization of activity measured by MEG sensors requires accurate generative for-

ward models which map from cortical source activity to measured sensor data (Hillebrand and

Barnes, 2002; Hillebrand and Barnes, 2003; Larson et al., 2014; Baillet, 2017). We constructed a

generative model for each participant based on a surface mesh that included both their white matter

and pial surfaces, respectively (Figure 4, left column). This permits comparison of the estimated

source activity for visual and sensorimotor activity on the white matter and pial surface. We infer a

deep (white-matter boundary) laminar origin if the activity in a given frequency band is strongest on

the white matter surface, and a superficial (pial surface) origin if this activity is strongest on the pial

surface. For the purposes of comparison with invasive neural recordings, the deep laminae approxi-

mate infragranular cortical layers, and superficial laminae approximate supragranular layers.

The veracity of laminar inferences using this analysis is highly dependent on the accuracy of the

white matter and pial surface segmentations. Imprecise surface reconstructions from standard 1 mm

isotropic T1-weighted volumes result in coarse-grained meshes, which do not accurately capture the

separation between the two surfaces, and thus are suboptimal for distinctions between deep and

superficial laminae (Figure 4—figure supplement 1). We therefore extracted each surface from

high-resolution (800 mm isotropic) MRI multi-parameter maps (Carey et al., 2017), allowing fine-

grained segmentation of the white matter and pial surfaces (Figure 4—figure supplement 1).
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Figure 3. Visual and sensorimotor sensor-level activity. (A) Time-frequency representations of activity from sensors overlying visual cortex (shown in

insets), aligned to the onset of the RDK (left) and the instruction cue (right). Data were baseline-corrected ([�500, 0 ms] relative to the onset of the

RDK), and averaged over participants. Overlaid is a mask in which pixels where power is significantly changed from baseline are transparent, revealing

the underlying time-frequency power. After the onset of the RDK, there is a sustained decrease in alpha, and increase in gamma activity, followed by a

burst of gamma after the instruction cue. (B) Time-frequency representation of movement-related activity from sensors overlying contralateral

sensorimotor cortex (shown in inset), aligned to the response, and baseline corrected ([�500, 0 ms] relative to the onset of the RDK), and averaged over

participants. As in A, the mask overlaid reveals pixels with a significant change from baseline. There is a decrease in beta power prior to the motor

response, followed by a beta rebound after the response, and a burst of gamma power aligned to the time of the response. See Figure 3 – source

data for raw data.

DOI: https://doi.org/10.7554/eLife.33977.008

The following source data is available for figure 3:

Source data 1. Mean sensor-level time-frequency data for each participant.

DOI: https://doi.org/10.7554/eLife.33977.009
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For each low- and high-frequency visual and sensorimotor signal, the laminar analysis first calcu-

lated the unsigned fractional change in power from a baseline time window (i.e. power change from

baseline divided by baseline power) on the vertices of each surface, and then compared this frac-

tional power change between surfaces using paired t-tests over trials (Figure 4C, top). The resulting

t-statistic was positive when the magnitude of the change in power was greater on the pial surface

(superficial), and negative when the change was greater on the white matter surface (deep;

Figure 4C, middle). To get a global measure of laminar specificity, we averaged this fractional

change in power from baseline over the whole brain (all vertices) within each surface. For spatially

localized laminar inference, we then identified regions of interest (ROIs) in each participant based on

the mean frequency-specific change in power from a baseline time window on vertices from either

surface (Bonaiuto et al., 2018). We compared two metrics for defining the ROIs: functionally

defined (centered on the vertex with the peak mean difference in power), and anatomically-con-

strained (centered on the vertex with the peak mean power difference within the visual cortex bilat-

erally, or in the contralateral motor cortex). In addition to performing paired t-tests over trials using

the unsigned fractional change in power from baseline averaged within ROIs, we also examined the

distribution of t-statistics across vertices by performing a paired t-test across trials for each white

matter/pial vertex pair (Figure 4C, bottom).
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Figure 4. Laminar analysis approach. Pial and white matter surfaces are extracted from proton density and T1 weighted quantitative maps obtained

from a multi-parameter mapping MRI protocol (A, top). A generative model combining both surfaces (A, bottom) is used to explain the measured

sensor data, resulting in an estimate of the activity at every vertex on each surface (B, top left). The ROI analysis defined a region of interest by

comparing the change in power in a particular frequency band during a time window of interest from a baseline time period (B, top right). The ROI

includes all vertices in either surface in the 80th percentile (the top 20%) as well as corresponding vertices in the other surface. The unsigned fractional

change in power from baseline on each surface was then compared within the ROI (B, bottom; C, top). Pairwise t-tests were performed between

corresponding vertices on each surface within the ROI to examine the distribution of t-statistics (C, bottom), as well as on the mean unsigned fractional

change in power within the ROI on each surface to obtain a single t-statistic which was negative if the greatest change in power occurred on the white

matter surface, and positive if it occurred on the pial surface (C, middle).

DOI: https://doi.org/10.7554/eLife.33977.010

The following figure supplement is available for figure 4:

Figure supplement 1. FreeSurfer-extracted surfaces.

DOI: https://doi.org/10.7554/eLife.33977.011
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Visual alpha and gamma have distinct laminar specific profiles
Based on in vivo laminar recordings in non-human primates (Bollimunta et al., 2008;

Bollimunta et al., 2011; Buffalo et al., 2011; Spaak et al., 2012; Xing et al., 2012; van Kerkoerle

et al., 2014; Haegens et al., 2015), we reasoned that changes in alpha activity following the RDK

would predominantly arise from infragranular cortical layers. By contrast, changes in gamma activity

following the RDK and instruction cue should be strongest in supragranular layers. Source recon-

structions of the change in visual alpha activity following the onset of the RDK on the white matter

and pial surfaces approximating the proposed laminar origins are shown in Figure 5A for an exam-

ple participant over the whole brain and within the functionally defined ROI. Activity on both surfa-

ces localized to posterior visual cortex bilaterally. When performing paired t-tests comparing

corresponding vertices on the pial and white matter surfaces over all trials, the distribution of alpha

activity was skewed toward the white matter surface, in line with the proposed infragranular origin.

This bias was also observed within the functionally defined ROI. When averaging the change in

power either over the whole brain, within a functionally-defined ROI, or an anatomically constrained

ROI, the visual alpha activity of most participants was classified as originating from the white matter

surface (global: W(8)=0, p=0.008, 8/8 participants, functional ROI: W(8)=2, p=0.023, 7/8 partici-

pants, anatomical ROI: W(8)=16, p=0.844, 5/8 participants; Figure 5A, right).

Conversely, the increase in visual gamma following the onset of the RDK and instruction cue was

strongest on the pial surface (Figure 5B,C), as expected from invasive recordings (Maier et al.,

2010; Buffalo et al., 2011; Spaak et al., 2012). Source reconstructions on the pial and the white

matter surface for an example participant show the induced gamma activity over visual cortex

(Figure 5B,C). For visual gamma, the distributions of t-statistics for pairwise vertex comparisons

were skewed toward the pial surface, a finding that is compatible with a supragranular origin of

high-frequency gamma activity. This was consistently observed for the global, functional, and ana-

tomical ROI metrics (RDK gamma, global: W(8)=35, p=0.016, 7/8 participants; RDK gamma, func-

tional ROI: W(8)=35, p=0.016, 7/8 participants; RDK gamma, anatomical ROI: W(8)=35, p=0.016, 7/8

participants; instruction cue gamma, global: W(8)=35, p=0.016, 7/8 participants; instruction cue

gamma, functional ROI: W(8)=35, p=0.016, 7/8 participants; instruction cue gamma, anatomical ROI:

W(8)=28, p=0.195, 5/8 participants).

Sensorimotor beta and gamma originate from distinct cortical laminae
The above results provide novel support for distinct anatomical pathways through which different

frequency channels contribute to inter-areal communication within visual cortices. We next

addressed whether this laminar specificity of different frequency channels was common to other por-

tions of cortex, specifically the movement-related changes originating from sensorimotor cortex.

Cortical regions vary in terms of thickness (Fischl and Dale, 2000; Jones et al., 2000;

MacDonald et al., 2000; Kabani et al., 2001; Lerch and Evans, 2005), as a result of inter-regional

variation in cortical folding and laminar morphology (Barbas and Pandya, 1989; Matelli et al.,

1991; Rajkowska and Goldman-Rakic, 1995; Hilgetag and Barbas, 2006). Moreover, the distinc-

tion between feedback and feedforward cortical processing channels may be less clear for motor

cortex, which is agranular (missing layer IV) and projects directly to the spinal cord. Supporting this

argument, motor gamma bursts are closely tied to movement onset, and have been linked to move-

ment execution and feedback control (Cheyne et al., 2008; Cheyne and Ferrari, 2013).

While frequency-specific activity thus occurs throughout cortex, the laminar distribution of differ-

ent frequency channels may differ across different levels in the cortical hierarchy. Because MEG is

predominantly sensitive to the synchronous activity of large populations of pyramidal cells, it is likely

that different laminar microcircuits could give rise to the same measurable MEG signals

(Cohen, 2017). Alternatively, if the layer specificity of low and high frequency activity is indeed a

general organizing principle throughout cortex, the pre-movement beta decrease and post-move-

ment rebound ought to originate from infragranular cortical layers, whereas the movement-related

gamma increase ought to be strongest in supragranular layers. Moreover, the ability of MEG to

accurately segregate deep from superficial laminar source activity may vary throughout cortex, a

possibility we have previously explored in simulation (Bonaiuto et al., 2018).

To explore this possibility empirically, we analyzed two task-related modulations of sensorimotor

beta activity: the decrease in beta power following the onset of the RDK and prior to the motor
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Figure 5. Laminar specificity of visual alpha and gamma. (A) Estimated changes in alpha power (7 – 13 Hz) from baseline on the white matter and pial

surface, and the difference in the unsigned fractional change in power (pial – white matter) following the onset of the random dot kinematogram (RDK),

over the whole brain (global) and within a functionally defined region of interest (ROI). Histograms show the distribution of t-statistics comparing the

fractional change in power from baseline between corresponding pial and white matter surface vertices over the whole brain, or within the ROI.

Negative t-statistics indicate a bias toward the white matter surface, and positive t-statistics indicate a pial bias. The bar plots show the t-statistics

comparing the fractional change in power from baseline between the pial and white matter surfaces averaged within the ROIs, over all participants.

T-statistics for the whole brain (black bars), functionally defined (grey bars), and anatomically constrained (white bars) ROIs are shown (red = biased

toward the white matter surface, blue = biased pial). Dashed lines indicate the threshold for single participant statistical significance. (B) As in A, for

gamma (60 – 90 Hz) power following the RDK. C) As in A and B, for gamma (60 – 90 Hz) power following the instruction cue. See Figure 5 – source data

for raw data.

DOI: https://doi.org/10.7554/eLife.33977.012

The following source data and figure supplements are available for figure 5:

Source data 1. Laminar comparison data for visual alpha (RDK) and gamma (RDK and instruction cue).

DOI: https://doi.org/10.7554/eLife.33977.026

Figure supplement 1. Sensor shuffling biases visual and sensorimotor laminar specificity to the pial surface.

DOI: https://doi.org/10.7554/eLife.33977.013

Figure supplement 2. Adding coregistration error biases visual and sensorimotor laminar specificity to the pial surface.

DOI: https://doi.org/10.7554/eLife.33977.014

Figure supplement 3. Visual and sensorimotor laminar specificity compared to sensor shuffled data.

DOI: https://doi.org/10.7554/eLife.33977.015

Figure supplement 4. Laminar inference is a function of the number of trials.

DOI: https://doi.org/10.7554/eLife.33977.016

Figure supplement 5. Laminar localization as a function of SNR.

DOI: https://doi.org/10.7554/eLife.33977.017

Figure 5 continued on next page
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response, and the post-movement beta rebound (Salmelin et al., 1995; Pfurtscheller et al., 1996;

Cassim et al., 2001; Jurkiewicz et al., 2006; Parkes et al., 2006). Both signals localized to the left

sensorimotor cortex (contralateral to the hand used to indicate the response; Figure 6A,B). For both

epochs, the signal was strongest on the white matter surface, as evidenced by the white matter

skews in the global and functional ROI t-statistics (Figure 6). This result held for all but one partici-

pant at the single participant level, and overall at the group level (beta decrease, global: W(8)=0,

p=0.008; beta decrease, functional ROI: W(8)=6, p=0.109; beta decrease, anatomical ROI: W(8)=0,

p=0.008; beta rebound, global: W(8)=1, p=0.016; beta rebound, functional ROI: W(8)=2, p=0.023;

beta rebound, anatomical ROI: W(8)=0, p=0.008).

Turning to the burst of gamma aligned with the onset of the movement and localized to the

same patch of left sensorimotor cortex (Figure 6C), we found that this signal was strongest on the

pial surface (global: W(8)=35, p=0.016, 7/8 participants; functional ROI: W(8)=33, p=0.039, 6/8 par-

ticipants; anatomical ROI: W(8)=31, p=0.078, 6/8 participants).

Laminar discrimination is disrupted by adding spatial and temporal noise
We then conducted several control analyses to ascertain the robustness of our findings: i) shuffling

the location of the sensors (effectively assigning the data from one sensor to another), ii) simulating

increased co-registration error, and iii) decreasing effective SNR by using only a random subset of

the trials for each participant or adding white noise at the sensor level.

Shuffling the position of the sensors destroys any correspondence between the anatomy and the

sensor data. Added co-registration error simulates the effect of between-session spatial uncertainty

arising from head movement and inaccuracies of the forward model typically experienced without

head-casts (Uutela et al., 2001; Hillebrand and Barnes, 2003; Hillebrand and Barnes, 2011;

Medvedovsky et al., 2007; Troebinger et al., 2014a; Meyer et al., 2017b). For both control analy-

ses, all signals now localized to the pial surface (Figure 5—figure supplements 1 and 2), suggesting

that the laminar discrimination between low- and high-frequency signals in our main analyses relies

on precise anatomical models. We additionally re-ran our main laminar comparisons, now testing

against the null hypothesis that the difference (pial-white) of the unsigned fractional change in power

from baseline within an ROI is equal to the value obtained from sensor shuffling (rather than the

default null hypothesis that the difference is zero). This revealed the same pattern of laminar bias,

with visual alpha and sensorimotor beta activity localizing to deep laminae, and visual and sensori-

motor gamma localizing superficially (Figure 5—figure supplement 3).

On average, the magnitude of the t-statistics in our global and ROI analyses increased with the

number of trials used in the analysis, with more trials required for gamma signals to reach signifi-

cance (Figure 5—figure supplement 4). One concern was that the effects could be driven by the

absolute power of our signal, in that higher power signals always localize to deeper structures.

Figure 5 continued

Figure supplement 6. Laminar preference scales with the difference in pial and white matter lead field strength.

DOI: https://doi.org/10.7554/eLife.33977.018

Figure supplement 7. The relationship between pial and white matter lead field strength and laminar preference is the same across frequency bands.

DOI: https://doi.org/10.7554/eLife.33977.019

Figure supplement 8. Laminar preference does not relate to the difference in vertex depth.

DOI: https://doi.org/10.7554/eLife.33977.020

Figure supplement 9. Laminar localization does not reverse for vertex pairs in which the white matter surface is closer to the scalp than the pial

surface.

DOI: https://doi.org/10.7554/eLife.33977.021

Figure supplement 10. Visual and sensorimotor laminar specificity does not change after controlling for distance to the scalp.

DOI: https://doi.org/10.7554/eLife.33977.022

Figure supplement 11. The relationship between patch size estimates and laminar bias.

DOI: https://doi.org/10.7554/eLife.33977.023

Figure supplement 12. Sensor covariance is similar across frequency bands.

DOI: https://doi.org/10.7554/eLife.33977.024

Figure supplement 13. Laminar localization is not affected by regularization or sensor covariance.

DOI: https://doi.org/10.7554/eLife.33977.025
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Importantly, however, regardless of the SNR, the trivial superficial bias of the shuffled sensor models

was weaker than that of the unshuffled sensor models, both within the functionally defined, and the

anatomically constrained ROIs (Figure 5—figure supplement 4). Moreover, whereas adding pro-

gressively more white noise to the sensor level data steadily increased the superficial bias of visual

alpha and sensorimotor beta until a point of saturation was reached, the change in the laminar bias

of visual and sensorimotor gamma saturated at a much lower noise level and became unstable for

some subjects and contrasts, flipping from a superficial to a deep bias (Figure 5—figure supple-

ment 5). If the superficial localization of gamma were a trivial consequence of low SNR we would

have expected the addition of noise to have little effect (i.e. the curves would be already at
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Figure 6. Laminar specificity of sensorimotor beta and gamma. As in Figure 5, for (A) the beta (15 – 30 Hz) decrease prior to the response, (B) beta

(15 – 30 Hz) rebound following the response, and (C) gamma (60 – 90 Hz) power change from baseline during the response. In the histograms and bar

plots, positive and negative values indicate a bias towards the superficial and deeper cortical laminae, respectively. The dashed lines indicate single

participant-level significance thresholds. The black, grey, and white bars indicate statistics based on regions of interest comprising the whole brain,

functional and anatomically-constrained ROIs, respectively. See Figure 6 – source data for raw data.

DOI: https://doi.org/10.7554/eLife.33977.027

The following source data is available for figure 6:

Source data 1. Laminar comparison data for sensorimotor beta decrease, beta rebound, and gamma.

DOI: https://doi.org/10.7554/eLife.33977.028
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saturation point). We would also not have expected the inference to flip in the opposite direction as

noise was added (implying that adding this noise obscured some meaningful gamma signal).

Influence of cortical anatomy on laminar discrimination
One concern is that our results could have been driven by the relative distance of a given vertex pair

from the scalp surface (and hence the MEG sensors). The difference in lead field strength is a parsi-

monious quantity to address this concern, because it depends on both distance to the sensors as

well as the orientation of the cortical surface. This analysis revealed a correlation between relative

pial/white matter lead field strength and laminar preference (Figure 5—figure supplement 6A),

with a tendency to localize activity to the vertex with the stronger lead field. This, in turn, raises the

issue of whether the vertices contributing to the laminar bias we observed were simply those with

the strongest lead field.

However, and importantly for the main findings of this paper, this relationship was not frequency-

specific (Figure 5—figure supplement 7), and even when pial and white matter vertices were

matched for lead field strength (within 1% of the overall range), a clear dissociation between low

and high frequency signals was still evident at the single participant level (Figure 5—figure supple-

ment 6B). Low frequency activity was consistently localized toward deep layers, whereas for this

sub-sample of vertices the high frequency activity showed no layer bias. We observed similar effects

across two separate brain regions and three task epochs. These analyses were corroborated by anal-

yses showing that the relative distance to the scalp surface did not trivially determine laminar prefer-

ence (Figure 5—figure supplement 8), and that comparing ROIs containing only vertex pairs in

which the white matter vertex is closer to the scalp than the pial vertex resulted in a similar pattern

of laminar localization (Figure 5—figure supplement 9).

There appears to be a relationship between cortical folding and laminar bias, as evident in the

cortical distribution of the difference in the unsigned fractional change in power (pial – white matter)

over the whole brain (Figures 4 and 5). This manifests as a deep layer bias on the gyral crowns, and

a superficial bias in the sulcal fundi. We controlled for this bias by analyzing the residuals of a regres-

sion predicting the difference in the unsigned fractional change in power (pia – white) from the

square root of the distance to the scalp (averaged over pial and white matter vertex pairs). Crucially,

this analysis did not change the laminar localization of low and high frequency signals (Figure 5—fig-

ure supplement 10).

Finally, as discussed previously (Troebinger et al., 2014a; Bonaiuto et al., 2018), over- or under-

estimation of source patch sizes can bias laminar results. We tested a representative participant

using a range of patch sizes (from 2.5 to 20 mm FWHM). Regardless of patch size, the low frequency

signals were consistently estimated to originate from deeper laminae. Generally, we found that

smaller patch sizes tend to push our estimates in a superficial direction whereas large patch sizes

tended to introduce a deep laminar bias; this had the greatest effect on the high-frequency esti-

mates. However, at the optimal patch size (as determined by free energy comparison of combined

pial/white matter source inversions), low frequency activity localized to deep laminae and high fre-

quency activity to superficial laminae (Figure 5—figure supplement 11). Based on invasive record-

ings (Leopold and Logothetis, 2003), we had expected patch size to decrease monotonically with

frequency, but did not observe such a relationship (Figure 5—figure supplement 11). We acknowl-

edge, however, that our models are based on homogeneous Gaussian patches of activity, which

therefore may not be realistic.

Superficial visual gamma scales with cue congruence
Next, we asked whether the observed low and high-frequency lamina-specific activity in visual and

sensorimotor cortex dynamically varied with task demands in line with proposals about their role in

feedback and feedforward message passing (von Stein et al., 2000; Fries, 2005; Fries, 2015;

Friston and Kiebel, 2009; Wang, 2010; Jensen and Mazaheri, 2010; Donner and Siegel, 2011;

Arnal and Giraud, 2012; Bastos et al., 2012; Adams et al., 2013; Jensen et al., 2015;

Stephan et al., 2017). This would provide additional indirect support for the idea that communica-

tion in hierarchical cortical networks is organized through distinct frequency channels along distinct

anatomical pathways, to orchestrate top-down and bottom-up control.
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In our task, the direction of the instruction cue was congruent with the motion coherence direc-

tion in the RDK during most trials (70%). As such, if the direction of motion coherence is to the left,

the instruction cue will most likely be a leftward arrow. Gamma activity increases in sensory areas

during presentation of unexpected stimuli (Gurtubay et al., 2001; Arnal et al., 2011;

Todorovic et al., 2011), and therefore we expected visual gamma activity in supragranular layers to

be greater following incongruent instruction cues than after congruent cues. Indeed, the increase in

visual gamma on the pial surface following the onset of the instruction cue was greater in incongru-

ent compared to congruent trials (W(8)=0, p=0.008; 8/8 participants; incongruent % change from

baseline - congruent % change from baseline M = 1.64%, SD = 2.34%; Figure 7).

Deep sensorimotor beta scales with RDK motion coherence and cue
congruence
Changes in sensorimotor beta power during response preparation predict forthcoming motor

responses (Donner et al., 2009; Haegens et al., 2011; de Lange et al., 2013), whereas the magni-

tude of sensorimotor beta rebound is attenuated by movement errors (Tan et al., 2014; Tan et al.,

2016; Torrecillos et al., 2015). We therefore predicted that, in infragranular layers, the decrease in

sensorimotor beta would scale with the motion coherence of the RDK, and the magnitude of the

beta rebound would be decreased during incongruent trials when the prepared movement has to

be changed in order to make a correct response.

The behavioral results presented thus far suggest that participants accumulated perceptual evi-

dence from the RDK in order to prepare their response prior to the onset of the instruction cue. This

preparation was accompanied by a reduction in beta power in the sensorimotor cortex contralateral
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Figure 7. : Visual gamma activity modulation by task condition. Visual gamma activity following the onset of the instruction stimulus within the

functionally defined ROI of an example participant (left), and averaged within the time window represented by the shaded yellow rectangle for all

participants (right). Each dashed line on the right shows the change in normalized values for the different conditions for each participant. The bar

height represents the mean normalized change in gamma power, and the error bars denote the standard error. Visual gamma activity is stronger

following the onset of the instruction cue when it is incongruent to the direction of the coherent motion in the random dot kinematogram (RDK). See

Figure 7 – source data for raw data.

DOI: https://doi.org/10.7554/eLife.33977.029

The following source data is available for figure 7:

Source data 1. Condition comparison data for visual gamma (instruction cue).

DOI: https://doi.org/10.7554/eLife.33977.030
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to the hand used to indicate the response (Figure 6A). This beta decrease began from the onset of

the RDK and was more pronounced with increasing coherence, demonstrating a significant effect of
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Figure 8. Sensorimotor beta activity modulated by task condition. (A) Beta decrease following the onset of the random dot kinematogram (RDK) within

the functionally defined ROI of an example participant over the duration of the RDK (left), and averaged over this duration for all participants (right).

The bar height represents the mean normalized change in beta power, and the error bars denote the standard error. The beta decrease becomes more

pronounced with increasing coherence. (B) As in A, for beta rebound following the response and averaged within the time window shown by the

shaded yellow rectangle. Beta rebound is stronger following responses in congruent trials. See Figure 8 – source data for raw data.

DOI: https://doi.org/10.7554/eLife.33977.031

The following source data is available for figure 8:

Source data 1. Condition comparison data for sensorimotor beta decrease and beta rebound.

DOI: https://doi.org/10.7554/eLife.33977.032
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coherence on the white matter surface (Figure 8A; X2(2)=9.75, p=0.008), with beta during high

coherence trials significantly lower than during low coherence trials (8/8 participants; t(7)=-3.496,

p=0.033; low % change from baseline – high % change from baseline M = 2.42%, SD = 1.96%). Fol-

lowing the response, there was an increase in beta in contralateral sensorimotor cortex (beta

rebound) which was greater in congruent, compared to incongruent trials on the white matter sur-

face (Figure 8B; W(8)=34, p=0.023; 7/8 participants, congruent % change from baseline - incongru-

ent % change from baseline M = 5.13%, SD = 5.19%). In other words, the beta rebound was

greatest when the cued response matched the prepared response.

Discussion
We here provide non-invasive evidence from human MEG recordings that low frequency channels of

activity localize predominantly to deep laminae, and high frequency activity channels localize more

superficially, in both visual and sensorimotor cortex. Through the use of novel MEG head-cast tech-

nology (Troebinger et al., 2014b; Meyer et al., 2017a) and spatially and temporally resolved lami-

nar analyses (Troebinger et al., 2014a; Bonaiuto et al., 2018), our results provide non-invasive

support for layer- and frequency-specific accounts of hierarchical cortical organization in humans.

Lamina-resolved MEG of distinct frequency channels in human visual
and sensorimotor cortex
In this study, we sought to address recent proposals about the role of distinct frequency channels of

activity in hierarchical processing (Fries, 2005; Fries, 2015; Friston and Kiebel, 2009; Wang, 2010;

Jensen and Mazaheri, 2010; Donner and Siegel, 2011; Arnal and Giraud, 2012; Bastos et al.,

2012; Adams et al., 2013; Jensen et al., 2015; Stephan et al., 2017); though see Haegens et al.,

2015; Halgren et al., 2017). According to these proposals, ascending (bottom-up) and descending

(top-down) information processing occurs through distinct anatomical and frequency-specific chan-

nels. Whereas bottom-up information is conveyed via high frequency activity in supragranular layers,

top-down information is associated with low frequency activity in infragranular layers. Currently, few

studies in humans have tested these proposals, often on indirect grounds (Koopmans et al., 2010;

Olman et al., 2012; Fontolan et al., 2014; Kok et al., 2016; Michalareas et al., 2016;

Scheeringa and Fries, 2017). Moreover, these studies have generally focused on sensory systems,

whereas here we sought to establish the generalizability of these proposals across cortex, and there-

fore additionally focused on agranular sensorimotor cortex.

When interpreting our results, it is therefore important to consider whether or not it is principally

possible to achieve the spatial precision needed to distinguish deep versus superficial laminae activ-

ity with MEG. As MEG is a direct measure of neural activity, its spatial precision is, in principle, only

limited by the signal-to-noise ratio with which data can be recorded, and the analysis techniques

used to perform source localization (Hillebrand and Barnes, 2002; Hillebrand and Barnes, 2003;

Hillebrand and Barnes, 2011; Brookes et al., 2010; López et al., 2012; Troebinger et al., 2014b;

Meyer et al., 2017a; Bonaiuto et al., 2018).

Notably, in addition to theoretical considerations that a distinction of sources as close as 2 – 3

mm with MEG is feasible, recent MEG work on the retinotopic organization of visually induced activ-

ity provides empirical support for this precision (Nasiotis et al., 2017). These authors quantified the

smallest detectable change in source location elicited by a shift in the position of a visual stimulus,

which was as low as 1 mm.

Low and high frequency channels localize to deep and more superficial
cortical laminae across visual and sensorimotor cortex
We found that low frequency activity (alpha, 7 – 13 Hz; and beta, 15 – 30 Hz) predominately origi-

nated from deep cortical laminae, and high frequency activity (gamma, 60 – 90 Hz) from more super-

ficial laminae in both visual and sensorimotor cortex. Our analysis included a built-in control: visually

induced gamma after both the RDK and the instruction cue localized superficially, reinforcing the

proposal that visual gamma generally predominates from superficial laminae. Moreover, laminar

specificity was abolished by shuffling the sensors (Figure 5—figure supplement 1) or introducing

co-registration error (Figure 5—figure supplement 2), underlining the need for spatially precise

anatomical data and MEG recordings. Importantly, the laminar bias of both low and high frequency
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signals increased monotonically as the number of trials included in the analysis increased, but this

effect was weaker when the sensors were shuffled (Figure 5—figure supplement 4), and the superfi-

cial bias of all signals increased until saturation with the addition of increasing levels of white noise,

but high frequency signals saturated at much lower noise levels and the superficial bias became

unstable with increasing noise levels (Figure 5—figure supplement 5). These results suggest that

the more superficial localization of gamma signals was not simply due to a trivial relationship

between laminar bias and SNR.

Additionally, we established that our results were not simply driven by the relative strength of the

pial and white matter surface lead fields. While we found a correlation between relative lead field

strength and laminar preference (Figure 5—figure supplement 6A), this relationship was constant

across frequency bands (Figure 5—figure supplement 7), and the laminar dissociation held at the

single participant level when considering only vertex pairs matched for lead field strength (Figure 5—

figure supplement 6B). Moreover, the deep laminar preference of low frequency signals was pre-

served even when considering only vertex pairs where the white matter vertex was closer to the

scalp than the pial vertex (Figure 5—figure supplement 9). These results suggest that our main

analyses were sensitive to the likely source of low- and high-frequency signals (rather being simply

dependent on the relative magnitude of the influence of source activity from the pial versus white

matter surface on the MEG sensors). However, while the slope of the relationship between relative

lead field strength and laminar preference was constant across frequency bands, for gamma signals,

this regression fit had an offset of approximately zero (Figure 5—figure supplement 7). Moreover,

the laminar preference of sensorimotor gamma within the anatomically constrained ROIs reversed

when considering only vertex pairs in which the white matter vertex was closest to the scalp. Given

these issues, the conservative conclusion would be that visual and sensorimotor gamma localize

more superficially than visual alpha and sensorimotor beta.

One possible confound in our analysis is the estimate of sensor noise. We assumed this to be

diagonal. However subsequent tests, based on independent data recorded during a similar time-

period, showed off-diagonal structure (Figure 5—figure supplement 12). Although this structure

was the same across frequency bands it will have affected the free energy optimization stage. How-

ever, when using a sensor covariance matrix based on empty room noise measurements, the same

pattern of laminar preference was observed (Figure 5—figure supplement 13C).

The localization of alpha activity to predominately deep laminae of visual cortex is in line with evi-

dence from depth electrode recordings in visual areas of the non-human primate brain (Maier et al.,

2010; Buffalo et al., 2011; Spaak et al., 2012; Xing et al., 2012; Smith et al., 2013;

van Kerkoerle et al., 2014). Several studies have found alpha generators in both infra- and supra-

granular layers in primary sensory areas (Bollimunta et al., 2008; Bollimunta et al., 2011;

Haegens et al., 2015), and it has been suggested that this discrepancy is due to a contamination of

infragranular layer LFP signals by volume conduction from strong alpha generators in supragranular

layers (Haegens et al., 2015; Halgren et al., 2017). This is unlikely to apply to the results presented

here as this type of laminar MEG analysis is biased toward superficial laminae when SNR is low

(Bonaiuto et al., 2018). However, this analysis is binary (deep or superficial) and will be biased

toward the region of highest power change, even if the true source distribution populates multiple

depths (Bonaiuto et al., 2018).

We found that gamma activity was strongest in more superficial sources, confirming invasive

recordings showing gamma activity arising predominantly from supragranular layers in visual cortex

(Buffalo et al., 2011; Spaak et al., 2012; Xing et al., 2012; Smith et al., 2013; van Kerkoerle

et al., 2014; but see Nandy et al., 2017). The mechanisms underlying the generation of gamma

activity are diverse across the cortex (Buzsáki and Wang, 2012), but commonly involve reciprocal

connections between pyramidal cells and interneurons, or between interneurons (Tiesinga and Sej-

nowski, 2009; Whittington et al., 2011). The local recurrent connections necessary for such recipro-

cal interactions are most numerous in supragranular layers (Buzsáki and Wang, 2012), as are fast-

spiking interneurons which play a critical role in generating gamma activity (Cardin et al., 2009;

Sohal et al., 2009; Carlén et al., 2012).

It is hypothesized that the laminar segregation of frequency channels is a common organizing

principle across the cortical hierarchy (Wang, 2010; Arnal and Giraud, 2012; Bastos et al., 2012;

Fries, 2015). However, most evidence for this claim comes from depth electrode recordings in pri-

mary sensory areas, with the vast majority in visual cortical regions (Buffalo et al., 2011;
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Spaak et al., 2012; Xing et al., 2012; Smith et al., 2013; van Kerkoerle et al., 2014). While in vivo

laminar data from primate sensorimotor cortex are lacking, in vitro recordings from somatosensory

and motor cortices demonstrate that beta activity is generated in neural circuits dominated by infra-

granular layer V pyramidal cells (Roopun et al., 2006; Roopun et al., 2010; Yamawaki et al., 2008).

By contrast, gamma activity is thought to arise from supragranular layers II/III of mouse somatosen-

sory cortex (Cardin et al., 2009; Carlén et al., 2012). The results presented here support general-

ized theories of laminar organization across cortex, and are the first to non-invasively provide

evidence for the laminar origin of movement-related sensorimotor activity.

High frequency activity in visual cortex is enhanced by mismatches
between possible feedforward and feedback signals
We found that visual gamma was enhanced following the presentation of the instruction cue in

incongruent compared to congruent trials. This was in agreement with our predictions, based on the

fact that supragranular layer gamma activity is implicated in feedforward processing (van Kerkoerle

et al., 2014). In our task, the direction of coherent motion in the RDK was congruent with the direc-

tion of the following instruction cue in most trials. Participants could therefore form a sensory expec-

tation of the direction of the forthcoming instruction cue, which was violated in incongruent trials.

The enhancement of visual gamma following incongruent cues is therefore consistent with the

gamma activity increase observed in sensory areas during perceptual expectation violations

(Gurtubay et al., 2001; Arnal et al., 2011; Todorovic et al., 2011) as well as layer-specific synaptic

currents in supragranular cortical layers during performance error processing (Sajad et al., 2017).

Low frequency activity in sensorimotor cortex reflects a combination of
potential feedforward and feedback processes
There are numerous theories for the computational role of beta activity in motor systems. Decreases

in beta power prior to the onset of a movement predict the selected action (Donner et al., 2009;

Haegens et al., 2011; de Lange et al., 2013), whereas the beta rebound following a movement is

attenuated by both perturbation-induced movement errors and target errors induced by goal dis-

placement (Tan et al., 2014; Tan et al., 2016; Torrecillos et al., 2015). Our results unify both of

these accounts, showing that the level of beta decrease prior to a movement is modulated by the

accumulation of sensory evidence predicting the cued movement, while the beta rebound is dimin-

ished when the prepared action must be suppressed in order to correctly perform the cued action

(corresponding to a shift in reach target used by Torrecillos et al., 2015).

While our results cannot directly distinguish between feedback and feedforward processes

because we did not assess interactions between brain regions (Bastos et al., 2015;

Michalareas et al., 2016), they suggest that in the sensorimotor system, low frequency activity can

reflect both bottom-up and top-down processes depending on the task epoch. This may occur via

bottom-up, feedforward projections from intraparietal regions to motor regions (Platt and

Glimcher, 1999; Hanks et al., 2006; Tosoni et al., 2008; Kayser et al., 2010) or top-down, feed-

back projections from the dorsolateral prefrontal cortex (Heekeren et al., 2004; Heekeren et al.,

2006; Curtis and Lee, 2010; Hussar and Pasternak, 2013; Georgiev et al., 2016). The dissociation

between bottom-up and top-down influences during different task epochs could indicate that the

decrease in beta and the following rebound are the result of functionally distinct processes.

Future directions
Our ROI-based comparison of deep and superficial laminae can only determine the origin of the

strongest source of activity, which does not imply that activity within a frequency band is exclusively

confined to either deep or superficial sources within the same patch of cortex (Maier et al., 2010;

Bollimunta et al., 2011; Spaak et al., 2012; Xing et al., 2012; Smith et al., 2013; Haegens et al.,

2015). We should also note that in all of our control studies, in which we discard spatial information,

a bias towards the superficial (pial) cortical surface was present. However, this bias does not increase

with SNR for high frequency activity with poor anatomical models (Figure 5—figure supplement 4),

mirroring the results of simulations showing that this type of laminar analysis is biased superficially at

low SNR levels (Bonaiuto et al., 2018). Moreover, we used white matter and pial surface meshes to

represent deep and superficial cortical laminae, respectively, and therefore made no attempt to
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explicitly account for activity arising from the granular layers. Recent studies have shown that beta,

and perhaps gamma, activity is generated by stereotyped patterns of proximal and distal inputs to

infragranular and supragranular pyramidal cells (Lee and Jones, 2013; Jones, 2016; Sherman et al.,

2016).

Finally, a new generation of wearable MEG sensors, optically pumped magnetometers

(Boto et al., 2016; Boto et al., 2017; Boto et al., 2018), promises to extend the reach of laminar

MEG. These sensors do not require cryogenic cooling and can therefore be placed directly on the

scalp surface, directly increasing SNR. This allows participants to make relatively unconstrained and

natural movements; future such systems, which were comfortable to wear, would give the possibility

of further augmenting the SNR by recording over much longer periods (Boto et al., 2018). Such

flexibility in participant behavior opens the door to the possibility of testing theories about the

changes in hierarchical communication in the brain, either developmentally or in patient populations

such as those with movement disorders, autism spectrum disorders and schizophrenia (Wang, 2010;

Wilson et al., 2011; Gandal et al., 2012; Wright et al., 2012; Chan et al., 2016; Kessler et al.,

2016; Liddle et al., 2016).

Materials and methods

Behavioral task
Eight neurologically healthy volunteers participated in the experiment (six male, aged 28.5 ± 8.52

years). The study protocol was in full accordance with the Declaration of Helsinki, and all participants

gave written informed consent after being fully informed about the purpose of the study. The study

protocol, participant information, and form of consent, were approved by the UCL Research Ethics

Committee (reference number 5833/001). Participants completed a visually cued action decision

making task in which they responded to visual stimuli projected on a screen by pressing one of two

buttons on a button box using the index and middle finger of their right hand. On each trial, partici-

pants were required to fixate on a small (0.5˚�0.5˚) white cross in the center of a screen. After a

baseline period randomly varied between 1 s and 2 s, a random dot kinematogram (RDK) was dis-

played for 2 s with coherent motion either to the left or to the right (Figure 1A). Following a 500 ms

delay, an instruction cue appeared, consisting of a 3˚�1˚ arrow pointing either to the left or the

right, and participants were instructed to press the corresponding button (left or right) as quickly

and as accurately as possible. Trials ended once a response had been made or after a maximum of 1

s if no response was made.

The task had a factorial design with congruence (whether or not the direction of the instruction

cue matched that of the coherent motion in the RDK) and coherence (the percentage of coherently

moving dots in the RDK) as factors (Figure 1B). Participants were instructed that in most of the trials

(70%), the direction of coherent motion in the RDK was congruent to the direction of the instruction

cue. Participants could therefore reduce their mean response time (RT) by preparing to press the

button corresponding to the direction of the coherent motion. The RDK consisted of a 10˚�10˚
square aperture centered on the fixation point with 100, 0.3˚ diameter dots, each moving at 4˚/s. On

each trial, a certain percentage of the dots (specified by the motion coherence level) moved coher-

ently through the aperture in one direction, left or right. The remaining dots moved in random direc-

tions through the aperture, with a consistent path per dot. The levels were individually set for each

participant by using an adaptive staircase procedure (QUEST; Watson and Pelli, 1983) to determine

the motion coherence at which they achieved 82% accuracy in a block of 40 trials at the beginning

of each session, in which they had to simply respond with the left or right button to leftwards or

rightwards motion coherence. The resulting level of coherence was then used as medium, and 50%

and 150% of it as low and high, respectively.

Each block contained 126 congruent trials, and 54 incongruent trials, and 60 trials for each coher-

ence level with half containing coherent leftward motion, and half rightward (180 trials total). All tri-

als were randomly ordered. Participants completed three blocks per session, and 1–5 sessions on

different days, resulting in 540–2700 trials per participant (M = 1822.5, SD = 813.21). The behavioral

task was implemented in MATLAB (The MathWorks, Inc., Natick, MA) using the Cogent 2000 tool-

box (http://www.vislab.ucl.ac.uk/cogent.php).
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MRI acquisition
Prior to MEG sessions, participants underwent two MRI scanning protocols during the same visit:

one for the scan required to generate the scalp image for the head-cast, and a second for MEG

source localization. Structural MRI data were acquired using a 3T Magnetom TIM Trio MRI scanner

(Siemens Healthcare, Erlangen, Germany), while participants were laying in a supine position.

The first protocol was used to generate an accurate image of the scalp for head-cast construction

(Meyer et al., 2017a). This used a T1-weighted 3D spoiled fast low angle shot (FLASH) sequence

with the following acquisition parameters: 1 mm isotropic image resolution, field-of view set to 256,

256, and 192 mm along the phase (anterior-posterior, A–P), read (head-foot, H–F), and partition

(right-left, R–L) directions, respectively. The repetition time was 7.96 ms and the excitation flip angle

was 12˚. After each excitation, a single echo was acquired to yield a single anatomical image. A high

readout bandwidth (425 Hz/pixel) was used to preserve brain morphology and no significant geo-

metric distortions were observed in the images. Acquisition time was 3 min 42 s, a sufficiently short

time to minimize sensitivity to head motion and any resultant distortion. Care was also taken to pre-

vent distortions in the image due to skin displacement on the face, head, or neck, as any such errors

could compromise the fit of the head-cast. Accordingly, a more spacious 12 channel head coil was

used for signal reception without using either padding or headphones.

The second protocol was a quantitative multiple parameter mapping (MPM) protocol, consisting

of 3 differentially-weighted, RF and gradient spoiled, multi-echo 3D FLASH acquisitions acquired

with whole-brain coverage at 800 mm isotropic resolution. Additional calibration data were also

acquired as part of this protocol to correct for inhomogeneities in the RF transmit field (Lutti et al.,

2010; Lutti et al., 2012; Callaghan et al., 2015). For this protocol, data were acquired with a 32-

channel head coil to increase SNR.

The FLASH acquisitions had predominantly proton density (PD), T1 or magnetization transfer

(MT) weighting. The flip angle was 6˚ for the PD- and MT-weighted volumes and 21˚ for the T1

weighted acquisition. MT-weighting was achieved through the application of a Gaussian RF pulse 2

kHz off resonance with 4 ms duration and a nominal flip angle of 220˚ prior to each excitation. The

field of view was set to 224, 256, and 179 mm along the phase (A–P), read (H–F), and partition (R–L)

directions, respectively. Gradient echoes were acquired with alternating readout gradient polarity at

eight equidistant echo times ranging from 2.34 to 18.44 ms in steps of 2.30 ms using a readout

bandwidth of 488 Hz/pixel. Only six echoes were acquired for the MT-weighted acquisition in order

to maintain a repetition time (TR) of 25 ms for all FLASH volumes. To accelerate the data acquisition

and maintain a feasible scan time, partially parallel imaging using the GRAPPA algorithm

(Griswold et al., 2002) was employed with a speed-up factor of 2 and forty integrated reference

lines in each phase-encoded direction (A-P and R-L).

To maximize the accuracy of the measurements, inhomogeneity in the transmit field was mapped

by acquiring spin echoes and stimulated echoes across a range of nominal flip angles following the

approach described in Lutti et al., 2010, including correcting for geometric distortions of the EPI

data due to B0 field inhomogeneity. Total acquisition time for all MRI scans was less than 30 min.

Quantitative maps of proton density (PD), longitudinal relaxation rate (R1 = 1/T1), magnetization

transfer saturation (MT) and effective transverse relaxation rate (R2*=1/T2*) were subsequently cal-

culated according to the procedure described in Weiskopf et al. (2013). Each quantitative map was

co-registered to the scan used to design the head-cast, using the T1 weighted map. The resulting

maps were used to extract cortical surface meshes using FreeSurfer (see below).

Head-cast construction
From an MRI-extracted image of the skull, a head-cast that fit between the participant’s scalp and

the MEG dewar was constructed (Troebinger et al., 2014b; Meyer et al., 2017a). Scalp surfaces

were first extracted from the T1-weighted MRI scans acquired in the first MRI protocol using stan-

dard SPM12 procedures (RRID:SCR_007037; http://www.fil.ion.ucl.ac.uk/spm/). Next, this tessellated

surface was converted into the standard template library (STL) format, commonly used for 3D print-

ing. Importantly, this conversion imposed only a rigid body transformation, meaning that it was eas-

ily reverse-transformable at any point in space back into native MRI space. Accordingly, when the

fiducial locations were optimized and specified in STL space as coil-shaped protrusions on the scalp,

their exact locations could be retrieved and employed for co-registration. Next, the head-cast
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design was optimized by accounting for factors such as head-cast coverage in front of the ears, or

angle of the bridge of the nose. To specify the shape of the fiducial coils, a single coil was 3D

scanned and three virtual copies of it were placed at the approximate nasion, left peri-auricular

(LPA), and right peri-auricular (RPA) sites, with the constraint that coil placements had to have the

coil-body and wire flush against the scalp, in order to prevent movement of the coil when the head-

cast was worn. The virtual 3D model was placed inside a virtual version of the scanner dewar such

that the distance to the sensors was minimized (by placing the head as far up within the dewar as

possible) while ensuring that vision was not obstructed. Next, the head-model (plus spacing ele-

ments and coil protrusions) was printed using a Zcorp 3D printer (Zprinter 510) with 600 � 540 dots

per inch resolution. The 3D printed head model was then placed inside the manufacturer-provided

replica of the dewar and liquid resin was poured in between the surfaces to fill the negative space,

resulting in the participant-specific head-cast. The fiducial coil protrusions in the 3D model now

become indentations in the resulting head-cast, in which the fiducial coils can sit during scanning.

The anatomical landmarks used for determining the spatial relationship between the brain and MEG

sensors are thus in the same location for repeated scans, allowing data from multiple sessions to be

combined (Meyer et al., 2017a).

FreeSurfer surface extraction
FreeSurfer (v5.3.0; Fischl, 2012) was used to extract cortical surfaces from the multi-parameter

maps. Use of multi-parameter maps as input to FreeSurfer can lead to localized tissue segmentation

failures due to boundaries between the pial surface, dura mater and CSF showing different contrasts

compared to that assumed within FreeSurfer algorithms (Lutti et al., 2014). Therefore, an in-house

FreeSurfer surface reconstruction procedure was used to overcome these issues, using the PD and

T1 maps as inputs. Detailed methods for cortical surface reconstruction can be found in Carey et al.,

2017. This process yields surface extractions for the pial surface (the most superficial layer of the

cortex adjacent to the cerebro-spinal fluid, CSF), and the white/grey matter boundary (the deepest

cortical layer). Each of these surfaces is downsampled by a factor of 10, resulting in two meshes

comprising about 30,000 vertices each (M = 30,0940.75, SD = 2,665.450.45 over participants). For

the purposes of this study, we used these two surfaces to represent deep (white/grey interface) and

superficial (grey-CSF interface) cortical models.

MEG acquisition
MEG recordings were made using a 275-channel Canadian Thin Films (CTF) MEG system with super-

conducting quantum interference device (SQUID)-based axial gradiometers (VSM MedTech, Vancou-

ver, Canada) in a magnetically shielded room. The data collected were digitized continuously at a

sampling rate of 1200 Hz. A projector displayed the visual stimuli on a screen (~50 cm from the par-

ticipant), and participants made responses with a button box. All data are archived at the Open

MEG Archive (OMEGA; Niso et al., 2016) and may be accessed via http://dx.doi.org/10.23686/

0015896 (Niso et al., 2018).

Behavioral analyses
Participant responses were classified as correct when the button pressed matched the direction of

the instruction cue, and incorrect otherwise. The response time (RT) was measured as the time of

button press relative to the onset of the instruction cue. We analyzed accuracy using a generalized

linear mixed model with a logit link function, using correct (true or false) in each trial as the depen-

dent variable, congruence (congruent or incongruent) and coherence (low, medium, high) and their

interaction as fixed effects, and a participant-specific intercept as a random effect. Fixed effects

were tested using type III Wald c2 tests. RT was analyzed using a linear mixed model also using con-

gruence as coherence and their interaction as fixed effects, with a participant-specific intercept as a

random effect. Fixed effects for this model were estimated using type III Wald F tests with Kenward-

Rogers approximated degrees of freedom (Kenward and Roger, 1997). For both models, planned

pairwise follow-up tests were performed using LSMEANS between congruence levels at each coher-

ence level, Tukey corrected.
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MEG preprocessing
All MEG data preprocessing and analyses were performed using SPM12 (RRID:SCR_007037; http://

www.fil.ion.ucl.ac.uk/spm/) using Matlab R2014a (RRID:SCR_001622) and are available at http://

github.com/jbonaiuto/meg-laminar (Bonaiuto, 2018; copy archived at https://github.com/elifescien-

ces-publications/meg-laminar). The data were filtered (5th order Butterworth bandpass filter: 2–100

Hz, Notch filter: 50 Hz) and downsampled to 250 Hz. Eye-blink artifacts were removed using multiple

source eye correction (Berg and Scherg, 1994). Trials were then epoched from 1 s before RDK

onset to 1.5 s after instruction cue onset, and from 2 s before the participant’s response to 2 s after.

Blocks within each session were merged, and trials whose variance exceeded 2.5 standard deviations

from the mean were excluded from analysis.

Reproducibility analysis
The reproducibility of the topographic maps, ERFs, and time frequency decompositions was quanti-

fied for a representative participant by computing the intra-class correlation coefficient (ICC), a mea-

sure of test-retest reliability (Shrout and Fleiss, 1979). This was done within-session over runs used

a type 2 k ICC, with the runs modeled as a random effect and the measure given by an average over

trials within a run. Similarly, the between-session ICC was type 2 k with sessions modeled as a ran-

dom effect and the measure given by an average over runs within a session.

Sensor-level analysis
At the sensor-level, we analyzed three epochs: one aligned to the RDK stimulus (0 – 2000 ms), one

centered on instruction stimulus (�500 ms to +500 ms), and one centered on the participant’s

response (�1000 ms to +1000 ms), with 250 ms padding on either side to avoid edge effects. For

each epoch type, seven-cycle Morlet wavelets were used to compute power within 2 – 45 Hz in

increments of 1 Hz, and a multi-taper analysis was used to computer power within 55 – 115 Hz in

increments of 5 Hz (sine taper, time resolution = 200 ms, time step = 10 ms). Power for each epoch

type was baseline-corrected using the 500 ms prior to the onset of the RDK stimulus in a frequency-

specific manner using robust averaging. Robust averaging is a form of general linear modeling

(Wager et al., 2005) used to reduce the influence of outliers on the mean by iteratively computing a

weighting factor for each sample according to how far it is from the mean. The baseline-corrected

time-frequency spectrograms were then averaged over a cluster of 15 sensors overlying occipital

cortex for visual signals (MLO53, MLO43, MLO32, MLO52, MLO31, MLO51, MLO41, MZO02,

MZO03, MRO52, MRO42, MRO31, MRO53, MRO43, MRO32) and 18 sensors overlying contralateral

motor cortex for sensorimotor signals (MLC17, MLC25, MLC32, MLC42, MLC54, MLC63, MRC63,

MLP57, MLP45, MLP35, MLP12, MLP23, MLC55, MZC04, MLP44, MLP34, MLP22, MLP11), and

finally smoothed using a Gaussian kernel (FWHM 8 � 8 Hz frequency bins and 80 ms). We used a lin-

ear mixed model with subject-specific offsets as random effects to test for significant changes in

power from baseline. We used a significance threshold of p<0.05, Bonferroni corrected for multiple

comparisons (over time and frequency).

Source reconstruction
Source inversion was performed using the empirical Bayesian beamformer (EBB; Belardinelli et al.,

2012; López et al., 2014). The sensor data were first reduced, using singular value decomposition

to 180 virtual channels, each with 16 temporal samples (weighting the dominant modes of temporal

variation across the window). For uninformative priors, the maximum-likelihood solution to the

inverse problem reduces to:

Ĵ ¼QLT ðQ�þLQLTÞ�1
Y

where Ĵ is the estimated current density across the source space, Y is (reduced) measured data, L

is the lead field or sensitivity matrix that can be computed based on the sensor and volume conduc-

tor geometry. Q� is the sensor noise, and Q is the prior estimate of source covariance. We assumed

the sensor level covarianceðQ�Þ to be an identity matrix (see discussion). Most popular inversion algo-

rithms can be differentiated by the form of Q (Friston et al., 2008; López et al., 2014). Here we

used a beamformer prior to estimate the structure of Q (Belardinelli et al., 2012; López et al.,
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2014) where a direct estimate of prior source co-variance (Q) is made based on the sensor-level

data:

QðiÞ ¼
1

LTi Li
ðLTi ðYY

TÞ�1
LiþlIÞ�1

Q is a diagonal matrix, and each element of the diagonal QðiÞ corresponds to a source location i.

The (reduced) sensor level data is Y, the lead field of each element i is Li ,
T denotes the transpose

operator, I is an identity matrix, and l is a regularization constant. The highest resolution beam-

former estimate will be made with l¼ 0 and this is the default used throughout the paper. Such low

values of regularization can, however, become problematic especially when comparing signals occu-

pying different bandwidths at different SNRs (Brookes et al., 2008). In order to verify that the differ-

ential effects we were observed were not due to regularization, we therefore also implemented an

augmented EBB solution in which the Bayesian scheme optimized from a range of source priors

each at different levels of regularization (0, 5, 10, 50, 100 and 1000) percent of the mean eigenvalue

of YYT (Figure 5—figure supplement 13B).

The prior estimates of Q� and Q are then re-scaled or optimally mixed using an expectation maxi-

mization scheme (Friston et al., 2008) to give an estimate of J that maximizes model evidence. The

source level prior was based on the beamformer power estimate across a two-layer manifold com-

prised of pial and white cortical surfaces with source orientations defined as normal to the cortical

surface and a spatial coherence prior (Friston et al., 2008), GðsÞ : s ¼ 0:4 (corresponding to a

FWHM of approximately 4 mm). We used the Nolte single shell head model (Nolte, 2003). All analy-

ses were carried out using the SPM12 (RRID:SCR_007037; http://www.fil.ion.ucl.ac.uk/spm/) software

package (see López et al., 2014) for implementation details).

Analyses for laminar discrimination
The laminar analysis reconstructed the data onto a mesh combining the pial and white matter surfa-

ces, thus providing an estimate of source activity on both surfaces (Figure 4). We analyzed six differ-

ent visual and sensorimotor signals at different frequencies and time windows of interest (WOIs),

using the same frequency bands across participants: RDK-aligned visual alpha (7-13Hz; WOI=[0s, 2s];

baseline WOI=[-1s, -.5s]), RDK-aligned visual gamma (60-90Hz; WOI=[250ms, 500ms]; baseline

WOI=[-500ms, -250ms]), instruction cue-aligned visual gamma (60-90Hz; WOI=[100ms, 500ms]; base-

line WOI=[-500ms, -100ms]), RDK-aligned sensorimotor beta (15-30Hz; WOI=[0s, 2s]; baseline WOI=

[-500ms, 0ms]), response-aligned sensorimotor beta (15-30Hz; WOI=[500ms, 1s]; baseline WOI=[-

250ms 250ms]), and response-aligned sensorimotor gamma (60-90Hz; WOI=[-100ms, 200ms]; base-

line WOI=[-1.5s, -1s]). For each signal, we defined an ROI by comparing power in the associated fre-

quency band during the WOI with a prior baseline WOI at each vertex and averaging over trials.

Vertices in either surface with a mean unsigned fractional change in power from the baseline in the

80th percentile over all vertices on that surface (the top 20%), as well as the corresponding vertices

on the other surface, were included in the ROI. This ensured that the contrast used to define the

ROI was orthogonal to the subsequent pial versus white matter surface contrast. For each trial, ROI

values for the pial and white matter surfaces were computed by averaging the unsigned fractional

change in power compared to baseline in that surface within the ROI (jWOI�baselinej
baseline

).

For within-participant tests, a paired t-test was used to compare the ROI values from the pial sur-

face with those from the white matter surface over trials (Figure 4). This resulted in positive t-statis-

tics when the unsigned fractional change in power from baseline was greatest on the pial surface,

and negative values when the fractional change was greatest on the white matter surface. All t-tests

were performed with corrected noise variance estimates in order to attenuate artifactually high sig-

nificance values (Ridgway et al., 2012). Group-level statistics were performed using one-sample Wil-

coxon tests of the unsigned fractional change in power from baseline averaged within ROI

(
jWOIpial�baselinepial j

baselinepial
� jWOIwhitematter�baselinewhitematter j

baselinewhitematter
).

The control analyses utilized the same procedure, but each introduced some perturbation to the

data. The shuffled analysis permuted the lead fields of the forward model prior to source reconstruc-

tion in order to destroy any correspondence between the cortical surface geometry and the sensor

data. This was repeated 10 times per session, with a different random lead field permutation each

time. The mean unsigned magnitude of the change in power from baseline averaged within ROI was
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then used as the null hypothesis in the follow-up runs of the main laminar analyses. Each permutation

was then used in the laminar analysis for every low and high frequency signal. The co-registration

error analysis introduced a rotation (M = 10˚, SD = 2.5˚) and translation (M = 10 mm, SD = 2.5 mm)

of the fiducial coil locations in a random direction prior to source inversion, simulating between-ses-

sion co-registration error. This was done 10 times per session, with a different random rotation and

translation each time. Again, each perturbation was used in the laminar analysis for every low and

high frequency signal. The SNR analysis used a random subset of the available trials from each par-

ticipant, gradually increasing the number of trials used from 10 to the number of trials available. This

was repeated 10 times, using a different random subset of trials each time, and the resulting t-statis-

tics were averaged. The white noise analysis was used to decrease SNR by progressively adding

Gaussian white noise of increasing standard deviation to the sensor level data.

For analyses of laminar bias, distance to the scalp was computed using the CAT12 toolbox

(http://dbm.neuro.uni-jena.de/cat/) to generate a convex hull surface from the pial surface, and then

computing the Euclidean distance between each vertex and the nearest vertex on hull surface

(Van Essen, 2005; Im et al., 2006; Tosun et al., 2015), and lead field strength was computed as

root mean square of the lead field. Relationships between relative lead field strength or laminar

depth and the effect size of the laminar bias were evaluated using per-participant Spearman partial

correlation coefficients (controlling for the effect of laminar depth or relative lead field strength,

respectively). Each participant’s correlation coefficient was Fisher-transformed and the resulting Z

scores were compared against zero using a one sample t-test. The analysis using only vertices where

the white matter is closer to the scalp used the same ROIs as the main analysis, but only including

vertex pairs where the sulcal depth of the white matter vertex was less than that of the pial vertex.

The analysis controlling for the effect of the distance to the scalp used robust regression

(Holland and Welsch, 1977) to fit a linear model to the difference (pial – white matter) of the

unsigned fractional change in power from baseline, averaged over trials. The square root of the dis-

tance to scalp surface (averaged over pial and white matter vertices within each vertex pair) was

used as the independent variable. The main laminar analysis was then run on the residuals of this

regression.

The patch size analysis ran each inversion using a range of reconstruction patch sizes

(FWHM = 2.5, 5, 10, and 20 mm), and compared the free energy metric of model fit of each to the

mean over all patch sizes.

Condition comparison
For each visual and sensorimotor frequency band/task epoch combination, induced activity was com-

pared between task conditions on the surface and within the anatomically constrained ROI identified

from the corresponding laminar analysis. Seven-cycle Morlet wavelets were used to compute power

within the frequency band and this was baseline-corrected in a frequency-specific manner using

robust averaging. For each participant, the mean percent change in power over the WOI was aver-

aged over all trials within every condition. Wilcoxon tests for comparing two repeated measures

were used to compare the change in power for instruction cue-aligned visual gamma and sensorimo-

tor beta rebound between congruent and incongruent trials. A Friedman test for comparing multiple

levels of a single factor with repeated measures was used to compare the sensorimotor beta

decrease between low, medium, and high RDK coherence trials. This was followed up by Tukey-

Kramer corrected pairwise comparisons. Only trials in which a correct response was made were

analyzed.
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Troebinger L, López JD, Lutti A, Bestmann S, Barnes G. 2014a. Discrimination of cortical laminae using MEG.
NeuroImage 102:885–893. DOI: https://doi.org/10.1016/j.neuroimage.2014.07.015, PMID: 25038441
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