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Scalable analysis of cell type composition from single-cell 
transcriptomics using deep recurrent learning

Yue Deng1,*, Feng Bao2,*, Qionghai Dai2, Lani F. Wu1,#, Steven J. Altschuler1,#

1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, 
CA 94158, USA.

2Department of Automation, Tsinghua National Laboratory for Information Science and 
Technology, Tsinghua University, Beijing, 100084, P. R. China.

Abstract

Recent advances in large-scale single cell RNA-seq enable fine-grained characterization of 

phenotypically distinct cellular states within heterogeneous tissues. We present scScope, a scalable 

deep-learning based approach that can accurately and rapidly identify cell-type composition from 

millions of noisy single-cell gene-expression profiles.

Single-cell RNA-seq (scRNA-seq) provides high-resolution dissection of complex biological 

systems, including identification of rare cell subpopulations in heterogeneous tissues, 

elucidation of cell-developmental programs, and characterization of cellular responses to 

perturbations1–3. Recent scRNA-seq experimental platforms4–6 have enabled interrogation 

of millions of cells, which offers an unprecedented resolution at which to dissect cell-type 

compositions.

These advances led to two acute challenges. First, single-cell transcriptomics is susceptible 

to amplification noise and dropout events7, 8, which become more pronounced as tradeoffs 

are made to sequence larger numbers of cells. Second, computational memory and/or speed 

restrictions may render analytical packages7–12 poorly scalable for large datasets, including 

all cells and measured genes.

To extract informative representations from extremely noisy, massive, high-dimensional 

scRNA profiles, we developed scScope, a deep-learning based software package (Fig. 1a). 

scScope utilizes a recurrent network layer to iteratively perform imputations on zero-valued 

entries of input scRNA-seq data (Methods). scScope’s architecture allows imputed output to 

be iteratively improved through a selected number of recurrent steps (T). We note that for T 

= 1, the architecture reduces to a standard autoencoder (AE)13. In one joint framework, 
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scScope conducts batch effect removal, cellular-feature learning, dropout imputation and 

parallelized training (when multiple GPUs are available) (Supplementary Fig. 1).

We evaluated scScope on its scalability, ability to identify cell subpopulations, impute 

dropout gene information and correct batch effects, using datasets with varying degrees of 

size, complexity and prior biological annotation. We compared scScope performance with 

four “non-deep” methods (PCA, MAGIC11, ZINB-WaVE8 and SIMILR9) and three “deep” 

learning models (Autoencoder (AE), scVI14 and DCA15) (Methods and Supplementary 

Table 1). The AE was implemented via scScope with T = 1 (Methods) and, for all 

comparisons, unless otherwise stated, scVI, DCA, AE and scScope were run on a single 

GPU using default parameters (Methods, Supplemental Table 2).

We first tested the scalability and training speed of scScope on a mouse brain dataset, which 

contained 1.3M cells, using 1000 highly variable genes (Fig 1b,Methods). As expected, the 

generic machine-learning tool PCA was the fastest. scScope was able to complete its 

analysis of the full dataset in under an hour, which was comparable to the AE, and this 

runtime was significantly dropped by using the option for multiple GPU training. The non-

deep single-cell software packages were unable to scale beyond 100K cells, and the deep 

approaches, while able to scale to 1M cells, required at least seven times more computing 

time than scScope. Thus, scScope offers a scalable and highly efficient approach for 

analyzing large scRNA-seq datasets.

To calibrate the accuracy of scScope on simulated datasets, we made use of two third-party 

packages for generating scRNA-seq data (Methods and Supplementary Table 3). First, we 

used Splatter16 to generate moderate-sized datasets of varying sparsity levels (percentage of 

0-valued genes), containing 2K scRNA-seq profiles with 500 genes, and three underlying 

subpopulations. In terms of discovering these underlying subpopulations, scScope performs 

similarly to other approaches when there are only minor dropout effects, but shows a large 

advantage in accuracy as dropout rates increase to realistic ranges observed in biological 

data4, 6 (Fig. 1c). In terms of imputation error, at low sparsity (<50%) scScope and MAGIC 

outperformed all other methods, though at high sparsity scScope outperformed all other 

approaches (Supplementary Fig. 2). We found for scScope that a recurrence of T = 2 (its 

default value) provides a good tradeoff between speed and accuracy (Supplementary Fig. 3).

Second, we used the simulation framework in SIMLR to generate massive, heterogeneous 

datasets of varying sparsity levels containing: 1M scRNA-seq profiles with 500 genes, and 

50 underlying subpopulations. The deep approaches were able to operate over the full 

datasets, while the non-deep single-cell packages required down-sampled training strategies 

(Methods). scScope performed well, particularly at high sparsity levels (Supplementary Fig. 

4). An increasingly important task for scRNA-seq profiling approaches is to identify rare 

cell subpopulations within large-scale data. As might be expected, methods that did not 

require down sampling were better able to detect rare cell subpopulations. Overall, scScope 

performed reasonably well on this challenging task (Fig. 1d, Methods). Our calibration 

suggested that scScope can efficiently identify cell subpopulations from complex datasets 

with high dropout rates, large numbers of subpopulations and rare cell types.
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We next evaluated scScope on four experimental single-cell RNA datasets containing 

varying degrees of biological “ground truth”. These datasets were used to test the ability of 

scScope to: remove batch effects (Fig. 2a; lung tissue), recover dropout genes (Fig. 2b; 

CBMC dataset), identify minor subpopulations (Supplementary Fig. 5; retina dataset), and 

test clustering accuracy for a large dataset with varying numbers of analyzed genes (Fig. 2c; 

mouse cell atlas).

To test the ability to remove batch effects, we made use of the lung tissue dataset (part of the 

mouse cell atlas), which contained ~7K scRNA-seq profiles obtained from three different 

batches and used the 1,000 most variable genes (Methods). As with the two other software 

packages that offer batch correction, scScope performed well (Fig. 2a, top) without 

compromising its fast runtime (Fig. 2a, bottom).

To investigate how imputation accuracy depends on gene expression level, we made use of 

the cord blood mononuclear cell (CBMC) dataset, with ~8K scRNA-seq profiles and 1,000 

most variable genes (Methods). We sequentially simulated dropouts for genes14 (Methods) 

and reported results based on octile of expression ranking (Fig. 2b). For reconstructing small 

count values, MAGIC and scVI performed well, while for large count values DCA worked 

well. scScope showed small imputation errors consistently across the entire range of 

expression.

To test the ability to identify minor subpopulations in biological data, we made use of the 

mouse retina dataset, with 44K cells and 384 most variable genes (Methods). scScope 

automatically identified the most similar clustering (number and assignment) to the 39 cell 

subpopulations identified in the original study (Supplementary Fig. 5a). We annotated the 

clusters to cell types based on gene markers reported in the original study (Supplementary 

Table 4 and Methods). Clusters identified by scScope showed the most statistically 

significant enrichment of specific cell-type markers (larger fold-changes) (Supplementary 

Fig. 5b) and were highly consistent with previous, microscopy-validated estimates of cell-

type composition and proportion18 either excluding (Supplementary Fig. 5c) or including 

(Supplementary Fig. 5d) the major cell type, rod cells. Additionally, when analyzing “pure” 

cell types within the Retina dataset, scScope maintained the underlying simple 

subpopulation structure and achieved high reconstruction accuracy (Supplementary Table 5).

To test the ability to analyze increasing numbers of genes, we made use of the mouse cell 

atlas, with 400K cells sampled from 51 tissues. Only the deep learning algorithms were able 

to scale to these data sizes. To perform automatic identification of subpopulations on large 

datasets, we designed a scalable clustering approach (Methods and Supplementary Fig. 6). 

We used the 51 known tissue types to assess accuracy of the clustering results. For 1,000 and 

2,000 genes all three approaches performed similarly (Fig. 2c). Only scScope was able to 

scale to levels above 10,000 genes, by using its option for scalable memory allocation 

(Methods).

Finally, we applied scScope to investigate novel biology in datasets. We focused on the 

ability to reveal changes in cell-type composition under perturbed conditions 
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(Supplementary Fig. 7; intestinal dataset) and scale to large datasets and reveal new 

subpopulations (Fig. 3; brain dataset,Methods).

We applied scScope to the intestinal dataset, with ~10K mouse intestinal cells obtained from 

different infection conditions and the 1,000 most variable genes (Supplementary Fig. 7a and 

Methods). In the original study, enterocytes were identified as a single cluster. Interestingly, 

scScope subdivided this cell type into four subpopulations: differential expression of 

markers delineated distal vs. proximal enterocyte subpopulations; expression levels of these 

markers delineated immature vs. mature subtypes (Supplementary Fig. 7b and 

Supplementary Fig. 8). These refined enterocyte subpopulations suggested predictions about 

specific cell-type response to infection. For example, the pro-inflammatory gene Saa1 was 

overexpressed during both Salmonella and H. polygyrus (day 10) infections in distal 

enterocytes, but not in proximal enterocytes (Supplementary Fig. 7c and Supplementary 

Table 6). This geographic pattern of Saa1 expression is known for Salmonella infection, but 

is a novel prediction for H. polygyrus infection. Thus, scScope can be used to rapidly 

explore scRNA-seq data across perturbed conditions to predict novel gene function and 

identify new cell subtypes.

The 1.3M cells in the brain dataset were obtained from multiple brain regions, including the 

cortex, hippocampus and ventricular zones, of two embryonic mice. Here, we made use of 

scScope’s ability to rapidly explore this large dataset via its multi-GPU learning 

functionality with limited training iterations (Methods, Supplementary Table 2). scScope 

automatically identified 36 clusters, and we assigned each cluster to one of three major cell 

types based on criteria from the Allen Brain Atlas (http://brain-map.org) (Fig. 3, 

Supplementary Table 7 and Methods): glutamatergic neurons, GABAergic neurons and non-

neuronal cells. The proportions of neurons and non-neurons identified by scScope were 

consistent with cell proportions reported by a previous brain study19 (Fig. 3a). We 

investigated whether we could identify biological meaning for the 36 clusters, some of 

which contained fewer than 1,000 cells. Satisfyingly, by comparing our top overexpressed 

genes with known cell-type markers19, 20 (Supplementary Table 8), we were able to assign 

two thirds of the clusters to known cell types (Fig. 3b). Thus, scScope is able to rapidly, 

automatically and directly identify bona fide, rare cell types from large and complex 

biological datasets.

Taken together, scScope offers a platform that will help keep pace with the rapid advances in 

scRNA-seq, enabling rapid exploration of heterogeneous biological states within large and 

noisy datasets of single-cell transcriptional profiles.

Online Methods

1. scScope model and training.

Architecture—The architecture of the scScope network has four modules (Fig. 1a). The 

parameters in these layers are learned from data in an end-to-end manner through 

optimization. We note that scScope is flexible in terms of normalizing and scaling of input 

data, as long as the input values are non-negative.
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Batch Effect Correction: scScope offers the option to correct for batch effects, inspired by 

a previously developed approach8. The batch correction layer fB(·) is given by:

xc = f B xc = r xc − Buc

Here, we denote: the input single-cell profile by xc ∈ ℝN; the number of batches by K; the 

binary experimental batch effects indicator vector uc ∈ ℝK (non-zero entry indicates the 

batch of xC); and the learnable batch correction matrix as B ∈ ℝN × K. Throughout, r(·) 

denotes the standard rectified linear unit (ReLU), r(v) = max(0, v); the ReLU enforces xc ≥ 

0, which is expected for actual gene count data, and is widely used in deep learning. By 

default, uc = 0 assuming a single batch.

Encoder: For each cell c, the encoder layer fE(·) compresses the high-dimensional batch-

corrected single-cell expression profile xc ∈ ℝN into a low-dimensional, latent representation 

hc ∈ ℝM, M < N. The encoder layer is given by:

hc = f E xc = r WExc + bE

with learnable parameters WE ∈ ℝM × N and bE ∈ ℝM.

Decoder: The decoder layer fD(·) decompresses the latent representation hc to an output 

yc ∈ ℝN of the same dimension as the input single-cell profile, and is given by:

yc = f D hc = r WDhc + bD

with learnable parameters WD ∈ ℝN × M and bD ∈ ℝN.

Imputer: We developed a self-correcting layer to impute missing entries, inspired by a 

previously developed reconstruction approach21. To reduce the number of parameters, we 

transformed the decoder layer output yc to a p-dimensional latent vector by:

uc = r WUyc + bU ∈ ℝp

with learnable parameters WU ∈ ℝp × N and bU ∈ ℝps, p < N (we set p = 64). Then, we 

performed imputation by:

vc = PZc
r WVuc + bV ∈ ℝN
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with learnable parameters WV ∈ ℝN × p and bV ∈ ℝN. Here, Zc resp . Zc  is the set of zero-

(resp. non-zero-) valued genes in profile xc of the c-th cell, and the entry-sampling operator 

PZC
 sets all entries not in Zc to zero (i.e., for vector r, with entries rj, PZc

r j = r j if j ∈ Zc 

and PZC
r j = 0, j ∉ ZC). We used Zc as we are only interested in imputation for zero-valued 

genes in the profile xc.

After obtaining the imputed vector vc, we calculated the corrected single-cell expression 

profile: xc = xc + vc. This corrected single-cell profile xc was then re-sent through the 

encoder-decoder framework to re-learn an updated latent representation.

Learning the objective function.—The imputation layer imposes a recurrent structure 

on the scScope network architecture. For clarity of exposition, the recurrent scScope can be 

unfolded into multiple time steps (Supplementary Fig. 9 shows three steps). Then, the whole 

recurrent scScope framework can be described as:

xc = f B xc , hc
t = f E xc

t = f E xc + vc
t − 1 ,  yc

t = f D hc
t ,  vc

t = f I yc
t ,  vc

0 = 0,

for iterations t = 1 … T. At the first step, the correcting layer’s output vc
0 is set as zero. For T 

= 1, scScope is a standard auto-encoder (AE).

The learning objective for scScope is defined by the pursuit of unsupervised, self-

reconstruction (as typically used in AE training):

f B, f E, f D, f I = argmin L = ∑
c = 1

n
∑

t = 1

T
Pzc

yc
t − xc

2

The entry-sampling operator PZc
 forces loss computation only on non-zero entries of xc. The 

parameters in the batch correction layer (fB), encoder layer (fE), decoder layer (fD) and 

imputation layer (fI) are all learned by minimizing the above loss function.

Our multiple GPU training strategy is outlined in Supplementary Fig. 1.

Cell subpopulation discovery.—Representations outputted by scScope at each step can 

be concatenated as a long feature vector, which is easily integrated with any clustering 

method. We used the graph-based method PhenoGraph17, as it performs automated robust 

discovery of subpopulations, as well as determines subpopulation numbers automatically.

1) Graph clustering for moderate-scale data.: We directly applied the PhenoGraph 

software to datasets of moderate scale. All clustering results were obtained using a Python-

implemented PhenoGraph package (version 1.5.2). We followed the suggested setting and 

considered 30 nearest neighbors when constructing graphs.
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2) Scalable graph clustering for large-scale data.: scScope enables the feature learning 

on millions of cells. However, PhenoGraph is unable to handle millions of cells due to the 

extreme computational costs (Supplementary Fig. 10) and memory requirements in graph 

construction. To leverage the power of graph clustering on analyzing these large-scale data, 

we designed a density down-sampling clustering strategy by combining k-means and 

PhenoGraph.

In detail, we divided cells into M groups with equal size and performed k-means clustering 

on each group independently (Supplementary Fig. 6). The whole dataset was split to M × K 
clusters and we only input the cluster centroids into PhenoGraph for graph clustering. 

Finally, each cell was assigned to graph clusters according to the cluster labels of its nearest 

centroids.

In our implementation on the dataset of 1.3 million mouse brain cells, we took M = 500 and 

K = 400, which made it possible to process millions of data in only tens of minutes without 

loss of accuracy.

3) Scalable memory allocation for analyzing large numbers of genes in large 
datasets.: For large datasets and gene numbers, scScope implements a scalable memory 

allocation strategy that allows the dataset to be broken into a smaller number of batches that 

can be loaded directly into memory. We note that when this option is used, minibatches are 

only selected from within each batch during training. This option was only used in Fig. 2c 

for the case of ≥10K genes; here the 400K mouse cell atlas dataset was broken into four 

batches of size 100K.

2. Methods compared.

All compared methods were run on the same server with Xeon E5 CPU, 64 GB memory, 

Nvidia Titan X GPU and Ubuntu 14.04 operation system. Further, all comparisons were 

performed using log transformed input (we observed similar relative performance of the six 

compared methods above across four different choices of input scaling or normalization 

methods; Supplementary Fig. 11).

Unless otherwise noted: Software packages were used with their default values. We 

observed that all methods were reasonably robust to changes in the latent dimension M (e.g. 

Supplementary Fig. 12), and to avoid an intractable number of possible comparisons, we set 

M = 50 for all comparisons. For all deep learning methods (AE, DCA, scVI and scScope), 

we set the learning rate to 10−3, batch size to 64, and epoch = 100.

PCA: PCA is implemented using the Python package scikit-learn v0.18.

Autoencoder: The simple autoencoder (AE) is implemented using scScope with T = 1. 

Variations of the AE are described in the legend of Supplementary Fig. 13.

Markov Affinity-based Graph Imputation of Cells (MAGIC): The MAGIC algorithm 

was performed using the python-based package magic11. We inputted raw data and 
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employed the library_size_normalize() function provided by the software for all simulated 

and real data.

Zero-Inflated Negative Binomial-based Wanted Variation Extraction (ZINB-
WaVE): We employed the R package zinbwave8.

Single-cell interpretation via multi-kernel learning (SIMLR): We used the Python 

implementation of SIMLR9. SIMLR needs to take the desired cluster number as input. For 

our simulated dataset, we input the known cluster numbers. For the retina dataset, where the 

“true” cluster number is unknown, we set it to 39, which is the cluster number reported in 

the original study4.

Deep count autoencoder (DCA): DCA15 is an unpublished software based on 

TensorFlow framework. We installed the Python package of DCA (download date: Sep. 4, 

2018).

Single-cell Variational Inference (scVI): We used the Torch-based Python package of 

scVI14 (download date: June 5, 2018).

scScope: scScope was implemented in Python 3.6 with TensorFlow-GPU 1.4.1, Numpy 
1.13.0, Scikit-learn 0.18.1 packages. Unless noted otherwise, for comparisons of methods, 

scScope was run with default setting (e.g. single GPU mode); hyperparameter choices are 

given in Supplementary Table 2 and the results of varying them are demonstrated in 

Supplementary Fig. 14.

Down-sampling training strategies on large-scale dataset: Some non-deep-

learning based approaches could not run directly on extremely large datasets. For these 

approaches, we randomly down-sampled datasets to 20K cell subsets. On these down-

sampled datasets, single-cell feature vectors were learned by the respective method and 

clustered by PhenoGraph. A support vector machine (SVM) was trained on this subset in the 

latent feature space and then used to assign labels for the rest of cells in the unsampled 

dataset. The deep-learning approaches we tested could learn features on millions of cell 

profiles, but the software packages did not provide a function for automatic clustering. For 

comparisons, we passed the output of their learned single-cell features to the scalable 

clustering approach.

3. Evaluation of clustering and batch correction

ARI: We used the adjusted Rand index (ARI)22, 23 to compare label sets of two clustering 

methods. For two clustering results U and V with r and s clusters on a data set of n cells, nij 

denotes the number of cells shared between cluster i in U and cluster j in V. And ARI is 

defined as
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ARI =
∑i j

ni j
2

− ∑i
ni *
2

∑ j
n * j

2
/ n

2
1
2 ∑i

ni *
2

+ ∑ j
n * j

2
− ∑i

ni *
2

∑ j
n * j

2
/ n

2

where ni* = ∑j nij, n*j = ∑i nij and n is the number of cells in the data set.

Entropy of batch mixing: To evaluate the performance of batch correction, we made use 

of the score developed in mutual nearest neighbors (MNNs)24. In brief, 100 cells were 

randomly sampled from the entire population, the entropy of the distributions of batches for 

the nearest 100 neighbors was calculated and the process was iterated 100 times and shown 

as box plots.

4. Evaluation of Imputation

Imputation error for simulated data: On simulated data, the ground truth dropout 

vector l is known. The imputation accuracy was defined as the normalized distance between 

the imputed log count entries and log count ground truth entries. We constructed lists l and l
whose elements correspond to either ground truth or imputed values (respectively) for all 

dropouts entries across all cells (Supplementary Fig. 2). We defined the normalized error as:

error =
l − l 1

l 0

where ∥ ∥p means the lp norm of a vector.

Reconstruction error on held-out biological data: For real biological data, the 

ground truth values for missing genes are unknown. To evaluate scScope’s imputation 

accuracy on real biological data, we followed the same down-sampling strategy as used for 

scVI14. Namely, we randomly split the entire collection of n cells into ntrain training cells 

and nval validation cells. We used the different imputation methods to build gene models 

from the ntrain cells. On each of the nval cells, we randomly set p% of its non-zero genes as 

“simulated” missing genes and set their corresponding count values to zero. The real 

measured values of these simulated missing genes were then used to generate the ground 

truth list l, and the list l  was based on inferred values for the simulated missing genes from 

the nval cells. The reconstruction error was calculated as for simulated data above.

5. Simulated datasets.

Simulation with Splatter—The simulation package Splatter16 is designed to generate 

realistic scRNA-seq data. We used this package to generate data with 2000 cells, 3 

subpopulation groups, and dropout rates from 1 to 5.

Simulation with SIMLR—SIMLR9 was used to generate large-scale scRNA-seq data due 

to limitations in scalability of Splatter. High-dimensional single-cell expression data xc ∈ ℝN
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is generated by a latent code zc ∈ ℝP(P < N), which is not observable. Zc is sampled from a 

Gaussian mixture model with k Gaussian components, i.e. zc ∑ j = 1
k π jN μ j, Σ j . The mixture 

coefficients πj were chosen from a uniform distribution and normalized to sum to 1, the 

mean vector μ j ∈ ℝP was uniformly sampled in [0, 1]p, and the covariance matrix 

Σ j ∈ ℝP × P was chosen to be Σ = 0.1 × I, for identity matrix I.

To simulate single-cell gene vectors, we generated a projection matrix A ∈ ℝN × P to map the 

low-dimensional latent code to a high-dimensional space. First, we simulated ground truth, 

xC
true , which cannot be observed:

xC
true = Azc + b

where each entry in A was independently sampled from the uniform distribution U(−0.5, 

0.5) and bias b = 0.5 was added to avoid negative gene expression in the high-dimensional 

mapping. Second, we simulated the observed profile, xC
ObS, which may contain gene-specific 

noise and dropout artifacts due to the sequencing technique and platform. Noise was added 

to the true gene profile by: xcg
noise  = xcg

true + εcg, where εcg N 0, Σg
noise  and Σg

noise was 

uniformly sampled in the range of [0, 0.2] independently for each gene. Dropout events were 

added via a double exponential model with decay parameter25 α:

xcg
obs = xcg

noiseδ qcg > exp −αxcg
noise2

where xcg denotes the gth gene of xc, qcg was randomly sampled in [0, 1], and δ = 1 if its 

argument is true and = 0 otherwise.

Simulation with rare cell subgroups—To generate cell subpopulations with rare cell 

types, we sampled the mixture coefficients πj from a non-uniform distribution as

π1…km
= q; πkm + 1…k =

1 − q * km
k − km

where q ≪ 1/k is the mixture fraction for each minor cluster, km is the number of rare cell 

subpopulations, and k is the total number of subpopulations.

6. Biological datasets.

(a) Lung tissue data—The lung tissue dataset is part of the Mouse Cell Atlas data6. 

This dataset was downloaded from Gene Expression Omnibus (GEO) database (accession 

number: GSE108097). In this dataset, 6,940 cells were sequenced via three independent 

experiments by Microwell-seq, with 2,512, 1,414 and 3,014 cells in each batch. 1,000 highly 

variable genes were selected for analysis.
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(b) Cord blood mononuclear cells dataset—In this dataset, 8,617 cord blood 

mononuclear cells (CBMC) were profiled by CITE-seq, a new technology which enabled the 

simultaneous measurement of protein levels and transcriptome levels for each cell26. This 

dataset was downloaded from GEO database (accession number: GSE100866). Cell types in 

CBMC have been extensively studied and identified. Based on this prior knowledge, 13 

monoclonal antibodies were chosen to identify bone fide cell types. These antibodies serve 

as an “orthogonal” ground truth to evaluate analysis results based on RNA-seq data.

In the data pre-processing stage, we removed the spiked-in mouse cells and only kept 8,005 

human cells for analysis using the cell-filtering strategy introduced in original study26. The 

top 1,000 most variable human genes were selected for downstream analysis after the log1p 

transformation and normalization by library size. For antibody data, we used the centered 

log ratio transformed antibody-derived tags (ADTs), which is also provided by authors.

To evaluate the performance of each method, we first automatically identified cell 

populations based on ADTs data using PhenoGraph. Then, scRNA-seq data were input to 

each method to learn latent representations which were used by PhenoGraph to predict cell 

types. The ADTs-derived cell types were taken as ground truth to evaluate the accuracy of 

cell types by scRNA-seq data.

(c) Retina data—In this dataset, 44,808 cells were captured from the retinas of 14-day-

old mice and sequenced by DropSeq4. Data were obtained from the GEO database 

(accession number: GSE63473). We followed previous procedures to select the 384-most 

variable genes4 and then perform the log1p transformation on their expression values. After 

clustering, we annotated clusters using the same marker genes as in the original study4.

We identified candidate cell types based on the highest average type-specific marker 

expression (Supplementary Table 4). For each cluster, we calculated the fold-change values 

of all cell-type markers, and if at least one type-specific gene marker was expressed 

significantly higher (log2 fold change > 0.5) than in all other clusters, we assigned the 

cluster with the candidate cell type. Otherwise the cluster was assigned to the cell type “Rod 

cell”.

(d) Mouse cell atlas data—The mouse cell atlas (MCA) dataset is designed to offer a 

comprehensive investigation of all major cell types in mouse6. Data were downloaded from 

the GEO database (accession number GSE108097). In the dataset, 405,796 cells were 

sampled from 51 tissues and were sequenced by Microwell-seq.

Data were first normalized by library size, and 1,000, 2,000, 5,000, 10,000 or 20,000 top-

variable genes were selected to test the scalability of each method on gene numbers. Only 

the deep-learning based single cell tools (DCA, scVI and scScope) could be applied directly 

to this large-scale dataset. Further, to identify clusters in the MCA dataset, we applied our 

scalable clustering approach to the latent features.

In most of the 51 tissues, one major cell type dominated the cell population (see Figure 2b–c 

in ref6). Therefore, we used the tissue identify as a proxy for ground truth to evaluate cell-

type discovery.
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(e) Intestinal data—In this dataset, intestinal epithelial cells were captured from 10 

mice and sequenced using droplet-based scRNA-seq27. Data were downloaded from the 

GEO database (accession number GSE92332). Among all cells, 1,770 cells from 2 mice 

were infected by Salmonella for 2 days; 2,121 cells (2 mice) and 2,711 cells (2 mice) were 

infected by H. polygyrus for 3 and 10 days, respectively. An additional 3,240 cells were 

sequenced from 4 healthy mice as a control group. We again followed the same procedure 

that log-transformed the expression data and selected top 1,000 most variable genes as input 

to scScope. For cell subpopulation annotation, we first assigned clusters to one of 7 major 

cell types (stem, cell-cycle related, distal enterocyte, proximal enterocyte, goblet, 

enteroendocrine, and tuft) according to the maximum averaged expression of cell-type 

makers (Supplementary Table 9). Second, cell-cycle related clusters were subdivided into 

increasing stages of maturation (transit amplifying early stage, transit amplifying late stage, 

and enterocyte progenitor) based on the ratio of cell-cycle & stem cell markers to enterocyte 

expression (Supplementary Table 10). Third, the distal and proximal enterocyte clusters 

were further classified (immature vs. mature) based on increasing expression levels of the 

enterocyte gene markers.

After annotating clusters, we calculated the cell proportion for each mouse and then 

averaged the proportions among mice of the same infection condition. For significant tests 

of proportion changes after infection, we compared proportions of mice in control group and 

in infection group using a two-sided t-test and rank-sum test. P-values were obtained under 

the null hypothesis that no changes happened in proportions after infection.

Overexpressed genes for each cluster were also identified by the same differential expression 

analysis.

(f) Brain data—Data were obtained from 10× Genomics (http://10xgenomics.com). 

1,308,421 cells from embryonic mice brains were sequenced by Cell Ranger 1.3.0 protocol. 

We transformed unique molecular identifier (UMI) count data into log(TPM+1)4 and 

calculated the dispersion measure (variance/mean) for each gene. According to the rank of 

the dispersion measure, we selected the top 1,000 most variable genes for analysis.

For fast exploration of the data in Fig. 3, where no comparisons to other methods were used, 

we used a batch size of scScope to 512, trained the model for 10 epochs and used 4 GPUs. 

Cells were further clustered into 36 groups by our density down-sampling clustering. We 

annotated clusters to three major types (excitatory neurons, inhibitory neurons and non-

neuronal cells) based on maximal-expressed maker genes (Supplementary Table 7).

To identify cluster-specific overexpressed genes, we then conducted differential expression 

analysis for each gene. We normalized UMI-count to the range of [0 1] for each gene, 

enabling comparisons across genes. Then gene-expression fold-change and rank-sum P-

values were calculated between cells within vs. outside each cluster. Significantly 

overexpressed genes were identified using the criteria of log2 fold change > 0.5 and rank-

sum P-value < 0.05.
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Data set was download from https://support.10xgenomics.com/single-cell-gene-expression/

datasets/1.3.0/1M_neurons on December 10, 2017.

The data analysis by 10xgemonics was obtained from http://storage.pardot.com/

172142/31729/

LIT000015_Chromium_Million_Brain_Cells_Application_Note_Digital_RevA.pdf.

7. Software used in study

MAGIC: https://github.com/KrishnaswamyLab/MAGIC

ZINB-WaVE: https://github.com/drisso/zinbwave

SIMLR: https://github.com/bowang87/SIMLR_PY

DCA: https://github.com/theislab/dca

scVI: https://github.com/YosefLab/scVI

PhenoGraph: https://github.com/jacoblevine/PhenoGraph

Splatter: https://github.com/Oshlack/splatter-paper

8. Life Sciences Reporting Summary

Detailed information about experimental design is available in attached Reporting Summary.

9. Code availability

scScope can be obtained as an installable Python package, which can now be obtained via 

“pip install scScope”, and is available under the Apache license. All software, instructions 

and software updates will be maintained on our lab’s github page: https://github.com/

AltschulerWu-Lab/scScope.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of scScope architecture and performance on simulated datasets
a) Overview of the recurrent network architecture of scScope.

An input single-cell profile with dropout gene measurements (white entries) is corrected for 

batch effects, then the corrected vector x is sequentially processed by an encoder layer (for 

feature extraction), decoder layer (for noise reduction) and imputation layer (for dropout 

imputation). The imputed vector v is added back to the batch-corrected input profile x to fill 

in missing values. This process proceeds recursively T times to produce a final signature 

feature vector output h used for biological discovery, such as identification of phenotypically 

distinct subpopulations.

b) Comparison of run time on dataset of different scales.

Datasets of varying size were randomly subsampled from a dataset containing 1.3 million 

mouse brain cells and used for comparison (Methods).

c) Clustering accuracy for 2K scRNA-seq data with varying fraction of sparsity.

Splatter was used to generate 2K cells with 3 subpopulations with varying dropout rates 

(Supplementary Table 3). Accuracy measurement is based on adjusted Rand index 

(Methods). For each simulated condition, n = 10 random replicates were simulated; Box 

plot: median (center line), interquartile range (box) and minimum-maximum range 

(whiskers).

d) Clustering accuracy for 1M scRNA-seq data with varying fraction of rare 
subpopulations.

The simulation strategy of SIMLR was used to generate 1M cells. Dropout rate = 0.5; total 

number of clusters = 50, number of rare subpopulations = 5; replicate number n = 10. For 

MAGIC, ZINB-WaVE and SIMLR, the 1M datasets were randomly down sampled to 10K, 

and PhenoGraph was used for de novo cell subpopulation discovery. For methods run on the 

1M dataset, a scalable clustering approach was used to identify subpopulations (Methods). 

Box plot as in 1c.
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Fig. 2. Evaluation of methods on experimental scRNA-seq datasets.
a) Analysis of batch correction. Comparisons of (top) batch mixing entropy and (bottom) 

computational runtime without or with batch correction using mouse lung tissue scRNA-seq 

dataset. Top box plot: median (center line), interquartile range (box) and minimum-

maximum range (whiskers); n = 100 replicates of 100 randomly selected cells across all 

batches. Bottom: run time to process whole dataset.

b) Analysis of imputation accuracy for different gene expression levels. Comparison of 

imputation error for dropout genes with different (octiles) gene expression levels using the 

cord blood mononuclear cell (CBMC) scRNA-seq dataset.

c) Analysis of subpopulation identification for increasing gene depth. Using the mouse 

cell atlas, we compared the ability of different approaches to identify the 51 known tissues in 

the atlas. Black color: provided software package was unable to complete the task.
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Fig. 3. Application of scScope to explore biology in 1.3M mouse brain dataset.
a) Fractions of three major cell types (glutamatergic neurons, GABAergic neurons and non-

neurons) identified by scScope and comparisons with reported neuron fractions by previous 

SPLiT-seq research.

b) Left: scScope results visualized using tSNE on n = 30K cells (randomly sampled from the 

full dataset). Clusters were divided to three major types based on gene markers. Right: 

Large-scale annotation of clusters to known cell types according to top 10 overexpressed 

genes. Violin plots: expression distribution of marker genes for discovered clusters. Vertical 

axis (left): clusters with known cell type annotations and corresponding cell numbers. 

Horizontal axis: differentially expressed marker genes across shown clusters. Vertical axis 

(right): cluster annotation based on previously reported cell-subtype-specific genes.
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