
UCSF
UC San Francisco Previously Published Works

Title
Scalable analysis of cell-type composition from single-cell transcriptomics using deep
recurrent learning

Permalink
https://escholarship.org/uc/item/6900m810

Journal
Nature Methods, 16(4)

ISSN
1548-7091

Authors
Deng, Yue
Bao, Feng
Dai, Qionghai
et al.

Publication Date
2019-04-01

DOI
10.1038/s41592-019-0353-7

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6900m810
https://escholarship.org/uc/item/6900m810#author
https://escholarship.org
http://www.cdlib.org/

Scalable analysis of cell type composition from single-cell
transcriptomics using deep recurrent learning

Yue Deng1,*, Feng Bao2,*, Qionghai Dai2, Lani F. Wu1,#, Steven J. Altschuler1,#

1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco,
CA 94158, USA.

2Department of Automation, Tsinghua National Laboratory for Information Science and
Technology, Tsinghua University, Beijing, 100084, P. R. China.

Abstract

Recent advances in large-scale single cell RNA-seq enable fine-grained characterization of

phenotypically distinct cellular states within heterogeneous tissues. We present scScope, a scalable

deep-learning based approach that can accurately and rapidly identify cell-type composition from

millions of noisy single-cell gene-expression profiles.

Single-cell RNA-seq (scRNA-seq) provides high-resolution dissection of complex biological

systems, including identification of rare cell subpopulations in heterogeneous tissues,

elucidation of cell-developmental programs, and characterization of cellular responses to

perturbations1–3. Recent scRNA-seq experimental platforms4–6 have enabled interrogation

of millions of cells, which offers an unprecedented resolution at which to dissect cell-type

compositions.

These advances led to two acute challenges. First, single-cell transcriptomics is susceptible

to amplification noise and dropout events7, 8, which become more pronounced as tradeoffs

are made to sequence larger numbers of cells. Second, computational memory and/or speed

restrictions may render analytical packages7–12 poorly scalable for large datasets, including

all cells and measured genes.

To extract informative representations from extremely noisy, massive, high-dimensional

scRNA profiles, we developed scScope, a deep-learning based software package (Fig. 1a).

scScope utilizes a recurrent network layer to iteratively perform imputations on zero-valued

entries of input scRNA-seq data (Methods). scScope’s architecture allows imputed output to

be iteratively improved through a selected number of recurrent steps (T). We note that for T

= 1, the architecture reduces to a standard autoencoder (AE)13. In one joint framework,

#To whom correspondence should be addressed: lani.wu@ucsf.edu, steven.altschuler@ucsf.edu.
Author Contributions
Y.D., F.B. and Q.D. developed the deep learning algorithms. Y.D. and F.B. conducted experimental analysis on both simulated and
biological datasets. The manuscript was written by Y.D., F.B., L.F.W. and S.J.A. All authors read and approved the manuscript.
*These authors contributed equally to this work.

Competing Financial Interests Statement
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2019 October 03.

Published in final edited form as:
Nat Methods. 2019 April ; 16(4): 311–314. doi:10.1038/s41592-019-0353-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

scScope conducts batch effect removal, cellular-feature learning, dropout imputation and

parallelized training (when multiple GPUs are available) (Supplementary Fig. 1).

We evaluated scScope on its scalability, ability to identify cell subpopulations, impute

dropout gene information and correct batch effects, using datasets with varying degrees of

size, complexity and prior biological annotation. We compared scScope performance with

four “non-deep” methods (PCA, MAGIC11, ZINB-WaVE8 and SIMILR9) and three “deep”

learning models (Autoencoder (AE), scVI14 and DCA15) (Methods and Supplementary

Table 1). The AE was implemented via scScope with T = 1 (Methods) and, for all

comparisons, unless otherwise stated, scVI, DCA, AE and scScope were run on a single

GPU using default parameters (Methods, Supplemental Table 2).

We first tested the scalability and training speed of scScope on a mouse brain dataset, which

contained 1.3M cells, using 1000 highly variable genes (Fig 1b,Methods). As expected, the

generic machine-learning tool PCA was the fastest. scScope was able to complete its

analysis of the full dataset in under an hour, which was comparable to the AE, and this

runtime was significantly dropped by using the option for multiple GPU training. The non-

deep single-cell software packages were unable to scale beyond 100K cells, and the deep

approaches, while able to scale to 1M cells, required at least seven times more computing

time than scScope. Thus, scScope offers a scalable and highly efficient approach for

analyzing large scRNA-seq datasets.

To calibrate the accuracy of scScope on simulated datasets, we made use of two third-party

packages for generating scRNA-seq data (Methods and Supplementary Table 3). First, we

used Splatter16 to generate moderate-sized datasets of varying sparsity levels (percentage of

0-valued genes), containing 2K scRNA-seq profiles with 500 genes, and three underlying

subpopulations. In terms of discovering these underlying subpopulations, scScope performs

similarly to other approaches when there are only minor dropout effects, but shows a large

advantage in accuracy as dropout rates increase to realistic ranges observed in biological

data4, 6 (Fig. 1c). In terms of imputation error, at low sparsity (<50%) scScope and MAGIC

outperformed all other methods, though at high sparsity scScope outperformed all other

approaches (Supplementary Fig. 2). We found for scScope that a recurrence of T = 2 (its

default value) provides a good tradeoff between speed and accuracy (Supplementary Fig. 3).

Second, we used the simulation framework in SIMLR to generate massive, heterogeneous

datasets of varying sparsity levels containing: 1M scRNA-seq profiles with 500 genes, and

50 underlying subpopulations. The deep approaches were able to operate over the full

datasets, while the non-deep single-cell packages required down-sampled training strategies

(Methods). scScope performed well, particularly at high sparsity levels (Supplementary Fig.

4). An increasingly important task for scRNA-seq profiling approaches is to identify rare

cell subpopulations within large-scale data. As might be expected, methods that did not

require down sampling were better able to detect rare cell subpopulations. Overall, scScope

performed reasonably well on this challenging task (Fig. 1d, Methods). Our calibration

suggested that scScope can efficiently identify cell subpopulations from complex datasets

with high dropout rates, large numbers of subpopulations and rare cell types.

Deng et al. Page 2

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

We next evaluated scScope on four experimental single-cell RNA datasets containing

varying degrees of biological “ground truth”. These datasets were used to test the ability of

scScope to: remove batch effects (Fig. 2a; lung tissue), recover dropout genes (Fig. 2b;

CBMC dataset), identify minor subpopulations (Supplementary Fig. 5; retina dataset), and

test clustering accuracy for a large dataset with varying numbers of analyzed genes (Fig. 2c;

mouse cell atlas).

To test the ability to remove batch effects, we made use of the lung tissue dataset (part of the

mouse cell atlas), which contained ~7K scRNA-seq profiles obtained from three different

batches and used the 1,000 most variable genes (Methods). As with the two other software

packages that offer batch correction, scScope performed well (Fig. 2a, top) without

compromising its fast runtime (Fig. 2a, bottom).

To investigate how imputation accuracy depends on gene expression level, we made use of

the cord blood mononuclear cell (CBMC) dataset, with ~8K scRNA-seq profiles and 1,000

most variable genes (Methods). We sequentially simulated dropouts for genes14 (Methods)

and reported results based on octile of expression ranking (Fig. 2b). For reconstructing small

count values, MAGIC and scVI performed well, while for large count values DCA worked

well. scScope showed small imputation errors consistently across the entire range of

expression.

To test the ability to identify minor subpopulations in biological data, we made use of the

mouse retina dataset, with 44K cells and 384 most variable genes (Methods). scScope

automatically identified the most similar clustering (number and assignment) to the 39 cell

subpopulations identified in the original study (Supplementary Fig. 5a). We annotated the

clusters to cell types based on gene markers reported in the original study (Supplementary

Table 4 and Methods). Clusters identified by scScope showed the most statistically

significant enrichment of specific cell-type markers (larger fold-changes) (Supplementary

Fig. 5b) and were highly consistent with previous, microscopy-validated estimates of cell-

type composition and proportion18 either excluding (Supplementary Fig. 5c) or including

(Supplementary Fig. 5d) the major cell type, rod cells. Additionally, when analyzing “pure”

cell types within the Retina dataset, scScope maintained the underlying simple

subpopulation structure and achieved high reconstruction accuracy (Supplementary Table 5).

To test the ability to analyze increasing numbers of genes, we made use of the mouse cell

atlas, with 400K cells sampled from 51 tissues. Only the deep learning algorithms were able

to scale to these data sizes. To perform automatic identification of subpopulations on large

datasets, we designed a scalable clustering approach (Methods and Supplementary Fig. 6).

We used the 51 known tissue types to assess accuracy of the clustering results. For 1,000 and

2,000 genes all three approaches performed similarly (Fig. 2c). Only scScope was able to

scale to levels above 10,000 genes, by using its option for scalable memory allocation

(Methods).

Finally, we applied scScope to investigate novel biology in datasets. We focused on the

ability to reveal changes in cell-type composition under perturbed conditions

Deng et al. Page 3

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(Supplementary Fig. 7; intestinal dataset) and scale to large datasets and reveal new

subpopulations (Fig. 3; brain dataset,Methods).

We applied scScope to the intestinal dataset, with ~10K mouse intestinal cells obtained from

different infection conditions and the 1,000 most variable genes (Supplementary Fig. 7a and

Methods). In the original study, enterocytes were identified as a single cluster. Interestingly,

scScope subdivided this cell type into four subpopulations: differential expression of

markers delineated distal vs. proximal enterocyte subpopulations; expression levels of these

markers delineated immature vs. mature subtypes (Supplementary Fig. 7b and

Supplementary Fig. 8). These refined enterocyte subpopulations suggested predictions about

specific cell-type response to infection. For example, the pro-inflammatory gene Saa1 was

overexpressed during both Salmonella and H. polygyrus (day 10) infections in distal

enterocytes, but not in proximal enterocytes (Supplementary Fig. 7c and Supplementary

Table 6). This geographic pattern of Saa1 expression is known for Salmonella infection, but

is a novel prediction for H. polygyrus infection. Thus, scScope can be used to rapidly

explore scRNA-seq data across perturbed conditions to predict novel gene function and

identify new cell subtypes.

The 1.3M cells in the brain dataset were obtained from multiple brain regions, including the

cortex, hippocampus and ventricular zones, of two embryonic mice. Here, we made use of

scScope’s ability to rapidly explore this large dataset via its multi-GPU learning

functionality with limited training iterations (Methods, Supplementary Table 2). scScope

automatically identified 36 clusters, and we assigned each cluster to one of three major cell

types based on criteria from the Allen Brain Atlas (http://brain-map.org) (Fig. 3,

Supplementary Table 7 and Methods): glutamatergic neurons, GABAergic neurons and non-

neuronal cells. The proportions of neurons and non-neurons identified by scScope were

consistent with cell proportions reported by a previous brain study19 (Fig. 3a). We

investigated whether we could identify biological meaning for the 36 clusters, some of

which contained fewer than 1,000 cells. Satisfyingly, by comparing our top overexpressed

genes with known cell-type markers19, 20 (Supplementary Table 8), we were able to assign

two thirds of the clusters to known cell types (Fig. 3b). Thus, scScope is able to rapidly,

automatically and directly identify bona fide, rare cell types from large and complex

biological datasets.

Taken together, scScope offers a platform that will help keep pace with the rapid advances in

scRNA-seq, enabling rapid exploration of heterogeneous biological states within large and

noisy datasets of single-cell transcriptional profiles.

Online Methods

1. scScope model and training.

Architecture—The architecture of the scScope network has four modules (Fig. 1a). The

parameters in these layers are learned from data in an end-to-end manner through

optimization. We note that scScope is flexible in terms of normalizing and scaling of input

data, as long as the input values are non-negative.

Deng et al. Page 4

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://brain-map.org/

Batch Effect Correction: scScope offers the option to correct for batch effects, inspired by

a previously developed approach8. The batch correction layer fB(·) is given by:

xc = f B xc = r xc − Buc

Here, we denote: the input single-cell profile by xc ∈ ℝN; the number of batches by K; the

binary experimental batch effects indicator vector uc ∈ ℝK (non-zero entry indicates the

batch of xC); and the learnable batch correction matrix as B ∈ ℝN × K. Throughout, r(·)

denotes the standard rectified linear unit (ReLU), r(v) = max(0, v); the ReLU enforces xc ≥

0, which is expected for actual gene count data, and is widely used in deep learning. By

default, uc = 0 assuming a single batch.

Encoder: For each cell c, the encoder layer fE(·) compresses the high-dimensional batch-

corrected single-cell expression profile xc ∈ ℝN into a low-dimensional, latent representation

hc ∈ ℝM, M < N. The encoder layer is given by:

hc = f E xc = r WExc + bE

with learnable parameters WE ∈ ℝM × N and bE ∈ ℝM.

Decoder: The decoder layer fD(·) decompresses the latent representation hc to an output

yc ∈ ℝN of the same dimension as the input single-cell profile, and is given by:

yc = f D hc = r WDhc + bD

with learnable parameters WD ∈ ℝN × M and bD ∈ ℝN.

Imputer: We developed a self-correcting layer to impute missing entries, inspired by a

previously developed reconstruction approach21. To reduce the number of parameters, we

transformed the decoder layer output yc to a p-dimensional latent vector by:

uc = r WUyc + bU ∈ ℝp

with learnable parameters WU ∈ ℝp × N and bU ∈ ℝps, p < N (we set p = 64). Then, we

performed imputation by:

vc = PZc
r WVuc + bV ∈ ℝN

Deng et al. Page 5

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

with learnable parameters WV ∈ ℝN × p and bV ∈ ℝN. Here, Zc resp . Zc is the set of zero-

(resp. non-zero-) valued genes in profile xc of the c-th cell, and the entry-sampling operator

PZC
 sets all entries not in Zc to zero (i.e., for vector r, with entries rj, PZc

r j = r j if j ∈ Zc

and PZC
r j = 0, j ∉ ZC). We used Zc as we are only interested in imputation for zero-valued

genes in the profile xc.

After obtaining the imputed vector vc, we calculated the corrected single-cell expression

profile: xc = xc + vc. This corrected single-cell profile xc was then re-sent through the

encoder-decoder framework to re-learn an updated latent representation.

Learning the objective function.—The imputation layer imposes a recurrent structure

on the scScope network architecture. For clarity of exposition, the recurrent scScope can be

unfolded into multiple time steps (Supplementary Fig. 9 shows three steps). Then, the whole

recurrent scScope framework can be described as:

xc = f B xc , hc
t = f E xc

t = f E xc + vc
t − 1 , yc

t = f D hc
t , vc

t = f I yc
t , vc

0 = 0,

for iterations t = 1 … T. At the first step, the correcting layer’s output vc
0 is set as zero. For T

= 1, scScope is a standard auto-encoder (AE).

The learning objective for scScope is defined by the pursuit of unsupervised, self-

reconstruction (as typically used in AE training):

f B, f E, f D, f I = argmin L = ∑
c = 1

n
∑

t = 1

T
Pzc

yc
t − xc

2

The entry-sampling operator PZc
 forces loss computation only on non-zero entries of xc. The

parameters in the batch correction layer (fB), encoder layer (fE), decoder layer (fD) and

imputation layer (fI) are all learned by minimizing the above loss function.

Our multiple GPU training strategy is outlined in Supplementary Fig. 1.

Cell subpopulation discovery.—Representations outputted by scScope at each step can

be concatenated as a long feature vector, which is easily integrated with any clustering

method. We used the graph-based method PhenoGraph17, as it performs automated robust

discovery of subpopulations, as well as determines subpopulation numbers automatically.

1) Graph clustering for moderate-scale data.: We directly applied the PhenoGraph

software to datasets of moderate scale. All clustering results were obtained using a Python-

implemented PhenoGraph package (version 1.5.2). We followed the suggested setting and

considered 30 nearest neighbors when constructing graphs.

Deng et al. Page 6

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2) Scalable graph clustering for large-scale data.: scScope enables the feature learning

on millions of cells. However, PhenoGraph is unable to handle millions of cells due to the

extreme computational costs (Supplementary Fig. 10) and memory requirements in graph

construction. To leverage the power of graph clustering on analyzing these large-scale data,

we designed a density down-sampling clustering strategy by combining k-means and

PhenoGraph.

In detail, we divided cells into M groups with equal size and performed k-means clustering

on each group independently (Supplementary Fig. 6). The whole dataset was split to M × K
clusters and we only input the cluster centroids into PhenoGraph for graph clustering.

Finally, each cell was assigned to graph clusters according to the cluster labels of its nearest

centroids.

In our implementation on the dataset of 1.3 million mouse brain cells, we took M = 500 and

K = 400, which made it possible to process millions of data in only tens of minutes without

loss of accuracy.

3) Scalable memory allocation for analyzing large numbers of genes in large
datasets.: For large datasets and gene numbers, scScope implements a scalable memory

allocation strategy that allows the dataset to be broken into a smaller number of batches that

can be loaded directly into memory. We note that when this option is used, minibatches are

only selected from within each batch during training. This option was only used in Fig. 2c

for the case of ≥10K genes; here the 400K mouse cell atlas dataset was broken into four

batches of size 100K.

2. Methods compared.

All compared methods were run on the same server with Xeon E5 CPU, 64 GB memory,

Nvidia Titan X GPU and Ubuntu 14.04 operation system. Further, all comparisons were

performed using log transformed input (we observed similar relative performance of the six

compared methods above across four different choices of input scaling or normalization

methods; Supplementary Fig. 11).

Unless otherwise noted: Software packages were used with their default values. We

observed that all methods were reasonably robust to changes in the latent dimension M (e.g.

Supplementary Fig. 12), and to avoid an intractable number of possible comparisons, we set

M = 50 for all comparisons. For all deep learning methods (AE, DCA, scVI and scScope),

we set the learning rate to 10−3, batch size to 64, and epoch = 100.

PCA: PCA is implemented using the Python package scikit-learn v0.18.

Autoencoder: The simple autoencoder (AE) is implemented using scScope with T = 1.

Variations of the AE are described in the legend of Supplementary Fig. 13.

Markov Affinity-based Graph Imputation of Cells (MAGIC): The MAGIC algorithm

was performed using the python-based package magic11. We inputted raw data and

Deng et al. Page 7

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

employed the library_size_normalize() function provided by the software for all simulated

and real data.

Zero-Inflated Negative Binomial-based Wanted Variation Extraction (ZINB-
WaVE): We employed the R package zinbwave8.

Single-cell interpretation via multi-kernel learning (SIMLR): We used the Python

implementation of SIMLR9. SIMLR needs to take the desired cluster number as input. For

our simulated dataset, we input the known cluster numbers. For the retina dataset, where the

“true” cluster number is unknown, we set it to 39, which is the cluster number reported in

the original study4.

Deep count autoencoder (DCA): DCA15 is an unpublished software based on

TensorFlow framework. We installed the Python package of DCA (download date: Sep. 4,

2018).

Single-cell Variational Inference (scVI): We used the Torch-based Python package of

scVI14 (download date: June 5, 2018).

scScope: scScope was implemented in Python 3.6 with TensorFlow-GPU 1.4.1, Numpy
1.13.0, Scikit-learn 0.18.1 packages. Unless noted otherwise, for comparisons of methods,

scScope was run with default setting (e.g. single GPU mode); hyperparameter choices are

given in Supplementary Table 2 and the results of varying them are demonstrated in

Supplementary Fig. 14.

Down-sampling training strategies on large-scale dataset: Some non-deep-

learning based approaches could not run directly on extremely large datasets. For these

approaches, we randomly down-sampled datasets to 20K cell subsets. On these down-

sampled datasets, single-cell feature vectors were learned by the respective method and

clustered by PhenoGraph. A support vector machine (SVM) was trained on this subset in the

latent feature space and then used to assign labels for the rest of cells in the unsampled

dataset. The deep-learning approaches we tested could learn features on millions of cell

profiles, but the software packages did not provide a function for automatic clustering. For

comparisons, we passed the output of their learned single-cell features to the scalable

clustering approach.

3. Evaluation of clustering and batch correction

ARI: We used the adjusted Rand index (ARI)22, 23 to compare label sets of two clustering

methods. For two clustering results U and V with r and s clusters on a data set of n cells, nij

denotes the number of cells shared between cluster i in U and cluster j in V. And ARI is

defined as

Deng et al. Page 8

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ARI =
∑i j

ni j
2

− ∑i
ni *
2

∑ j
n * j

2
/ n

2
1
2 ∑i

ni *
2

+ ∑ j
n * j

2
− ∑i

ni *
2

∑ j
n * j

2
/ n

2

where ni* = ∑j nij, n*j = ∑i nij and n is the number of cells in the data set.

Entropy of batch mixing: To evaluate the performance of batch correction, we made use

of the score developed in mutual nearest neighbors (MNNs)24. In brief, 100 cells were

randomly sampled from the entire population, the entropy of the distributions of batches for

the nearest 100 neighbors was calculated and the process was iterated 100 times and shown

as box plots.

4. Evaluation of Imputation

Imputation error for simulated data: On simulated data, the ground truth dropout

vector l is known. The imputation accuracy was defined as the normalized distance between

the imputed log count entries and log count ground truth entries. We constructed lists l and l
whose elements correspond to either ground truth or imputed values (respectively) for all

dropouts entries across all cells (Supplementary Fig. 2). We defined the normalized error as:

error =
l − l 1

l 0

where ∥ ∥p means the lp norm of a vector.

Reconstruction error on held-out biological data: For real biological data, the

ground truth values for missing genes are unknown. To evaluate scScope’s imputation

accuracy on real biological data, we followed the same down-sampling strategy as used for

scVI14. Namely, we randomly split the entire collection of n cells into ntrain training cells

and nval validation cells. We used the different imputation methods to build gene models

from the ntrain cells. On each of the nval cells, we randomly set p% of its non-zero genes as

“simulated” missing genes and set their corresponding count values to zero. The real

measured values of these simulated missing genes were then used to generate the ground

truth list l, and the list l was based on inferred values for the simulated missing genes from

the nval cells. The reconstruction error was calculated as for simulated data above.

5. Simulated datasets.

Simulation with Splatter—The simulation package Splatter16 is designed to generate

realistic scRNA-seq data. We used this package to generate data with 2000 cells, 3

subpopulation groups, and dropout rates from 1 to 5.

Simulation with SIMLR—SIMLR9 was used to generate large-scale scRNA-seq data due

to limitations in scalability of Splatter. High-dimensional single-cell expression data xc ∈ ℝN

Deng et al. Page 9

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

is generated by a latent code zc ∈ ℝP(P < N), which is not observable. Zc is sampled from a

Gaussian mixture model with k Gaussian components, i.e. zc ∑ j = 1
k π jN μ j, Σ j . The mixture

coefficients πj were chosen from a uniform distribution and normalized to sum to 1, the

mean vector μ j ∈ ℝP was uniformly sampled in [0, 1]p, and the covariance matrix

Σ j ∈ ℝP × P was chosen to be Σ = 0.1 × I, for identity matrix I.

To simulate single-cell gene vectors, we generated a projection matrix A ∈ ℝN × P to map the

low-dimensional latent code to a high-dimensional space. First, we simulated ground truth,

xC
true , which cannot be observed:

xC
true = Azc + b

where each entry in A was independently sampled from the uniform distribution U(−0.5,

0.5) and bias b = 0.5 was added to avoid negative gene expression in the high-dimensional

mapping. Second, we simulated the observed profile, xC
ObS, which may contain gene-specific

noise and dropout artifacts due to the sequencing technique and platform. Noise was added

to the true gene profile by: xcg
noise = xcg

true + εcg, where εcg N 0, Σg
noise and Σg

noise was

uniformly sampled in the range of [0, 0.2] independently for each gene. Dropout events were

added via a double exponential model with decay parameter25 α:

xcg
obs = xcg

noiseδ qcg > exp −αxcg
noise2

where xcg denotes the gth gene of xc, qcg was randomly sampled in [0, 1], and δ = 1 if its

argument is true and = 0 otherwise.

Simulation with rare cell subgroups—To generate cell subpopulations with rare cell

types, we sampled the mixture coefficients πj from a non-uniform distribution as

π1…km
= q; πkm + 1…k =

1 − q * km
k − km

where q ≪ 1/k is the mixture fraction for each minor cluster, km is the number of rare cell

subpopulations, and k is the total number of subpopulations.

6. Biological datasets.

(a) Lung tissue data—The lung tissue dataset is part of the Mouse Cell Atlas data6.

This dataset was downloaded from Gene Expression Omnibus (GEO) database (accession

number: GSE108097). In this dataset, 6,940 cells were sequenced via three independent

experiments by Microwell-seq, with 2,512, 1,414 and 3,014 cells in each batch. 1,000 highly

variable genes were selected for analysis.

Deng et al. Page 10

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(b) Cord blood mononuclear cells dataset—In this dataset, 8,617 cord blood

mononuclear cells (CBMC) were profiled by CITE-seq, a new technology which enabled the

simultaneous measurement of protein levels and transcriptome levels for each cell26. This

dataset was downloaded from GEO database (accession number: GSE100866). Cell types in

CBMC have been extensively studied and identified. Based on this prior knowledge, 13

monoclonal antibodies were chosen to identify bone fide cell types. These antibodies serve

as an “orthogonal” ground truth to evaluate analysis results based on RNA-seq data.

In the data pre-processing stage, we removed the spiked-in mouse cells and only kept 8,005

human cells for analysis using the cell-filtering strategy introduced in original study26. The

top 1,000 most variable human genes were selected for downstream analysis after the log1p

transformation and normalization by library size. For antibody data, we used the centered

log ratio transformed antibody-derived tags (ADTs), which is also provided by authors.

To evaluate the performance of each method, we first automatically identified cell

populations based on ADTs data using PhenoGraph. Then, scRNA-seq data were input to

each method to learn latent representations which were used by PhenoGraph to predict cell

types. The ADTs-derived cell types were taken as ground truth to evaluate the accuracy of

cell types by scRNA-seq data.

(c) Retina data—In this dataset, 44,808 cells were captured from the retinas of 14-day-

old mice and sequenced by DropSeq4. Data were obtained from the GEO database

(accession number: GSE63473). We followed previous procedures to select the 384-most

variable genes4 and then perform the log1p transformation on their expression values. After

clustering, we annotated clusters using the same marker genes as in the original study4.

We identified candidate cell types based on the highest average type-specific marker

expression (Supplementary Table 4). For each cluster, we calculated the fold-change values

of all cell-type markers, and if at least one type-specific gene marker was expressed

significantly higher (log2 fold change > 0.5) than in all other clusters, we assigned the

cluster with the candidate cell type. Otherwise the cluster was assigned to the cell type “Rod

cell”.

(d) Mouse cell atlas data—The mouse cell atlas (MCA) dataset is designed to offer a

comprehensive investigation of all major cell types in mouse6. Data were downloaded from

the GEO database (accession number GSE108097). In the dataset, 405,796 cells were

sampled from 51 tissues and were sequenced by Microwell-seq.

Data were first normalized by library size, and 1,000, 2,000, 5,000, 10,000 or 20,000 top-

variable genes were selected to test the scalability of each method on gene numbers. Only

the deep-learning based single cell tools (DCA, scVI and scScope) could be applied directly

to this large-scale dataset. Further, to identify clusters in the MCA dataset, we applied our

scalable clustering approach to the latent features.

In most of the 51 tissues, one major cell type dominated the cell population (see Figure 2b–c

in ref6). Therefore, we used the tissue identify as a proxy for ground truth to evaluate cell-

type discovery.

Deng et al. Page 11

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(e) Intestinal data—In this dataset, intestinal epithelial cells were captured from 10

mice and sequenced using droplet-based scRNA-seq27. Data were downloaded from the

GEO database (accession number GSE92332). Among all cells, 1,770 cells from 2 mice

were infected by Salmonella for 2 days; 2,121 cells (2 mice) and 2,711 cells (2 mice) were

infected by H. polygyrus for 3 and 10 days, respectively. An additional 3,240 cells were

sequenced from 4 healthy mice as a control group. We again followed the same procedure

that log-transformed the expression data and selected top 1,000 most variable genes as input

to scScope. For cell subpopulation annotation, we first assigned clusters to one of 7 major

cell types (stem, cell-cycle related, distal enterocyte, proximal enterocyte, goblet,

enteroendocrine, and tuft) according to the maximum averaged expression of cell-type

makers (Supplementary Table 9). Second, cell-cycle related clusters were subdivided into

increasing stages of maturation (transit amplifying early stage, transit amplifying late stage,

and enterocyte progenitor) based on the ratio of cell-cycle & stem cell markers to enterocyte

expression (Supplementary Table 10). Third, the distal and proximal enterocyte clusters

were further classified (immature vs. mature) based on increasing expression levels of the

enterocyte gene markers.

After annotating clusters, we calculated the cell proportion for each mouse and then

averaged the proportions among mice of the same infection condition. For significant tests

of proportion changes after infection, we compared proportions of mice in control group and

in infection group using a two-sided t-test and rank-sum test. P-values were obtained under

the null hypothesis that no changes happened in proportions after infection.

Overexpressed genes for each cluster were also identified by the same differential expression

analysis.

(f) Brain data—Data were obtained from 10× Genomics (http://10xgenomics.com).

1,308,421 cells from embryonic mice brains were sequenced by Cell Ranger 1.3.0 protocol.

We transformed unique molecular identifier (UMI) count data into log(TPM+1)4 and

calculated the dispersion measure (variance/mean) for each gene. According to the rank of

the dispersion measure, we selected the top 1,000 most variable genes for analysis.

For fast exploration of the data in Fig. 3, where no comparisons to other methods were used,

we used a batch size of scScope to 512, trained the model for 10 epochs and used 4 GPUs.

Cells were further clustered into 36 groups by our density down-sampling clustering. We

annotated clusters to three major types (excitatory neurons, inhibitory neurons and non-

neuronal cells) based on maximal-expressed maker genes (Supplementary Table 7).

To identify cluster-specific overexpressed genes, we then conducted differential expression

analysis for each gene. We normalized UMI-count to the range of [0 1] for each gene,

enabling comparisons across genes. Then gene-expression fold-change and rank-sum P-

values were calculated between cells within vs. outside each cluster. Significantly

overexpressed genes were identified using the criteria of log2 fold change > 0.5 and rank-

sum P-value < 0.05.

Deng et al. Page 12

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://10xgenomics.com/

Data set was download from https://support.10xgenomics.com/single-cell-gene-expression/

datasets/1.3.0/1M_neurons on December 10, 2017.

The data analysis by 10xgemonics was obtained from http://storage.pardot.com/

172142/31729/

LIT000015_Chromium_Million_Brain_Cells_Application_Note_Digital_RevA.pdf.

7. Software used in study

MAGIC: https://github.com/KrishnaswamyLab/MAGIC

ZINB-WaVE: https://github.com/drisso/zinbwave

SIMLR: https://github.com/bowang87/SIMLR_PY

DCA: https://github.com/theislab/dca

scVI: https://github.com/YosefLab/scVI

PhenoGraph: https://github.com/jacoblevine/PhenoGraph

Splatter: https://github.com/Oshlack/splatter-paper

8. Life Sciences Reporting Summary

Detailed information about experimental design is available in attached Reporting Summary.

9. Code availability

scScope can be obtained as an installable Python package, which can now be obtained via

“pip install scScope”, and is available under the Apache license. All software, instructions

and software updates will be maintained on our lab’s github page: https://github.com/

AltschulerWu-Lab/scScope.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Drs. Jeremy Chang, Satwik Rajaram, Laura Sanman and Susan Shen for their helpful comments. We
gratefully acknowledge the support of NIH R01 EY028205 and GM112690, NSF PHY-1545915 and SU2C/
MSKCC 2015–003 to S.J.A., NCI-NIH RO1 CA185404 & CA184984 to L.F.W., the Institute of Computational
Health Sciences (ICHS) at UCSF to S.J.A. and L.F.W., and Project of NSFC (No. 61327902) to Q.D. and F.B.

References

1. Gawad C, Koh W & Quake SR Single-cell genome sequencing: current state of the science. Nature
Reviews Genetics 17, 175–188 (2016).

2. Saliba A-E, Westermann AJ, Gorski SA & Vogel J Single-cell RNA-seq: advances and future
challenges. Nucleic Acids Research 42, 8845–8860 (2014). [PubMed: 25053837]

3. Shalek AK et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature
510, 363–+ (2014). [PubMed: 24919153]

Deng et al. Page 13

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
http://storage.pardot.com/172142/31729/LIT000015_Chromium_Million_Brain_Cells_Application_Note_Digital_RevA.pdf
http://storage.pardot.com/172142/31729/LIT000015_Chromium_Million_Brain_Cells_Application_Note_Digital_RevA.pdf
http://storage.pardot.com/172142/31729/LIT000015_Chromium_Million_Brain_Cells_Application_Note_Digital_RevA.pdf
https://github.com/KrishnaswamyLab/MAGIC
https://github.com/drisso/zinbwave
https://github.com/bowang87/SIMLR_PY
https://github.com/theislab/dca
https://github.com/YosefLab/scVI
https://github.com/jacoblevine/PhenoGraph
https://github.com/Oshlack/splatter-paper
https://github.com/AltschulerWu-Lab/scScope
https://github.com/AltschulerWu-Lab/scScope

4. Macosko EZ et al. Highly Parallel Genome-wide Expression Profiling of Individual Cells Using
Nanoliter Droplets. Cell 161, 1202–1214 (2015). [PubMed: 26000488]

5. Zheng GXY et al. Massively parallel digital transcriptional profiling of single cells. Nature
Communications 8 (2017).

6. Han X et al. Mapping the mouse cell atlas by Microwell-seq. Cell 172, 1091–1107. e1017 (2018).
[PubMed: 29474909]

7. Pierson E & Yau C ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression
analysis. Genome Biology 16 (2015).

8. Risso D, Perraudeau F, Gribkova S, Dudoit S & Vert J-P A general and flexible method for signal
extraction from single-cell RNA-seq data. Nature communications 9, 284 (2018).

9. Wang B, Zhu J, Pierson E, Ramazzotti D & Batzoglou S Visualization and analysis of single-cell
RNA-seq data by kernel-based similarity learning. Nature Methods 14, 414–+ (2017). [PubMed:
28263960]

10. Cleary B, Le C, Cheung A, Lander ES & Regev A Efficient Generation of Transcriptomic Profiles
by Random Composite Measurements. Cell 171, 1424–+ (2017). [PubMed: 29153835]

11. Van Dijk D et al. Recovering Gene Interactions from Single-Cell Data Using Data Diffusion. Cell
174, 716–729,(2018). [PubMed: 29961576]

12. Butler A, Hoffman P, Smibert P, Papalexi E & Satija R Integrating single-cell transcriptomic data
across different conditions, technologies, and species. Nature biotechnology 36, 411 (2018).

13. Vincent P, Larochelle H, Lajoie I, Bengio Y & Manzagol P-A Stacked Denoising Autoencoders:
Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of
Machine Learning Research 11, 3371–3408 (2010).

14. Lopez R, Regier J, Cole MB, Jordan MI & Yosef N.J.N.m. Deep generative modeling for single-
cell transcriptomics. Nature Methods 15, 1053–1058 (2018). [PubMed: 30504886]

15. Eraslan G, Simon LM, Mircea M, Mueller NS & Theis FJ Single cell RNA-seq denoising using a
deep count autoencoder. bioRxiv, 300681 (2018).

16. Zappia L, Phipson B & Oshlack A Splatter: simulation of single-cell RNA sequencing data.
Genome biology 18, 174 (2017). [PubMed: 28899397]

17. Levine JH et al. Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that
Correlate with Prognosis. Cell 162, 184–197 (2015). [PubMed: 26095251]

18. Jeon CJ, Strettoi E & Masland RH The major cell populations of the mouse retina. Journal of
Neuroscience 18, 8936–8946 (1998). [PubMed: 9786999]

19. Rosenberg AB et al. Single-cell profiling of the developing mouse brain and spinal cord with split-
pool barcoding. Science 360, 176–+ (2018). [PubMed: 29545511]

20. Tasic B et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature
Neuroscience 19, 335–+ (2016). [PubMed: 26727548]

21. Franke L et al. Reconstruction of a functional human gene network, with an application for
prioritizing positional candidate genes. American Journal of Human Genetics 78, 1011–1025
(2006). [PubMed: 16685651]

22. Hubert L & Arabie P Comparing Partitions. Journal of Classification 2, 193–218 (1985).

23. Rand WM Objective Criteria for Evaluation of Clustering Methods. Journal of the American
Statistical Association 66, 846–850 (1971).

24. Haghverdi L, Lun AT, Morgan MD & Marioni JC Batch effects in single-cell RNA-sequencing
data are corrected by matching mutual nearest neighbors. Nature biotechnology 36, 421 (2018).

25. Kharchenko PV, Silberstein L & Scadden DT Bayesian approach to single-cell differential
expression analysis. Nature Methods 11, 740–U184 (2014). [PubMed: 24836921]

26. Stoeckius M et al. Simultaneous epitope and transcriptome measurement in single cells. Nature
methods 14, 865 (2017). [PubMed: 28759029]

27. Haber AL et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–+ (2017).
[PubMed: 29144463]

Deng et al. Page 14

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 1. Overview of scScope architecture and performance on simulated datasets
a) Overview of the recurrent network architecture of scScope.

An input single-cell profile with dropout gene measurements (white entries) is corrected for

batch effects, then the corrected vector x is sequentially processed by an encoder layer (for

feature extraction), decoder layer (for noise reduction) and imputation layer (for dropout

imputation). The imputed vector v is added back to the batch-corrected input profile x to fill

in missing values. This process proceeds recursively T times to produce a final signature

feature vector output h used for biological discovery, such as identification of phenotypically

distinct subpopulations.

b) Comparison of run time on dataset of different scales.

Datasets of varying size were randomly subsampled from a dataset containing 1.3 million

mouse brain cells and used for comparison (Methods).

c) Clustering accuracy for 2K scRNA-seq data with varying fraction of sparsity.

Splatter was used to generate 2K cells with 3 subpopulations with varying dropout rates

(Supplementary Table 3). Accuracy measurement is based on adjusted Rand index

(Methods). For each simulated condition, n = 10 random replicates were simulated; Box

plot: median (center line), interquartile range (box) and minimum-maximum range

(whiskers).

d) Clustering accuracy for 1M scRNA-seq data with varying fraction of rare
subpopulations.

The simulation strategy of SIMLR was used to generate 1M cells. Dropout rate = 0.5; total

number of clusters = 50, number of rare subpopulations = 5; replicate number n = 10. For

MAGIC, ZINB-WaVE and SIMLR, the 1M datasets were randomly down sampled to 10K,

and PhenoGraph was used for de novo cell subpopulation discovery. For methods run on the

1M dataset, a scalable clustering approach was used to identify subpopulations (Methods).

Box plot as in 1c.

Deng et al. Page 15

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 2. Evaluation of methods on experimental scRNA-seq datasets.
a) Analysis of batch correction. Comparisons of (top) batch mixing entropy and (bottom)

computational runtime without or with batch correction using mouse lung tissue scRNA-seq

dataset. Top box plot: median (center line), interquartile range (box) and minimum-

maximum range (whiskers); n = 100 replicates of 100 randomly selected cells across all

batches. Bottom: run time to process whole dataset.

b) Analysis of imputation accuracy for different gene expression levels. Comparison of

imputation error for dropout genes with different (octiles) gene expression levels using the

cord blood mononuclear cell (CBMC) scRNA-seq dataset.

c) Analysis of subpopulation identification for increasing gene depth. Using the mouse

cell atlas, we compared the ability of different approaches to identify the 51 known tissues in

the atlas. Black color: provided software package was unable to complete the task.

Deng et al. Page 16

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig. 3. Application of scScope to explore biology in 1.3M mouse brain dataset.
a) Fractions of three major cell types (glutamatergic neurons, GABAergic neurons and non-

neurons) identified by scScope and comparisons with reported neuron fractions by previous

SPLiT-seq research.

b) Left: scScope results visualized using tSNE on n = 30K cells (randomly sampled from the

full dataset). Clusters were divided to three major types based on gene markers. Right:

Large-scale annotation of clusters to known cell types according to top 10 overexpressed

genes. Violin plots: expression distribution of marker genes for discovered clusters. Vertical

axis (left): clusters with known cell type annotations and corresponding cell numbers.

Horizontal axis: differentially expressed marker genes across shown clusters. Vertical axis

(right): cluster annotation based on previously reported cell-subtype-specific genes.

Deng et al. Page 17

Nat Methods. Author manuscript; available in PMC 2019 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

	Abstract
	Online Methods
	scScope model and training.
	Architecture
	Batch Effect Correction
	Encoder
	Decoder
	Imputer

	Learning the objective function.
	Cell subpopulation discovery.
	Graph clustering for moderate-scale data.
	Scalable graph clustering for large-scale data.
	Scalable memory allocation for analyzing large numbers of genes in large datasets.

	Methods compared.
	PCA:
	Autoencoder:
	Markov Affinity-based Graph Imputation of Cells (MAGIC):
	Zero-Inflated Negative Binomial-based Wanted Variation Extraction (ZINB-WaVE):
	Single-cell interpretation via multi-kernel learning (SIMLR):
	Deep count autoencoder (DCA):
	Single-cell Variational Inference (scVI):
	scScope:
	Down-sampling training strategies on large-scale dataset:

	Evaluation of clustering and batch correction
	ARI:
	Entropy of batch mixing:

	Evaluation of Imputation
	Imputation error for simulated data:
	Reconstruction error on held-out biological data:

	Simulated datasets.
	Simulation with Splatter
	Simulation with SIMLR
	Simulation with rare cell subgroups

	Biological datasets.
	Lung tissue data
	Cord blood mononuclear cells dataset
	Retina data
	Mouse cell atlas data
	Intestinal data
	Brain data

	Software used in study
	Life Sciences Reporting Summary
	Code availability

	References
	Fig. 1.
	Fig. 2.
	Fig. 3.

