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Abstract

Large-scale distributed databases are designed and deployed for handling commercial and cloud-

based applications. The general expectation from these applications is to provide consistent and

reliable services even in the presence of failures. This interest in fault-tolerant distributed applica-

tions has given rise to blockchain technology.

In this work, we study a key challenge for existing distributed and blockchain applications–

agreement among the participating servers. We first look at the design of commitment protocols,

which can handle failures of server nodes. These commitment protocols help in ensuring that either

all the changes of a client request are applied or none of them exist. To ensure an efficient com-

mitment process, the database community has mainly used the two-phase commit (2PC) protocol.

However, the 2PC protocol is blocking under multiple failures. This necessitated the development

of the non-blocking, three-phase commit (3PC) protocol. However, the database community is still

reluctant to use the 3PC protocol, as it acts as a scalability bottleneck in the design of efficient

transaction processing systems. In this work, we present EasyCommit protocol, which leverages

the best of both worlds (2PC and 3PC). EC is non-blocking (like 3PC) and requires two phases

(like 2PC). EasyCommit achieves these goals by ensuring two key observations: (i) first transmit

and then commit, and (ii) message redundancy. We present the design of the EasyCommit protocol

and prove that it guarantees both safety and liveness. We also present a detailed evaluation of the

EC protocol and show that it is nearly as efficient as the 2PC protocol. To cater to the needs of

geographically large scale distributed systems, we also design a topology-aware agreement protocol

(Geo-scale EasyCommit) that is non-blocking, safe, live and outperforms 3PC protocol.

We next move beyond node failures and analyze systems where nodes can be byzantine. Prior

works have employed a replicated system, where each participating server is a replica of the other, to

handle byzantine failures. Our second work aims at designing a byzantine fault-tolerant consensus

protocol that is both efficient and secure. Existing bft algorithms face the following challenges:

(i) they are communication expensive (require three phases of quadratic complexity), (ii) require a

large number of replicas, (iii) depend on clients, and (iv) need trusted components.

To resolve these challenges, we present the Proof-of-Execution (PoE) consensus protocol. At

the core of PoE are out-of-order processing and speculative execution, which allow PoE to execute
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transactions before consensus is reached among the replicas. With these techniques, PoE manages

to reduce the costs of bft in normal cases, while guaranteeing reliable consensus for clients in

all cases. We envision the use of PoE in high-throughput multi-party data-management and

blockchain systems.

PoE and a majority of other bft protocols adhere to a common design paradigm, the primary-

backup model, which limits the throughput of these systems to the capabilities of a single replica (the

primary). To push throughput beyond this single-replica limit, we propose concurrent consensus. In

concurrent consensus, replicas independently propose transactions, thereby reducing the influence of

any single replica on performance. To put this idea in practice, we propose our RCC paradigm that

can turn any primary-backup consensus protocol into a concurrent consensus protocol by running

many consensus instances concurrently. RCC is designed with performance in mind and requires

minimal coordination between instances. Furthermore, RCC also promises increased resilience

against failures.

To evaluate our scalable bft protocols, we design ResilientDB, a high-throughput yielding

permissioned blockchain fabric. ResilientDB is a result of a key intuition, can a well-crafted

system based on a classical bft protocol outperform a modern protocol? Our ResilientDB fabric

proves that designing such a well-crafted system is possible, and even if such a system employs

a three-phase protocol, it can outperform another system utilizing a single-phase protocol. This

endeavor requires us to dissect existing permissioned blockchain systems and highlight different

factors affecting their performance. ResilientDB fabric is based on these insights, employs multi-

threaded deep pipelines to balance tasks at replicas, and provides guidelines for future designs.
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CHAPTER 1

Introduction

Large scale distributed databases have been designed and deployed for handling commercial

and cloud-based applications [11, 30, 37, 81, 98, 104, 108, 121, 123, 134]. Each such distributed

system is a collection of multiple independently operating servers that together provide a single

service. Such cooperation eases data sharing and improves data quality [39, 75, 118]. The common

denominator across all these systems is the use of transactions. A transaction is a sequence of

operations that either reads or modifies the data. These transactions are created by clients that

submit their transactions to the distributed servers for processing.

The general expectation from any distributed application is that it will apply each client trans-

action in an ACID-compliant manner, such that the state of the underlying database will remain

consistent [51]. Further, the database is expected to respect the atomicity boundaries. It does so

by guaranteeing that either all the changes suggested by a client transaction will persist or none

of the changes will take place. This atomicity guarantee acts as a contract and helps to establish

trust among the communicating parties.

It is also common knowledge that distributed systems face node crashes and attacks [66, 109].

Recent failures have shown that the distributed systems are still miles away from achieving un-

deterred availability [43, 105, 106, 130]. As a result, there is a constant tussle in the systems

community to find the appropriate degree of database consistency and availability necessary for

achieving maximum system performance. To guarantee strong consistency, prior works have relied

on semantics such as serializability [16] and linearizability [74]. However, these semantics have a

causal effect on the latency and availability of the associated distributed application. Hence, a key

desire is to design strongly consistent systems that are also efficient.

We envision multiple independent yet correlated avenues to realize such a dream. To fruition

this dream, our first step aims at developing efficient fault-tolerant agreement protocols that are

susceptible to node failures. Next, we take a step forward and design a secure and efficient protocol
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that guards against byzantine attacks. Finally, we realize the potential of full-scale parallelization

and employ those principles to develop a protocol that achieves high throughput and low latency

while guarding against byzantine attacks.

1.1. The Case for Efficient Agreement

A simple way to design a distributed database is to visualize it as a collection of partitions,

where each partition stores a distinct set of data items. Such visualization is so prevalent in the

database community that in the past three decades, several new designs have been proposed to

improve consistency and availability of these partitioned databases [50, 68, 113, 114, 120, 125].

Moreover, prior works have shown that partitioning the data across servers helps in reducing data-

access contention and achieving high system throughput [22, 81, 129]. As a result, several existing

applications employ fast agreement protocols to guarantee an efficient, strongly consistent view to

their clients [2, 11, 30, 50, 81, 96, 127].

A partitioned database receives client transactions that require access to a single partition

or multiple partitions. Single partition transactions are easy to handle as they can be executed

and committed by the receiving partition (server) without any coordination with other partitions.

Multi-partition transactions require coordination or agreement between different partitions as they

require access to data at several partitions. This coordination is achieved by employing commit

protocols, which often bottleneck the maximum permissible system throughput [50, 125].

Existing commit protocols such as two-phase commit [50] and three-phase commit [125] are

expected to tolerate simple node (partition) failures. In the case a participating node fails, the

remaining participants take the necessary steps to preserve database consistency. One of the earliest

and most popular commitment protocols is the two-phase commit (2PC) protocol [50]. As the name

suggests, the 2PC protocol achieves agreement between the nodes in two phases. Prior works have

illustrated that under specific scenarios, any partitioned database employing the 2PC protocol can

lose its availability, that is, the nodes of the system may not progress or can get blocked [109, 125].

This led to the design of resilient three-phase commit (3PC) protocol [124, 126]. The 3PC protocol

introduces an additional phase that makes it non-blocking. Evidently, this additional phase also acts
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as a major performance bottleneck. Further, if the participating nodes are at geographically-distant

locations, an additional phase substantially increases latency.

We believe the design of a hybrid commit protocol, which leverages the best of both worlds (2PC

and 3PC), is in order. As a result, we present the EasyCommit (EC) protocol, which requires

two phases of communication and is non-blocking under node failures [56]. We associate two key

insights with our design of the EasyCommit protocol. The first insight is to delay the commit (or

abort) of the client transaction until the transmission of final decision to all the participating nodes.

The second insight induces message redundancy in the network by requiring each participating node

to forward the final decision to all the other participants.

As mentioned earlier, the participating nodes may be spread across geographically-distant lo-

cations. In such a case, the protocols like 2PC, 3PC, and EC would incur high latencies. Hence,

we group the nodes located nearby in a cluster and design a topology-aware agreement protocol

(henceforth referred as Geo-scale EasyCommit or GEC) to achieve agreement between the clus-

ters of nodes [58]. Our evaluation illustrates that our GEC protocol is arguably more efficient than

either of the 2PC or 3PC protocols.

1.2. The Case for Efficient Consensus

An efficient commit protocol ensures a common decision among the multiple partitions of a

distributed database, even if some of the partitions suffer failures. However, these commit protocols

cannot tolerate byzantine attacks or an unreliable network. It is common for nodes to act byzantine

and work together to disrupt the agreement process. Further, the network could become unreliable,

and messages could get delayed, duplicated, or lost. To handle such attacks, we need protocols

that are more resilient than the traditional commit protocols.

The first step in guaranteeing resilience against byzantine attacks is replication. In a replicated

database, each node holds a copy of the database, that is, each node is a replica of any other node

in the system. As all the nodes are replicas, so there is no notion of multi-partition transactions.

Each client transaction can be processed by any replica. However, to ensure database consistency,

we need to ensure that all the replicas have the same state. As a result, each update to the database

needs to be applied to all the replicas in the same order. To achieve this task, replicated databases
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run a consensus protocol, which tries to reach an agreement among the replicas. Further, as some

of the replicas could be malicious, this consensus protocol should thwart any byzantine attack.

A majority of byzantine fault-tolerant (bft) consensus protocols follow the primary-backup

model [21, 57, 66, 87, 109]. In a primary-backup bft consensus protocol, one replica acts as the

primary and initiates the consensus, while other replicas act as backups and follow the protocol.

Pbft is often credited for presenting the design of the first practical bft consensus protocol [21].

Pbft achieves bft consensus among the replicas in three phases, of which two require quadratic

communication complexity. As a result, several works have presented exciting optimizations to

reduce the costs associated with the Pbft protocol [1, 48, 66, 87, 133]. These rendered protocols

have suggested: (i) increasing the number of replicas beyond 3f + 1 [1], (ii) employing twin-paths

or requiring clients to order queries [48, 87], and (iii) using additional trusted components [24,

133]. However, neither these optimizations sufficiently guard against attacks nor do they guarantee

sustainable system throughput [10, 26].

To resolve this challenge, we design a novel consensus algorithm – Proof-of-Execution (PoE)‘[65].

PoE leverages speculative execution to reduce a quadratic communication phase from Pbft’s de-

sign. Further, PoE provides a flexible design that helps to employ advanced cryptographic practices

to yield a linear and resilient consensus. Our evaluation of PoE illustrates that PoE outperforms

all the state-of-the-art bft consensus protocols.

1.3. The Case for Parallel Consensus

All the primary-backup protocols share a common principle that the underlying consensus is

led by the primary. This primary replica is responsible for initiating the consensus protocol for each

incoming client request. For any client request, if the primary replica fails to ensure consensus,

then all the backup replicas work together to replace this primary. This replacement process

is necessary as it allows the non-faulty replicas to converge to a common state. Unfortunately,

primary replacement is not cheap, as it requires pausing consensus on all outstanding requests

until the primary is replaced.

A promising solution to all these problems is to make existing bft consensus protocols primary

agnostic. Such a solution would require us to give all replicas the power to act as a primary.
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This brings us to the design of our Resilient Concurrent Consensus (RCC) paradigm [60, 67].

RCC takes as input a primary-backup bft protocol and parallelizes its consensus by requiring

each replica to run multiple instances of the input protocol in parallel. Further, RCC ensures that

each instance is managed by a distinct replica. Hence, the throughput of the system is no longer

dependent on one primary as there are multiple primaries. Our RCC paradigm guarantees that

the failure of one instance does not affect processing of other instances. Further, RCC facilitates

independent recovery of the state from a failed instance. Our evaluation of RCC ascertains the

excellent scalability of our paradigm in comparison to the existing state-of-the-art protocols.

1.4. The Promise for Scalable Permissioned Blockchain

Until now, we have discussed the design of two scalable and efficient bft protocols that can

help replicated distributed databases achieve high throughputs. However, it is unclear what are the

real-world use cases for these protocols. Recent interests in blockchain technology have illustrated

that these bft protocols lie at the core of any blockchain application [73, 90].

A blockchain in its simplest form is a tamper-proof linked list of blocks, where each block tracks

some client transactions. This blockchain is replicated across all the replicas, and the transactions

included in each block are decided through a bft consensus protocol. The key reason blockchain

technology has gauged our interest is its ability to act as a resolve to challenges in trade of valuable

commodities such as art [20, 23, 112], food production [45], managing land property rights [111],

managing identities [9, 20, 111], managing health care data [18, 49, 82] and energy production and

energy trading [112].

Blockchain applications are often categorized as permissionless and permissioned [57]. Per-

missionless applications allow any replica to participate in the bft consensus, and as a result,

participating replicas can hide their identities. Hence, these permissionless applications need to

reward replicas with incentives to promote non-byzantine behavior. In this thesis, we focus on

the design and use of permissioned blockchain applications. Permissioned blockchain applications

require identities of all the replicas to be known prior to the start of consensus. As a result, per-

missioned blockchain applications can employ traditional bft consensus protocols to order their

client transactions.
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Several recent permissioned blockchain systems such as Hyperleder Fabric [8], MultiChain [46],

and Tendermint [19] have presented exciting architectural details to achieve high system through-

put. For instance, Hyperledger Fabric presents a distinct paradigm of executing transactions first

and then ensuring they have a valid order, while Tendermint advocates reliance on synchronous

setting to attain higher throughput. Despite these exciting principles, all of these works have missed

the low-level system details that can help a permissioned blockchain system extract higher through-

puts. We take into account these low-level details and design ResilientDB–a high-throughput

yielding permissioned blockchain fabric [55, 59, 61, 62, 64, 115]. ResilientDB focuses on a system-

centric design rather than a protocol-centric design and employs age-old database and distributed

system principles to yield a scalable architecture. The effectiveness of our ResilientDB frame-

work is evident from the fact that a slow consensus protocol like Pbft, when employed by Re-

silientDB replicas, outperforms a state-of-the-art permissioned blockchain employing a fast pro-

tocol like Zyzzyva.

1.5. The Commencement of Permissioned Blockchain Applications

The design of our efficient ResilientDB fabric and fast bft consensus protocols (PoE and

RCC) allows us to apply these principles for designing efficient permissioned blockchain applica-

tions. In this thesis, we will illustrate in brief how our existing observations, help us to resolve the

following challenges:

(1) Reduced Replication through Trusted Subsystem. Until now, all the bft protocols

that we have studied allow less than one-third of the replicas to act byzantine. However, it is still

desirable for a bft protocol to guard against a larger number of byzantine replicas. To resolve this

challenge, prior works have introduced bft protocols that employ trusted components and allow

less than half of the replicas to act byzantine [24, 92, 133]. However, these protocols make several

assumptions in their design, which prevent their application to real-world setting. We illustrate

how these protocols provide limited safety and liveness guarantees, and envision solutions that can

eliminate these limitations.

(2) Resilient Serverless-Edge Applications. Edge applications have found prominent use

cases with the emergence of the Internet of Things applications. These edge applications expect
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time-critical response delivery. However, the key components for these edge applications are the

edge devices, which have limited computing power. As a result, application developers have to de-

ploy on-premise nodes to process client requests. This creates another challenge as on-premise nodes

are hard to scale or maintain. We envision a new model for solving these challenges, the serverless-

edge model. Existing serverless clouds provide developers access to massive computational resources

while freeing them from the tasks of executing the code and managing the resources. However,

neither the edge nodes nor the serverless cloud can be trusted by the client. Hence, we present the

design of our ServerlessBFT protocol that facilitates the efficient processing of transactions in

the serverless-edge infrastructure.

(3) Efficient consensus of Geo-replicated Database. It is common for replicated databases

to have their replicas spread across a wide-area network [30]. This allows a replicated database to

withstand failures that affect one location, while guaranteeing continuous service through replicas

at other locations. The key issue for such geographically spread database deployments is that the

communication between replicas becomes visibly expensive. In these systems, two or more replicas

are often connected by networks that offer low bandwidth and high ping costs. To resolve this

challenge, we envision the design of a bft consensus protocol for geo-replicated databases [63].
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CHAPTER 2

Efficient and non-blocking agreement protocols

An intuitive way to design a distributed database is to split its data across multiple servers, such

that each server holds a unique partition of data. Such a distributed database is often considered

scalable as it permits processing multiple client transactions in parallel by distinct partitions. If

each client transaction requires data from only one partition, then there is no need for partitions

to communicate with each other, and each partition can act as an individual database. However,

in real-world applications, transactions require access to data in multiple partitions [30, 68, 131].

As databases are expected to remain consistent, these multi-partition transactions need to

be handled carefully. Prior to deciding the fate of any multi-partition transaction (commit or

abort), all the partitions need to reach a common decision. To reach a common decision among the

paritions, prior works have presented the design of commit protocols [50, 125]. However, a key point

in hindsight is that the use of a commit protocol should not cause an increase in communication

latency in the corresponding distributed application.

Transaction commit protocols help in reaching an agreement among the participating nodes

when a transaction has to be committed or aborted. To initiate such an agreement, each partici-

pating node is asked to vote its decision on the operations that accessed data in its partition. Each

participating node can decide to either commit or abort the ongoing transaction. Depending on

these votes, a common decision is reached.

One of the earliest and most popular commitment protocol is the two-phase commit (2PC) [50]

Figure 2.1 presents the state diagram [109, 126] representation of the 2PC protocol. This figure

shows the set of possible states (and transitions) that a coordinating node1 and the participating

nodes follow, in response to a transaction commit request. We use solid lines to represent the

state transitions and dotted lines to represent the inputs/outputs to the system. For instance, the

1The coordinating node is the one which initiates the commit protocol, and in this work it is also the node which
receives the client request to execute a transaction.
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Figure 2.1. Two-Phase Commit Protocol

coordinator starts the commit protocol on transaction completion and requests all the participants

to commence the same by transmitting Prepare messages. In case of multiple failures the two-phase

commit protocol has been proved to be blocking [109, 125]. For example, if the coordinator and a

participant fail, and if the remaining participants are in the READY state, then they cannot make

progress (blocked!), as they are unaware about the state of the failed participant. This blocking

characteristics of the 2PC protocol endangers database availability, and makes it unsuitable for use

with the partitioned databases2. The inherent shortcomings of the 2PC protocol led towards the

design of resilient three-phase commit [124, 126] – henceforth referred as 3PC protocol. The 3PC

protocol introduces an additional PRE-COMMIT state between the READY and COMMIT states, which

ensures there is no direct transition between the non-committable and committable states. This

simple modification makes the 3PC protocol non-blocking under node failures.

However, the 3PC protocol acts as the major performance suppressant in the design of efficient

distributed databases. It can be easily observed that the addition of the PRE-COMMIT state leads to

an extra phase of communication among the nodes. This violates the need of an efficient commit

protocol for geo-scale systems. Hence, the design of a hybrid commit protocol, which leverages the

best of both worlds (2PC and 3PC), is in order. We present the EasyCommit (a.k.a EC) protocol,

which requires two phases of communication and is non-blocking under node failures. We associate

2Partitioned database is the terminology used by the database community to refer to the shared-nothing distributed
databases, and should not be intermixed with the term network partitioning.
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two key insights with the design of EasyCommit protocol that allow us to achieve the non-blocking

characteristic in two phases. The first insight is to delay the commitment of updates to the database

until the transmission of global decision to all the participating nodes, and the second insight is to

induce message redundancy in the network. EasyCommit protocol introduces message redundancy

by ensuring that each participating node forwards the global decision to all the other participants

(including the coordinator).

Prior works [4, 103] have illustrated the wide-scale application of geographically large scale

systems. Such systems, adhering to the philosophy of partitioned databases, require complex

agreement protocols that are both non-blocking and topology-aware. The key ingredient to these

algorithms is their ability to take advantage to the geo-scale topology and present efficient results.

It is important to understand that a simple geo-scale system consists of several clusters, and the

communication across each clusters may be limited to few nodes. Hence, the design of 3PC (and

even EC) may not reap benefit as it requires communication across all the participating nodes.

This motivates us to learn from the design principles of EasyCommit protocol and construct a novel

topology-aware agreement protocol for the geo-scale systems – Geo-scale EasyCommit (GEC).

Specifically, in this chapter, we make the following contributions.

• We present the design of a new two-phase commit protocol (EasyCommit) and show it is

non-blocking under node-failures.

• We design an associated termination protocol, to be initiated by the active nodes, on

failure of the coordinating node and/or participating nodes.

• We re-use the EasyCommit principles and present a novel agreement protocol that caters

to the needs of geographically large scale systems.

• We extend ExpoDB [113, 114] framework to implement the EC protocol and its geo-scale

variant. Our implementation can be used seamlessly with various concurrency control

algorithms by replacing 2PC protocol with EC (and Geo-scale EasyCommit) to achieve

efficient systems.

• We present a detailed evaluation of the EC protocol against the 2PC and 3PC protocol

over two different OLTP benchmark suites: YCSB [29] and TPC-C [33], and scale the

system upto 64 nodes, on the Microsoft Azure cloud.
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Figure 2.2. Time span of 2PC Protocol

• We also present an interesting evaluation of Geo-scale EasyCommit protocol against the

2PC and 3PC protocols when run across four geographically distant locations (across three

continents). Our evaluation necessitates the need of an efficient and non-blocking geo-scale

system.

2.1. Motivation and Background

The state diagram representation for the two-phase commit protocol is presented in Figure 2.1.

In 2PC protocol, the coordinator and participating nodes require at most two transitions to traverse

from INITIAL state to the COMMIT or ABORT states. We use Figure 2.2 to present the interaction

between the coordinator and the participants, on a linear time scale. The 2PC protocol starts

with the coordinator node transmitting a Prepare message to each of the cohorts 3 and adding a

begin commit entry in its log. When a cohort receives the Prepare message, it adds a ready entry

in its log, sends its decision (Vote-commit or Vote-abort) to the coordinator. If a cohort decides to

abort the transaction then it independently moves to the ABORT state, else it transits to the READY

state. The coordinator waits for the decision from all the cohorts. On receiving all the responses,

the coordinator analyzes all the votes. If there is a Vote-abort decision, then the coordinator adds

an abort entry in the log, transmits the Global-Abort message to all the cohorts and moves to the

ABORT state. If all the votes are to commit, then the coordinator transmits the Global-Commit

message to all the cohorts, and moves to COMMIT state, after adding a commit entry to log. The

cohorts on receiving the coordinator decision move to the ABORT or COMMIT state and add the abort

3The term cohort refers to a participating node in the transaction commit process. We use these terms interchange-
ably.
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Figure 2.3. Three-Phase Commit Protocol

Figure 2.4. Time span of 3PC Protocol

or commit entry to the log, respectively. Finally, the cohorts acknowledge the global decision, which

allows the coordinator to mark the completion of commit protocol.

The 2PC protocol has been proved to be blocking [109, 125] under multiple node failures. To

illustrate this behavior let us consider a simple distributed database system with a coordinator

C and three participants X, Y and Z. Now assume a snapshot of the system when C received

Vote-commit from all the participants, and hence, it decides to send Global-commit message to all

the participants. However, say C fails after transmitting Global-commit message to X, but before

sending messages to Y and Z. The participant X on receiving the Global-commit message, commits

the transaction. Now, assume X fails after committing the transaction. On the other hand, nodes

Y and Z would timeout due to no response from the coordinator and would be blocked indefinitely,

as they require node X to reach an agreement. They cannot make progress, as neither they have
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knowledge of the global decision nor they know the state of node X before failure. This situation

can be prevented with the help of the three-phase commit protocol [124, 126].

Figure 2.3 presents the state transition diagram for the coordinator and cohort executing the

three-phase commit protocol, while Figure 2.4 expands the 3PC protocol on the linear time scale.

In the first phase, the coordinator and the cohorts, perform the same set of actions as in the 2PC

protocol. Once the coordinator checks all the votes, it decides whether to abort or commit the

transaction. If the decision is to abort, the remaining set of actions performed by the coordinator

(and the cohorts) are similar to the 2PC protocol. However, if the coordinator decides to commit

the transaction, then it first transmits a Prepare-to-commit message and then adds a pre-commit

entry to the log. The cohorts on receiving the Prepare-to-commit message, move to the PRE-COMMIT

state, add a corresponding pre-commit entry to the log and acknowledge the message reception to

the coordinator. The coordinator then sends a Global-commit message to all the cohorts, and the

remaining set of actions are similar to the 2PC protocol.

The key difference between the 2PC and 3PC protocol is the PRE-COMMIT state, which makes

the latter non-blocking. The design of 3PC protocol is based on the [124]’s design of a non-blocking

commit. In his work Skeen laid down two fundamental properties for the design of a non-blocking

commit protocol: (i) no state should be adjacent to both the ABORT and COMMIT states, and (ii)

no non-committable4 state should be adjacent to the COMMIT state. These requirements motivated

Skeen to introduce the notion of a new committable state (PRE-COMMIT) to the 2PC state transition

diagram.

The existence of PRE-COMMIT state makes the 3PC protocol non-blocking. The aforementioned

multi-node failure case does not indefinitely block the nodes Y and Z which are waiting in the

READY state. The nodes Y and Z can make safe progress (by aborting the transaction) as they are

assured that the node X could not have committed the transaction. Such a behavior is implied

by the principle that no two nodes could be more than one state transition apart. The node X is

guaranteed to be in one of the following states: INITAL, READY, PRE-COMMIT and ABORT, at the time

of failure. This indicates that node X could not have committed the transaction, as nodes Y and Z

are still in the READY state (It is important to note that in the 3PC protocol the coordinator sends

4INITAL, READY and WAIT states are considered as non-committable states.
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Figure 2.5. EasyCommit Protocol

the Global-commit message after it transmits the Prepare-to-commit message to all the nodes.).

Interestingly, if either of nodes Y or Z are in the PRE-COMMIT state then they can actually commit

the transaction. However, it can be easily observed that the non-blocking characteristic of the 3PC

protocol comes at an additional cost, an extra round of handshaking.

2.2. Easy Commit

We now present the EasyCommit (EC) protocol. EC is a two-phase protocol, but unlike 2PC it

exhibits non-blocking behavior. The EC protocol achieves these goals through two key insights: (i)

first transmit and then commit, and (ii) message redundancy. EC ensures that each participating

node forwards the global decision to all the other participants. To ensure non-blocking behavior, EC

protocol also requires each node (coordinator and participants) to delay commit until it transmits

the global decision to all the other nodes. Hence, the commit step subsumes message transmission

to all the nodes.

2.2.1. Commitment Protocol. We present the EC protocol state transition diagram, and

the coordinator and participant algorithms in Figures 2.5, 2.7 and 2.8 respectively. The EC protocol

is initiated by the coordinator node. It sends the Prepare message to each of the cohorts and moves

to the READY state. When a cohort receives the Prepare message it sends its decision to the

coordinator and moves to the READY state. On receiving the responses from each of the cohorts, the

coordinator first transmits the global decision to all the participants and then commits (or aborts)

the transaction. Each of the cohorts, on receiving a response from the coordinator, first forward
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Figure 2.6. Time span of EC Protocol

1: Send Prepare to all participants.
2: Add begin commit to log.
3: Wait for Vote-commit or Vote-abort from all participants.

4: event Coordinator timeouts do
5: Run Termination Protocol

6: event Coordinator receives all Vote-commit messages do
7: Add global-commit-decision-reached in log.
8: Send Global-commit to all participants.
9: Commit the transaction.

10: Add transaction-commit to log.

11: event Coordinator receives one Vote-abort message do
12: Add global-abort-decision-reached in log.
13: Send Global-abort to all participants.
14: Abort the transaction.
15: Add transaction-abort to log.

Figure 2.7. Coordinator’s algorithm

the global decision to all the participants (and the coordinator) and then commit (or abort) the

transaction locally.

We introduce multiple entries to the log to facilitate recovery during node failures. Note: the

EC protocol allows the coordinator to commit as soon as it has communicated the global decision

to all the other nodes. This implies that the coordinator need not wait for the acknowledgments.

When a node timeouts, while waiting for a message, it executes the termination protocol. Some of

the noteworthy observations are:

(I1) A participant node cannot make a direct transition from the INITIAL state to the ABORT

state.
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1: event Participant timeouts do
2: Run Termination Protocol

3: event Participant receives Prepare from the coordinator do
4: Send decision Vote-commit or Vote-abort to coordinator.
5: Add ready to log.
6: Wait for message from coordinator.

7: event Coordinator decision is Global-commit do
8: Add global-commit-received in log.
9: Forward Global-commit to all nodes.

10: Commit the transaction.
11: Add transaction-commit to log;

12: event Coordinator decision is Global-abort do
13: Add global-abort-received in log.
14: Forward Global-abort to all nodes.
15: Abort the transaction.
16: Add transaction-abort to log.

Figure 2.8. Participant’s algorithm

(I2) The cohorts, irrespective of the global decision, always forward it to every participant.

(I3) The cohorts need not wait for message from the coordinator, if they receive global decision

from other participants.

(I4) There exists some hidden states (a.k.a TRANSMIT-A and TRANSMIT-C), only after which a

node aborts or commits the transaction (cf. discussed in Section 2.2.2).

In Figure 2.6, we also present the linear time scale model for the EasyCommit protocol. Here, in

the second phase, we use solid lines to represent the global decision from the coordinator to the

cohorts, and the dotted lines to represent message forwarding.

2.2.2. Termination Protocol. We now consider the correctness of the EC algorithm under

node-failures. We want to ensure that the EC protocol exhibits both liveness and safety properties.

A commit protocol is said to be safe if there isn’t any instant during the execution of system under

consideration when two or more nodes are in conflicting states (that is one node is in COMMIT state

while other is in ABORT). A protocol is said to respect liveness if its execution causes none of the

nodes to block.

During the execution of a commit protocol each node waits for a message for a specific amount

of time before it timeouts. When a node timeouts, it concludes loss of communication with the

sender node, which in our case corresponds to failure of the sender. A node is assumed to be
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blocked if it is unable to make progress on timeout. In case of such node failures, the active nodes

execute the termination protocol to ensure system makes progress. We illustrate the termination

protocol by stating the actions taken by the coordinator and participating nodes on timeout. The

coordinator can timeout only in the WAIT state, while the cohorts can timeout in INITIAL and

READY states.

(A1) Coordinator Timeout in WAIT state – If the coordinator timeouts in this state, then

it implies that the coordinator didn’t receive the vote from one of the cohorts. Hence,

the coordinator first adds a log entry (global-abort-decision-reached), next transmits the

Global-abort message to all the active participants and finally aborts the transaction.

(A2) Cohort Timeout in INITIAL State – If the cohort timeouts in this state, then it implies

that it didn’t receive the Prepare message from the coordinator. Hence, this cohort initiates

communication with other active cohorts to reach a common decision.

(A3) Cohort Timeout in READY State – If the cohort timeouts in this state, then it implies

that it didn’t receive a Global-Commit (or Global-Abort) message from any node. Hence,

it would consult the active participants to reach a decision common to all the participants.

Leader Election: In last two cases we force the cohorts to perform transactional commit or

abort based on an agreement. This agreement requires selection of a new leader (or coordinator).

The target of this leader is to ensure that all the active participants follow the same decision, that

is, commit (or abort) the transaction. The selected leader can be in the INITIAL or the WAIT state.

It consults all the nodes if any of them has received a copy of the global decision. If none of the

nodes know the global decision, then the leader first adds a log entry (global-abort-decision-reached),

next transmits the Global-abort message to all active participants and then aborts the transaction.

To prove correctness of EC protocol, Figure 2.9 expands the state transition diagram. We

introduces two intermediate hidden states (a.k.a TRANSMIT-A and TRANSMIT-C). All the nodes are

oblivious to these states, and the purpose of these states is to ensure message redundancy in the

network. As a consequence, we categorize the states of the EC protocol under five heads:

• UNDECIDED – The state before reception of global decision (that is INITIAL, READY and

WAIT states).

• TRANSMIT-A – The state on receiving the global abort.
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Figure 2.9. Logical expansion of EasyCommit Protocol.

UNDECIDED T-A T-C ABORT COMMIT

UNDECIDED Y Y Y N N
T-A Y Y N Y N
T-C Y N Y N Y

ABORT N Y N Y N
COMMIT N N Y N Y

Figure 2.10. Coexistent states in EC protocol (T-A refers to TRANSMIT-A and T-C

refers to TRANSMIT-C).

• TRANSMIT-C – The state on receiving the global commit.

• ABORT – The state after transmitting Global-Abort.

• COMMIT – The state after transmitting Global-Commit.

Figure 2.10 illustrate whether two states can co-exist (Y) or they conflict (N). We derive this table

on the basis of our observations: I - IV and cases A - C. We now have sufficient tools to prove the

liveness and safety properties of the EasyCommit protocol.

Theorem 2.2.1. EasyCommit protocol is safe, that is, in the presence of only node failures, for

a specific transaction, two nodes cannot be in both Aborted and Committed states, at any instant.

Proof. Let us assume the case that two nodes p and q are in the conflicting states (say

p voted to abort the transaction and q voted to commit). This would imply that one of them

received Global-Commit message while the other received Global-Abort. From (II) and (III) we can
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deduce that p and q should transmit the global decision to each other, but as they are in different

states, it implies a contradiction. Also, from (I) we have the guarantee that p could not have

directly transited to the ABORT state. This implies p and q would have received message from some

other node. But, then they should have received the same global decision.

Hence, we assume that either of the nodes p or q first moved to a conflicting state and then

failed. But, this violates property (IV) which states that a node needs to transmit its decision to

all the other nodes before it can commit or abort the transaction. Also, once either of p or q fails,

the rest of the system follows termination protocol (cases (A) to (C)) and reaches a safe state. It

is important to see that the termination protocol is re-entrant. �

Theorem 2.2.2. EasyCommit protocol is live, that is, in the presence of only node failures, it

does not block.

Proof. The proof for this theorem is a corollary of Theorem 3.1. The termination protocol

cases (A) to (C) provide the guarantee that the nodes do not block and can make progress, in case

of a node failure. �

2.2.3. Comparison with 2PC Protocol. We now draw out comparisons between the the

2PC and EC protocols. Although, EC protocol is non-blocking, it has a higher message complexity

than 2PC. EC protocol’s message complexity is O(n2), while the message complexity for 2PC is

O(n).

To illustrate the non-blocking property of EC protocol, we now tackle the motivational example

of multiple failures. For the sake of completeness we restate the example here. Let us assume a

distributed system with coordinator C and participants X, Y and Z. We also assume that C decides

to transmit Global-commit message to all the nodes and fails just after transmitting message to the

participant X. Say, the node X also fails after receiving the message from C. Thus, nodes Y and

Z neither received messages from C nor from node X. In this setting, the nodes Y and Z would

eventually timeout and run the termination protocol. From case (C) of termination protocol, it

is evident that the nodes Y and Z would select a new leader among themselves and would safely

transit to the ABORT state.
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2.2.4. Comparison with 3PC protocol. Although, EC protocol looks similar to 3PC pro-

tocol, but it is a stricter and an efficient variant to 3PC protocol. It introduces the notion of a set

of intermediate hidden states: TRANSMIT-A and TRANSMIT-C, which can be superimposed on the

ABORT and COMMIT states, respectively. Also, in the EC protocol, the nodes do not expect any ac-

knowledgements. So unlike the 3PC protocol, there are no inputs to the TRANSMIT-A, TRANSMIT-C,

ABORT and COMMIT states. However, EC protocol has a higher message complexity than 3PC, which

has a message complexity of O(n).

2.3. Discussion

Until now, all our discussion assumed existence of only node failures. In Section 2.2 we prove

that EC protocol is non-blocking under node failures. We now discuss the behavior of the 2PC,

3PC and EC protocols under communication failures that is message delay and message loss. Later

in this section we also study the degree to which these protocols support independent recovery.

2.3.1. Message Delay and Loss. We now analyze the characteristics of 2PC, 3PC and

EC protocols, under unexpected delays in message transmission. Message delays represent an

unprecedented lag in the communication network. The presence of message delays can cause a

node to timeout and act as if a node failure has occurred. This node may receive a message

pertaining transaction commitment or abort, after the decision has been made. It is interesting to

note that 2PC and 3PC protocols are not safe under message delays [15, 109]. Prior works [54, 109]

have shown that it is impossible to design a non-blocking commitment protocol for unbounded

asynchronous networks with even a single failure.

We illustrate the nature of 3PC protocol under message delay, as it is trivial to show that 2PC

protocol is unsafe under message delays. The 3PC protocol state diagram does not provide any

intuition about the transitions that two nodes should perform when both of them are active but

unable to communicate. In fact, partial communication or unprecedented delay in communication

can easily hamper the database consistency.

Let us consider a simple configuration with a coordinator C and the participants X, Y and Z.

Assume that C receives Vote-commit message from all the cohorts. Hence, it decides to send the

Prepare-to-commit message to all the cohorts. However, it is possible that the system starts facing
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unanticipated delays on all the communication links with C at one end. We can also assume that the

paths to node X are also facing severe delays. In such a situation, the coordinator would proceed

to globally commit the transaction (as it has moved to the PRE-COMMIT state), while the nodes

X, Y and Z would abort the transaction (as from their perspective the system has undergone

multiple failures). This implies that the 3PC termination protocol is not sound under message

delays. Similarly, EC protocol is unsafe under message delays.

This situation can aggravate if the network undergoes message loss. Interestingly, message loss

has been deemed to be true representation of the network partitioning [109]. Hence, no commit

protocol is safe (or non-blocking) under message loss [15]. If the system is suffering from message

loss then the participating nodes (and coordinator) would timeout and would run the associated

terminating protocol that could make nodes transit to conflicting states. Thus, we conclude that

2PC, 3PC and EC protocols are also unsafe under message loss.

2.3.2. Independent Recovery. Independent recovery is one of the desired properties from

the nodes in a distributed system. An independent recovery protocol lays down a set of rules that

help a failed node to terminate (commit or abort) the transaction, which it was executing prior

to its failure, without any help from other active participants. Interestingly, the 2PC and 3PC

protocols support only partial independent recovery [15, 109].

It is easy to present a case where the 3PC protocol lacks independent recovery. Consider a

cohort in the READY state that votes to commit the transaction and fails. On recovery this node

needs to consult with the other nodes about the fate of the last transaction. This node cannot

independently commit (or abort) the transaction, as it does not know the global decision, which

could have been either commit or abort.

EC protocol supports independent recovery in following scenarios:

(i1) If a cohort fails before transmitting its vote, then on recovery it can simply abort the

transaction.

(i2) If the coordinator fails before transmitting the global decision, then it aborts the transac-

tion on recovery.

(i3) If either coordinator or participant fail after transmitting the global decision and writing

the log, then on recovery they can use this entry to reach the consistent state.
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Figure 2.11. Geo-Scale system with four clusters.

2.4. Geo-Scale EasyCommit

In this section we design the EasyCommit protocol with regards to the geographically large-

scale distributed database systems. A geographically large-scale (a.k.a geo-scale) system consists

of multiple clusters of nodes, where each cluster is located at a geographically different location.

Each cluster is structured akin to a distributed system with one node acting as the coordinator and

rest of the cluster nodes acting as the participants.

Traditional agreement protocols do not directly cater to the needs of these systems due to

existence of high communication costs. Moreover, an efficient geo-scale agreement protocol should

take into consideration the proximity of nodes within (or outside) a cluster. Thus, arises the need for

a two-level agreement protocol. It is important to understand that a two-level agreement protocol

does not necessarily imply execution of one agreement protocol atop another. For instance, for a

geo-scale system, neither is the design of a two-level 3PC protocol intuitive, nor simply appending

two 3PC protocols guarantees correctness (non-blocking property).

Figure 2.11 illustrates a simple geo-scale system consisting of four clusters. Each cluster consists

of one local coordinator and three participants. The local coordinators are responsible for facilitating

agreement within their clusters. There also exists a global coordinator (henceforth referred as

master) for ensuring agreement between the geographically distributed clusters. Note: the master

may also act as the local coordinator for its own cluster.
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2.4.1. Motivation for Geo-scale EasyCommit. A desirable geo-scale agreement protocol

should be safe and benefit from the cluster topology. We know that 2PC protocol is blocking.

Hence, it suffices to show that trivial extensions of 3PC protocol are unsafe for geo-scale systems.

A simple design implies a two level execution, that is each cluster runs a 3PC protocol and all

the local coordinators execute another 3PC protocol among themselves. Within each cluster the

local coordinator is responsible for safe execution of 3PC protocol, while the master manages

3PC protocol run among the local coordinators. When a transaction is ready to be committed,

the master requests all the coordinators to provide their decisions. These coordinators, in turn,

request their cluster nodes to vote and transmit the agreed decision to the master. The master

then follows the 3PC sends a Prepare-to-commit message and waits for acknowledgments. The

coordinators also follow the similar protocol and forward the Prepare-to-commit acknowledgments

to the master. Finally, the master sends a Global-commit message to all the coordinators, which

they broadcast in their clusters.

Although, the aforementioned protocol is neat, it can be shown to be blocking. Consider a

case where the master transmits the Prepare-to-commit message to all but one local coordinators

(cluster 4 coordinator failed). Hence, it timeouts (waiting for acknowledgment) and transmits

Global-commit to all the local coordinators. These local coordinators would transmit the decision

within their clusters. Furthermore, assume all the clusters, except cluster 4, have failed. Meanwhile,

the participants in cluster 4 would timeout, select a new leader, reach a common decision and try

to communicate with other clusters. However, as all the clusters are dead they are unsure of the

global decision and are blocked. The key idea is that when only one cluster is alive and the top level

communication is restricted among the coordinators, then system can block. A simple solution is

to have system-wide communication (execute original 3PC algorithm), but such a solution is not

scalable (communication expensive) when nodes are at geographically large distances.

2.4.2. Geo-scale EC Commitment Protocol. Figure 2.12 presents the state diagram for

Geo-scale EasyCommit protocol (henceforth referred as GEC). We refer to the configuration iden-

tical to Figure 2.11 for the ensuing discussion. Figures 2.13, 2.14 and 2.15 present the algorithm

to be executed at the master node, coordinators and the participants. The geo-scale EasyCommit

protocol also employs the same twin principles: (i) first transmit then commit, and (ii) message
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Figure 2.12. Geo-Scale EasyCommit Protocol with state diagrams for master co-
ordinator, local coordinator and participant.

redundancy. These principles allow the protocol to attain safety and liveness. Additionally, we

restructure the WAIT state. GEC introduces a new G-WAIT state at the master and coordinator

nodes. Furthermore, it includes a L-WAIT state at the coordinators. GEC state machine also re-

quires a WAIT-ACK state across all the nodes. The rendered state diagram encompasses a set of

half states: (i) WAIT-ACK state at the master, and (ii) READY and WAIT-ACK states at a participant.

These states are referred to as half states as a node on these states never transmits any message.

GEC also supports a concurrent state at the coordinator. This concurrent state arises from the

merge of G-WAIT and WAIT-ACK state at the coordinator.

These changes could lead to an inadvertent interpretation that GEC requires up to four phases.

However, the existence of a concurrent state permits a coordinator to receive messages of multiple

types. Note: the master node can also act as the local coordinator. This implies that it would

undergo two concurrent state machines, which could be trivially managed by employing a multi-

threaded system.

GEC state machine uses the new WAIT-ACK state to achieve non-blocking guarantee. This state

allows each node to deterministically commit (or abort) the transaction. The GEC agreement

protocol starts when the transaction execution is completed. The master node sends out the G-

Prepare message to all the coordinators and moves to the G-WAIT state. Each coordinator on
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1: event Initiate Commit Protocol do
2: Send G-Prepare to all coordinators.
3: Add begin commit to log.
4: Wait for Local-commit or Local-abort) from all coordinators.

5: event Master-node timeouts do
6: Run Termination Protocol.

7: event All messages from local-coordinators are Local-commit do
8: Add global-commit-decision-reached in log.
9: Send Global-commit to all participants.

10: event Received one Local-abort do
11: Add global-abort-decision-reached in log.
12: Send Global-abort to all participants.

13: event Received G-Ack from all coordinators do
14: if Decision was Global-commit then
15: Commit the transaction.
16: Add transaction-commit to log.
17: else
18: Abort the transaction.
19: Add transaction-abort to log.

Figure 2.13. Master Node’s Algorithm

receiving the G-Prepare message transmits a Prepare message to its cluster participants and moves

to the L-WAIT state. When a participant receives a Prepare message, it decides to Vote-commit or

Vote-abort the transaction. It transmits its decision to the coordinator and moves to the READY

state. If a coordinator receives at least one Vote-abort message, it sends a Local-abort message to

the master, otherwise it transmits a Local-commit message. Next, the coordinator moves to the

G-WAIT state and waits for the global decision from the master. The master node aggregates all

the responses from the coordinators and generates the global decision. It sends the Global-commit

decision to all the coordinators, if it received all the Local-commit responses, otherwise it transmits

the Global-abort decision. Ensuing this transmission, the master node moves to WAIT-ACK state and

waits for acknowledgment messages (G-Ack) from all the coordinators.

When a coordinator receives the global decision, it forwards the global decision to its cluster

participants. Once the coordinator has sent the global decision, it creates an acknowledgment

message (G-Ack) and transmits the same to all the coordinators (including the master). Next, the

coordinator transits to the WAIT-ACK state and waits for the G-Ack messages from other coordi-

nators. Each participant on receiving the global decision moves to the WAIT-ACK state and waits
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1: event Received G-Prepare from the master do
2: Send Prepare to all cluster participants.
3: Add begin commit to log.

4: event Local-coordinator timeouts do
5: Run Termination Protocol.

6: event Received all Vote-commit messages from cluster participants do
7: Add local-commit-decision-reached to log.
8: Send Local-commit to master.

9: event Received all Vote-abort messages from cluster participants do
10: Add local-abort-decision-reached to log.
11: Send Local-abort to master.

12: event Received Global-commit from master do
13: Add global-commit-decision-reached to log.
14: Forward Global-commit to all cluster participants.
15: Send G-Ack to master and all coordinators.

16: event Received Global-abort from master do
17: Add Global-abort-decision-reached to log.
18: Forward Global-abort to all cluster participants.
19: Send G-Ack to master and all coordinators.

20: event Received G-Ack from all coordinators do
21: Aggregate all G-Ack messages as an A-Ack message.
22: Forward an A-Ack to all cluster participants.
23: if Decision was Global-commit then
24: Commit the transaction.
25: Add transaction-commit to log.
26: else
27: Abort the transaction.
28: Add transaction-abort to log.

Figure 2.14. Local Coordinator’s Algorithm

for an aggregated acknowledgment message from its coordinator. When a coordinator receives all

the required G-Ack messages, it aggregates them into one message (A-Ack), transmits that mes-

sage to all its cluster participants and decides to commit (or abort) the transaction. Finally, the

participants on receiving the A-Ack message, follow the global decision and commit (or abort) the

transaction.

It is important to understand that a coordinator can receive G-Ack from some node before it

receives global decision from the master. Hence, the coordinator keeps track of number of G-Ack

messages it has received. This implies that the coordinator can switch between the G-WAIT and
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1: event Received Prepare from the coordinator do
2: Send decision Vote-commit or Vote-abort to coordinator.
3: Add ready to log.

4: event Participant timeouts do
5: Run Termination Protocol.

6: event Received Global-commit decision do
7: Add global-commit-received in log.
8: event Received Global-abort decision do
9: Add global-abort-received in log.

10: event Received A-Ack message from the local-coordinator do
11: if Decision was Global-commit then
12: Commit the transaction.
13: Add transaction-commit to log.
14: else
15: Abort the transaction.
16: Add transaction-abort to log.

Figure 2.15. Participant’s Algorithm

WAIT-ACK states. Thus, at coordinator, these states exist concurrently.

The preceding discussion permits following observations:

(I1) No node has a direct transition from INITIAL state to ABORT state.

(I2) Each coordinator after successfully transmitting the global decision in its cluster, transmits

a G-Ack message to all other coordinators.

(I3) Each participant commits (or aborts) only after receiving an A-Ack.

(I4) Each coordinator commits after sending an A-Ack to its participants.

2.4.3. Geo-scale EC Termination Protocol. We now present the GEC termination pro-

tocol that allows geo-scale systems, undergoing node failures, guarantee both safety and liveness.

To ensure liveness we require each node to wait on a timer and timeout on expiry of its timer. A

system undergoing an agreement protocol is live if the nodes are able to progress and not block.

A geo-scale system is referred as safe, if at no instant its nodes are in conflicting states (refer

Section 2.2).

Cluster Consultation. GEC termination protocol introduces the notion of Cluster Consultation

to attain twin guarantees of safety and liveness. Cluster Consultation allows the master node to

communicate with the participants of a cluster. This process occurs when the coordinator of a

27



cluster fails, which in turn causes the master to timeout. Hence, the master apprises the associated

cluster about the failed coordinator and requests them to attain a common decision. Interestingly,

if the participants detect the failed coordinator, prior to communication by the master, then they

reach a common ground and initiate Reverse Cluster Consultation (communication with the master

and/or coordinators).

Master Timeout.

(A1) In G-WAIT state: If the master timeouts in this state, then it implies that the master did

not receive the Local-commit or Local-abort message from one of the coordinators. Hence,

the master would add a log entry (global-abort-decision-reached), transmit the Global-abort

message to all other coordinators and initiate Cluster Consultation.

(A2) In WAIT-ACK state: If the master timeouts in this state, then it implies that the master

did not receive a G-Ack from one of the coordinators. Hence, the master initiates Cluster

Consultation and then follows the global decision.

Coordinator Timeout.

(A3) In INITIAL state: If the coordinator timeouts in this state, then it implies that the

coordinator did not receive the G-Prepare message from the coordinator. Hence, the

coordinator communicates with other active coordinators to reach a common decision.

(A4) In L-WAIT state: If the coordinator timeouts in this state, then it implies that the

coordinator did not receive the vote from one of the participants. Hence, the coordinator

adds a log entry (local-abort-decision-reached) and transmits the Local-abort message to

the master.

(A5) In G-WAIT state: If the coordinator timeouts in this state, then it implies that the

coordinator did not receive the global decision from the master. Hence, the coordinator

interacts with other active coordinators to reach a common decision.

(A6) In WAIT-ACK state: If the coordinator timeouts in this state, then it implies that the

coordinator did not receive the G-Ack message from one of the coordinators. Hence, the

coordinator communicates with the master node. If the master has the required G-Ack

message, then it forwards the same, otherwise the master proceeds similarly to case (B).

Participant Timeout.
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(A7) In INITIAL state: If the participant timeouts in this state, then it implies that it did not

receive the Prepare message from the coordinator. Hence, the participant consults other

active participants, for agreement.

(A8) In READY state: If the participant timeouts in this state, then it implies that it did not

receive the global decision from the coordinator. Hence, the participant interacts with

other active participants.

(A9) In WAIT-ACK state: If the participant timeouts in this state, then it implies that it did

not receive the A-Ack message from the coordinator. Hence, the participant decides to

consult other active participants.

Master Election. When the coordinator timeouts while waiting for a response from the master

(cases C and E), it interacts with other coordinators to reach a common decision. In such cases, it

is often necessary to designate one of the active coordinators as the new master node. The election

of the new master is akin to leader election in the EC protocol. The new master, communicates

with the cluster of the failed master and requests them to select a new representative for the cluster.

Next, the new master attempts to move the system to safe state. If the new master is in INITIAL

or L-WAIT states, then it decides to globally abort the transaction. If the new master is in G-WAIT

state, then it first checks whether any other coordinator previously received a global decision.

If there exists a previous global decision then the new leader follows that decision, otherwise it

proceeds to abort the transaction. If the new leader is in WAIT-ACK state, then evidently it knows

the global decision and simply ensures that every other node is also in the same state.

Coordinator Election. The participant nodes of a cluster initiate election of a new leader when

they detect failure of their current coordinator. The new coordinator helps them to reach an agree-

ment and also performs the Reverse Cluster Consultation. If the new coordinator is in initial state,

then it transmits Local-abort as the decision of the cluster, to the master. If the new coordinator is

in READY state, then it consults other participants to check if anyone received the global decision. In

case none of the active participants are aware of the global decision, the new coordinator performs

Reverse Cluster Consultation. If the new coordinator is in WAIT-ACK state, then it simply performs

Reverse Cluster Consultation.
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It is important to understand that either using Cluster Consultation or Reverse Cluster Consul-

tation the new coordinator can make the system reach a stable state. If Cluster Consultation occur

prior to election of new coordinator, then the new coordinator knows the correct state to proceed.

Otherwise, the new coordinator either conveys its state to the master or acquires the information

about global state.

2.4.4. GEC Correctness: Safety and Liveness. The EasyCommit extensions for the geo-

scale systems are intended towards achieving a safe and scalable agreement protocol. Hence, we

need to illustrate that GEC is non-blocking in scenarios considered earlier in this section.

For the sake of completeness, we revisit the scenario. We assume existence of four clusters,

coordinators and a master node, akin to Figure 2.11. The master node asks all the coordinators

to send a decision and they reply with their local decisions (say Local-commit). The master sends

the global decision to all the coordinators and its participants and dies. All but one coordinator

(cluster 4) receives the global decision and forward it to their cluster participants. We assume

that coordinator for cluster 4 could not receive the global decision as it failed. This implies that

participant nodes of cluster 4 are not aware of the global decision. Furthermore, consider that

except for cluster 4, all the nodes in every other cluster have failed. The nodes of cluster 4 can

still make progress. Cluster 4 nodes have a guarantee that no other node could have committed

(or aborted) the transaction. It is important to understand that cluster 4 nodes did not receive

the global decision from their coordinator. Hence, their coordinator could not have sent an G-Ack

message, which in turn ensures that other nodes could not have committed the results. The cluster

4 nodes can independently select a new leader and progress to safe state.

To prove the twin guarantees of safety and liveness for GEC it is easy to generate a represen-

tation similar to Table 2.10. The modified table will replace the hidden states TRANSMIT-A and

TRANSMIT-C with WAIT-ACK. It is important to understand that WAIT-ACK is the state when nodes

know the global decision. Hence, it is not an UNDECIDED state.

Theorem 2.4.1. Geo-scale EasyCommit protocol is safe, that is, in the presence of only node

failures, for a specific transaction, two nodes cannot be in both Aborted and Committed states, at

any instant.
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Proof. Let us assume that two nodes p and q, in different clusters, are in conflicting states

(say p voted to abort the transaction and q voted to commit). This implies that one of them

received Global-abort message, while other received the Global-commit message. This indicates that

the master sent conflicting global decisions, which is a contradiction.

Another possibility is that due to master failure, at least one of the coordinators did not receive

the message from the master and transmitted conflicting decision to its cluster. Such an assumption

is again a contradiction, as cases (C) and (E) require coordinators to communicate with each other.

It is possible that the coordinator of p’s cluster has failed and the active nodes decide to move to

a conflicting state. This is in contradiction with cases (G) to (I) as active participants need to elect a

new coordinator and initiate Reverse Cluster Consultation. If during Reverse Cluster Consultation

they find master to have failed, then they would initiate election of new master. Furthermore, if p’s

cluster is unaware of the global decision then rules (I) to (IV) safeguard them from transitioning

to a state in conflict with q. Note: p’s failed coordinator could not have transmitted an G-Ack.

However, if p’s cluster knows the global decision and is waiting for an A-Ack then they can simply

perform Reverse Cluster Consultation. At this stage, it is also possible that every cluster except

p’s cluster has also failed. Still, the nodes can safely follow the global decision. �

Theorem 2.4.2. Geo-scale EasyCommit protocol is live that is in the presence of only node

failures, it does not block.

Proof. The proof for liveness property follows directly from the proof for Theorem 2.4.1. The

termination protocol cases (A) to (I) provide sufficient guarantee that active nodes continue making

progress under node failures. �

2.5. EasyCommit Implementation

We now present a discussion on our implementation of the EasyCommit protocol. We have

implemented EC protocol in the ExpoDB platform. ExpoDB is an in-memory, distributed trans-

actional platform that incorporates and extends the Deneva [68] testbed. ExpoDB also offers

secure transactional capability, and presents a flexible framework to study distributed ledger–

blockchain [113, 114].
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Application Layer / Testbed ( YCSB and TPCC benchmarks)

Commit Protocols: 
2PC, 3PC, EC and GEC.

Concurrency Control Protocols:
No Wait, Wait-Die, Timestamp.

Transaction
Manager

Storage Layer: L-Store

DataIndexes

Execution Threads

Message / IO Queues

Block Creator

Hashing 
Toolkit

To Global 
Append Log

Logging

Enable/ Disable Secure Transactions

Consensus Protocols: PBFT,
Proof of Work, RBFT.

Figure 2.16. ExpoDB Framework - executed at each server process, hosted on
a cloud node. Each server process receives a set of messages (from clients and other
servers), and uses multiple threads to interact with various distributed database
components.

2.5.1. Architectural Overview. ExpoDB includes a lightweight layer for testing distributed

protocols and design strategy. Figure 2.16 presents the block diagram representation of the ExpoDB

framework. It supports a client-server architecture, where each client or server process is hosted on

one of the cloud nodes. To maintain inherent characteristics of a distributed system, we opt for a

shared nothing architecture. Each partition is mapped to one server node.

A transaction is expressed as a stored procedure that contains both program logic and database

queries, which read or modify the records. The clients and server processes communicate with each

other using TCP/IP sockets. In practice, the client and server processes are hosted on different

cloud nodes, and we maintain an equal number of client and server cloud instances.

Each client creates one or more transactions and sends these transactions to a server process.

The server process in turn executes these transaction by accessing the local data and runs the
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transaction until further execution requires access to remote data. The server process then commu-

nicates with other server processes that have access to remote data (remote partitions). Once, these

processes return the result, the server process continues execution till completion. Next, it takes a

decision to commit or abort the transaction (that is, executes the associated commit protocol).

In case a transaction has to be aborted then the coordinating server sends messages to the

remote servers to rollback the changes. Such a transaction is resumed after an exponential back-

off time. On successful completion of a transaction, the coordinating server process sends an

acknowledgment to the client process and performs necessary garbage collection.

2.5.2. Design of 2PC and 3PC. 2PC: The 2PC protocol starts after the completion of the

transaction execution. The read-only transactions and single partition transactions do not make

use of the commit protocol. Hence, the commit protocol comes into play when the transaction is

multi-partition and performs updates to the data-storage. The coordinating server sends a Prepare

message to all the participating servers and waits for their response. The participating servers

respond with the Vote-commit message5. On receiving the Vote-commit message the coordinating

server starts the final phase and transmits the Global-commit message to all the participants. Each

participant on receiving the Global-commit message commits the transaction, releases the local

transactional resources, and responds with an acknowledgment for the coordinator. The coordinator

waits on a counter for response from each participant and then commits the transaction, sends a

response to the client node, and releases the associated transactional data-structures.

3PC: To gauge the performance of the EC protocol, we also implemented the 3PC commit

protocol. The 3PC protocol implementation is a straightforward extension to the 2PC protocol.

We add an extra PRE-COMMIT phase before the final phase. On receiving, all the Vote-commit

messages, the coordinator sends the Prepare-to-commit message to each participant. The partic-

ipating nodes acknowledge the reception of the Prepare-to-commit message from the coordinator.

The coordinating server on receiving these acknowledgments, starts the finish phase.

2.5.3. EasyCommit Design. We now explain the design of EasyCommit protocol in the

ExpoDB framework. The first phase (that is the INITIAL phase) is same for both the 2PC and

the EC protocol. In the EC protocol, once the coordinator receives the Vote-commit message

5Without node failures, any transaction that reaches the prepare phase is assumed to successfully commit.
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from all the nodes, it first sends the Global-commit message to each of the participating processes

and then commits the transaction. Next, it responds to the client with the transaction completion

notification. When the participating nodes receive the Global-commit message from the coordinator,

they forward the Global-commit message to all the other nodes (including the coordinator), and

then commit the transaction.

Although, in the EC protocol the coordinator has a faster response rate to the client, but its

throughput takes a slight dip due to additional, implementation enforced wait. It can be noted

that we have not performed any cleanup tasks (such as releasing the transactional resources) yet.

The cleanup of the transactional resources is performed once it is ensured that neither of those

resources would be ever used, nor any messages associated with the transaction would be further

received. Hence, we have to force all the nodes (both the coordinator and the participants) to poll

the message queue and wait till they have received the messages from each other node. Once all

the messages are received, each node performs the cleanup.

To implement EC protocol we had to extend the message being transmitted with a new field

which identifies all the participants of the transaction. This array contains the Id for each partic-

ipant, and is updated by the coordinator (as only the coordinator has information about all the

partitions) and transmitted as part of the Global-commit message.

2.5.4. Geo-scale EasyCommit Design. To extend EasyCommit design to geographically

large distributed systems, we adapt Geo-scale EasyCommit algorithm into a topology-aware im-

plementation. We ensure that during the execution of GEC protocol none of the cluster members,

except the coordinator communicate outside the clusters. Our implementation allows each cluster

node to statically compute the identifiers of other nodes in the cluster. This requirement is met by

informing each node about the cluster size, during initial system setup.

The master node needs to apprise each coordinator about identity of other coordinators. It

is important to note that two transactions may not have the same master. We dedicate the node

receiving the transaction as the master node for that transaction. This node can statically compute

the coordinators for its transaction (using modulo operation). These coordinators acknowledge their

elevated status once they receive a G-Prepare message. Similarly, coordinators request remaining

nodes in the cluster to act as participants.
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A key consideration in our implementation is the design of the master node. GEC algorithm

states requirement of a master and a set of coordinators. This approach allows us to have a

separate node demarcated as the coordinator in the cluster accommodating the master. However,

we opt for an efficient design scheme where only one node performs the tasks of both the master

and coordinator. This change requires us integrate the master and coordinator algorithms in a

manner that prevents redundancy. For instance, once the master nodes transmits the G-Prepare

message to other coordinators, it initiates the task of transmitting Prepare to its cluster participants.

Similarly, the master tracks the incoming votes from its participants and the local decisions from

other coordinators. Once the master has received all the votes, it transmits the global decision, to

its cluster and the coordinators.

A key takeaway from our discussion in Section 2.4 was existence of intermediate states. We

claim that these states could easily be merged with other states and do not introduce additional

load. Our GEC implementation helps us to validate this claim. We allow each coordinator to

transmit the G-Ack message as soon as its participants receive the global decision. Moreover, a

coordinator could receive the G-Ack message from another coordinator prior to the global decision.

Hence, the coordinator can track the number of G-Ack messages it has received and may piggyback

A-Ack message to its participants along with the global decision from the master.

2.6. Evauation

In this section, we present a comprehensive evaluation of our novel EasyCommit protocol against

2PC and 3PC. As discussed in Section 2.5, we use the ExpoDB framework for implementing the

EC protocol. For our experimentation, we adopt the evaluation scheme of [68].

To evaluate various commit protocols, we deploy the ExpoDB framework on the Microsoft Azure

cloud. For running the client and server processes, we use upto 64 Standard D8S V3 instances,

deployed in the US East region. Each Standard D8S V3 instance consists of 8 virtual CPU cores

and 32GB of memory. For our experiments, we ensure a one-to-one mapping between the server

(or client) process and the hosting Standard D8S V3 instance. On each server process, we allowed

creation of 4 worker threads, each of which were attached to a dedicated core, and 8 I/O threads.

At each server node, a load of 10000 open client connections is applied. For each experiment, we
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first initiated a warmup phase for 60 seconds, followed by 60 seconds of execution. The measured

throughput does not include the transactions completed during warmup phase. If a transaction gets

aborted then it is restarted again, only after a fixed time. To attenuate the noise in our readings,

we average our results over three runs.

To evaluate the commit protocols, we use the NO WAIT concurrency control algorithm. We use

the NO WAIT algorithm as: (i) it is the simplest algorithm, amongst all the concurrency control

algorithms present in the ExpoDB framework, and (ii) has been proved to achieve high system

throughput. It has to be noted that the use of underlying concurrency control algorithm is or-

thogonal to our approach. We present the design of a new commit protocol, and hence other

concurrency control algorithms (except Calvin) available in the ExpoDB framework, can also em-

ploy EC protocol during the commit phase. We present a discussion on the different concurrency

control algorithms, later in this section.

In NO WAIT protocol, a transaction requesting access to a locked record is aborted. On aborting

the transaction, all the locks held with this transaction are released, which allows other transactions

waiting on these locks to progress. NO WAIT algorithm prevents deadlock by aborting transactions

in case of conflicts, and hence, has high abort rate. The simple design of NO WAIT algorithm, and

its ability to achieve high system throughput [68] motivated us to use it for concurrency control.

2.6.1. Benchmark Workloads. We test our experiments on two different benchmark suites:

YCSB [29] and TPC-C [33]. We use YCSB benchmark to evaluate EC protocol on characteristics

interesting to the OLTP database designers (Section 2.6.2 to Section 2.6.5) and use TPC-C to gauge

the performance of EC protocol on a real world benchmark (Section 2.6.6 and Section 2.6.7).

YCSB – The Yahoo! Cloud Serving Benchmark consists of 11 columns (including a primary

key) and 100B random characters. In our experiments we used a YCSB table of size 16 million

records per partition. Hence, the size of our database was 16 GB per node. For all our experiments

we ensured that each YCSB transaction accessed 10 records (we mention changes to this scheme

explicitly). Each access to YCSB data followed the Zipfian distribution. Zipfian distribution tunes

the access to hot records through the skew factor (theta). When theta is set to 0.1, the resulting

distribution is uniform, while the theta value 0.9 corresponds to extremely skewed distribution. In
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Figure 2.17. System throughput (transactions per second) on varying the skew factor
(theta) for the 2PC, 3PC and EC protocols. These experiments run the YCSB benchmark.
Number of server nodes are set to 16 and partitions per transaction are set to 2.

our evaluation using YCSB data, we only executed multi-partition transactions, as single partition

transactions do not require use of commit algorithms.

TPC-C – The TPC-C benchmark helps to evaluate system performance by modeling an ap-

plication for warehouse order processing. It consists of a read-only, item table that is replicated at

each server node while rest of the tables are partitioned using the warehouse ID. ExpoDB supports

Payment and NewOrder transactions, which constitute 88% of the workload. Each transaction of

Payment type accesses at most 2 partitions. These transaction first update the payment amounts

for the local warehouse and district, and then update the customer data. The probability that

a customer belongs to a remote warehouse is 0.15. In case of transactions of type NewOrder,

first the transaction reads the local warehouse and district records and then modifies the district

record. Next, it modifies item entries in the stock table. Only, 10% NewOrder transactions are

multi-partition , as only 1% of the updates require remote access.

2.6.2. Varying Skew factor (Theta). We evaluate the system throughput by tuning the

skew factor (theta), available in YCSB benchmarks, from 0.1 to 0.9. Figure 2.17 presents the

statistics when the number of partitions per transaction are set to 2. In this experiment, we use 16

server nodes to analyze the effects induced by the three commit protocols.

A key takeaway from this plot is that, for theta ≤ 0.7 the system throughputs for EC and 2PC

protocols are better than the system throughput for the 3PC protocol. On increasing the theta
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Figure 2.18. System throughput (transactions per second) on varying the number of par-
titions per transactions for the commit protocols. These experiments use YCSB benchmark.
The number of server nodes are set to 16 and theta is set to 0.6.

further the transactional access becomes highly skewed. This results in an increased contention

between the transactions as they try to access (read or write) the same record. Hence, there is

a significant reduction in the system throughput across various commit protocols. Thus, it can

be observed that the magnitude of difference in the system throughputs for 2PC, 3PC and EC

protocol is relatively insignificant. It is important to note that on highly skewed data, the gains

due to the choice of underlying commit protocols are overshadowed by other system overheads

(such as cleanup, transaction management and so on).

In the YCSB benchmark, for theta ≤ 0.5 the data access is uniform across the nodes, which

implies that the client transactions access data on various partitions – low contention. Hence, each

server node achieves nearly the same throughput. It can be observed that for all the three commit

protocols the throughput is nearly constant (not same). We attribute the delta difference in the

throughputs of the EC and 2PC protocols to the system induced overheads, network communication

latency, and resource contention between the threads (for access to CPU and cache).

2.6.3. Varying Partitions per Transaction. We now measure the system throughput achieved

by the three commit protocols on varying the number of partitions per transactions from 2 to 6.

Figure 2.18 presents the throughput achieved on the YCSB benchmark, when theta is fixed to 0.6,

and number of server nodes are set to 16. The number of operations accessed by each transaction

are set to 16, and the transaction read-write ratio is maintained at 1 : 1.
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It can be observed that on increasing the number of partitions per transaction there is a dip

in the system throughput, across all of the commit protocols. On moving from 2 to 4 partitions

there is an approximate decrease of 55%, while the reduction is system performance is around 25%

from 4 partitions to 6 partitions, for the three commit protocol. As the number of partitions per

transaction increase, the number of messages being exchanged in each round increases linearly for

2PC and 3PC, and quadratically for EC. Also, an increase in partitions imply the transactional

resources are held longer across multiple sites, which leads to throughput degradation for all the

protocols. Note: in practice, the number of partitions per transaction are not more than four [33].

2.6.4. Varying Server Nodes. We study the effect of varying the number of server nodes

(from 2 nodes to 32 nodes) on the system throughput and latency, for the 2PC, 3PC and EC

protocols. In Figure 2.19 we set the number of partitions per transaction to 2 and plot graphs for

the low contention (theta = 0.1), medium contention (theta = 0.6) and high contention (theta

= 0.7). In these experiments, we increase size of YCSB table in accordance to the the increase in

number of server nodes.

In Figure 2.19, we use the plots on the left to study the system throughput on varying the

number of server nodes. It can be observed that as the contention (or skew factor) increases the

system throughput decreases, and such a reduction is sharply evident on moving from theta = 0.6

to theta = 0.7. Another interesting observation is that the system throughput attained by the

EC protocol is significantly greater than the throughput attained under 3PC protocol. The gains

in system throughput are due to reduction of an extra phase which compensates for the extra

messages communicated during the EC protocol.

In comparison to the 2PC protocol the system throughput under EC protocol is marginally

lower at low contention and medium contention, and relatively same at high contention. These

gains are the result of zero acknowledgment messages required by the coordinating node, in the

commit phase, which helps EC protocol perform nearly as efficient as the 2PC protocol. This helps

us to conclude that a database system using EC is as scalable as its counterpart employing 2PC.

2.6.4.1. Latency. In Figure 2.19, we use the plots on the right, to shows the 99 percentile system

latency when one of the three commit protocols are employed by the system. We again vary the

number of server nodes from 2 to 32. The 99 percentile latency is measured from the first commit
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(a) Low contention – (theta = 0.1).
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(b) Medium contention – (theta = 0.6).
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(c) High contention – (theta = 0.7).

Figure 2.19. System Throughput (transactions per second) and System Latency (in sec-
onds), on varying the number of server nodes for the 2PC, 3PC and EC protocols. The
measured latency is the 99-percentile latency, that is, latency from the first start to final
commit of a transaction. For these experiments we use the YCSB benchmarks and set the
number of partitions per transaction to 2.

to the final commit of a transaction. On increasing the number of server nodes there is a steep

increase in latency for each commit protocol. The high latency values for 3PC protocol can be

easily cited to the extra phase of communication.
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Figure 2.20. Percentage of time spent by various database components, on executing the
YCSB benchmark. We set the number of server nodes to 16 and partitions per transaction
to 2.

2.6.4.2. Proportion of time consumed by various components: Figure 2.20 presents the time

spent on various components of the distributed database system. We show the time distribution

for the different degree of contention (theta). We categorize these measures under seven different

heads.

Useful Work is the time spent by worker threads doing computation for read and write

operations. Txn Manager is the time spent in maintaining transaction associated resources.

Index is the time spent in transaction indexing. Abort is the time spent in cleaning up aborted

transactions. Idle is the time worker thread spends when not performing any task. Commit is the

time spent in executing the commit protocol. Overhead represents the time to fetch transaction

table, transaction cleanup and releasing transaction table.
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Figure 2.21. System throughput (transactions per second) on varying the transaction
write percentage for the 2PC, 3PC and EC protocols. These experiments use YCSB bench-
mark, and set the number of server nodes to 16 and partitions per transactions to 2.

The key intuition from these plots is that as the contention (theta) increases there is an

increase in time spent in abort. At low contention as most of the transactions are read-only, so the

time spent in commit phase is least, and as contention increase, commit phase plays an important

role in achieving high throughput from databases. Also, it can be observed at medium and high

contention, worker threads executing 3PC protocol are idle for the maximum time and perform the

least amount of useful work, which indicates a decrease in system throughput under 3PC protocol

due to an extra phase of communication.

2.6.5. Varying Transaction Write Percentage. We now vary the transactional write per-

centage, and draw out comparisons between the system throughput achieved by the ExpoDB when

employing one of the three commit protocols. These experiments (refer Figure 2.21) are based on

YCSB benchmark, and vary the percentage of write operations accessed by each transaction from

10 to 90. We set the skew factor to 0.6, number of server nodes to 16 and partitions per transaction

to 2.

It can be seen that when only 10% of the operations are write then all the protocols achieve

nearly the same system throughput. This is because most of the requests sent by the client consists

of read-only transactions, and under read only transactions, the commit protocols are not executed.

However, as the write percentage increases the gap between the system throughput achieved by
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(b) NewOrder Transaction

Figure 2.22. System throughput on varying the number of server nodes, on the TPC-C
benchmark. The number of warehouses per server are set to 128.

3PC protocol and the other two commit protocols increases. This indicates that 3PC protocol

performs poorly when the underlying application consists of write intensive transactions.

In comparison to the 2PC protocol, EC protocol undergoes marginal reduction in throughput.

As the number of write operations increase, the number of transactions undergoing the commit

protocol also increase. We have already seen that under EC protocol (i) the amount of message

communication is higher than the 2PC protocol, and (ii) each node needs to wait for additional

wait-time before releasing the transactional resources. Some of these held resources include locks

on data items, and it is easy to surmise that under EC protocol locks are held longer than the 2PC

protocol. The increase in duration of locks being held also leads to an increased abort rate, which

is another important factor for reduced system throughput.

2.6.6. Scalability of TPC-C Benchmarks. We now gauge the performance of the EC pro-

tocol with respect to a real-world application, that is using TPC-C benchmark. Figure 2.22 presents

the characteristics of the 2PC, 3PC and EC protocols, under TPC-C benchmark, on varying the

number of server nodes. It has to be noted that a major chunk of TPC-C transactions are single-

partition, while most of the multi-partition transactions access only two partitions. Our evaluation

scheme sets 128 warehouses per server, and, hence a multi-partition can access two co-located

partitions (that is on a single server).

Figure 2.22a represents the scalability of the Payment transactions for the three commit proto-

cols. It is evident from this plot that as the number of server nodes increase, the system throughput
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Figure 2.23. System throughput achieved by three different concurrency control algo-
rithms. For experimentation, we use the TPC-C Payment transaction, and vary the number
of server nodes to 16. The number of warehouses per server are set to 128. Here WDIE and
TST refer to WAIT-DIE and TIMESTAMP, respectively.

increases for each commit protocol. However, there is a performance bottleneck in case of 3PC pro-

tocol. In case of payment transactions as updates are performed at the home warehouse, which

requires exclusive access, so there is an increase in abort rate for the underlying concurrency control

algorithm (in our case NO WAIT). Now, as 3PC protocol requires an additional phase to commit the

transaction, hence there is an increase in the abort rate. Interestingly, the throughput achieved by

the EC protocol is approximately equal to the system throughput under 2PC protocol.

Figure 2.22b depicts the system throughput on executing TPC-C NewOrder transactions. The

performance bottleneck is reduced for these transactions as there only 10 districts per warehouse,

and hence, the commit protocols achieve comparatively higher throughput. Also, as there are only

10% multi-partition transactions, so all the protocols achieve nearly the same performance.

2.6.7. Concurrency Control. The presence of read/write data conflicts between transac-

tional accesses necessitates the use of concurrency control algorithms by the database management

system. The ExpoDB framework implements multiple state-of-the-art concurrency control algo-

rithms. Although, in this work, we use NO WAIT concurrency control algorithm, but EC protocol

can be easily integrated to work alongside other concurrency control algorithms.
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Figure 2.24. Comparison of throughput achieved by the system executing Calvin versus
the system implementing the combination of No-Wait+EC protocol. In this experiment we
use the TPC-C Neworder transaction, and vary the number of server nodes to 16. The
number of warehouses per server are set to 128.

Figure 2.23 measures the system throughput for three different concurrency control algorithms.

We use TPC-C Payment transactions for these experiments, and increase the number of server nodes

upto 16. We also set the number of warehouses per server to 128. We compare the performance

of EC protocol against the 2PC protocol, when the underlying concurrency control algorithm is

WAIT-DIE [13], TIMESTAMP [13] and MVCC [14]. It is evident from these experiments that the EC

protocol is able to achieve as high efficiency as the 2PC protocol, irrespective of the mechanism

used for ensuring concurrency control.

We also analyze our commit protocol against an interesting deterministic concurrency control

algorithm – Calvin [131]. Calvin is a deterministic algorithm that requires the prior knowledge

of the read/write sets of the transaction before its execution. When the transaction’s read/write

sets are not known, at prior, then Calvin causes some transactions to execute twice. Interestingly,

in the second pass, if some records modify then the transaction is aborted and restarted again.

Hence, prior works [68] have shown Calvin to perform poorly in such settings. Another strong

critic against Calvin is that in case of failures, it requires a replica node that executes the same

set of operations as the node responding to client query. This implies that Calvin is not suitable

under failures for use with partitioned databases. Also, the requirement for replica node, reduces

the system throughput.
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Figure 2.25. System throughput and latency per node on varying the number of server
nodes, across four regions, where each region consists of equal number of nodes. For these
experiments we use YCSB benchmark and set both partitions per transaction and requests
per transaction equal to total number of nodes in each run.

Figure 2.24 presents a comparison of NO WAIT algorithm (employing EC protocol) and Calvin.

For this experiment we use the TPC-C Neworder transactions, and vary the number of server nodes

from 2 to 16. These transactions are required to update the order number in their districts. Hence,

the deterministic protocols such as Calvin suffer performance degradation.

2.6.8. Geo-scale EasyCommit. We now present an evaluation of our GEC algorithm against

2PC and 3PC algorithms. In Section 2.4 we present the need for a topology-aware algorithm that

performs efficiently in the presence of geographically large clusters. Geo-scale systems require

existence of algorithms that can reduce the latency and do not require communication between all
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Nodes per region 4 5
2PC 9725.07 8984.80
3PC 8845.07 7664.05
GEC 9187.95 8282.70

Figure 2.26. System throughput on increasing number of nodes per region. These ex-
periments were run across three regions and both partitions per transaction and requests
per transaction were equal to total number of nodes in each run.

the nodes, across clusters. Figure 2.25 illustrates the performance achieved by GEC and validates

our aforementioned claim through interesting comparisons against 3PC and 2PC protocols.

In these figures we run experiments across four geographically distant regions: US East (Ohio),

US West (N. California), EU (Ireland) and Asia Pacific (Mumbai). We use Amazon AWS to run

these experiments and establish Virtual Private Network to facilitate these experiments. We use

m5x2large nodes for servers and t2x2large nodes for clients. In each run, we ensure there is a

one-to-one mapping between the server and the client, that is we have equal number of client and

server nodes. We set the number of partitions per transaction and requests per transaction equal

to number of servers. We vary the number of server nodes in each region from 2 to 4.

Figure 2.25 illustrates that on increasing the number of server nodes the system throughput

decreases across all the three protocols. This phenomena can be easily attributed to: (i) increase

in number of partitions per transaction, and (ii) increase in number of requests per transaction.

This implies that as the number of server nodes increase, each transaction needs to complete more

requests and each request refers to a different partition. An increase in number of server nodes also

leads to faster degradation in the performance of 3PC and 2PC protocols, in comparison to GEC

protocol. This behavior arises as traditional agreement protocols are oblivious to the underlying

cluster topology. This in turn causes existence of a single master that communicates with all the

nodes. Interestingly, the throughput of GEC is poor when the cluster size is small, as it performs

more work in comparison to 3PC protocol. On increasing the number of nodes per cluster, the

throughput reduction is less for GEC (a proof that it is topology-aware). Moreover, GEC performs

significantly better than 3PC and nearly as good as 2PC protocol.

Figure 2.25 also presents the statistics for 99 percentile latency incurred at each server node.

It is easy to gauge that the latency per node increases significantly, on increasing the number of
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server nodes. When the number of nodes per region is small, the GEC protocol suffers from high

latency, as it requires higher communication. However, on increasing the number of nodes per

cluster, GEC protocol outperforms 3PC and has latency closer to 2PC protocol. It is our assertion

that a further increase in the number of nodes per cluster should bridge the gap between 2PC and

GEC throughput and latency values. It is important to understand that GEC is non-blocking and

attains performance of the order of 2PC protocol. Further, we use Figure 2.26 to affirm our insights

across three regions. GEC protocol attains higher throughput than 3PC protocol even on a smaller

setup consisting of just three clusters. This proves that GEC protocol is useful across setups of

different topologies.

2.7. Optimizations

In earlier sections, we presented a theoretical proof and an evaluation of EasyCommit proto-

col, which proved its relevance in the space of existing commit protocols. We now discuss some

optimizations for the EC protocol.

An optimized version of the EC protocol would allow achieving further gains in comparison

to both the 2PC and 3PC protocols. A simple approach is to reduce the number of messages

transmitted in the second phase. In the optimized protocol, each node only forwards messages to

those nodes from which it has not received a Global-Commit or Global-Abort message. Another

simple optimization is to ensure early cleanup, that is reduction of implementation enforced wait

(refer Section 2.5.3). To achieve this, each node would maintain a lookup table, where an entry

for each transaction is added, on receiving the first Global-Commit or Global-Abort message. The

remaining messages, addressed to the same transaction, would be matched in the table and deleted.

We would also need to periodically, flush some of the entries of the table, to reclaim memory.

Interestingly, such an optimization would allow implementing a variant of EC protocol that does

not require any “implicit” acknowledgments. Note a similar limited variant for 3PC protocol can be

constructed where the coordinator does not wait for acknowledgments after sending the Prepare-to-

Commit messages, and directly transmits Global-Commit message to all the cohorts. Our proposed

optimized version is comparable to this 3PC variant.
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2.8. Concluding Remarks

In this chapter, we presented a novel commit protocol – EasyCommit. Our design of Easy-

Commit, leverages the best of twin worlds (2PC and 3PC), it is non-blocking (like 3PC) and

requires two phases (like 2PC). EasyCommit achieves these goals by ensuring two key observations:

(i) first transmit and then commit, and (ii) message redundancy. We presented the design of the

EasyCommit protocol and proved that it guarantees both safety and liveness. We also presented

the associated termination protocol and stated cases where EasyCommit can perform independent

recovery. We learnt from our EC protocol and designed a novel agreement protocol (Geo-scale

EasyCommit) that caters to the needs of a geographically large scale system. GEC protocol limits

cost-expensive inter-cluster communication by facilitating cost-inexpensive within cluster commu-

nication. We performed a detailed evaluation of EC protocol on a 64 node cloud, and illustrated

that it is nearly as efficient as the 2PC protocol. We also evaluated GEC protocol on a setup scaling

three continents and showed that GEC is an efficient alternative to 3PC and performs nearly as

good as blocking 2PC.

2.9. Bibliographic Notes

Prior to our EC protocol, several interesting research works have suggested the design of a

one phase commit protocol [2, 52, 127]. These works are aimed towards achieving higher perfor-

mance than stronger consistency. Clearly, none of these works satisfy the non-blocking requirement

expected of a commit protocol.

Over the past three decades, several variants of the 2PC protocol have been proposed, each

of which aim to reduce the costs associated with its design. [44, 53, 69, 78, 93, 99, 110, 119, 122].

Presumed-commit and presumed-abort [99] work by reducing a single round of message transmission

between the coordinator and the participants, when the transaction is to be committed or aborted,

respectively. Gray and Reuter [53] present a series of optimizations for enhancing the 2PC protocol

such as lazy commit, read-only commit and balancing the load by coordinator transfer. Group

commit [44, 110] helps to reduce the commit overhead by committing a batch of transactions

together. Samaras et al. [122] design several interesting optimizations to improve the performance

of 2PC protocol. They present heuristics to reduce the overhead of logging, network contention
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and resource conflicts. Compared to all of these works, we present EC protocol, which is not only

efficient, but also satisfies the non-blocking property.

Levy et al. [93] present an optimistic 2PC protocol that releases the locks held by a transaction

once all the nodes agree to commit. In the case a node decides to abort the transaction, to prevent

violation of database atomicity, compensating transactions are issued to rollback the changes.

Although their approach does not guarantee non-blocking behavior, we believe the idea of optimistic

resource release can be integrated with our EC protocol to achieve further performance.

Boutros and Desai [119] present another variant to the 2PC protocol, which forces each node

to send an additional message in the case of a communication failure between the coordinator and

the participant. Although their protocol attempts to handle message loss, their protocol blocks

under site failures. We believe an integration of their design with out EC protocol may yield some

resilience during message loss.

Haritsa et al. [69] improve the performance of the 2PC protocol, in the context of real-time

distributed systems. Their protocol permits a conflicting transaction to access the non-committed

data. This can lead to cascading aborts, and is not suitable for use with the traditional distributed

databases. Our technique, on the other hand, is independent of the underlying concurrency control

mechanism and does not cause any special aborts.

Jiménez-Peris et al. [78] allow their system to optimistically fetch the uncommitted data, thereby

improving the performance achieved by the 2PC. However, their protocol is tailored for usage

alongside strict two-phase locking, and assumes existence of an additional replica of each process.

Our technique is neither tailored to any specific concurrency control mechanism, nor it assumes

existence of any extra process. However, we believe these heuristics can be used alongside EC

protocol to yield further benefits.

Reddy and Kitsuregawa [117] modify the 3PC protocol by introducing the notion of backup

sites. With the help of backup sites they are able to achieve higher throughput, but their approach

blocks in case of multiple failures. In comparison, our EasyCommit protocol is non-blocking and

does not require any backup sites.
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CHAPTER 3

Proof-of-Execution: Reaching Consensus through Fault-Tolerant

Speculation

In federated data management a single common database is managed by many independent

stakeholders (e.g., an industry consortium). In doing so, federated data management can ease

data sharing and improve data quality [39, 75, 118]. At the core of federated data management is

reaching agreement on any updates on the common database in an efficient manner, this to enable

fast query processing, data retrieval, and data modifications. One can achieve federated data

management by replicating the common database among all participant, this by replicating the

sequence of transactions that affect the database to all stakeholders. One can do so using commit

protocols designed for distributed databases such as two-phase [50] and three-phase commit [125],

or by using crash-resilient replication protocols such as Paxos [89] and Raft [107].

These solutions are error-prone in a federated decentralized environment in which each stake-

holder manages its own replicas and replicas of each stakeholder can fail (e.g., due to software,

hardware, or network failure) or act malicious: commit protocols and replication protocols can

only deal with crashes. Consequently, recent federated designs propose the usage of Byzantine

Fault-Tolerant (bft) consensus protocols. bft consensus aims at ordering client requests among a

set of replicas, some of which could be Byzantine, such that all non-faulty replicas reach agreement

on a common order for these requests [21, 48, 63, 87, 137]. Furthermore, bft consensus comes with

the added benefit of democracy, as bft consensus gives all replicas an equal vote in all agreement

decisions, while the resilience of bft can aid in dealing with the billions of dollars losses associated

with prevalent attacks on data management systems [106].

Akin to commit protocols, the majority of bft consensus protocols use a primary-backup model

in which one replica is designated the primary that coordinates agreement, while the remaining

replicas act as backups and follow the protocol [109]. This primary-backup bft consensus was first
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popularized by the influential Pbft consensus protocol of Castro and Liskov [21]. The design of

Pbft requires at least 3f + 1 replicas to deal with up-to-f malicious replicas and operates in three

communication phases, two of which necessitate quadratic communication complexity. As such,

Pbft is considered costly when compared to commit or replication protocols, which has negatively

impacted the usage of bft consensus in large-scale data management systems. This has led to

the development of new bft consensus protocols that promise efficiency at the cost of flexibility

(e.g., [48, 87, 137]). As a result, the majority of bft-fueled systems [6, 41, 102] still employ the

classical time-tested, flexible, and safe design of Pbft, however.

In this paper, we explore different design principles that can enable implementing a scalable and

reliable agreement protocol that shields against malicious attacks. We use these design principles

to introduce Proof-of-Execution (PoE), a novel bft protocol that achieves resilient agreement in

just three linear phases. To concoct PoE’s scalable and resilient design, we start with Pbft and

successively add four design elements:

(I1) Non-Divergent Speculative Execution. In Pbft, when the primary replica receives a

client request, it forwards that request to the backups. Each backup on receiving a request from the

primary agrees to support by broadcasting a prepare message. When a replica receives prepare

message from the majority of other replicas, it marks itself as prepared and broadcasts a commit

message. Each replica that has prepared, and receives commit messages from a majority of other

replicas, executes the request.

Evidently, Pbft requires two phases of all-to-all communication. Our first ingredient towards

faster consensus is speculative execution. In Pbft terminology, PoE replicas execute requests after

they get prepared, that is, they do not broadcast commit messages. This speculative execution is

non-divergent as each replica has a partial guarantee–it has prepared–prior to execution.

(I2) Safe Rollbacks and Robustness under Failures. Due to speculative execution, a

malicious primary in PoE can ensure that only a subset of replicas prepare and execute a request.

Hence, a client may or may not receive a sufficient number of matching responses. PoE ensures

that if a client receives a full proof-of-execution, consisting of responses from a majority of the non-

faulty replicas, then such a request persists in time. Otherwise, PoE permits replicas to rollback

their state if necessary. This proof-of-execution is the cornerstone of the correctness of PoE.
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(I3) Agnostic Signatures and Linear Communication. bft protocols are run among dis-

trusting parties. To provide security, these protocols employ cryptographic primitives for signing

the messages and generating message digests. Prior works have shown that the choice of crypto-

graphic signature scheme can impact the performance of the underlying system [21, 85]. Hence, we

allow replicas to either employ message authentication codes (MACs) or threshold signatures (TSs)

for signing [85]. When few replicas are participating in consensus (up to 16), then a single phase of

all-to-all communication is inexpensive and using MACs for such setups can make computations

cheap. For larger setups, we employ TSs to achieve linear communication complexity. TSs permit

us to split a phase of all-to-all communication into two linear phases [48, 137].

(I4) Avoid Response Aggregation. Sbft [48], a recently-proposed bft protocol, suggests

the use of a single replica (designated as the executor) to act as a response aggregator. In specific,

all replicas execute each client request and send their response to the executor. It is the duty of the

executor to reply to the client and send a proof that a majority of the replicas not only executed

this request, but also outputted the same result. In PoE, we avoid this additional communication

between the replicas by allowing each replica to respond directly to the client.

In specific, we make the following contributions:

(1) We introduce PoE, a novel Byzantine fault-tolerant consensus protocol that uses specula-

tive execution to reach agreement among replicas.

(2) To guarantee failure recovery in the presence of speculative execution and Byzantine be-

havior, we introduce a novel view-change protocol that can rollback requests.

(3) PoE supports batching, out-of-order processing, and is signature-scheme agnostic and can

be made to employ either MACs or threshold signatures.

(4) PoE does not rely on non-faulty replicas, clients, or trusted hardware to achieve safe and

efficient consensus.

(5) To validate our vision of using PoE in resilient federated data management systems, we

implement PoE and four other bft protocols (Zyzzyva, Pbft, Sbft, and HotStuff)

in our efficient ResilientDB fabric.

(6) We extensively evaluate PoE against these protocols on a Google Cloud deployment con-

sisting of 91 replicas and 320 k clients under (i) no failure, (ii) backup failure, (iii) primary
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failure, (iv) batching of requests, (v) zero payload, and (vi) scaling the number of replicas.

Further, to prove the correctness of our results, we also stress test PoE and other proto-

cols in a simulated environment. Our results show that PoE can achieve up to 80% more

throughput than existing bft protocols in the presence of failures.

To the best of our knowledge, PoE is the first protocol that achieves consensus in only two

phases while being able to deal with Byzantine failures and without relying on trusted clients (e.g.,

Zyzzyva [87]) or on trusted hardware (e.g., MinBFT [133]). Hence, PoE can serve as a drop-in

replacement of Pbft to improve scalability and performance in permissioned blockchain fabrics

such as Hyperledger Fabric [8]; and in sharding protocols such as AHL [35].

3.1. System model and notations

Before providing a full description of our PoE protocol, we present the system model we use

and the relevant notations.

A system is a set R of replicas that process client requests. We assign each replica R ∈ R a

unique identifier id(R) with 0 ≤ id(R) < |R|. We write F ⊆ R to denote the set of Byzantine

replicas that can behave in arbitrary, possibly coordinated and malicious, manners. We assume

that non-faulty replicas (those in R\F) behave in accordance to the protocol and are deterministic:

on identical inputs, all non-faulty replicas must produce identical outputs. We do not make any

assumptions on clients: all client can be malicious without affecting PoE. We write n = |R|,

f = |F|, and nf = |R\F| to denote the number of replicas, faulty replicas, and non-faulty replicas,

respectively. We assume that n > 3f (nf > 2f).

We assume authenticated communication: Byzantine replicas are able to impersonate each

other, but replicas cannot impersonate non-faulty replicas. Authenticated communication is a

minimal requirement to deal with Byzantine behavior. Depending on the type of message, we use

message authentication codes (MACs) or threshold signatures (TSs) to achieve authenticated com-

munication [85]. MACs are based on symmetric cryptography in which every pair of communicating

nodes has a secret key. We expect non-faulty replicas to keep their secret keys hidden.

TSs are based on asymmetric cryptography. In specific, each replica holds a distinct private key,

which it can use to create a signature share. Next, one can produce a valid threshold signature given
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at least nf such signature shares (from distinct replicas). We write s〈v〉i to denote the signature

share of the i-th replica for signing value v. Anyone that receives a set T = {s〈v〉j | j ∈ T ′} of

signature shares for v from |T ′| = nf distinct replicas, can aggregate T into a single signature 〈v〉.

This digital signature can then be verified using a public key.

We also employ a collision-resistant cryptographic hash function digest(·) that can map an

arbitrary value v to a constant-sized digest digest(v) [85]. We assume that it is practically impossible

to find another value v′, v 6= v′, such that digest(v) = digest(v′). We use notation v||w to denotes

the concatenation of two values v and w.

Next, we define the consensus provided by PoE.

Definition 3.1.1. A single run of any consensus protocol should satisfy the following:

Termination: Each non-faulty replica executes a transaction.

Non-divergence: All non-faulty replicas execute the same transaction.

Termination is typically referred to as liveness, whereas non-divergence is typically referred to as

safety. In PoE, execution is speculative: replicas can execute and rollback transactions. To provide

safety, PoE provides speculative non-divergence instead of non-divergence:

Speculative non-divergence: If nf − f ≥ f + 1 non-faulty replicas accept and execute the same

transaction T , then all non-faulty replicas will eventually accept and execute T (after

rolling back any other executed transactions).

3.2. Primer on BFT Consensus

Prior to exploring the design of our PoE protocol, we first analyze in brief the age-old problem

of achieving byzantine fault-tolerant (bft) consensus. In this direction, next, we present the designs

of some of the state-of-the-art bft protocols.

3.2.1. Practical Byzantine Fault-Tolerance. A majority of modern-day bft protocols

improve the bft consensus algorithm described by the Practical Byzantine Fault-Tolerance (Pbft)

protocol. Hence, Pbft is a good fit to lead this discussion. Pbft expects that in a system of

n = 3f +1 replicas at most f replicas are byzantine. Pbft follows the primary-backup model where

one replica is designated as the primary and leads the consensus, while all the other replicas act
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Figure 3.1. A schematic representation of the preprepare-prepare-commit protocol
of Pbft. First, a client c requests transaction T and the primary P proposes T to
all replicas via a PrePrepare message. Next, replicas commit to T via a two-phase
message exchange (Prepare and Commit messages). Finally, replicas execute the
proposal and inform the client.

as backups and follow the protocol. Next, we summarize the normal case algorithm of the Pbft

protocol. We use Figure 3.1 to illustrate these steps.

(1) Client Request. The Pbft protocol gets into action when a client c wants a transaction

T to be processed. To fulfill this task, c creates a message 〈T 〉c and sends this message to the

primary replica P.

(2) Pre-prepare. When the primary P receives an incoming client request m := 〈T 〉c, it

checks if m is well-formed. If this is the case, then P assigns m a sequence number k and sends it

as a Preprepare message to all the backups. This message also hashes the message m to include

a digest(m), which helps in future communication.

(3) Prepare. When a replica R ∈ R receives a Preprepare message from P, it performs

three checks: (i) the message is well-formed, (ii) digest(m) is the hash of m, and (iii) this is the first

Preprepare from P with sequence number k. If the checks are met, then R agrees to support the

order k for this client request and broadcasts a Prepare message.

(4) Commit. When a replica R receives identical Prepare messages from nf = 2f +1 replicas,

it marks the request m as prepared and broadcasts a Commit message. Next, R waits for arrival of

identical Commit messages from nf = 2f + 1 replicas If this is the case, then R proceeds to mark

m as committed.

(5) Execute. Once a replica has received nf Commit messages, and it has already executed

transaction at sequence (k− 1), it executes T and sends the result of execution to the client c. The

client c waits for identical responses from f + 1 replicas and marks the request as complete.
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3.2.2. Other Consensus Protocols. Since the introduction of Pbft, several new bft pro-

tocols have been proposed with the aim of improving the consensus offered by the Pbft protocol.

In this section, we look at the design of some of these protocols.

Zyzzyva. It has a optimal-case path due to which the performance of Zyzzyva provides

an upper-bound for any primary-backup protocol (when no failures occur). Unfortunately, the

failure-handling of Zyzzyva is costly, making Zyzzyva unable to deal with any failures efficiently.

In the case of Zyzzyva, each replica executes the client request as soon as it receives a

Preprepare message from the primary. Hence, replicas do not wait to confirm: (i) if other

replicas also got the same request from the primary, and (ii) if the order for client request is same

for all the replicas. This forces the client to wait on a timer for identical responses from all the n

replicas. In case the client does not receive n responses, it timeouts and informs all the replicas.

Each replica, on receiving a message from the client replies with an Ack message. Once the client

receives Ack messages from nf replicas, it marks the request complete.

SBFT. Like Zyzzyva, Sbft [48] also adheres to a twin-path design: a linear fast-path when

there are no byzantine failures and an expensive slow-path if some replicas act byzantine. Sbft

builds on top of the Pbft protocol and uses threshold signatures to linearize the communication.

Essentially, Sbft splits the quadratic phases of Pbft into two.

HotStuff. In any primary-backup bft protocol, if the primary acts byzantine, then the pro-

tocol employs the accompanying view-change algorithm to detect and replace the primary. This

view-change algorithm leads to a momentary disruption in system throughput until the resumption

of service. HotStuff [137] removes the dependence of the protocol from one primary by replacing

primary at the end of every consensus.

As Sbft, HotStuff uses threshold signatures to minimize communication. The state-exchange

of HotStuff has an extra phase compared to Pbft. This additional phase simplifies replacing

primaries in HotStuff, and enables HotStuff to regularly switch primaries (which limits the

influence of any faulty replicas). Due to this design, HotStuff does not support out-of-order

processing. As a consequence, HotStuff is more affected by message delays than by bandwidth.
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Protocol Phases Messages Resilience Requirements
Zyzzyva 1 O(n) 0 Reliable clients and unsafe
PoE 3 O(3n) f Sign. agnostic
Pbft 3 O(n + 2n2) f
HotStuff 8 O(8n) f Sequential Consensus
Sbft 5 O(5n) 0 Optimistic path

Figure 3.2. Comparison of bft consensus protocols in a system with n replicas of
which f are faulty. The costs given are for the normal-case behavior.

3.3. Analysis of Design Principles

To arrive at an optimal design for our PoE protocol, we studied practices followed by state-

of-the-art distributed data management systems and applied their principles to the design of PoE

where possible. In Figure 3.2, we present a comparison of PoE against four well-known resilient

consensus protocols.

To illustrate the merits of PoE’s design, we first briefly look at Pbft. The last phase of Pbft

ensures that non-faulty replicas only execute requests and inform clients when there is a guarantee

that such a transaction will be recovered after any failures. Hence, clients need to wait for only

f + 1 identical responses, of which at-least one is from a non-faulty replica, to ensure guaranteed

execution. By eliminating this last phase, replicas speculatively execute requests before obtaining

recovery guarantees. This impacts Pbft-style consensus in two ways:

(1) First, clients need a way to determine proof-of-execution after which they have a guarantee

that their requests are executed and maintained by the system. We shall show that such a

proof-of-execution can be obtained using nf ≥ 2f + 1 identical responses (instead of f + 1

responses).

(2) Second, as requests are executed before they are guaranteed, replicas need to be able to

rollback requests that are dropped during periods of recovery.

PoE’s speculative execution guarantees that requests with a proof-of-execution will never rollback

and that only a single request can obtain a proof-of-execution per round. Hence, speculative

execution provides the same strong consistency (safety) of Pbft in all cases, this at much lower

cost under normal operations. Furthermore, we show that speculative execution is fully compatible
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with other scalable design principles applied to Pbft, e.g., batching and out-of-order processing to

maximize throughput, even with high message delays.

Out-of-order execution. Typical bft systems follow the order-execute model: first replicas

agree on a unique order of the client request, and only then they execute the requests in order [21,

48, 87, 137]. Unfortunately, this prevents these systems from providing any support for concurrent

execution. A few bft systems suggest executing prior to ordering, but even such systems need to

re-verify their results prior to committing changes [8, 84]. Our PoE protocol lies between these

two extremes: the replicas speculatively execute using only partial ordering guarantees. By doing

so, PoE can eliminate communication costs and minimize latencies of typical bft systems, this

without needing to re-verify results in the normal case.

Out-of-order processing. Although bft consensus protocols typically execute requests in-

order, this does not imply that they need to process proposals to order requests sequentially. To

maximize throughput, Pbft and other primary-backup protocols support out-of-order processing

in which all available bandwidth of the primary is used to continuously propose requests (even when

previous proposals are still being processed by the system). By doing so, out-of-order processing

can eliminate the impact of high message delays. To provide out-of-order processing, all replicas

will process any request proposed as the k-th request whenever k is within some active window

bounded by a low-watermark and high-watermark [21]. These watermarks are increased as the

system progresses. The size of this active window is—in practice—only limited by the memory

resources available to replicas. As out-of-order processing is an essential technique to deliver high

throughputs in environments with high message delays, we have included out-of-order processing

in the design of PoE.

Twin-path consensus. Speculative execution employed by PoE is different that the twin-

path model utilized by Zyzzyva [87] and Sbft [48]. These twin-path protocols have an optimistic

fast path that works only if none of the replicas are faulty and require aid to determine whether

these optimistic condition hold.

In the fast path of Zyzzyva, primaries propose requests, and backups directly execute such

proposals and inform the client (without further coordination). The client waits for responses from

all n replicas before marking the request executed. When the client does not receive n responses,
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it timeouts and sends a message to all replicas, after which the replicas perform an expensive

client-dependent slow-path recovery process (which is prone to errors when communication is un-

reliable [3]).

The fast path of Sbft can deal with up to c crash-failures using 3f + 2c + 1 replicas and

uses threshold signatures to make communication linear. The fast path of Sbft requires a reliable

collector and executor to aggregate messages and to send only a single (instead of at-least-f + 1)

response to the client. Due to aggregating execution, the fast path of Sbft still performs four

rounds of communication before the client gets a response, whereas PoE only uses two rounds of

communication (or three when PoE uses threshold signatures). If the fast path timeouts (e.g.,

the collector or executor fails), then Sbft falls back to a threshold-version of Pbft that takes an

additional round before the client gets a response. Twin-path consensus is in sharp contrast with

the design of PoE, which does not need outside aid (reliable clients, collectors, or executors), and

can operate optimally even while dealing with replica failures.

Primary rotation. To minimize the influence of any single replica on bft consensus, Hot-

Stuff opts to replace the primary after every consensus decision. To efficiently do so, HotStuff

uses an extra communication phase (as compared to Pbft), which minimizes the cost of primary

replacement. Furthermore, HotStuff uses threshold signatures to make its communication linear

(resulting in eight communication phases before a client gets responses). The event-based version

of HotStuff can overlap phases of consecutive rounds, thereby assuring that consensus of a client

request starts in every one-to-all-to-one communication phase. Unfortunately, the primary replace-

ments require that all consensus rounds are performed in a strictly sequential manner, eliminating

any possibility of out-of-order processing.

3.4. Proof-of-Execution

In our Proof-of-Execution consensus protocol (PoE), the primary replica is responsible for

proposing transactions requested by clients to all backup replicas. Each backup replica specula-

tively executes these transactions with the belief that the primary is behaving correctly. Specula-

tive execution expedites processing of transactions in all cases. Finally, when malicious behavior
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Figure 3.3. Normal-case algorithm of PoE: Client c sends its request containing
transaction T to the primary P, which proposes this request to all replicas. Although
replica B is Byzantine, it fails to affect PoE.

is detected, replicas can recover by rolling back transactions, which ensures correctness without

depending on any twin-path model.

3.4.1. The Normal-Case Algorithm of PoE. PoE operates in views v = 0, 1, . . . . In

view v, replica R with id(R) = v mod n is elected as the primary. The design of PoE relies on

authenticated communication, which can be provided using MACs or TSs. In Figure 3.3, we sketch

the normal-case working of PoE for both cases. For the sake of brevity, we will describe PoE built

on top of TSs, which results in a protocol with low—linear—message complexity in the normal

case. The full pseudo-code for this algorithm can be found in Figure 3.4. In Section 3.4.5, we detail

the minimal changes to PoE necessary when switching to MACs.

Consider a view v with primary P. To request execution of transaction T , a client c signs

transaction T and sends the signed transaction 〈T 〉c to P. The usage of signatures assures that

malicious primaries cannot forge transactions. To initiate replication and execution of T as the

k-th transaction, the primary proposes T to all replicas via a propose message.

After the i-th replica R receives a propose message m from P, it checks whether at least nf

other replicas received the same proposal m from primary P. This check assures R that at least

nf − f non-faulty replicas received the same proposal, which will play a central role in achieving
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speculative non-divergence. To perform this check, each replica supports the first proposal m it

receives from the primary by computing a signature share s〈m〉i and sending a support message

containing this share to the primary.

The primary P waits for support messages with valid signature shares from nf distinct replicas,

which can then be aggregated into a single signature 〈m〉. After generating such a signature, the

primary broadcasts this signature to all replicas via a certify message.

After a replica R receives a valid certify message, it view-commits to T as the k-th trans-

action in view v. The replica logs this view-commit decision as VCommitR(〈T 〉c, v, k). After R

view-commits to T , R schedules T for speculative execution as the k-th transaction of view v.

Consequently, T will be executed by R after all preceding transactions are executed. We write

ExecuteR(〈T 〉c, v, k) to log this execution.

After execution, R informs the client of the order of execution and of execution result r (if any)

via a message inform. In turn, client c will wait for a proof-of-execution for the transaction T

it requested, which consists of identical inform messages from nf distinct replicas. This proof-

of-execution guarantees that at least nf − f ≥ f + 1 non-faulty replicas executed T as the k-th

transaction and in Section 3.4.2, we will see that such transactions are always preserved by PoE

when recovering from failures.

If client c does not know the current primary or does not get any timely response for its requests,

then it can broadcast its request 〈T 〉c to all replicas. The non-faulty replicas will then forward this

request to the current primary (if T is not yet executed) and ensure that the primary initiates

successful proposal of this request in a timely manner.

To prove correctness of PoE in all cases, we will need the following technical safety-related

property of view-commits.

Proposition 3.4.1. Let Ri, i ∈ {1, 2}, be two non-faulty replicas that view-committed to 〈Ti〉ci
as the k-th transaction of view v (VCommitR(〈T 〉c, v, k)). If n > 3f , then 〈T1〉c1 = 〈T2〉c2.

Proof. Replica Ri only view-committed to 〈Ti〉ci after Ri received certify(〈h〉, v, k) from

the primary P (Line 14 of Figure 3.4). This message includes a threshold signature 〈h〉, whose

construction requires signature shares from a set Si of nf distinct replicas. Let Xi = Si \ F be the
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Client-role (used by client c to request transaction T ) :

1: Send 〈T 〉c to the primary P.
2: Await receipt of messages inform(〈T 〉c, v, k, r) from nf replicas.
3: Considers T executed, with result r, as the k-th transaction.

Primary-role (running at the primary P of view v, id(P) = v mod n) :

4: Let view v start after execution of the k-th transaction.
5: event P awaits receipt of message 〈T 〉c from client c do
6: Broadcast propose(〈T 〉c, v, k) to all replicas.
7: k := k + 1.
8: event P receives nf message support(s〈h〉i, v, k) such that:

(1) each message was sent by a distinct replica, i ∈ {1, . . . , n}; and
(2) All s〈h〉i in this set can be combined to generate signature 〈h〉.

do
9: Broadcast certify(〈h〉,v, k) to all replicas.

Backup-role (running at every i-th replica R.) :

10: event R receives message m := propose(〈T 〉c, v, k) such that:
(1) v is the current view;
(2) m is sent by the primary of v; and
(3) R did not accept a k-th proposal in v

do
11: Compute h := digest(〈T 〉c||v||k).
12: Compute signature share s〈h〉i.
13: Transmit support(s〈h〉i, v, k) to P.
14: event R receives messages certify(〈h〉,v, k) from P such that:

(1) R transmitted support(s〈h〉i, v, k) to P; and
(2) 〈h〉 is a valid threshold signature

do
15: View-commit T , the k-th transaction of v (VCommitR(〈T 〉c, v, k)).
16: event R logged VCommitR(〈T 〉c, v, k) and

has logged ExecuteR(t′, v′, k′) for all 0 ≤ k′ < k do
17: Execute T as the k-th transaction of v (ExecuteR(〈T 〉c, v, k)).
18: Let r be the result of execution of T (if there is any result).
19: Send inform(digest(〈T 〉c), v, k, r) to c.

Figure 3.4. The normal-case algorithm of PoE.

non-faulty replicas in Si. As |Si| = nf and |F| = f , we have |Xi| ≥ nf−f . The non-faulty replicas in

Xi will only send a single support message for the k-th transaction in view v (Line 10 of Figure 3.4).

Hence, if 〈T1〉c1 6= 〈T2〉c2 , then X1 and X2 must not overlap and nf ≥ |X1 ∪X2| ≥ 2(nf − f) must

hold. As n = nf + f , this simplifies to 3f ≥ n, which contradicts n > 3f . Hence, we conclude

〈T1〉c1 = 〈T2〉c2 . �

We will later use Proposition 3.4.1 to show that PoE provides speculative non-divergence.

Next, we look at typical cases in which the normal-case of PoE is interrupted:
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Example 3.4.1. A malicious primary can try to affect PoE by not conforming to the normal-

case algorithm in the following ways:

(1) By sending proposals for different transactions to different non-faulty replicas. In this

case, Proposition 3.4.1 guarantees that at most a single such proposed transaction will get

view-committed by any non-faulty replica.

(2) By keeping some non-faulty replicas in the dark by not sending proposals to them. In this

case, the remaining non-faulty replicas can still end up view-committing the transactions

as long as at least nf − f non-faulty replicas receive proposals: the faulty replicas in F can

take over the role of up to f non-faulty replicas left in the dark (giving the false illusion

that the non-faulty replicas in the dark are malicious).

(3) By preventing execution by not proposing a k-th transaction, even though transactions

following the k-th transaction are being proposed.

When the network is unreliable and messages do not get delivered (or not on time), then the

behavior of a non-faulty primary can match that of the malicious primary in the above example.

Indeed, failure of the normal-case of PoE has only two possible causes: primary failure and unreli-

able communication. If communication is unreliable, then there is no way to guarantee continuous

service [42]. Hence, replicas simply assume failure of the current primary if the normal-case behav-

ior of PoE is interrupted, while the design of PoE guarantees that unreliable communication does

not affect the correctness of PoE.

To deal with primary failure, each replica maintains a timer for each request. If this timer

expires (timeout) and it has not been able to execute the request, it assumes that the primary

is malicious. To deal with such a failure, replicas will replace the primary. Next, we present the

view-change algorithm that performs primary replacement.

3.4.2. The View-Change Algorithm. If PoE observes failure of the primary P of view v,

then PoE will elect a new primary and move to the next view, view v + 1, via the view-change

algorithm. The goals of the view-change are:

(1) to assure that each request that is considered executed by any client is preserved under all

circumstances; and
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(2) to assure that the replicas are able to agree on a new view whenever communication is

reliable.

As described in the previous section, a client will consider its request executed if it receives a

proof-of-execution consisting of identical inform responses from at-least nf distinct replicas. Of

these nf responses, at-most f can come from faulty replicas. Hence, a client can only consider its

request executed whenever the requested transaction was executed (and view-committed) by at-

least nf − f ≥ f + 1 non-faulty replicas in the system. We note the similarity with the view-change

algorithm of Pbft, which will preserve any request that is prepared by at-least nf − f ≥ f + 1

non-faulty replicas.

The view-change algorithm of PoE consists of three steps. First, failure of the current primary

P needs to be detected by all non-faulty replicas. Second, all replicas exchange information to

establish which transactions were included in view v and which were not. Third, the new primary

P′ proposes a new view. This new view proposal contains a list of the transactions executed in

the previous views (based on the information exchanged earlier). Finally, if the new view proposal

is valid, then replicas switch to this view; otherwise, replicas detect failure of P′ and initiate a

view-change for the next view (v+ 2). The communication of the view-change algorithm of PoE is

sketched in Figure 3.5 and the full pseudo-code of the algorithm can be found in Figure 3.6. Next,

we discuss each step in detail.

3.4.2.1. Failure Detection and View-Change Requests. If a replica R detects failure of the pri-

mary of view v, then it halts the normal-case algorithm of PoE for view v and informs all other

replicas of this failure by requesting a view-change. The replica R does so by broadcasting a mes-

sage vc-request(v,E), in which E is a summary of all transactions executed by R (Figure 3.6,

Line 1). Each replica R can detect the failure of primary in two ways:

(1) R timeouts while expecting normal-case operations toward executing a client request. E.g.,

when R forwards a client request to the current primary, and the current primary fails to

propose this request on time.

(2) R receives vc-request messages, indicating that the primary of view v failed, from f + 1

distinct replicas. As at most f of these messages can come from faulty replicas, at least
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Figure 3.5. The current primary B of view v is faulty and needs to be replaced.
The next primary, P′ , and the replica R1 detected this failure first and request
view-change via vc-request messages. The replica R2 joins these requests.

vc-request (used by replica R to request view-change) :

1: event R detects failure of the primary do
2: R halts the normal-case algorithm of Figure 3.4 for view v.
3: E := {(certify(〈h〉,w, k), 〈T 〉c) |

w ≤ v and ExecuteR(〈T 〉c, w, k) and h = digest(〈T 〉c||w||k)}.
4: Broadcast vc-request(v,E) to all replicas.
5: event R receives f + 1 messages vc-request(vi, Ei) such that

(1) each message was sent by a distinct replica; and
(2) vi, 1 ≤ i ≤ f + 1, is the current view

do
6: R detects failure of the primary (join).

On receiving nv-propose (used by replica R) :

7: event R receives m = nv-propose(v + 1,m1,m2, ...,mnf ) do
8: if m is a valid new-view proposal (similar to creating nv-propose) then
9: Derive the transactions N for the new-view from m1,m2, . . . ,mnf .

10: Rollback any executed transactions not included in N .
11: Execute the transactions in N not yet executed.
12: Move into view v + 1 (see Section 3.4.2.3 for details).

nv-propose (used by replica P′ that will act as the new primary) :

13: event P′ receives nf messages mi = vc-request(vi, Ei) such that
(1) these messages are sent by a set S, |S| = nf , of distinct replicas;
(2) for each mi, 1 ≤ i ≤ nf , sent by replica Qi ∈ S, Ei consists of a consecutive sequence of entries

(certify(〈h〉,v, k), 〈T 〉c);
(3) vi, 1 ≤ i ≤ nf , is the current view v; and
(4) P′ is the next primary (id(P′) = (v + 1) mod n)

do
14: Broadcast nv-propose(v + 1,m1,m2, ...,mnf ) to all replicas.

Figure 3.6. The view-change algorithm of PoE.

one non-faulty replica must have detected a failure. In this case, R joins the view-change

(Figure 3.6, Line 5).

3.4.2.2. Proposing the New View. To start view v + 1, the new primary P′ (with id(P′) =

(v+ 1) mod n) needs to propose a new view by determining a valid list of requests that need to be
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preserved. To do so, P′ waits until it receives sufficient information. In specific, P′ waits until it

received valid vc-request messages from a set S ⊆ R of |S| = nf distinct replicas.

An i-th view-change request mi is considered valid if it includes a consecutive sequence of pairs

(c, 〈T 〉c), where c is a valid certify message for request 〈T 〉c. Such a set S is guaranteed to

exist when communication is reliable, as all non-faulty replicas will participate in the view-change

algorithm. The new primary collects the set S of |S| = nf valid vc-request and proposes them

in a new view message nv-propose to all replicas.

3.4.2.3. Move to the New View. After a replica R receives a nv-propose message contain-

ing a new-view proposal from the new primary P′ , R validates the content of this message.

From the set of vc-request messages in the new-view proposal, R chooses, for each k, the pair

(certify(〈h〉,w, k), 〈T 〉c) proposed in the most-recent view w. Furthermore, R determines the to-

tal number of such requests kmax. Then, R view-commits and executes all kmax chosen requests

that happened before view v + 1. Notice that replica R can skip execution of any transaction it

already executed. If R executed transactions not included in the new-view proposal, then R needs

to rollback these transactions before it can proceed executing requests in view v + 1. After these

steps, R can switch to the new view v+1. In the new view, the new primary P′ starts by proposing

the kmax + 1-th transaction.

When moving into the new view, we see the cost of speculative execution: some replicas can be

forced to rollback execution of transactions:

Example 3.4.2. Consider a system with non-faulty replica R. When deciding the k-th request,

communication became unreliable, due to which only R received a certify message for request

〈T 〉c. Consequently, R speculatively executes T and informs the client c. During the view-change,

all other replicas—none of which have a certify message for 〈T 〉c—provide their local state to the

new primary, which proposes a new view that does not include any k-th request. Hence, the new

primary will start its view by proposing client request 〈T ′〉c′ as the k-th request, which gets accepted.

Consequently, R needs to rollback execution of T . Luckily, this is not an issue: the client c only got

at-most f + 1 < nf responses for request, does not yet have a proof-of-execution, and, consequently,

does not consider T executed.
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In practice, rollbacks can be supported by, e.g., undoing the operations of transaction in reverse

order, or by reverting to an old state. For the correct working of PoE, the exact working of rollbacks

is not important as long as the execution layer provides support for rollbacks.

3.4.3. Correctness of PoE. First, we show that the normal-case algorithm of PoE provides

non-divergent speculative consensus when the primary is non-faulty and communication is reliable.

Theorem 3.4.3. Consider a system in view v, in which the first k−1 transactions have been ex-

ecuted by all non-faulty replicas, in which the primary is non-faulty, and communication is reliable.

If the primary received 〈T 〉c, then it can use the algorithm in Figure 3.4 to ensure that:

(1) there is non-divergent execution of T ;

(2) c considers T executed as the k-th transaction; and

(3) c learns the result of executing T (if any),

this independent of any malicious behavior by faulty replicas.

Proof. Each non-faulty primary would follow the algorithm of PoE described in Figure 3.4

and send propose(〈T 〉c, v, k) to all replicas (Line 6). In response, all nf non-faulty replicas will

compute a signature share and send a support message to the primary (Line 13). Consequently,

the primary will receive signature shares from nf replicas and will combine them to generate a

threshold signature 〈h〉. The primary will include this signature 〈h〉 in a certify message and

broadcast it to all replicas. Each replica will successfully verify 〈h〉 and will view-commit to T

(Line 14). As the first k − 1 transactions have already been executed, every non-faulty replica will

execute T . As all non-faulty replicas behave deterministically, execution will yield the same result

r (if any) across all non-faulty replicas. Hence, when the non-faulty replicas inform c, they do so

by all sending identical messages inform(digest(〈T 〉c), v, k, r) to c (Line 16–Line 19). As all nf

non-faulty replicas executed T , we have non-divergent execution. Finally, as there are at most f

faulty replicas, the faulty replicas can only forge up to f invalid inform messages. Consequently,

the client c will only receive the message inform(digest(〈T 〉c), v, k, r) from at least nf distinct

replicas, and will conclude that T is executed yielding result r (Line 3). �

At the core of the correctness of PoE, under all conditions, is that no replica will rollback

requests 〈T 〉c for which client c already received a proof-of-execution. We prove this next:
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Proposition 3.4.2. Let 〈T 〉c be a request for which client c already received a proof-of-execution

showing that T was executed as the k-th transaction of view v. If n > 3f , then every non-faulty

replica that switches to a view v′ > v will preserve T as the k-th transaction of view v.

Proof. Client c considers 〈T 〉c executed as the k-th transaction of view v when it received

identical inform-messages for T from a set A of |A| = nf distinct replicas (Figure 3.4, Line 3).

Let B = A \ F be the set of non-faulty replicas in A.

Now consider a non-faulty replica R that switches to view v′ > v. Before doing so, R must have

received a valid proposal m = nv-propose(v′,m1, ...,mnf ) from the primary of view v′. Let C be

the set of nf distinct replicas that provided messages m1, . . . ,mnf and let D = C \ F be the set

of non-faulty replicas in C. We have |B| ≥ nf − f and |D| ≥ nf − f . Hence, using a contradiction

argument similar to the one in the proof of Proposition 3.4.1, we conclude that there must exists

a non-faulty replica Q ∈ (B ∩D) that executed 〈T 〉c, informed c, and requested a view-change.

To complete the proof, we need to show that 〈T 〉c was proposed and executed in the last view

that proposed and view-committed a k-th transaction and, hence, that Q will include 〈T 〉c in its

vc-request message for view v′. We do so by induction on the difference v′− v. As the base case,

we have v′ − v = 1, in which case no view after v exists yet and, hence, 〈T 〉c must be the newest

k-th transaction available to Q. As the induction hypothesis, we assume that all non-faulty replicas

will preserve T when entering a new view w, v < w ≤ w′. Hence, non-faulty replicas participating

in view w will not support any k-th transactions proposed in view w. Consequently, no certify

messages can be constructed for any k-th transaction in view w. Hence, the new-view proposal for

w′ + 1 will include 〈T 〉c, completing the proof. �

As a direct consequence of the above, we have

Corollary 3.4.1 (Safety of PoE). PoE provides speculative non-divergence if n > 3f .

We notice that the view-change algorithm does not deal with minor malicious behavior (e.g., a

single replica left in the dark). Furthermore, the presented view-change algorithm will recover all

transactions since the start of the system, which will result in unreasonable large messages when

many transactions have already been proposed. In practice, both these issues can be resolved by

regularly making checkpoints (e.g., after every 100 requests) and only including requests since the
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last checkpoint in each vc-request message. To do so, PoE uses a standard fully-decentralized

Pbft-style checkpoint algorithm that enables the independent checkpointing and recovery of any

request that is executed by at least f +1 non-faulty replicas whenever communication is reliable [21].

Finally, utilizing the view-change algorithm and checkpoints, we prove

Theorem 3.4.4 (Liveness of PoE). PoE provides termination in periods of reliable bounded-

delay communication if n > 3f .

Proof. When the primary is non-faulty, Theorem 3.4.3 guarantees termination as replicas

continuously accept and execute requests. If the primary is Byzantine and fails to guarantee ter-

mination for at most f non-faulty replicas, then the checkpoint algorithm will assure termination

of these non-faulty replicas. Finally, if the primary is Byzantine and fails to guarantee termination

for at least f + 1 non-faulty replicas, then it will be replaced using the view-change algorithm.

For the view-change process, each replica will start with a timeout δ after it receives nf matching

vc-requests and double this timeout after each view-change (exponential backoff). When commu-

nication becomes reliable, this mechanism guarantees that all replicas will eventually view-change

to the same view at the same time. After this point, a non-faulty replica will become primary in

at most f view-changes, after which Theorem 3.4.3 guarantees termination. �

3.4.4. Fine-Tuning and Optimizations. To keep presentation simple, we did not include

the following optimizations in the protocol description:

(1) To reach nf signature shares, the primary can generate one itself. Hence, it only needs

nf − 1 shares of other replicas.

(2) The propose, support, inform, and nv-propose messages are not forwarded and only

need MACs to provide message authentication. The certify messages need not be signed,

as tampering them would invalidate the threshold signature. The vc-request messages

need to be signed, as they need to be forwarded without tampering.

Finally, the design of PoE is fully compatible with out-of-order processing as a replica only supports

proposals for a k-th transaction if it had not previously supported another k-th proposal (Figure 3.4,

Line 10) and only executes a k-th transaction if it has already executed all the preceding transactions

(Figure 3.4, Line 16). As the size of the active out-of-order processing window determines how many
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client requests are being processed at the same time (without receiving a proof-of-execution), the

size of the active window determines the number of transactions that can be rolled back during

view-changes.

3.4.5. Designing PoE using MACs. The design of PoE can be adapted to only use mes-

sage authentication codes (MACs) to authenticate communication. This will sharply reduce the

computational complexity of PoE and eliminate one round of communication, this at the cost of

higher quadratic overall communication costs (see Figure 3.3).

The usage of only MACs makes it impossible to obtain threshold signatures or reliably forward

messages (as forwarding replicas can tamper with the content of unsigned messages). Hence,

using MACs requires changes to how client requests are included in proposals (as client requests

are forwarded), to the normal-case algorithm of PoE (which uses threshold signatures), and to

the view-change algorithm of PoE (which forwards vc-request messages). The changes to the

proposal of client requests and to the view-change algorithm can be derived from the strategies

used by Pbft to support MACs [21]. Hence, next we only review the changes to the normal-case

algorithm of PoE.

Consider a replica R that receives a propose message from the primary P. Next, R needs

to determine whether at least nf other replicas received the same proposal, which is required to

achieve speculative non-divergence (see Proposition 3.4.1). When using MACs, R can do so by

replacing the all-to-one support and one-to-all certify phases by a single all-to-all support phase. In

the support phase, each replica agrees to support the first proposal propose(〈T 〉c, v, k) it receives

from the primary by broadcasting a message support(digest(〈T 〉c), v, k) to all replicas. After this

broadcast, each replica waits until it receives support messages, identical to the message it sent,

from nf distinct replicas. If R receives these messages, it view-commits to T as the k-th transaction

in view v and schedules T for execution. We have sketched this algorithm in Figure 3.3.

3.5. Evaluation

We now analyze our design principles in practice. To do so, we evaluate our PoE protocol

against four state-of-the-art bft protocols in our high throughput yielding permissioned blockchain

fabric, ResilientDB (refer to Chapter 5 for design details). There are many bft protocols we
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Figure 3.7. Upper bound on performance when primary only replies to clients (No
exec.) and when primary executes a request and replies to clients (Exec.).

could compare with. Hence, we pick a representative sample: (1) Zyzzyva—as it has the absolute

minimal cost in the fault-free case, (2) Pbft—as it is a common baseline, (3) Sbft—as it is a safer

variation of Zyzzyva, and (3) HotStuff—as it is a linear-communication protocol that adopts

the notion of rotating leaders.

For fairness, we reimplemented all the protocols in our ResilientDB fabric. Further, we

associated our out-of-ordering optimizations with all the protocols except HotStuff, which by

design disallows out-of-ordering. Moreover, our Pbft implementation learns from the architecture

proposed by BFTSmart [17] and adds pipelining, request batching, and out-of-ordering to its Pbft

design. Through our experiments, we want to answer the following questions:

(Q1) How does PoE fare in comparison with the other protocols under failures?

(Q2) Does PoE benefits from batching client requests?

(Q3) How does PoE perform under zero payload?

(Q4) How scalable is PoE on increasing the number of replicas participating in the consensus,

in the normal-case?

Setup. We run our experiments on the Google Cloud, and deploy each replicas on a c2 machine

having a 16-core Intel Xeon Cascade Lake CPU running at 3.8 GHz with 32 GB memory. We deploy

up to 320 k clients on 16 machines. To collect results after reaching a steady-state, we run each

experiment for 180 s: the first 60 s are warmup, and measurement results are collected over the next

120 s. We average our results over three runs.

Configuration and Benchmarking. For evaluating the protocols, we employed YCSB [29]

from Blockbench’s macro benchmarks [38]. Each client request queries a YCSB table that holds
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half a million active records. We require 90% of the requests to be write queries as the majority

of typical blockchain transactions are updates to existing records. Prior to the experiments, each

replica is initialized with an identical copy of the YCSB table. The client requests generated by

YCSB follow a Zipfian distribution and are heavily skewed (skew factor 0.9).

Unless explicitly stated, we use the following configuration for all experiments. We perform

scaling experiments by varying replicas from 4 to 91. We divide our experiments in two dimensions:

(1) Zero Payload or Standard Payload, and (2) Failures or Non-Failures. We employ batching with

a batch size of 100 as the percentage increase in throughput on larger batch sizes is small.

Under Zero Payload conditions, all replicas execute 100 dummy instructions per batch, while

the primary sends an empty proposal (and not a batch of 100 requests). Under Standard Payload,

with a batch size of 100, the size of Propose message is 5400 B, of Response message is 1748 B,

and of other messages is around 250 B. For experiments with failures, we force one backup replica

to crash. Additionally, we present an experiment that illustrates the effect of primary failure. We

measure throughput as transactions executed per second. We measure latency as the time from

when the client sends a request to the time when the client receives a response.

3.5.1. System Characterization. We first determine the upper bounds on the performance

of ResilientDB. In Figures 3.7a and 3.7b, we present the maximum throughput and latency of

ResilientDB when there is no communication among the replicas. We use the term No Execution

to refer to the case where all clients send their request to the primary replica and primary simply

responds back to the client. We count every query responded back in the system throughput. We

use the term Execution to refer to the case where the primary replica executes each query before

responding back to the client.

The architecture of ResilientDB (see Chapter 5) states the use of one worker thread. In these

experiments, we maximize system performance by allowing up to two threads to work independently

at the primary replica without ordering any queries. Our results indicate that the system can attain

high throughputs (up to 500 ktxn/s) and can reach low latencies (up to 0.25 s). Notice that if we

employ additional worker-threads, our ResilientDB fabric can easily attain higher throughput.
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Figure 3.8. System performance using three different signature schemes. In all
cases, n = 16 replicas participate in consensus.

3.5.2. Effect of Cryptographic Signatures. ResilientDB enables a flexible design where

replicas and clients can employ both digital signatures (threshold signatures) and message authen-

tication codes. This helps us to implement PoE and other consensus protocols in ResilientDB.

To achieve authenticated communication using symmetric cryptography, we employ a combi-

nation of CMAC and AES [85]. Further, we employ ED25519-based digital signatures to enable

asymmetric cryptographic signing. For generating efficient threshold signature scheme, we use

Boneh–Lynn–Shacham (BLS) signatures [85]. To create message digests and for hashing purposes,

we use the SHA256 algorithm.

Next, we determine the cost of different cryptographic signing schemes. For this purpose, we

run three different experiments in which (i) no signature scheme is used (None); (ii) everyone

uses digital signatures based on ED25519 (ED); and (iii) all replicas use CMAC+AES for signing,

while clients sign their message using ED25519 (MAC ). In these three experiments, we run Pbft

consensus among 16 replicas. In Figures 3.8a and 3.8b, we illustrate the throughput attained and

latency incurred by ResilientDB for the experiments. Clearly, the system attains its highest

throughput when no signatures are employed. However, such a system cannot handle malicious

attacks. Further, using just digital signatures for signing messages can prove to be expensive.

An optimal configuration can require clients to sign their messages using digital signatures, while

replicas can communicate using MACs. As can be seen from the results, the costs associated

with digital signatures are huge, as their usage reduces performance by 86%, whereas message

authentication codes only reduce performance by 33%.

3.5.3. Scaling Replicas under Standard Payload. In this section, we evaluate scalability

of PoE both under backup failure and no failures.
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Figure 3.9. Evaluating system throughput and average latency incurred by PoE
and other bft protocols.

(1) Single Backup Failure. We use Figures 3.9(a) and 3.9(b) to illustrate the throughput

and latency attained by the system on running different consensus protocols under a backup failure.

These graphs affirm our claim that PoE attains higher throughput and incurs lower latency than

all other protocols.
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In case of Pbft, each replica participates in two phases of quadratic communication, which

limits its throughput. For the twin-path protocols such as Zyzzyva and Sbft, a single failure is

sufficient to cause massive reductions in their system throughputs. Notice that the collector in Sbft

and the clients in Zyzzyva have to wait for messages from all n replicas, respectively. As predicting

an optimal value for timeouts is hard [25, 26], we chose a very small value for the timeout (3 s) for

replicas and clients. We justify these values, as the experiments we show later in this section show

that the average latency can be as large as 6 s. We note that high timeouts affect Zyzzyva more

than Sbft. In Zyzzyva, clients are waiting for timeouts during which they stop sending requests,

which empties the pipeline at the primary, starving it from new request to propose. To alleviate

such issues in real-world deployments of Zyzzyva, clients need to be able to precisely predict the

latency to minimize the time the clients needs to wait between requests. Unfortunately, this is

hard and runs the risk of ending up in the expensive slow path of Zyzzyva whenever the predicted

latency is slightly off. In Sbft, the collector may timeout waiting for threshold shares for the k-th

round while the primary can continues propose requests for future round l, l > k. Hence, in Sbft

replicas have more opportunity to occupy themselves with useful work.

HotStuff attains significantly low throughput due to its sequential primary-rotation model

in which each of its primaries has to wait for the previous primary before proposing the next

request, which leads to a huge reduction in its throughput. Interestingly, HotStuff incurs the

least average latency among all protocols. This is a result of intensive load on the system when

running other protocols. As these protocols process several requests concurrently (see the multi-

threaded architecture in Chapter 5), these requests spend on average more time in the queue before

being processed by a replica. Notice that all out-of-order consensus protocols employ this trade off:

a small sacrifice on latency yields higher gains on system throughput.

In case of PoE, its high throughputs under failures is a result of its three-phase linear protocol

that does not rely on any twin-path model. To summarize, PoE attains up to 43%, 72%, 24× and

62× more throughputs than Pbft, Sbft, HotStuff and Zyzzyva.

(2) No Replica Failure. We use Figures 3.9(c) and 3.9(d) to illustrate the throughput and

latency attained by the system on running different consensus protocols in fault-free conditions.
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These plots help us to bound the maximum throughput that can be attained by different consensus

protocols in our system.

First, as expected, in comparison to the Figures 3.9(a) and 3.9(b), the throughputs for PoE and

Pbft are slightly higher. Second, PoE continues to outperform both Pbft and HotStuff, for the

reasons described earlier. Third, both Zyzzyva and Sbft are now attaining higher throughputs

as their clients and collector no longer timeout, respectively. The key reason Sbft’s gains are

limited is because Sbft requires five phases and becomes computation bounded. Although Pbft

is quadratic, it employs MAC, which are cheaper to sign and verify.

Notice that the differences in throughputs of PoE and Zyzzyva are small. PoE has 20% (on

91 replicas) to 13% (on 4 replicas) less throughputs than Zyzzyva. An interesting observation is

that on 91 replicas, Zyzzyva incurs almost the same latency as PoE, even though it has higher

throughput. This happens as clients in PoE have to wait for only the fastest nf = 61 replies,

whereas a client for Zyzzyva has to wait for replies from all replicas (even the slowest ones). To

conclude, PoE attains up to 35%, 27% and 21×more throughput than Pbft, Sbft and HotStuff,

respectively.

3.5.4. Scaling Replicas under Zero Payload. We now measure the performance of differ-

ent protocols under zero payload. In any bft protocol, the primary starts consensus by sending a

Propose message that includes all transactions. As a result, this message has the largest size and

is responsible for consuming the majority of the bandwidth. A zero payload experiment ensures

that each replica executes dummy instructions. Hence, the primary is no longer a bottleneck.

We again run these experiments for both Single Failure and Failure-Free cases, and use

Figures 3.9(e) to 3.9(h) to illustrate our observations. It is evident from these figures that zero

payload experiments have helped in increasing PoE’s gains. PoE attains up to 85%, 62% and

27× more throughputs than Pbft, Sbft and HotStuff, respectively. In fact, under failure-free

conditions, the throughput attained by PoE is comparable to Zyzzyva. This is easily explained.

First, both PoE and Zyzzyva are linear protocols. Second, although in failure-free cases Zyzzyva

attains consensus in one phase, its clients need to wait for response from all n replicas, which gives

PoE an opportunity to cover the gap. However, Sbft being a linear protocol does not perform as

good as its other linear counterparts. Its throughput is impacted by the delay of five phases.
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3.5.5. Impact of Batching under Failures. Next, we study the effect of batching client

requests on bft protocols [21, 137]. To answer this question, we measure performance as function

of the number of requests in a batch (the batch-size), which we vary between 10 and 400. For this

experiment, we use a system with 32 available replicas, of which one replica has failed.

We use Figures 3.9(i) and 3.9(j) to illustrate, for each consensus protocol, the throughput

and average latency attained by the system. For each protocol, increasing the batch-size also

increases throughput, while decreasing the latency. This happens as larger batch-sizes require

fewer consensus rounds to complete the exact same set of requests, reducing the cost of ordering

and executing the transactions. This not only improves throughput, but also reduces client latencies

as clients receive faster responses for their requests. Although increasing the batch-size reduces the

number of consensus rounds, the large message size causes a proportional decrease in throughput

(or increase in latency). This is evident from the experiments at higher batch-sizes: increasing the

batch-size beyond 100 gradually curves the throughput plots towards a limit for PoE, Pbft and

Sbft. For example, on increasing the batch size from 100 to 400, PoE and Pbft see an increase

in throughput by 60% and 80%, respectively, while the gap in throughput reduces from 43% to

25%. As in the previous experiments, Zyzzyva yields a significantly lower throughput as it cannot

handle failures. In case of HotStuff, an increase in batch size does increases its throughput but

due to high scaling of the graph this change seems insignificant.

3.5.6. Disabling Out-of-Ordering. Until now, we allowed protocols like Pbft, PoE, Sbft

and Zyzzyva to process requests out-of-order. As a result, these protocols achieve much higher

throughputs than HotStuff, which is restricted by its sequential primary-rotation model. In Fig-

ures 3.9(k) and 3.9(l), we evaluate the performance of the protocols when there are no opportunities

for out-of-ordering.

In this setting, we require each client to only send its request when it has accepted a response

for its previous query. As HotStuff pipelines its phases of consensus into a four-phase pipeline,

so we allow it to access four client requests (each on a distinct subsequent replica) at any time. As

expected, HotStuff performs better than all other protocols at the expense of a higher latency

as it rotates primaries at the end of each consensus, which allows it to pipeline four requests.

However, notice that once out-of-ordering is disabled, throughput drops from 200 ktransactions/s
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to just under a few thousand transactions/s. Hence, from a practical standpoint, out-of-ordering is

simply crucial. Further, the difference in latency of different protocols is quite small, and the visible

variation is a result of graph scaling while the actual numbers are in the range of 20 ms–40 ms.

3.5.7. Primary Failure–View Change. In Figure 3.10, we study the impact of of a benign

primary failure on PoE and Pbft. To recover from a primary failure, backup replicas run the view-

change protocol. We skip illustrating view-change plots for Zyzzyva and Sbft as they already

face severe reduction in throughput for a single backup failure. Further, Zyzzyva has an unsafe

view-change algorithm and Sbft’s view-change algorithm is no less expensive than Pbft. For

HotStuff, we do not show results as it changes primary at the end of every consensus. Although

single primary protocols face a momentary loss in throughput during view-change, these protocols

easily cover this gap through their ability to process messages out-of-order.

For our experiments, we let the primary replica complete consensus for 10 s (or around a million

transactions) and then fail. This causes clients to timeout while waiting for responses for their

pending transactions. Hence, these clients forward their requests to backup replicas.

When a backup replica receives a client request, it forwards that request to the primary

and waits on a timer. Once a replicas timeouts, it detects a primary failure and broadcasts a

vc-request message to all other replicas—initiate view-change protocol (a). Next, each replica

waits for a new view message from the next primary. In the meantime, a replica may receive
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Figure 3.11. System throughput and average latency incurred by PoE and Pbft
in a WAN deployment of five regions under a single failure. In the largest deploy-
ment, we have 140 replicas spread equally over these regions.

vc-request messages from other replicas (b). Once a replica receives nv-propose message from

the new primary (c), it moves to the next view.

3.5.8. WAN Scalability. In this section, we use Figure 3.11 to illustrate the throughputs

and latencies for different PoE and Pbft deployments on a wide-area network in the presence of

a single failure. In specific, we deploy clients and replicas across five locations across the globe:

Oregon, Iowa, Montreal, the Netherlands, and Taiwan. Next, we vary the number of replicas from

20 to 140 by equally distributing these replicas across each region.

These plots affirm our existing observations that PoE outperforms existing state-of-the-art

protocols and scales well in wide-area deployments. In specific, PoE achieves up to 1.41× higher

throughput and incurs 28.67% less latency than Pbft. We skip presenting plots for Sbft, Hot-

Stuff and Zyzzyva due to their low throughputs under failures.

3.6. Concluding Remarks

We present Proof-of-Execution (PoE), a novel Byzantine fault-tolerant consensus protocol that

guarantees safety and liveness and does so in only three linear phases. PoE decouples ordering

from execution by allowing replicas to process messages out-of-order and execute client-transactions

speculatively. Despite these properties, PoE ensures that all the replicas reach a single unique

order for all the transactions. Further, PoE guarantees that if a client observes identical results

of execution from a majority of the replicas, then it can reliably mark its transaction committed.

Due to speculative execution, PoE may require replicas to revert executed transactions, however.

To evaluate PoE’s design, we implement it in our ResilientDB fabric. Our evaluation shows
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that PoE achieves up-to-80% higher throughputs than four state-of-the-art bft protocols in the

presence of failures.

3.7. Bibliographic Notes

Consensus is an age-old problem that received much theoretical and practical attention (see,

e.g., [80, 89, 107]). Further, the use of rollbacks is common in distributed systems. E.g., the crash-

resilient replication protocol Raft [107] allows primaries to re-write the log of any replica. In a

Byzantine environment, such an approach would delegate too much power to the primary, as they

can maliciously overwrite transactions that need to be preserved.

The interest in practical bft consensus protocols took off with the introduction of Pbft [21].

Apart from the protocols that we already discussed, there are some interesting protocols that

achieve efficient consensus by requiring 5f + 1 replicas [1, 34]. However, these protocols have

been shown to work only in the cases where transactions are non-conflicting [87]. Some other bft

protocols [24, 133] suggest the use of trusted components to reduce the cost of bft consensus. These

works require only 2f + 1 replicas as the trusted component helps to guarantee a correct ordering.

The safety of these protocols relies on the security of trusted component. In comparison, PoE does

(i) not require extra replicas, (ii) not depend on clients, (iii) not require trusted components, and

(iv) not need the two phases of quadratic communication required by Pbft.

As a promising future direction, Castro [21] also suggested exploring speculative optimizations

for Pbft, which he referred to as tentative execution. However, this lacked: (i) formal description,

(ii) non-divergence safety property, (iii) specification of rollback under attacks, (iv) re-examination

of the view change protocol, and (v) any actual evaluation.

Consensus for Blockchains. Since the introduction of Bitcoin [101], the well-known cryp-

tocurrency that led to the coining of the term blockchain, several new bft consensus protocols that

cater to cryptocurrencies have been designed [77, 86]. Bitcoin [101] employs the Proof-of-Work [77]

consensus protocol (PoW), which is computationally intensive, achieves low throughput, and can

cause forks (divergence) in the blockchain: separate chains can exist on non-faulty replicas, which

in turn can cause double-spending attacks [57]. Due to these limitations, several other similar algo-

rithms have been proposed. E.g., Proof-of-Stake (PoS) [86], which is design such that any replica
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owning n% of the total resources gets the opportunity to create n% of the new blocks. As PoS

is resource driven, it can face attacks where replicas are incentivized to work simultaneously on

several forks of the blokchain, without ever trying to eliminate these forks.

There are also a set of interesting alternative designs such as ConFlux [95], Caper [6] and

MeshCash [12] that suggest the use of directed acyclic graphs (DAGs) to store a blockchain to

improve the performance of Bitcoin. However, these protocols either rely on PoW or Pbft for

consensus. PoE does not face the limitations faced by PoW [77] and PoS [86]. The use of

DAGs [6, 12, 95], and sharding [35, 138] is orthogonal to the design of PoE. Hence, their use with

PoE can reap further benefits. Further, PoE can be employed by meta-protocols and does not

restrict consensus to any subset of replicas.
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CHAPTER 4

RCC: Resilient Concurrent Consensus for High-Throughput

Secure Transaction Processing

At the core of consensus-based systems are consensus protocols that enable independent par-

ticipants to manage a single common database by reliably and continuously replicating a unique

sequence of transactions among all participants. Most practical systems use consensus protocols

that follow the classical primary-backup design of Pbft [21] in which a single replica, the primary,

proposes transactions by broadcasting them to all other replicas, after which all replicas exchange

state to determine whether the primary correctly proposes the same transaction to all replicas

and to deal with failure of the primary. Well-known examples of such protocols are Pbft [21],

Zyzzyva [88], Sbft [48], HotStuff [137], and PoE [65], and fully-optimized implementations of

these protocols are able to process up-to tens-of-thousands transactions per second [64].

4.1. The Limitations of Traditional Consensus

Unfortunately, a close look at the design of primary-backup consensus protocols reveals that

their design underutilized available network resources, which prevents the maximization of transac-

tion throughput : the throughput of these protocols is determined mainly by the outgoing bandwidth

of the primary. To illustrate this, we consider the maximum throughput by which primaries can

replicate transactions. Consider a system with n replicas of which f are faulty and the remaining

nf = n− f are non-faulty. The maximum throughput Tmax of any such protocol is determined by

the outgoing bandwidth B of the primary, the number of replicas n, and the size of transactions

st : Tmax = B/((n− 1)st). No practical consensus protocol will be able to achieve this throughput,

as dealing with crashes and malicious behavior requires substantial state exchange. Protocols such

as Zyzzyva [88] can come close, however, by optimizing for the case in which no faults occur, this

at the cost of their ability to deal with faults efficiently.
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For Pbft, the minimum amount of state exchange consists of two rounds in which Prepare

and Commit messages are exchanged between all replicas (a quadratic amount, see Example 4.4.1

in Section 4.4). Assuming that these messages have size sm, the maximum throughput of Pbft

is TPbft = B/((n− 1)(st + 3sm)). To minimize overhead, typical implementations of Pbft group

hundreds of transactions together, assuring that st � sm and, hence, Tmax ≈ TPbft.

The above not only shows a maximum on throughput, but also that primary-backup consensus

protocols such as Pbft and Zyzzyva severely underutilize resources of non-primary replicas: when

st � sm, the primary sends and receives roughly (n−1)st bytes, whereas all other replicas only send

and receive roughly st bytes. The obvious solution would be to use several primaries. Unfortunately,

recent protocols such as HotStuff [137], Spinning [132], and Prime [5] that regularly switch

primaries all require that a switch from a primary happens after all proposals of that primary

are processed. Hence, such primary switching does load balance overall resource usage among the

replicas, but does not address the underutilization of resources we observe.

4.2. Our Solution: Towards Resilient Concurrent Consensus

The only way to push throughput of consensus-based databases and data processing systems

beyond the limit Tmax, is by better utilizing available resources. In this work, we propose to do so

via concurrent consensus, in which we use many primaries that concurrently propose transactions.

We also propose RCC, a paradigm for the realization of concurrent consensus. Our contributions

are as follows:

(1) First, in Section 4.3, we propose concurrent consensus and show that concurrent consensus

can achieve much higher throughput than primary-backup consensus by effectively utilizing

all available system resources.

(2) Then, in Section 4.4, we propose RCC, a paradigm for turning any primary-backup con-

sensus protocol into a concurrent consensus protocol and that is designed for maximizing

throughput in all cases, even during malicious activity.

(3) Then, in Section 4.5, we show that RCC can be utilized to make systems more resilient,

as it can mitigate the effects of order-based attacks and throttling attacks (which are not

prevented by traditional consensus protocols), and can provide better load balancing.
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(4) Finally, in Section 4.6, we put the design RCC to the test by implementing it in Re-

silientDB, our high-performance resilient blockchain fabric, and compare RCC with

state-of-the-art primary-backup consensus protocols. Our comparison shows that RCC

answers the promises of concurrent consensus: it achieves up to 2.75× higher throughput

than other consensus protocols, has a peak throughput of 365 ktxn/batch and can be easily

scaled to 91 replicas.

4.3. The Promise of Concurrent Consensus

To deal with the underutilization of resources and the low throughput of primary-backup con-

sensus, we propose concurrent consensus. In specific, we design for a system that is optimized for

high-throughput scenarios in which a plentitude of transactions are available, and we make every

replica a concurrent primary that is responsible for proposing and replicating some of these trans-

actions. As we have nf non-faulty replicas, we can expect to always concurrently propose at least

nf transactions if sufficient transactions are available. Such concurrent processing has the potential

to drastically improve throughput: in each round, each primary will send out one proposal to all

other replicas, and receive nf − 1 proposals from other primaries. Hence, the maximum concurrent

throughput is Tcmax = nfB/((n− 1)st + (nf − 1)st).

In practice, of course, the primaries also need to participate in state exchange to determine

the correct operations of all concurrent primaries. If we use Pbft-style state exchange, we end up

with a concurrent throughput of TcPbft = nfB/((n − 1)(st + 3sm) + (nf − 1)(st + 4(n − 1)sm)).

In Figure 4.1, we have sketched the maximum throughputs Tmax, TPbft, Tcmax, and TcPbft. As

one can see, concurrent consensus not only promises greatly improved throughput, but also sharply

reduces the costs associated with scaling consensus. We remark, however, that these figures provide

best-case upper-bounds, as they only focus on bandwidth usage. In practice, replicas are also

limited by computational power and available memory buffers that puts limits on the number of

transactions they can process in parallel and can execute (see Section 4.6.2).
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Figure 4.1. Maximum throughput of replication in a system with B = 1 Gbit/s,
n = 3f + 1, nf = 2f + 1, sm = 1 KiB, and individual transactions are 512 B. On
the left, each proposal groups 20 transactions (st = 10 KiB) and on the right, each
proposal groups 400 transactions (st = 2 MiB).

4.4. RCC: Resilient Concurrent Consensus

The idea behind concurrent consensus, as outlined in the previous section, is straightforward:

improve overall throughput by using all available resources via concurrency. Designing and imple-

menting a concurrent consensus system that operates correctly, even during crashes and malicious

behavior of some replicas, is challenging, however. In this section, we describe how to design correct

consensus protocols that deliver on the promises of concurrent consensus. We do so by introducing

RCC, a paradigm that can turn any primary-backup consensus protocol into a concurrent con-

sensus protocol. At its basis, RCC makes every replica a primary of a consensus-instance that

replicates transactions among all replicas. Furthermore, RCC provides the necessary coordina-

tion between these consensus-instances to coordinate execution and deal with faulty primaries. To

assure resilience and maximize throughput, we put the following design goals in RCC:

(1) RCC provides consensus among replicas on the client transactions that are to be executed

and the order in which they are executed.

(2) Clients can interact with RCC to force execution of their transactions and learn the

outcome of execution.

(3) RCC is a design paradigm that can be applied to any primary-backup consensus protocol,

turning it into a concurrent consensus protocol.
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(4) In RCC, consensus-instances with non-faulty primaries are always able to propose trans-

actions at maximum throughput (with respect to the resources available to any replica),

this independent of faulty behavior by any other replica.

(5) In RCC, dealing with faulty primaries does not interfere with the operations of other

consensus-instances.

Combined, design goals D4 and D5 imply that instances with non-faulty primaries can propose

transactions wait-free: transactions are proposed concurrent to any other activities and does not

require any coordination with other instances.

4.4.1. Background on Primary-Backup Consensus and Pbft. Before we present RCC,

we provide the necessary background and notation for primary-backup consensus. Typical primary-

backup consensus protocols operate in views. Within each view, a primary can propose client

transactions, which will then be executed by all non-faulty replicas. To assure that all non-faulty

replicas maintain the same state, transactions are required to be deterministic: on identical inputs,

execution of a transaction must always produce identical outcomes. To deal with faulty behavior

by the primary or by any other replicas during a view, three complimentary mechanisms are used:

Byzantine commit. The primary uses a Byzantine commit algorithm bca to propose a client

transaction T to all replicas. Next, bca will perform state exchange to determine whether the

primary successfully proposed a transaction. If the primary is non-faulty, then all replicas will

receive T and determine success. If the primary is faulty and more than f non-faulty replicas do

not receive a proposal or receive different proposals than the other replicas, then the state exchange

step of bca will detect this failure of the primary.

Primary replacement. The replicas use a view-change algorithm to replace the primary of the

current view v when this primary is detected to be faulty by non-faulty replicas. This view-change

algorithm will collect the state of sufficient replicas in view v to determine a correct starting state

for the next view v+ 1 and assign new primary that will propose client transactions in view v+ 1.

Recovery. A faulty primary can keep up to f non-faulty replicas in the dark without being

detected, as f faulty replicas can cover for this malicious behavior. Such behavior is not detected

87



and, consequently, does not trigger a view-change. Via a checkpoint algorithm the at-most-f non-

faulty replicas that are in the dark will learn the proposed client transactions that are successfully

proposed to the remaining at-least-nf − f > f non-fault replicas (that are not in the dark).

Example 4.4.1. Next, we illustrate these mechanisms in Pbft. At the core of Pbft is the

preprepare-prepare-commit Byzantine commit algorithm. This algorithm operates in three phases,

which are sketched in Figure 3.1.

First, the current primary chooses a client request of the form 〈c〉T , a transaction T signed by

client c, and proposes this request as the ρ-th transaction by broadcasting it to all replicas via a

PrePrepare message m. Next, each non-faulty replica R prepares the first proposed ρ-th trans-

action it receives by broadcasting a Prepare message for m. If a replica R receives nf Prepare

messages for m from nf distinct replicas, then it has the guarantee that any group of nf replicas

will contain a non-faulty replica that has received m. Hence, R has the guarantee that m can be

recovered from any group of nf replicas, independent of the behavior of the current primary. With

this guarantee, R commits to m by broadcasting a Commit message for m. Finally, if a replica

R receives nf Commit messages for m from nf distinct replicas, then it accepts m. In Pbft,

accepted proposals are then executed and the client is informed of the outcome.

Each replica R participating in preprepare-prepare-commit uses an internal timeout value to

detect failure: whenever the primary fails to coordinate a round of preprepare-prepare-commit—

which should result in R accepting some proposal—R will detect failure of the primary and halt

participation in preprepare-prepare-commit. If f + 1 non-faulty replicas detect such a failure and

communication is reliable, then they can cooperate to assure that all non-faulty replicas detect

the failure. We call this a confirmed failure of preprepare-prepare-commit. In Pbft, confirmed

failures trigger a view-change. Finally, Pbft employs a majority-vote checkpoint protocol that

allows replicas that are kept in the dark to learn accepted proposals without help of the primary.

4.4.2. The Design of RCC. We now present RCC in detail. Consider a primary-backup

consensus protocol P that utilizes Byzantine commit algorithm bca (e.g., Pbft with preprepare-

prepare-commit). At the core of applying our RCC paradigm to P is running m, 1 ≤ m ≤ n,

instances of bca concurrently, while providing sufficient coordination between the instances to deal
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with any malicious behavior. To do so, RCC makes bca concurrent and uses a checkpoint protocol

for per-instance recovery of in-the-dark replicas (see Section 4.4.4). Instead of view-changes, RCC

uses a novel wait-free mechanism, that does not involve replacing primaries, to deal with detectable

primary failures (see Section 4.4.3). RCC requires the following guarantees on bca:

Assumption. Consider an instance of bca running in a system with n replicas, n > 3f .

(1) If no failures are detected in round ρ of bca (the round is successful), then at least nf − f

non-faulty replicas have accepted a proposed transaction in round ρ.

(2) If a non-faulty replica accepts a proposed transaction T in round ρ of bca, then all other

non-faulty replicas that accepted a proposed transaction, accepted T .

(3) If a non-faulty replica accepts a transaction T , then T can be recovered from the state of

any subset of nf − f non-faulty replicas.

(4) If the primary is non-faulty and communication is reliable, then all non-faulty replicas will

accept a proposal in round ρ of bca.

With minor fine-tuning, these assumptions are met by Pbft, Zyzzyva, Sbft, HotStuff, and

many other primary-backup consensus protocols, meeting design goal D3.

RCC operates in rounds. In each round, RCC replicates m client transactions (or, as discussed

in Section 4.1, m sets of client transactions), one for each instance. We write Ii to denote the i-th

instance of bca. To enforce that each instance is coordinated by a distinct primary, the i-th replica

Pi is assigned as the primary coordinating Ii. Initially, RCC operates with m = n instances. In

RCC, instances can fail and be stopped, e.g., when coordinated by malicious primaries or during

periods of unreliable communication. Each round ρ of RCC operates in three steps:

(1) Concurrent bca. First, each replica participates in m instances of bca, in which each

instance is proposing a transaction requested by a client among all replicas.

(2) Ordering. Then, each replica collects all successfully replicated client transactions and

puts them in the same—deterministically determined—order.

(3) Execution. Finally, each replica executes the transactions of round ρ in order and informs

the clients of the outcome of their requested transactions.

Figure 4.2 sketches a high-level overview of running m concurrent instances of bca.
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Figure 4.2. A high-level overview of RCC running at replica R. Replica R partic-
ipates in m concurrent instances of bca (that run independently and continuously
output transactions). The instances yield m transactions, which are executed in a
deterministic order.

To maximize performance, we want every instance to propose distinct transactions, such that

every round results in m distinct transactions. In Section 4.4.5, we delve into the details by which

primaries can choose transactions to propose.

To meet design goal D4 and D5, individual bca instances in RCC can continuously propose and

replicate transactions: ordering and execution of the transactions replicated in a round by the m

instances is done in parallel to the proposal and replication of transactions for future rounds. Con-

sequently, non-faulty primaries can utilize their entire outgoing network bandwidth for proposing

transactions, even if other replicas or primaries are acting malicious.

Let 〈ci〉Ti be the transaction Ti requested by ci and proposed by Pi in round ρ. After all m

instances complete round ρ, each replica can collect the set of transactions S = {〈ci〉Ti | 1 ≤ i ≤m}.

By Assumption A2, all non-faulty replicas will obtain the same set S. Next, all replicas choose an

order on S and execute all transactions in that order. For now, we assume that the transaction

〈ci〉Ti is executed as the i-th transaction of round ρ. In Section 4.5, we show that a more advanced

ordering-scheme can further improve the resilience of consensus against malicious behavior. As a

direct consequence of Assumption A4, we have the following:

Proposition 4.4.1. Consider RCC running in a system with n replicas, n > 3f . If all m

instances have non-faulty primaries and communication is reliable, then, in each round, all non-

faulty replicas will accept the same set of m transactions and execute them in the same order.

As all non-faulty replicas will execute each transaction in 〈ci〉Ti ∈ S, there are nf distinct non-

faulty replicas that can inform the client of the outcome of execution. As all non-faulty replicas
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operate deterministically and execute the transactions in the same order, client ci will receive

identical outcomes of nf > f replicas, guaranteeing that this outcome is correct.

In the above, we described the normal-case operations of RCC. As in normal primary-backup

protocols, individual instances in RCC can be subject to both detectable and undetectable failures.

Next, we deal with these two types of failures.

4.4.3. Dealing with Detectable Failures. Consensus-based systems typically operate in an

environment with asynchronous communication: messages can get lost, arrive with arbitrary delays,

and in arbitrary order. Consequently, it is impossible to distinguish between, on the one hand, a

primary that is malicious and does not send out proposals and, on the other hand, a primary that

does send out proposals that get lost in the network. As such, asynchronous consensus protocols can

only provide progress in periods of reliable bounded-delay communication during which all messages

sent by non-faulty replicas will arrive at their destination within some maximum delay [42, 47].

To be able to deal with failures, RCC assumes that any failure of non-faulty replicas to receive

proposals from a primary Pi, 1 ≤ i ≤ m, is due to failure of Pi, and we design the recovery

process such that it can also recover from failures due to unreliable communication. Furthermore,

in accordance with the wait-free design goals D4 and D5, the recovery process will be designed so

that it does not interfere with other bca instances or other recovery processes. Now assume that

primary Pi of Ii, 1 ≤ i ≤m, fails in round ρ. The recovery process consists of three steps:

(1) All non-faulty replicas need to detect failure of the Pi.

(2) All non-faulty replicas need to reach agreement on the state of Ii: which transactions have

been proposed by Pi and have been accepted in the rounds up-to-ρ.

(3) To deal with unreliable communication, all non-faulty replicas need to determine the round

in which Pi is allowed to resume its operations.

To reach agreement on the state of Ii, we rely on a separate instance of the consensus protocol

P that is only used to coordinate agreement on the state of Ii during failure. This coordinating

consensus protocol P replicates stop(i;E) operations, in which E is a set of nf Failure messages

sent by nf distinct replicas from which all accepted proposals in instance Ii can be derived. We

notice that P is—itself—an instance of a primary-backup protocol that is coordinated by some

primary Li (based on the current view in which the instance of P operates), and we use the standard
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Recovery request role (used by replica R) :

1: event R detects failure of the primary Pi, 1 ≤ i ≤m, in round ρ do
2: R halts Ii.
3: Let P be the state of R in accordance to Assumption A3.
4: Broadcast Failure(i, ρ, P ) to all replicas.
5: event R receives f + 1 messages mj = Failure(i, ρj , Pj) such that:

(1) these messages are sent by a set S of |S| = f + 1 distinct replicas;
(2) all f + 1 messages are well-formed; and
(3) ρj , 1 ≤ j ≤ f + 1, comes after the round in which Ii started last

do
6: R detects failure of Pi (if not yet done so).

Recovery leader role (used by leader Li of P) :

7: event Li receives nf messages mj = Failure(i, ρj , Pj) such that

(1) these messages are sent by a set S of |S| = f + 1 distinct replicas;
(2) all nf messages are well-formed; and
(3) ρj , 1 ≤ j ≤ f + 1, comes after the round in which Ii started last

do
8: Propose stop(i; {m1, . . . ,mnf}) via P.

State recovery role (used by replica R) :

9: event R accepts stop(i;E) from Li via P do
10: Recover the state of Ii using E in accordance to Assumption A3.
11: Determine the last round ρ for which Ii accepted a proposal.
12: Set ρ+ 2f , with f the number of accepted stop(i;E′) operations, as the next valid round number for instance

Ii.

Figure 4.3. The recovery algorithm of RCC.

machinery of P to deal with failures of that leader (see Section 4.4.1). Next, we shall describe how

the recovery process is initiated. The details of this protocol can be found in Figure 4.3.

When a replica R detects failure of instance Ii, 0 ≤ i < m, in round ρ, it broadcasts a message

Failure(i, ρ, P ), in which P is the state of R in accordance to Assumption A3 (Line 1 of Figure 4.3).

To deal with unreliable communication, R will continuously broadcast this Failure message with

an exponentially-growing delay until it learns on how to proceed with Ii. To reduce communication

in the normal-case operations of P, one can send the full message Failure(i, ρ, P ) to only Li, while

sending Failure(i, ρ) to all other replicas.

If a replica receives f +1 Failure messages from distinct replicas for a certain instance Ii, then

it received at least one such message from a non-faulty replica. Hence, it can detect failure of Ii

(Line 5 of Figure 4.3). Finally, if a replica R receives nf Failure messages from distinct replicas

for a certain instance Ii, then we say there is a confirmed failure, as R has the guarantee that

eventually—within at most two message delays—also the primary Li of P will receive nf Failure
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messages (if communication is reliable). Hence, at this point, R sets a timer based on some internal

timeout value (that estimates the message delay) and waits on the leader Li to propose a valid

stop-operation or for the timer to run out. In the latter case, replica R detects failure of the leader

Li and follows the steps of a view-change in P to (try to) replace Li. When the leader Li receives nf

Failure messages, it can and must construct a valid stop-operation and reach consensus on this

operation (Line 7 of Figure 4.3). After reaching consensus, each replica can recover to a common

state of Ii:

Theorem 4.4.2. Consider RCC running in a system with n replicas. If n > 3f , an instance Ii,

0 ≤ i < m, has a confirmed failure, and the last proposal of Pi accepted by a non-faulty replica was

in round ρ, then—whenever communication becomes reliable—the recovery protocol of Figure 4.3

will assure that all non-faulty replicas will recover the same state, which will include all proposals

accepted by non-faulty replicas before-or-at round ρ.

Proof. If communication is reliable and instance Ii has a confirmed failure, then all non-

faulty replicas will detect this failure and send Failure messages (Line 1 of Figure 4.3). Hence,

all replicas are guaranteed to receive at least nf Failure messages, and any replica will be able

to construct a well-formed operation stop(i;E). Hence, P will eventually be forced to reach

consensus on stop(i;E). Consequently, all non-faulty replicas will conclude on the same state for

instance Ii. Now consider a transaction T accepted by non-faulty replica Q in instance Ii. Due

to Assumption A3, Q will only accept T if T can be recovered from the state of any set of nf − f

non-faulty replicas. As |E| = nf (Line 7 of Figure 4.3), the set E contains the state of nf − f

non-faulty replicas. Hence, T must be recoverable from E. �

We notice that the recovery algorithm of RCC, as outlined in Figure 4.3, only affects the

capabilities of the bca instance that is stopped. All other bca instances can concurrently pro-

pose transactions for current and for future rounds. Hence, the recovery algorithm adheres to the

wait-free design goals D4 and D5. Furthermore, we reiterate that we have separate instance of

the coordinating consensus protocol for each instance Ii, 1 ≤ i ≤ m. Hence, recovery of several
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instances can happen concurrently, which minimizes the time it takes to recover from several simul-

taneous primary failures and, consequently, minimizes the delay before a round can be executed

during primary failures.

Confirmed failures not only happen due to malicious behavior. Instances can also fail due to

periods of unreliable communication. To deal with this, we eventually restart any stopped instances.

To prevent instances coordinated by malicious replicas to continuously cause recovery of their

instances, every failure will incur an exponentially growing restart penalty (Line 12 of Figure 4.3).

The exact round in which an instance can resume operations can be determined deterministically

from the accepted history of stop-requests. When all instances have round failures due to unreliable

communication (which can be detected from the history of stop-requests), any instance is allowed

to resume operations in the earliest available round (after which all other instances are also required

to resume operations).

4.4.4. Dealing with Undetectable Failures. As stated in Assumption A1, a malicious

primary Pi of a bca instance Ii is able to keep up to f non-faulty replicas in the dark without

being detected. In normal primary-backup protocols, this is not a huge issue: at least nf − f > f

non-faulty replicas still accept transactions, and these replicas can execute and reliably inform the

client of the outcome of execution. This is not the case in RCC, however:

Example 4.4.3. Consider a system with n = 3f + 1 = 7 replicas. Assume that primaries P1

and P2 are malicious, while all other primaries are non-faulty. We partition the non-faulty replicas

into three sets A1, A2, and B with |A1| = |A2| = f and |B| = 1. In round ρ, the malicious primary

Pi, i ∈ {1, 2}, proposes transaction 〈ci〉Ti to only the non-faulty replicas in Ai∪B. This situation is

sketched in Figure 4.4. After all concurrent instances of bca finish round ρ, we see that the replicas

in A1 have accepted 〈c1〉T1, the replicas in A2 have accepted 〈c2〉T2, and only the replica in B has

accepted both 〈c1〉T1 and 〈c2〉T2. Hence, only the single replica in B can proceed with execution of

round ρ. Notice that, due to Assumption A1, we consider all instances as finished successfully. If

n ≥ 10 and f ≥ 3, this example attack can be generalized such that also the replica in B is missing

at least a single client transaction.
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Non-faulty replicas A1, A2, and B

BA1 A2

Faulty replicas P1 and P2
P1 P2

〈c1〉T1
〈c1〉T1 〈c2〉T2

〈c2〉T2

Figure 4.4. An attack possible when parallelizing bca: malicious primaries can
prevent non-faulty replicas from learning all client requests in a round, thereby
preventing timely round execution. The faulty primary Pi, i ∈ {1, 2}, does so by
only letting non-faulty replicas Ai ∪B participate in instance Ii.

To deal with in-the-dark attacks of Example 4.4.3, we can run a standard checkpoint algorithm

for each bca instance: if the system does not reach confirmed failure of Pi in round ρ, 1 ≤ i ≤

m, then, by Assumption A1 and A2, at-least-nf − f non-faulty replicas have accepted the same

transaction T in round ρ of Ii. Hence, by Assumption A3, a standard checkpoint algorithm (e.g.,

the one of Pbft or one based on delayed replication [70]) that exchanges the state of these at-

least-nf − f non-faulty replicas among all other replicas is sufficient to assure that all non-faulty

replicas eventually accept T . We notice that these checkpoint algorithms can be run concurrently

with the operations of bca instances, thereby adhering to our wait-free design goals D4 and D5.

To reduce the cost of checkpoints, typical consensus systems only perform checkpoints after

every x-th round for some system-defined constant x. Due to in-the-dark attacks, applying such

a strategy to RCC means choosing between execution latency and throughput. Consequently, in

RCC we do checkpoints on a dynamic per-need basis: when replica R receives nf − f claims of

failure of primaries (via the Failure messages of the recovery protocol) in round ρ and R itself

finished round ρ for all its instances, then it will participate in any attempt for a checkpoint for

round ρ. Hence, if an in-the-dark attack affects more than f distinct non-faulty replicas in round

ρ, then a successful checkpoint will be made and all non-faulty replicas recover from the attack,

accept all transactions in round ρ, and execute all these transactions.

Using Theorem 4.4.2 to deal with detectable failures and using checkpoint protocols to deal

with replicas in-the-dark, we conclude that RCC adheres to design goal D1:

Theorem 4.4.4. Consider RCC running in a system with n replicas. If n > 3f , then RCC

provides consensus in periods in which communication is reliable.
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4.4.5. Client Interactions with RCC. To maximize performance, it is important that every

instance proposes distinct client transactions, as proposing the same client transaction several times

would reduce throughput. We have designed RCC with faulty clients in mind, hence, we do not

expect cooperation of clients to assure that they send their transactions to only a single primary.

To be able to do so, the design of RCC is optimized for the case in which there are always

many more concurrent clients than replicas in the system. In this setting, we assign every client

c to a single primary Pi, 1 ≤ i ≤ m = n, such that only instance Ii can propose client requests

of c. For this design to work in all cases, we need to solve two issues, however: we need to deal

with situations in which primaries do not receive client requests (e.g., during downtime periods in

which only few transactions are requested), and we need to deal with faulty primaries that refuse

to propose requests of some clients.

First, if there are less concurrent clients than replicas in the system, e.g., when demand for

services is low, then RCC still needs to process client transactions correctly, but it can do so

without optimally utilizing resources available, as this would not impact throughput in this case

due to the low demands. If a primary Pi, 1 ≤ i ≤ m, does not have transactions to propose in

any round ρ and Pi detects that other bca instances are proposing for round ρ (e.g., as it receives

proposals), then Pi proposes a small no-op-request instead.

Second, to deal with a primary Pi, 1 ≤ i ≤m, that refuses to propose requests of some clients,

we take a two-step approach. First, we incentivize malicious primaries to not refuse services, as

otherwise they will be detected faulty and loose the ability to propose transactions altogether. To

detect failure of Pi, RCC uses standard techniques to enable a client c to force execution of a

transaction T . First, c broadcasts 〈c〉T to all replicas. Each non-faulty replica R will then forward

〈c〉T to the appropriate primary Pi, 1 ≤ i ≤ m. Next, if the primary Pi does not propose any

transaction requested by c within a reasonable amount of time, then R detects failure of Pi. Hence,

refusal of Pi to propose 〈c〉T will lead to primary failure, incentivizing malicious primaries to provide

service.

Finally, we need to deal with primaries that are unwilling or incapable of proposing requests of

c, e.g., when the primary crashes. To do so, c can request to be reassigned to another instance Ij ,

1 ≤ j ≤m, by broadcasting a request m := SwitchInstance(c, j) to all replicas. Reassignment is
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handled by the coordinating consensus protocol P for Ii, that will reach consensus on m. Malicious

clients can try to use reassignment to propose transactions in several instances at the same time.

To deal with this, we assume that no instance is more than σ rounds behind any other instance

(see Section 4.5). Now, consider the moment at which replica R accepts m and let ρ(m,R) be the

maximum round in which any request has been proposed by any instance in which R participates.

The primary Pi will stop proposing transactions of c immediately. Any non-faulty replica R will

stop accepting transactions of c by Ii after round ρ(m,R) +σ and will start accepting transactions

of c by Ij after round ρ(m,R) + 2σ. Finally, Pj will start proposing transactions of c in round

ρ(m,Pj) + 3σ.

4.5. RCC: Improving Resilience of Consensus

Traditional primary-backup consensus protocols rely heavily on the operations of their primary.

Although these protocols are designed to deal with primaries that completely fail proposing client

transactions, they are not designed to deal with many other types of malicious behavior.

Example 4.5.1. Consider a financial service running on a traditional Pbft consensus-based

system. In this setting, a malicious primary can affect operations in two malicious ways:

(1) Ordering attack. The primary sets the order in which transactions are processed and,

hence, can choose an ordering that best fits its own interests. To illustrate this, we consider

client transactions of the form:

transfer(A,B, n,m) := if amount(A) > n then withdraw(A,m); deposit(B,m).

Let T1 = transfer(Alice,Bob, 500, 200) and T2 = transfer(Bob,Eve, 400, 300). Before

processing these transaction, the balance for Alice is 800, for Bob 300, and for Eve 100.

In Figure 4.5, we summarize the results of either first executing T1 or first executing T2.

As is clear from the figure, execution of T1 influences the outcome of execution of T2. As

primaries choose the ordering of transactions, a malicious primary can chose an ordering

whose outcome benefits its own interests, e.g., formulate targeted attacks to affect the

execution of the transaction of some clients.
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Original First T1, then T2 First T2, then T1
Balance T1 T2 T2 T1

Alice 800 600 600 800 600
Bob 300 500 200 300 500
Eve 100 100 400 100 100

Figure 4.5. Illustration of the influence of execution order on the outcome: switch-
ing around requests affects the transfer of T2.

(2) Throttling attack. The primary sets the pace at which the system processes transactions.

We recall that individual replicas rely on time-outs to detect malicious behavior of the

primary. This approach will fail to detect or deal with primaries that throttle throughput

by proposing transactions as slow as possible, while preventing failure detection due to

time-outs.

Besides malicious primaries, also other malicious entities can take advantage of a primary-backup

consensus protocol:

(3) Targeted attack. As the throughput of a primary-backup system is entirely determined by

the primary, attackers can send arbitrary messages to the primary. Even if the primary

recognizes that these messages are irrelevant for its operations, it has spend resources (net-

work bandwidth, computational power, and memory) to do so, thereby reducing throughput.

Notice that—in the worst case—this can even lead to failure of a non-faulty primary to

propose transactions in a timely manner.

Where traditional consensus-based systems fail to deal with these attacks, the concurrent design

of RCC can be used to mitigate these attacks.

First, we look at ordering attacks. To mitigate this type of attack, we propose a method to

deterministically select a different permutation of the order of execution in every round in such

a way that this ordering is practically impossible to predict or influence by faulty replicas. Note

that for any sequence S of k = |S| values, there exist k! distinct permutations. We write P (S) to

denote these permutations of S. To deterministically select one of these permutations, we construct

a function that maps an integer h ∈ {0, . . . , k! − 1} to a unique permutation in P (S). Then we

discuss how replicas will uniformly pick h. As |P (S)| = k!, we can construct the following bijection
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fS : {0, . . . , k!− 1} → P (S)

fS(i) =


S if |S| = 1;

fS\S[q](r)⊕ S[q] if |S| > 1,

in which q = i div (|S| − 1)! is the quotient and r = i mod (|S| − 1)! is the remainder of integer

division by (|S| − 1)!. Using induction on the size of S, we can prove:

Lemma 4.5.2. fS is a bijection from {0, . . . , |S|!− 1} to all possible permutations of S.

Let S be the sequence of all transactions accepted in round ρ, ordered on increasing instance.

The replicas uniformly pick h = digest(S) mod (k!−1), in which digest(S) is a strong cryptographic

hash function that maps an arbitrary value v to a numeric digest value in a bounded range such

that it is practically impossible to find another value S′, S 6= S′, with digest(S) = digest(S′). When

at least one primary is non-malicious (m > f), the final value h is only known after completion of

round ρ and it is practically impossible to predictably influence this value. After selecting h, all

replicas execute the transactions in S in the order given by fS(h).

To deal with primaries that throttle their instances, non-faulty replicas will detect failure of

those instances that lag behind other instances. In specific, if an instance Ii, 1 ≤ i ≤ m, is σ

rounds behind any other instances (for some system-dependent constant σ), then R detects failure

of Pi.

Finally, we notice that concurrent consensus and RCC—by design—provides load balancing

with respect to the tasks of the primary, this by spreading the total workload of the system over

many primaries. As such, RCC not only improves performance when bounded by the primary

bandwidth, but also when performance is bounded by computational power (e.g., due to costly

cryptographic primitives), or by message delays. Furthermore, this load balancing reduces the load

on any single primary to propose and process a given amount of transactions, dampening the effects

of any targeted attacks against the resources of a single primary.

4.6. Evaluation of the Performance of RCC

In the previous sections, we proposed concurrent consensus and presented the design of RCC,

our concurrent consensus paradigm. To show that concurrent consensus not only provides benefits
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in theory, we study the performance of RCC and the effects of concurrent consensus in a practical

setting. To do so, we measure the performance of RCC in ResilientDB—our high-performance

resilient blockchain fabric—and compare RCC with the well-known primary-backup consensus

protocols Pbft, Zyzzyva, Sbft, and HotStuff. Specifically, we aim to answer the following:

(1) What is the performance of RCC: does RCC deliver on the promises of concurrent con-

sensus and provide more throughput than any primary-backup consensus protocol can

provide?

(2) What is the scalability of RCC: does RCC deliver on the promises of concurrent consensus

and provide better scalability than primary-backup consensus protocols?

(3) Does RCC provide sufficient load balancing of primary tasks to improve performance of

consensus by offsetting any high costs incurred by the primary?

(4) How does RCC fare under failures?

(5) What is the impact of batching client transactions on the performance of RCC?

First, in Section 4.6.1, we describe the experimental setup. Then, in Section 4.6.2, we provide

a high-level overview of ResilientDB and of its general performance characteristics. Next, in

Section 3.2.2, we provide details on the consensus protocols we use in this evaluation. Then, in

Section 4.6.3, we present the experiments we performed and the measurements obtained. Finally,

in Section 4.6.4, we interpret these measurements and answer the above research questions.

4.6.1. Experimental Setup. To be able to study the practical performance of RCC and

other consensus protocols, we choose to study these protocols in a full resilient database system.

To do so, we implemented RCC in ResilientDB. To generate a workload for the protocols, we

used the Yahoo Cloud Serving Benchmark [29] provided by the Blockbench macro benchmarks [38].

In the generated workload, each client transaction queries a YCSB table with half a million active

records and 90% of the transactions write and modify records. Prior to the experiments, each replica

is initialized with an identical copy of the YCSB table. We perform all experiments in the Google

Cloud. In specific, each replica is deployed on a c2-machine with a 16-core Intel Xeon Cascade

Lake CPU running at 3.8 GHz and with 32 GB memory. We use up to 320 k clients, deployed on

16 machines.
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4.6.2. The ResilientDB Blochchain Fabric. The ResilientDB fabric incorporates secure

permissioned blockchain technologies to provide resilient data processing. A detailed description

of how ResilientDB achieves high-throughput consensus in a practical settings can be found in

Gupta et al. [59, 61, 62, 64, 115]. The architecture of ResilientDB is optimized for maximizing

throughput via multi-threading and pipelining. To further maximize throughput and minimize

the overhead of any consensus protocol, ResilientDB has built-in support for batching of client

transactions.

We typically group 100 txn/batch. In this case, the size of a proposal is 5400 B and of a client

reply (for 100 transactions) is 1748 B. The other messages exchanged between replicas during the

Byzantine commit algorithm have a size of 250 B. ResilientDB supports out-of-order processing

of transactions in which primaries can propose future transactions before current transactions are

executed. This allows ResilientDB to maximize throughput of any primary-backup protocol

that supports out-of-order processing (e.g., Pbft, Zyzzyva, and Sbft) by maximizing bandwidth

utilization at the primary.

In ResilientDB, each replica maintains a blockchain ledger (a journal) that holds an ordered

copy of all executed transactions. The ledger not only stores all transactions, but also proofs of

their acceptance by a consensus protocols. As these proofs are built using strong cryptographic

primitives, the ledger is immutable and, hence, can be used to provide strong data provenance.

In our experiments replicas not only perform consensus, but also communicate with clients and

execute transactions. In this practical setting, performance is not fully determined by bandwidth

usage due to consensus (as outlined in Section 4.1), but also by the cost of communicating with

clients, of sequential execution of all transactions, of cryptography, and of other steps involved in

processing messages and transactions, and by the available memory limitations.

4.6.3. The Experiments. To be able to answer Question Q1–Q5, we perform four experi-

ments in which we measure the performance of RCC. In each experiment, we measure the through-

put as the number of transactions that are executed per second, and we measure the latency as the

time from when a client sends a transaction to the time where that client receives a response. We

run each experiment for 180 s: the first 60 s are warm-up, and measurement results are collected

101



RCCn RCCf+1 RCC3 Pbft Zyzzyva Sbft HotStuff

4 16 32 64 91

0.0

100,000.0

200,000.0

300,000.0

Number of replicas (n)

T
h
ro

u
gh

p
u
t

(t
x
n
/s

)
4 16 32 64 91

0.0

2.0

4.0

6.0

8.0

Number of replicas (n)

L
a
te

n
cy

(s
)

4 16 32 64 91

0.0

100,000.0

200,000.0

300,000.0

Number of replicas (n)

T
h
ro

u
gh

p
u
t

(t
x
n
/s

)

(c) Scalability (Single Failure)

4 16 32 64 91

0.0

2.0

4.0

6.0

8.0

10.0

Number of replicas (n)

L
at

en
cy

(s
)

(d) Scalability (Single Failure)

10 50 100 200 400

0.0

100,000.0

200,000.0

300,000.0

Batch size

T
h
ro

u
gh

p
u
t

(t
x
n
/
s)

10 50 100 200 400

0.0

10.0

20.0

30.0

Batch size

L
a
te

n
cy

(s
)

4 16 32 64 91

0.0

20,000.0

40,000.0

60,000.0

Number of replicas (n)

T
h
ro

u
gh

p
u
t

(t
x
n
/s

)

(g) Out-of-ordering disabled

4 16 32 64 91

0.0

0.1

0.2

0.3

Number of replicas (n)

L
a
te

n
cy

(s
)

(h) Out-of-ordering disabled

Figure 4.6. Evaluating system throughput and average latency incurred by RCC
and other consensus protocols.

over the next 120 s. We average our results over three runs. The results of all four experiments can

be found in Figure 4.6.

In the first experiment, we measure the best-case performance of the consensus protocols as a

function of the number of replicas when all replicas are non-faulty. We vary the number of replicas

between n = 4 and n = 91 and we use a batch size of 100 txn/batch. The results can be found in

Figure 4.6, (a) and (b).

102



In the second experiment, we measure the performance of the consensus protocols as a function

of the number of replicas during failure of a single replica. Again, we vary the number of replicas

between n = 4 and n = 91 and we use a batch size of 100 txn/batch. The results can be found in

Figure 4.6, (c) and (d).

In the third experiment, we measure the performance of the consensus protocols as a function

of the number of replicas during failure of a single replica while varying the batch size between

10 txn/batch and 400 txn/batch. We use n = 32 replicas. The results can be found in Figure 4.6,

(e) and (f).

In the fourth and final experiment, we measure the performance of the consensus protocols

when outgoing primary bandwidth is not the limiting factor. We do so by disabling out-of-order

processing in all protocols that support out-of-order processing. This makes the performance of

these protocols inherently bounded by the message delay and not by network bandwidth. We study

this case by varying the number of replicas between n = 4 and n = 91 and we use a batch size of

100 txn/batch. The results can be found in Figure 4.6, (g) and (h).

4.6.4. Discussion. From the experiments, a few obvious patterns emerge. First, we see that

increasing the batch size ((e) and (f)) increases performance of all consensus protocols (Q5). This

is in line with what one can expect (See Section 4.1 and Section 4.3). As the gains beyond

100 txn/batch are small, we have chosen to use 100 txn/batch in all other experiments.

Second, we see that the three versions of RCC outperform all other protocols, and the perfor-

mance of RCC with or without failures is comparable ((a)–(d)). Furthermore, we see that adding

concurrency by adding more instances improves performance, as RCC3 is outperformed by the

other RCC versions. On small deployments with n = 4, . . . , 16 replicas, the strength of RCC is

most evident, as our RCC implementations approach the maximum rate at which ResilientDB

can execute transactions (see Section 4.6.2).

Third, we see that RCC easily outperforms Zyzzyva, even in the best-case scenario of no

failures ((a) and (b)). We also see that Zyzzyva is—indeed—the fastest primary-backup consensus

protocol when no failures happen. This underlines the ability of RCC, and of concurrent consensus

in general, to reach throughputs no primary-backup consensus protocol can reach. We also notice
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that Zyzzyva fails to deal with failures ((c) and (d)), in which case its performance plummets, a

case that the other protocols have no issues dealing with.

Finally, due to the lack of out-of-order processing capabilities in HotStuff, HotStuff is

uncompetitive to out-of-order protocols. When we disable out-of-order processing for all other

protocols ((g) and (h)), the strength of the simple design of HotStuff shows: its event-based

single-phase design outperforms all other primary-backup consensus protocols. Due to the con-

current design of RCC, a non-out-of-order-RCC is still able to greatly outperform HotStuff,

however, as the non-out-of-order variants of RCC balance the entire workload over many pri-

maries. Furthermore, as the throughput is not bound by any replica resources in this case (and

only by network delays), the non-out-of-order variants RCCf+1 and RCCn benefit from increasing

the number of replicas, as this also increases the amount of concurrent processing (due to increasing

the number of instances).

Summary. RCC implementations achieve up to 2.77×, 1.53×, 38×, and 82× higher throughput

than Sbft, Pbft, HotStuff, and Zyzzyva in single failure experiments. RCC implementations

achieve up to 2×, 1.83×, 33×, and 1.45× higher throughput than Sbft, Pbft, HotStuff, and

Zyzzyva in no failure experiments, respectively.

Based on these observations, we conclude that RCC delivers on the promises of concurrent con-

sensus. RCC provides more throughput than any primary-backup consensus protocol can provide

(Q1). Moreover, RCC provides great scalability if throughput is only bounded by the primaries:

as the non-out-of-order results show, the load-balancing capabilities of RCC can even offset inef-

ficiencies in other parts of the consensus protocol (Q2, Q3). Finally, we conclude that RCC can

efficiently deal with failures (Q4). Hence, RCC meets the design goals D1–D5 that we set out in

Section 4.4.

4.6.5. Analyzing RCC as a Paradigm. Finally, we experimentally illustrate the ability of

RCC to act as a paradigm. To do so, we apply RCC to not only Pbft, but also to Zyzzyva

and Sbft. In Figure 4.7, we plot the performance of these three variants of RCC: RCC-P

(RCC+Pbft), RCC-Z (RCC+Zyzzyva), and RCC-S (RCC+Sbft). To evaluate the scala-

bility of these protocols, we perform experiments in the optimistic setting with no failures and

m = n concurrent instances.
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Figure 4.7. Evaluating system throughput and latency attained by three RCC
variants: RCC-P, RCC-Z and RCC-S when there are no failures.

It is evident from these plots that all RCC variants achieve extremely high throughput. As

Sbft and Zyzzyva only require linear communication in the optimistic case, RCC-S and RCC-Z

are able achieve up to 3.33× and 2.78× higher throughputs than RCC-P, respectively.

Notice that RCC-S consistently attains equal or higher throughput than RCC-Z, even though

Zyzzyva scales better than Sbft. This phenomena is caused by the way RCC-Z interacts with

clients. In specific, like Zyzzyva, RCC-Z requires its clients to wait for responses of all n replicas.

Hence, clients have to wait longer to place new transactions, and consequently RCC-Z requires

more clients than RCC-S to attain maximum performance. Even if we ran RCC-Z with 5 million

clients, the largest amount at our disposal, we would not see maximum performance. Due to the

low single-primary performance of Zyzzyva, this phenomena does not prevent Zyzzyva to already

reach its maximum performance.

4.7. Concluding Remarks

In this chapter, we proposed concurrent consensus as a major step toward enabling high-

throughput and more scalable consensus-based database systems. We have shown that concurrent

consensus is in theory able to achieve throughputs that primary-backup consensus systems are

unable to achieve. To put the idea of concurrent consensus in practice, we proposed the RCC

paradigm that can be used to make normal primary-backup consensus protocols concurrent. Fur-

thermore, we showed that RCC is capable of making consensus-based systems more resilient to

failures by sharply reducing the impact of faulty replicas on the throughput and operations of the

system. We have also put the design of the RCC paradigm to the test by implementing it in
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ResilientDB, our high-performance resilient blockchain fabric, and comparing it with state-of-

the-art primary-backup consensus protocols. Our experiments show that RCC is able to fulfill

the promises of concurrent consensus, as it significantly outperforms other consensus protocols and

provides better scalability. As such, we believe that RCC opens the door to the development of

new high-throughput resilient database and federated transaction processing systems.

4.8. Bibliographic Notes

Parallelizing consensus. Several recent consensus designs propose to run several primaries con-

currently, e.g., [10, 40, 94, 128]. None of these proposals satisfy all design goals of RCC, however.

In specific, these proposals all fall short with respect to maximizing potential throughput in all

cases, as none of these proposals satisfy the wait-free design goals D4 and D5 of RCC.

Example 4.8.1. The MirBFT protocol proposes to run concurrent instances of Pbft, this

in a similar fashion as RCC. The key difference is how MirBFT deals with failures: MirBFT

operates in global epochs in which a super-primary decides which instances are enabled. During

any failure, MirBFT will switch to a new epoch via a view-change protocol that temporarily shuts-

down all instances and subsequently reduces throughput to zero. This is in sharp contrast to the

wait-free design of RCC, in which failures are handled on a per-instance level. In Figure 4.8, we

illustrated these differences in the failure recovery of RCC and MirBFT.

As is clear from the figure, the fully-coordinated approach of MirBFT results in substantial

performance degradation during failure recovery. Hence, MirBFT does not meet design goals D4

and D5, which is sharply limits the throughput of MirBFT when compared to RCC.

Reducing malicious behavior. Several works have observed that traditional consensus protocols

only address a narrow set of malicious behavior, namely behavior that prevents any progress [5, 10,

27, 132]. Hence, several designs have been proposed to also address behavior that impedes perfor-

mance without completely preventing progress. One such design is Rbft, which uses concurrent

primaries not to improve performance—as we propose—but only to mitigate throttling attacks in

a way similar to what we described in Section 4.5. In practice, the design of Rbft results in poor

performance at high costs.
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Figure 4.8. Throughput of RCC versus MirBFT during instance failures with
m = 11 instances. At (a), primary P1 fails. In RCC, all other instances are
unaffected, whereas in MirBFT all replicas need to coordinate recovery. At (b),
recovery is finished. In RCC, all instances can resume work, whereas MirBFT halts
an instance due to recovery. At (c) primaries P1 and P2 fail. In RCC, P2 will be
recovered at (d) and P1 at (e) (as P1 failed twice, its recovery in RCC takes twice
as long). In MirBFT, recovery is finished at (d), after which MirBFT operates
with only m = 9 instances. At (e) and (f), MirBFT decides that the system is
sufficiently reliable, and MirBFT enables the remaining instances one at a time.

HotStuff [137], Spinning [132], and Prime [5] all proposes to minimize the influence of

malicious primaries by replacing the primary every round. This would not incur the costs of

Rbft, while still reducing—but not eliminating—the impact of faulty replicas to severely reduce

throughput. Unfortunately, these protocols follow the design of primary-backup consensus protocols

and, as discussed in Section 4.3, these designs are unable to achieve throughputs close to those

reached by a concurrent consensus such as RCC.

Concurrent consensus via sharding. Several recent works have proposed to speed up consensus-

based systems by incorporating sharding, this either at the data level (e.g., [6, 7, 35, 41, 71, 116])

or at the consensus level (e.g., [63]). In these approaches only a small subset of all replicas, those

in a single shard, participate in the consensus on any given transaction, thereby reducing the costs

to replicate this transaction and enabling concurrent transaction processing in independent shards.
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As such, sharded designs can promise huge scalability benefits for easily-sharded workloads. To

do so, sharded designs utilize a weaker failure model than the fully-replicated model RCC uses,

however. Consider, e.g., a sharded system with z shards of n = 3f +1 replicas each. In this setting,

the system can only tolerate failure of up to f replicas in a single shard, whereas a fully-replicated

system using z replicas could tolerate the failure of any choice of b(zn−1)/3c replicas. Furthermore,

sharded designs typically operate consensus protocols such as Pbft in each shard to order local

transactions, which opens the opportunity of concurrent consensus and RCC to achieve even higher

performance in these designs.
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CHAPTER 5

ResilientDB: High Throughput Yielding Permissioned Blockchain

Fabric

The Practical Byzantine Fault-Tolerance (Pbft) protocol has been around for more than two

decades. Since its inception, several new bft protocols, such as Zyzzyva [87], Sbft [48], and

HotStuff [137], have been proposed, which aim to optimize the consensus presented by Pbft.

However, Pbft remains as the first choice for system designers due to its simple and robust design.

Despite this, the major use-case of blockchain technology and byzantine fault-tolerant applications

remains as a crypto-currency. This leads us to a key observation: Why have blockchain (or bft)

applications seen such a slow adoption?

The low throughput and high latency are the key reasons why bft algorithms are often ignored.

In Chapter 2, we saw that the traditional distributed systems are capable of achieving throughputs

of the order 100K transactions per second. However, the throughputs of current permissioned

blockchain applications are still of the order 10K transactions per second [6, 8, 35]. Several prior

works blame the low throughput and scalability of a permissioned blockchain system on to its

underlying bft consensus algorithm [35, 38, 87, 137]. Although these claims are not false, we

believe they only represent a one-sided story.

We claim that the low throughput of a blockchain system is due to missed opportunities during

its design and implementation. Hence, we want to raise a question: can a well-crafted system-

centric architecture based on a classical bft protocol outperform a protocol-centric architecture?

Essentially, we wish to show that even a slow-perceived classical bft protocol, such as Pbft [21],

if implemented on skillfully-optimized blockchain fabric, can outperform a fast niche-case and opti-

mized for fault-free consensus, bft protocol, such as Zyzzyva [88]. We use Figure 5.1 to illustrate

such a possibility. In this figure, we measure the throughput of an optimally designed permissioned

blockchain system (ResilientDB) and intentionally make it employ the slow Pbft protocol. Next,
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we compare the throughput of ResilientDB against a protocol-centric permissioned blockchain

system that adopts practices suggested in BFTSmart [17] and employs the fast Zyzzyva protocol.

We observe that the system-centric design of ResilientDB, even after employing the three-phase

Pbft protocol (two of the three phases require quadratic communication among the replicas)

outperforms the system having a single-phase linear protocol Zyzzyva. Further, ResilientDB

achieves a throughput of 175K transactions per second, scales up to 32 replicas, and attains up to

79% more throughput.

This chapter aims to illustrating that the design and architecture of the underlying system

are as important as optimizing bft consensus. Further, we employ decades of academic research

and industry experience to design of a high-throughput yielding permissioned blockchain fabric,

ResilientDB. In specific, we dissect existing permissioned blockchain systems, identify different

performance bottlenecks, and illustrate mechanisms to eliminate these bottlenecks from the design.

For example, we show that even for a blockchain system, ordering of transactions can be easily

relaxed without affecting the security. Further, most of the tasks associated with transaction

ordering can be extensively parallelized and pipelined. A highlight of our other observations:

• Optimal batching of transactions can help a system gain up to 66× throughput.

• Clever use of cryptographic signature schemes can increase throughput by 103×.

• Employing in-memory storage with blockchains can yield up to 18× throughput gains.

• Decoupling execution from the ordering of client transactions can increase throughput

gains by 10%.

• Out-of-order processing of client transactions can help gain 60% more throughput.

• bft protocols optimized for fault-free executions can result in a loss of 39× throughput

under failures.

These observations allow us to perceive ResilientDB as a reliable test-bed to implement and

evaluate enterprise-grade blockchain applications. We now enlist our contributions:

• We dissect existing permissioned blockchain systems and enlist different factors that affect

their performance.

• We carefully measure the impact of these factors and present ways to mitigate the effects

of these factors.
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Figure 5.1. Two permissioned blockchains employing distinct bft consensus pro-
tocols (80K clients used for each experiment).

• We design a permissioned blockchain system, ResilientDB that yields high throughput,

incurs low latency, and scales even a slow protocol like Pbft. ResilientDB includes an

extensively parallelized and deeply pipelined architecture that efficiently balances the load

at a replica.

• We raise eleven questions and rigorously evaluate our ResilientDB platform in light of

these questions.

5.1. Dissecting Existing Permissioned Blockchains

As discussed earlier, most of the existing works focus on: (i) optimizing the underlying bft

consensus algorithm, and/or (ii) restructuring the way a blockchain is maintained. We believe there

is much more to render in the design of a permissioned blockchain system beyond these strategies.

Hence, we identify several other key factors that reduce the throughput and increase the latency

of a permisisoned blockchain system or database.

Single-threaded Monolithic Design. There are ample opportunities available in the design

of a permissioned blockchain application to extract parallelism. Several existing permissioned

systems provide minimal to no discussion on how they can benefit from the underlying hardware

or cores [6, 35, 138]. Due to the sustained reduction in hardware cost (as a consequence of Moore’s

Law [100]), it is easy for each replica to have at least eight cores. Hence, by parallelizing the tasks

across different threads and pipelining several transactions, a blockchain application can highly

benefit from the available computational power.
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Successive Phases of Consensus. Several works advocate the benefits of performing con-

sensus on one request at a time [6, 76], while others promote aggregating client requests into large

batches [8, 101]. We believe there is a communication and computation trade-off that needs to be

analyzed before reaching such a decision. Hence, an optimal batching limit needs to discovered.

Decoupling Ordering and Execution. On receiving a client request, each replica of a

permissioned blockchain application has to order and execute that request. Although these tasks

share a dependency, it is a useful design practice to separate them at the physical or logical level.

At the physical level, distinct replicas can be used for execution. However, such an approach would

incur additional communication costs. At the logical level, distinct threads can be asked to process

requests in parallel, but additional hardware cores would be needed to facilitate such parallelism.

In specific, a single entity performing both ordering and execution loses an opportunity to gain

from inherent parallelism.

Strict Ordering. Permissioned blockchain applications rely on bft protocols, which necessi-

tate ordering of client requests in accordance with linearizability [21, 74]. Although linearizability

helps in guaranteeing a safe state across all the replicas, it is an expensive property to achieve.

Hence, we need an approach that can provide linearizability but is inexpensive. We observe that

permissioned blockchain applications can benefit from delaying the ordering of client requests until

execution. This delay ensures that although several client requests are processed in parallel, the

result of their execution is in order.

Off-Memory Chain Management. Blockchain applications work on a large set of records

or data. Hence, they require access to databases to store these records. There is a clear trade-

off when applications store data in-memory or on an off-the-shelf database. Off-memory storage

requires several CPU cycles to fetch data [72]. Hence, employing in-memory storage can ensure

faster access, which in turn can lead to high system throughput.

Expensive Cryptographic Practices. Blockchain applications expect the exchange of sev-

eral messages among the participating replicas and the clients, of which some may be byzantine.

Hence, each blockchain application requires strong cryptographic constructs that allow a client

or a replica to validate any message. These cryptographic constructs find a variety of uses in a
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Figure 5.2. ResilientDB Architecture.

blockchain application: (i) To sign a message. (ii) To verify an incoming message. (iii) To generate

the digest of a client request. (iv) To hash a record or data.

To sign and verify a message, a blockchain application can employ either symmetric-key cryptog-

raphy or asymmetric-key cryptography [85]. Although symmetric-key signatures, such as Message

Authentication Code (MAC), are faster to generate than asymmetric-key signatures, such as Dig-

ital Signature (DS), DSs offer the key property of non-repudiation, which is not guaranteed by

MACs [85]. Hence, several works suggest using DSs [6, 8, 35, 138]. However, a cleverly designed

permissioned blockchain system can skip using DSs for a majority of its communication, which in

turn will help increase its throughput. For generating digests or hash, a blockchain application

needs to employ standard Hash functions, such as SHA256 or SHA3, which are secure.

5.2. ResilientDB Permissioned Blockchain Fabric

We now present our ResilientDB fabric, which incorporates our insights and fulfills the

promise of an efficient permissioned blockchain system. In Figure 5.2, we illustrate the overall

architecture of ResilientDB, which lays down an efficient client-server architecture. At the appli-

cation layer, we allow multiple clients to co-exist, each of which creates its own requests. For this

purpose, they can either employ an existing benchmark suite or design a Smart Contract suiting

to the active application. Next, clients and replicas use the transport layer to exchange messages

across the network. ResilientDB also provides a storage layer where all the metadata correspond-

ing to a request and the blockchain is stored. At each replica, there is an execution layer where the
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underlying consensus protocol is run on the client request, and the request is ordered and executed.

During ordering, the secure layer provides cryptographic support.

Since our aim is to present the design of a high-throughput permissioned blockchain system, for

the rest of the discussion we assume that ResilientDB employs the Pbft protocol for reaching

consensus among the replicas. It is important to note that the succeeding insights are also relevant

in the context of other bft protocols.

5.2.1. Multi-Threaded Deep Pipeline. For implementing Pbft, we require ResilientDB

to follow the primary-backup model. On receiving a client request, the primary replica must initiate

Pbft consensus among all the backup replicas and ensure all the replicas execute this client request

in the same order. Note that depending on the choice of bft protocol, ResilientDB can be molded

to adopt a different model (e.g. leaderless architecture).

In Figure 5.3, we illustrate the threaded-pipelined architecture of ResilientDB replicas. We

permit increasing (or decreasing) the number of threads of each type. In fact one of the key goals of

this paper is to study the effect of varying these threads on a permissioned blockchain. With each

replica, we associate multiple input and output threads. In specific, we balance the tasks assigned

to the input-threads, by requiring one input-thread to solely receive client requests, while two other

input-threads to collect messages sent by other replicas. ResilientDB also balances the task of

transmitting messages between the two output-threads by assigning equal clients and replicas to

each output-thread. To facilitate this division, we need to associate a distinct queue with each

output-thread.

5.2.2. Transaction Batching. ResilientDB allows both clients and replicas to batch their

transactions. Using an optimal batching policy can help mask communication and consensus costs.

A client can send a burst of transactions as a single request to the primary. Examples of applications

where a client may batch multiple transactions are stock-trading, monetary-exchanges, and service

level-agreements. The primary replica can also aggregate client requests together to significantly

reduce the number of times a consensus protocol needs to be run among the replicas.

5.2.3. Modeling a Primary Replica. To facilitate efficient batching of requests, we require

ResilientDB to associate multiple batch-threads with the primary replica. When the primary

114



Client 
Requests

Prepare
& Commit

Input

Network

Message from
Clients and Replicas

Batch Creation

Worker

Checkpoint

Execute

Message to 
Replicas and Clients

Output

Network

Figure 5.3. Schematic representation of the multi-threaded deep-pipelines at each
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on the requirements of the underlying consensus protocol.

replica receives a batch of requests from the client, it treats it as a single request. The input-thread

at the primary assigns a monotonically increasing sequence number to each incoming client request

and enqueues it into the common queue for the batch-threads. To prevent contention among the

batch-threads, we design the common queue as lock-free. But why have a common queue? This

allows us to ensure that any enqueued request is consumed as soon as any batch-thread is available.

Each batch-thread also performs the task of verifying the signature of the client request. If

the verification is successful, then it creates a batch and names it as the Pre-prepare message.

Pbft also requires the primary to generate the digest of the client request and send this digest

as part of the Pre-prepare message. This digest helps in identifying the client request in future

communication. Hence, each batch-thread also hashes a batch and marks this hash as a digest.

Finally, the batch-thread signs and enqueues the corresponding Pre-prepare message into the

queue for an output-thread.

Apart from the client requests, the primary replica receives Prepare and Commit messages

from backup replicas. As the system is partially asynchronous, so the primary may receive both

the Prepare and Commit messages from a backup replica X before the Prepare message from a

backup Y . How is this possible? The replica X could have received sufficient number of Prepare

messages (that is 2f) before the primary receives Prepare from replica Y (total number of replicas

are n = 3f + 1). In such a case, X would proceed to the next phase and broadcast its Commit

message. Hence, to prevent any resource contention, we designate only one worker-thread the task

of processing all these messages.
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When the input-thread receives a Prepare message, it enqueues that message in the work-

queue. The worker-thread dequeues a message and verifies the signature on this message. If the

verification is successful, then it records this message and continues collecting Prepare messages

corresponding to a Pre-prepare message until its count reaches 2f . Once it reaches this count,

then it creates a Commit message, signs and broadcasts this message. The worker-thread follows

similar steps for a Commit message, except that it needs a total of 2f + 1 messages, and once it

reaches this count, it informs the execute-thread to execute the client requests.

5.2.4. Modeling a Backup Replica. As a backup replica does not create batches of client

requests, ResilientDB assigns it fewer threads. When the input-thread at a backup replica

receives a Pre-prepare message from the primary, then it enqueues it in the work-queue. The

worker-thread at a backup dequeues a Pre-prepare message and checks if the message has a valid

signature of the primary. If this is the case, then the worker-thread creates a Prepare message,

signs this message, and enqueues it in the queue for output-thread. Note that this Prepare

message includes the digest from the Pre-prepare message and the sequence number suggested

by the primary. The output-thread broadcasts this Prepare message on the network. Similar

to the primary, each backup replica also collects 2f Prepare messages, creates and broadcasts a

Commit message, collects 2f + 1 Commit messages, and informs the execute-thread.

5.2.5. Out-of-Order Message Processing. The key to the fast ordering of client requests is

to allow ordering of multiple client requests to happen in parallel. ResilientDB supports parallel

ordering of client requests, while ensuring a single common order across all the replicas.

Example 5.2.1. Say a client C sends the primary replica P first request m1 and then request

m2. The input-thread at the primary P would assign a sequence number k to request m1 and k+ 1

to request m2. However, as the batch-threads can work at varying speeds, so it is possible that the

consensuses for requests m1 and m2 may either overlap, or some replica R may receive 2f + 1

Commit messages for m2 before m1.

In principle, Example 5.2.1 seems like a challenge for a blockchain application, as a replica may

receive requests at sequence number k+1, k+2, ... before it commits request at number k. However,
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the property of out-of-order message processing is inherent in the design of most bft protocols and

is often overlooked.

Existing bft protocols expect all the non-faulty replicas to act deterministic, that is, on identical

inputs present identical outputs [21, 87, 137]. Further, they only accept a request after they have

a guarantee that a majority of other replicas have also accepted the same request. For example,

in the Pbft protocol, say a backup replica R receives a Pre-Prepare message for client request

m1 with sequence number k. This replica R will not send a Commit message in support of the

request m1 until it receives 2f identical Prepare messages from distinct replicas in support of m1.

Further, the replica R will only execute request m1 when it receives 2f + 1 Commit messages from

distinct replicas.

In the case of out-of-order message processing, if a replica gets 2f + 1 Commit messages for a

request with sequence number k+1 before the request with number k, it will not execute (k+1)-th

request before k-th request. Hence, the execution of all the succeeding requests has to be kept on

hold. This ensures that the order of execution is identical across all the non-faulty replicas.

Of course, the primary P could act malicious and could send all but the k-th request. To

tackle such a scenario, bft protocols already provide a primary-replacement (or view-change) algo-

rithm [21, 87]. The aim of the view-change algorithm is to deterministically replace the malicious

primary P with a new primary P ′. It is the duty of this new primary P ′ to ensure all the replicas

reach the common state otherwise it will also be replaced. As ResilientDB uses existing bft

protocols, we skip presenting the details of existing view-change algorithm.

5.2.6. Efficient Ordered Execution. Although we parallelize consensus, we ensure execu-

tion happens in order. For instance, the requests m1 and m2 from Example 5.2.1 are executed

in sequence order, that is, m1 is executed before m2, irrespective of the order their consensuses

completed. At each replica, we dedicate a separate execution-thread to execute the requests. But,

the key question remains: how can we reduce the execution-thread’s overhead of ordering.

It is evident that the execution-thread has to wait for a notification from the worker-thread.

In specific, we require the worker-thread to create an Execute message and place this message in

the appropriate queue for the execution-thread. This Execute message contains the identifier for

the starting and ending transactions of a batch, which need to be executed. Note that we associate
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a large set of queues with the execution-thread. To determine the number of required queues for

the execution-thread, we use the parameter QC.

QC = 2×Num Clients×Num Req

Here, Num Clients represent the total number of clients in the system, while Num Req represents

the maximum number of requests a client can send without waiting for any response. We assume

both of these parameters to be finite. Although QC can be very large, the queues are logical.

So, the space complexity remains almost the same as for a single queue. But why is this practice

advantageous?

Using this design the execute-thread can deterministically select the queue to dequeue. If k was

the sequence number for last executed request, the execute-thread calculates r = (k+1) mod QC

and waits for an Execute message to be enqueued in its r-th queue. This design is more efficient

than having a single queue, as a single queue would have forced several dequeues and enqueues until

finding the next request in order to execute. Alternatively, we could have employed hash-maps but

collision resistant hash functions are expensive to compute and verify [85].

Once the execution is complete, the execution-thread creates a Response message and enqueues

it in the queue for output-threads to send to the client. Notice that by executing client requests in

order we achieve the guarantee that a single common order is established across all the non-faulty

replicas.

Block Generation. A blockchain is an immutable ledger that consists of a set of blocks. Each

block contains necessary information regarding the executed transaction and the previous block in

its chain. The data about the previous block helps any blockchain achieve immutability. The i-th

block in the chain can be represented as: Bi := {k, d, v,H(Bi−1)}

This block Bi contains the sequence number (k) of the client request, the digest (d) of the

request, the identifier of the primary v who initiated the consensus, and the hash of the previous

block, H(Bi−1). In each blockchain application, every replica independently maintains its copy

of the blockchain. Prior to the start of consensus, the blockchain of each replica has no element.

Hence, it is initialized with a genesis block [101]. The genesis block is marked as the first block
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Figure 5.4. A formal representation of the blockchain.

in the chain and contains dummy data. For instance, a genesis block can contain the hash of the

identifier of the first primary, H(P).

Post executing the client requests, we require the execution thread to create a block representing

this batch of requests. As the execute-thread has access to the previous block in the chain, so it can

easily hash this previous block and store this hash in the new block. Note that this step provides

another opportunity for parallelism where the execute-thread can delegate the task of creating a

new block to another thread.

5.2.7. Checkpointing. We also require replicas to periodically generate and exchange check-

points. These checkpoints serve two purposes: (1) Help a failed replica to update itself to the

current state. (2) Facilitate cleaning of old requests, messages and blocks. However, as checkpoint-

ing requires exchange of large messages, so we ensure it does not impact the throughput of the

system. ResilientDB deploys a separate checkpoint-thread at each replica to collect and process

incoming Checkpoint messages. These checkpoint messages simply include all the blocks gener-

ated since the last checkpoint. In specific, a Checkpoint message is sent only after a replica has

executed ∆ requests. Once execute-thread completes executing a batch, it checks if the sequence

number of the batch is a multiple of ∆. If such is the case, it sends a Checkpoint message to all

the replicas. When a replica receives 2f +1 identical Checkpoint messages from distinct replicas,

then it marks the checkpoint and clears all the data before the previous checkpoint [21, 87].

5.2.8. Buffer Pool Management. Until now, our description revolved around how a replica

uses messages and transactions. In ResilientDB, we designed a base class that represents all the

messages. To create a new message type, one has to simply inherit this base class and add required

properties. Although on delivery to the network, each message is simply a buffer of characters,

this typed representation helps us to easily manipulate the required properties. Similarly, we have

designed a base class to represent all client transactions. An object of this transaction class includes:

transaction identifier, client identifier, and transaction data, among many other properties.
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When a message arrives in the system, a replica needs to allocate (malloc) space for that

messages. Similarly, when a replica receives a client request, it needs to allocate corresponding

transaction objects. When the lifetime of a message ends (or a new checkpoint is established), then

the memory occupied by that message (or transactions object) needs to be released (free). To

avoid such frequent allocations and de-allocations, we adopt the standard practice of maintaining

a set of buffer pools. At the system initialization stage, we create a large number of empty ob-

jects representing the messages and transactions. So instead of doing a malloc, these objects are

extracted from their respective pools and are placed back in the pool during the free operation.

5.3. Experimental Analysis

We now analyze how various parameters affect the throughput and latency of a Permissioned

Blockchain (henceforth abbreviated as Pbc) system. For the purpose of this study we use our

ResilientDB fabric. Although ResilientDB can employ any bft consensus protocol, we use

the Pbft protocol to ensure that the system design remains as our key focus. To ensure a holistic

evaluation, we attempt to answer the following questions:

(Q1) Can a well-crafted system based on a classical bft protocol outperform a modern protocol?

(Q2) How much gains in throughput can a Pbc achieve from pipelining and threading?

(Q3) Can pipelining help a Pbc become more scalable?

(Q4) What impact does batching of requests has on a Pbc?

(Q5) Do multi-operation requests impact the throughput and latency of a Pbc?

(Q6) How increasing the message size impacts a Pbc?

(Q7) What effect do different types of cryptographic signature schemes have on the throughput

of a Pbc?

(Q8) How does a Pbc fare with in-memory storage versus a storage provided by a standard

database?

(Q9) Can an increased number of clients impact the latency of a Pbc, while its throughput

remains unaffected?

(Q10) Can a Pbc sustain high throughput on a setup having fewer number of cores?

(Q11) How impactful are replica failures for a Pbc?
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5.3.1. Evaluation Setup. We employ Google Cloud infrastructure at Iowa region to deploy

our ResilientDB. For replicas, we use c2 machines with an 8-core Intel Xeon Cascade Lake CPU

running at 3.8GHz and having 16GB memory, while for clients we use c2 4-core machines. We run

each experiment for 180 seconds, and collect results over three runs to average out any noise.

We use YCSB [29, 38] for generating workload for client requests. For creating a request, each

client indexes a YCSB table with an active set of 600K records. In our evaluation, we require client

requests to contain only write accesses, as a majority of blockchain requests are updates to the

existing data. During the initialization phase, we ensure each replica has an identical copy of the

table. Each client YCSB request is generated from a uniform Zipfian distribution.

Unless explicitly stated otherwise, we use the following setup: We invoke up to 80K clients on

4 machines and run consensus among 16 replicas. We employ batching to create batches of 100

requests. For communication among replicas and clients we employ digital signatures based on

ED25519, and for communication among replicas we use a combination of CMAC and AES [85].

At each replica, we permit one worker-thread, one execute-thread and two batch-threads

5.3.2. Effect of Threading and Pipelining. In this section, we analyze and answer ques-

tions Q1 to Q3. For this study, we vary the system parameters in two dimensions: (i) We increase

the number of replicas participating in the consensus from 4 to 32. (ii) We expand the pipeline and

gradually balance the load among parallel threads.

In this experiment, we take two consensus protocols: Pbft and Zyzzyva, and we ensure that

at least 3f + 1 replicas are participating in the consensus. We gradually move our system towards

the architecture of Figure 5.3. In Figure 5.5, we show the effects of this gradual increase. We denote

the number of execution-threads with symbol E, and batch-threads with symbol B. For all these

experiments, we used only one worker-thread. The key intuition behind these plots is to continue

expanding the stages of pipeline and the number of threads, until system can no longer increase

its throughput. In this manner, it would be easy to observe design choices that could make even

Pbft outperform Zyzzyva, that is, benefits of a well-crafted implementation.

On close observation of Figure 5.5, we can trivially highlight the benefits of a good imple-

mentation. Further, these plots help to confirm our intuition that a multi-threaded pipelined
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Figure 5.5. System throughput and latency, on varying the number of replicas
participating in the consensus. Here, E denotes number of execution-threads, while
B denotes batch-threads.

architecture for a Pbc outperforms a single-threaded design. This is the key reason why our de-

sign of ResilientDB employs one execution-thread and two batch-threads apart from a single

worker-thread.

Next, we explain our methodology for gradual changes. We first modified ResilientDB to

ensure there are no additional threads for execution and batching, that is, all tasks are done by one

worker-thread (0E 0B). On scaling this system we realized that this worker-thread was getting fully

utilized. Hence, we partially divide the load by having an execute-thread (1E 0B). However, we

again observed that the worker-thread at the primary was getting completely utilized. So we had an

opportunity to introduce a separate thread to create batches (1E 1B). Although worker-thread was

no longer saturating, the batch-thread was overloaded with the task of creating batches. Hence, we

further divided the task of batching among multiple batch-threads (1E 2B) and ensured none of the

batch-threads were fully utilized. Figures 5.6 and 5.7 show the utilization level for different threads
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at a replica. In this figure, we mark 100% as the maximum utilization for any thread. Using the

bar for cumulative utilization, we show a summation of the utilization for all the threads, for any

experiment. Note that for Pbft 1E 2B, the worker-thread at the backup replicas have started to

saturate. But, as the architecture at the non-primary is following our design, so we split no further.

It can be observed that if Pbft is given benefit of ResilientDB’s standard pipeline (1E

2B), then it can attain higher throughput than all but one Zyzzyva implementations. The only

Zyzzyva implementation (1E 2B) that outperforms Pbft is the one that employs ResilientDB’s

standard threaded-pipeline. Further, even the simpler implementation for Pbft (1E 1B) attains

higher throughput than Zyzzyva’s 0E 0B and 1E 0B implementations.
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Figure 5.8. System throughput and latency on varying the number of transactions
per batch. In this experiment, 16 replicas participate in consensus.

As stated earlier, the design of ResilientDB is independent of the underlying consensus pro-

tocol. This can be observed from the fact that when Zyzzyva is given ResilientDB’s standard

pipeline, then it can achieve throughput of 200K txns/s. Note that in majority of the settings

Pbft incurs less latency than Zyzzyva. This is an effect of Zyzzyva’s algorithm, which requires

the client to wait for replies from all the n replicas, where for Pbft the client only needs f + 1

responses. To summarize: (i) Pbft’s throughput (latency) increases (reduces) by 1.39× (58.4%)

on moving from 0E 0B setup to 1E 2B. (ii) Zyzzyva’s throughput (latency) increases (reduces)

by 1.72× (63.19%) on moving from 0E 0B setup to 1E 2B. (iii) Throughput gains up to 1.07× are

possible on running Pbft on an efficient setup, in comparison to basic setups for Zyzzyva.

5.3.3. Effect of Transaction Batching. We now try to answer question Q4 by studying

how batching the client transactions impacts the throughput and latency of a Pbc. For this study,

we increase the size of a batch from 1 to 5000.

In Figure 5.8, we observe that as the number of transactions in a batch increases, the throughput

increases until a limit (at 1000) and then starts decreasing (at 3000). At smaller batches, more

consensuses are taking place, and hence communication impacts the system throughput. Hence,

larger batches help reduce the consensuses. However, when the transactions in a batch are increased

further, then the size of the resulting message and the time taken to create a batch by a batch-

thread, reduces the system throughput. Hence, any Pbc needs to find an optimal number of client

transactions that it can batch. To summarize: batching can increase throughput by up to 66×

and reduce latency by up to 98.4%.
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Figure 5.9. System throughput and latency on varying the number of operations
per transaction. Here, B denotes the number of batch-threads used in the exper-
iment. Legends with suffix OP refer to plotlines that illustrate total number of
operations executed.

5.3.4. Effect of Multi-Operation Transactions. We now answer question Q5, that is,

understand how multi-operation transactions affect the throughput of a system? In Figure 5.9,

we increase the number of operations per transaction from 1 to 50. Further, we increase the

number of batch-threads from 2 to 5, while having one worker-thread and one execute-thread.

Although multi-operation transactions are common, prior works do not provide any discussion on

such transactions. Notice that these experiments are orthogonal counterparts of the experiments

in the previous section.

It is evident from these figures that on increasing the number of operations per transaction, the

system throughput decreases. This decrease is a consequence of batch-threads getting saturated

as they perform task of batching and allocating resources for transaction. Hence, we ran several

experiments with distinct counts for batch-threads. An increase in the number of batch-threads

helps the system to increase its throughput, but the gap reduces significantly after the transaction

becomes too large (at 50 operations). Similarly, more batch-threads help to decrease the latency

incurred by the system.
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Figure 5.10. System throughput and latency on varying the message size. Here,
16 replicas participate in consensus.

Alternatively, we also measure the total number of operations completed in each experiment.

Notice that if we base the throughput on the number of operations executed per second, then

the trend has completely reversed. Indeed, this makes sense as in fewer rounds of consensus, more

operations have been executed. To summarize: multi-operation transactions can cause a decrease

of 93% in throughput and an increase of 13.29× in latency, on the two batch-threads setup. An

increase in batch-threads from two to five increases throughputs up to 66% and reduces latencies

up to 39%.

5.3.5. Effect of Message Size. We now try to answer question Q6 by increasing the size

of the Pre-prepare message in each consensus. The key intuition behind this experiment is to

gauge how well a Pbc system performs when the requests sent by a client are large. Although each

batch includes only 100 client transactions, individually, these requests can be large. Hence, these

experiments are aimed at exploiting a different system parameter than the plots of Figure 5.8.

In Figure 5.10, we study the variation in throughput and latency by increasing the size of a

Pre-prepare message. We do this by adding a payload to each message, which includes a set of

integers (8byte each). The cardinality of this set is kept equal to the desired message size.

It is evident from these plots that as the message size increases, there is a decrease in the

system throughput and an increase in the latency incurred by the client. This is a result of network

bandwidth becoming a limitation, due to which it takes extra time to push more data onto the

network. Hence, in this experiment, the system reaches a network bound before any thread can hit

its computational bound. This leads to all the threads being idle. To summarize: On moving

from 8KB to 64KB messages, there is a 52% decrease in throughput and 1.09× increase in latency.
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Figure 5.11. System throughput and latency with different signature schemes.
Here, 16 replicas participate in consensus.

5.3.6. Effect of Cryptographic Signatures. In this section, we answer question Q7 by

studying the impact of different cryptographic signature schemes. The key intuition behind these

experiments is to determine which signing scheme helps a Pbc achieve the highest throughput

while preventing byzantine attacks. For this purpose, we run four different experiments to measure

the system throughput and latency when: (i) no signature scheme is used, (ii) everyone uses digital

signatures based on ED25519, (iii) everyone uses digital signatures based on RSA, and (iv) all

replicas use CMAC+AES for signing, while clients sign their message using ED25519.

Figure 5.11 helps us to illustrate the throughput attained and latency incurred by ResilientDB

for different configurations. It is evident that ResilientDB attains maximum throughput when

no signatures are employed. However, such a system does not fulfill the minimal requirements of

a permissioned blockchain system. Further, using just digital signatures for signing messages is

not exactly the best practice. An optimal configuration can require clients to sign their messages

using digital signatures, while replicas can communicate using MACs. To summarize: (i) use of

cryptography reduces throughput by at least 49% and increases latency by 33%. (ii) choosing RSA

over CMAC, ED25519 combination would increase latency by 125×.

5.3.7. Effect of Memory Storage. We now try to answer question Q8 by studying the

trade-off of having in-memory storage versus off-memory storage in a Pbc. For testing off-memory

storage, we integrate SQLite [36] with our ResilientDB architecture. We use SQLite to store

and access the transactional records. As SQLite is external to our ResilientDB fabric, so we

developed API calls to read and write its tables. Note that until now, for all the experiments, we
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Figure 5.12. System throughput and latency for in-memory storage vs. off-
memory storage. Here, 16 replicas used for consensus.
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Figure 5.13. System throughput and latency on varying the number of clients.
Here, 16 replicas participate in consensus.

assumed in-memory storage, that is, records are written and accessed in an in-memory key-value

data-structure.

In Figure 5.12, we illustrate the impact on system throughput and latency in the two cases. For

the in-memory storage, we require the execute-thread to read/write the key-value data-structure.

For SQLite, execute-thread initiates an API call and waits for the results. It is evident from these

plots that access to off-memory storage (SQLite) is quite expensive. Further, as execute-thread

is busy-waiting for a reply, it performs no useful task. To summarize:, choosing SQLite over

in-memory storage reduces throughput by 94% and increase latency by 24×.

5.3.8. Effect of Clients. We now study the impact of clients on a Pbc system, and as a

result, work towards answering question Q9. We observe the changes in throughput and latency

on increasing the number of clients sending requests to a Pbc from 4K to 80K.

Through Figure 5.13 we conclude that on increasing the number of clients, the throughput for

the system increases to some extent (up to 32K), and then it becomes constant. This is a result of
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Figure 5.14. System throughput and latency on varying the number of hardware
cores. Here, 16 replicas participate in consensus.

all the threads processing at their maximum capacities, that is, the system is unable to handle any

more client requests. As the number of clients increases, an increased set of requests have to wait

in the queue before they can be processed. This wait can even cause a slight dip in throughput (on

moving from 64K to 80K clients). This delay in processing causes a linear increase in the latency

incurred by the clients (as shown in Figure 5.13). To summarize: we observe that an increase in

the number of clients from 16K to 80K helps the system to gain an additional 1.44% throughput

but incurs 5× more latency.

5.3.9. Effect of Hardware Cores. We now answer question Q10 by analyzing the effects

of a deployed hardware on a Pbc application. In specific, we want to deploy our replicas on

different Google Cloud machines having 1, 2, 4 and 8 cores. We use Figure 5.14 to illustrate the

throughput and latency attained by our ResilientDB system on different machines. For all these

experiments, we require 16 replicas to participate in the consensus. These figures affirm our claim

that if replicas run on a machine with fewer cores, then the overall system throughput will be

reduced (and higher latency will be incurred). As our architecture (refer to Figure 5.3) requires

several threads, so on a machine with fewer cores our threads face resource contention. Hence,

ResilientDB attains maximum throughput on the 8-core machines. To summarize: deploying

ResilientDB replicas on an 8-core machine, in comparison to the 1-core machines, leads to an

8.92× increase in throughput.
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Figure 5.15. System throughput and latency on failing non-primary replicas.
Here, 16 replicas participate in consensus.

5.3.10. Effect of Replica Failures. We now try to answer question Q11 by analyzing

whether a fast bft consensus protocol can withstand replica failures. This experiment also illus-

trates the impact of failures on a Pbc. In specific, we perform a head-on comparison of Zyzzyva

against Pbft, while allowing some backup replicas to fail.

In Figure 5.15, we illustrate the impact of failure of one replica and five replicas on the two

protocols. For this experiment we require at most 16 replicas to participate in consensus. Note

that for n = 16, the maximum number of failures a bft system can handle are f = 5. Hence, we

evaluate both the protocols under minimum and maximum simultaneous failures.

On increasing the number of failures from one to five, there is a small dip in the throughput

for both the protocols. This dip is not visible due to the high scaling of the graph. For Pbft, in

comparison to the failure-free case, there is not a significant decrease in throughput as none of its

phases require more than 2f + 1 messages.

In case of Zyzzyva, the system faces a pronounced reduction in its throughput with just one

failure. The key issue with Zyzzyva is that its clients need responses from all the replicas. So

even one failure makes a client wait until it timeouts. This wait causes a significant reduction

in its throughput. Note that finding an optimal amount of time a client should wait is a hard

problem [25, 26]. Hence, we approximate this by requiring clients to wait for only a small time.

Protocols like Zyzzyva advocate for a twin path model [48, 87]. In these protocols, each

replica achieves consensus by following a fast path until the system faces a failure. Once a failure

happens, these protocols decide to switch to a slower path. Such a design heavily relies on the

value of timeout. If the timeout is large, then these protocols face a large reduction in throughput.
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For example, in Zyzzyva, a larger timeout implies clients have to wait for a larger amount of

time before initiating the next phase. If the network is dynamic, then the value of timeout can

continuously change. Thus, finding the optimal value of timeout is hard. Another way to boost the

throughput of these protocols is to assume there are a sufficient number of clients that can help

offset the effects of timeout.

5.4. Observation

Based on the results presented in the previous section, we make two high-level conclusions:

• A slow classical bft protocol running on a well-crafted implementation (like ResilientDB),

can outperform a fast bft protocol implemented on a protocol-centric design.

• No single parameter can alone substantially improve the throughput (or reduce latency)

of the underlying Pbc. The key reason our ResilientDB framework can attain high

throughputs and incurs low latency is that it attempts at optimally utilizing several pa-

rameters.

Threading and Pipelining. Earlier in this chapter, we discussed several works that ei-

ther present new protocols to improve the performance of a Pbc or illustrate novel use-cases for

blockchain. These works rarely focus on the implementation of a replica itself and can significantly

gain throughput by adopting an architecture similar to our ResilientDB. Further, caution needs

to be taken while introducing parallelism as unnecessary threads can cause resource contention or

deadlocks (e.g., multiple execution-threads can cause data-conflicts).

Batching and Multiple Operations. Several works suggest batching client requests, while

others have vetoed against such a choice. Our results show that the optimal use of batching can

help to reduce the cost of consensus by merging multiple consensuses into one. However, over-

batching does introduce a communication trade-off. Hence, each Pbc application should determine

the optimal set of client requests to batch. Clients can also employ multi-operation transactions.

In practice, such a transaction includes at most ten operations. Hence, employing operations per

second as a metric to measure throughput may be a good idea.

Message Size and Payload. Depending on the application targeted by a Pbc, the clients

can send requests that have a large size. For example, a client can require the execution of a specific
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code. If multiple large requests are batched together, then the network may consume resources in

splitting a message into packets, transmitting these packets, and aggregating these packets at the

destination. Hence, depending on the application, batching just ten large requests may allow the

system to return high throughput.

Cryptographic Signatures. Although the use of cryptographic signatures bottlenecks the

system throughput, their use is essential for safety. We observe that a combination of MACs and

DSs can help guarantee both safety and high throughput. For instance, digital signatures are only

necessary for messages that need to be forwarded. Hence, in a Pbc, only clients need to digitally

sign their requests. For communication among the replicas, MACs suffice, as in most of the bft

protocols, no replica forwards messages of any other replica. Hence, the property of non-repudiation

is implicitly satisfied.

Chain Storage. Pbc applications need to store client records and other metadata. We

observed that the use of in-memory data-structures is better than off-memory storage, such as

SQLite. The key reason a Pbc system can avoid frequent access to off-memory storage is that

at all times, at most f replicas can fail. Hence, if persistent storage is required, then it can be

performed asynchronously or delayed until periods of low contention.

Replica Failures. We know that failures are common. Either a replica may fail, or messages

may get lost. A Pbc system needs to be ready to face these situations. Hence, the system design

must not rely on a bft protocol that works well in non-failure cases but attains low throughput

under simple failures. We observed that designs employing protocols like Zyzzyva can have negli-

gible throughput with just one failure. Further, some protocols suggest the use of two modes, fast

path and slow path [48]. Although such protocols attain high throughputs in the fast path, they

switch to the slow path on failures. Note that this switch happens when some replica or client

timeouts. Determining the optimal value for timeouts is hard [25, 26]. Thus, twin path protocols

may not be suitable if the network is dynamic.

5.5. Concluding Remarks

In this chapter, we present a high-throughput yielding permissioned blockchain framework, Re-

silientDB. By dissecting ResilientDB, we analyze several factors that affect the performance
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of a permissioned blockchain system. This allows us to raise a simple question: can a well-crafted

system based on a classical bft protocol outperform a modern protocol? We show that the ex-

tensively parallel and pipelined design of our ResilientDB fabric does allow even Pbft to gain

high throughputs (up to 175K) and outperform common implementations of Zyzzyva. Further, we

perform a rigorous evaluation of ResilientDB and illustrate the impact of different factors such as

cryptography, chain management, monolithic design, and so on. We envision the practices adopted

in ResilientDB to be included in designing and testing newer bft protocols and permissioned

blockchain applications.
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CHAPTER 6

Future Directions: Scalable Permissioned Blockchain Applications

Until now, we aimed at designing efficient bft consensus protocols (PoE and RCC) and scalable

permissioned blockchain fabric. We now discuss ways in which our designs can be applied to

practical systems. We vision our designs to help accelerate the development of efficient and scalable

permissioned blockchain applications. In this chapter, we achieve this goal as follows.

• First, we try to reliably reduce the impact of byzantine replicas. To achieve this goal,

we move towards the design of bft protocols that can prevent byzantine replicas from

equivocating their decisions. Several prior works have presented interesting solutions in

this direction by making use of trusted components [24, 92, 133]. However, these protocols

make several assumptions in their design, which prevent their application to real-world

setting. We illustrate how these protocols provide limited safety and liveness guarantees,

and envision solutions that can eliminate these limitations.

• Second, we envision the scaling of time-critical edge applications. These edge applications

need low-latency response, and as edge devices have limited processing power, application

developers have to process requests on in-house clouds. As in-house clouds are hard to scale

or maintain, we envision the design of serverless-edge infrastructure. However, neither the

edge nodes nor the serverless cloud can be trusted. Hence, we present the design of our

ServerlessBFT protocol that facilitates the efficient processing of transactions in the

serverless-edge infrastructure.

• Finally, it is common for replicated databases to have their replicas spread across a wide-

area network [30]. The key issue for such geographically spread database deployments is

that the communication between replicas becomes visibly expensive. In these systems,

two or more replicas are often connected by networks that offer low bandwidth and high

ping costs. To resolve this challenge, we envision the design of a bft consensus protocol

for geo-replicated databases.
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6.1. Reliable Trusted Consensus

Until now, we have illustrated that a bft protocol can guarantee a safe and live consensus

if at most f of the n replicas participating in the consensus are byzantine [21, 87]. Specifically,

n ≥ 3f + 1. This implies that less than one-third replicas can act byzantine. As each replica

stores the same data, bft protocols require f more copies of data in comparison to their crash

fault-tolerant counterparts (cft) [89, 107]. cft consensus protocols help n = 2f + 1 replicas reach

consensus if at most f replicas crash, but not act byzantine. Hence, if we can rein in the byzantine

acts of replica, then we can reduce the amount of replication.

Prior works have employed this insight and presented the design of bft protocols where replicas

host some trusted components [24, 92, 133, 135]. These trusted components prevent byzantine

replicas from equivocating their decisions. Byzantine replicas equivocate by committing to multiple

conflicting orders for client requests. Such behaviors can degrade system throughput, affect system

progress, and cause safety violations [24, 28].

The common approach to prevent equivocation is to ask each replica to get each message it

sends attested by a trusted component. This is under the assumption that trusted components are

honest and cannot be compromised. For the sake of discussion, we refer to these bft protocols that

employ trusted components as trust-bft protocols. In existing trust-bft protocols, each replica

hosts a trusted component that participates in the consensus protocol. These trusted components

come in several flavors, such as Intel SGX [31], Sanctum [32], Keystone [91], and so on. Irrespective

of the choice of trusted components, these trusted components provide each host replica access to

append-only logs and/or monotonically increasing counters.

The interest in these trust-bft protocols is so profound that in recent years several new

consensus protocols, such as Pbft-EA [24], Trinc [92], MinBFT [133], MinZZ [133], Cheap-

BFT [83] and HotStuff-M [135] have been proposed. Although all of these protocols yield

interesting designs, we believe too much trust is made on trusted components.

In this chapter, we analyze the design of existing trust-bft protocols and unearth the over-

looked design limitations of these trust-bft protocols. We want to argue against the prevalent

belief that existing trust-bft protocols yield higher throughputs than their bft counterparts. Our

study illustrates that existing trust-bft protocols provide limited safety, liveness and concurrency
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in comparison to bft protocols. The goal of our study is not to demerit the opportunities provide by

existing trust-bft protocol, but to illustrate their design limitations and provide straightforward,

yet intuitive solutions. Next, we enlist our observations and solutions:

Observations: Our analysis of existing trust-bft protocols has illustrated several challenges

posed by their designs, which we illustrate next.

(A1) Weak Quorums limit Liveness. As trust-bft protocols have access to only f + 1

non-faulty replicas, their consensuses depend on weaker quorums. Unlike bft protocols where at

least two-thirds of the replicas (at least f + 1 of these would be non-faulty) need to agree on the

primary proposed order for a request, trust-bft protocols just need a majority of replicas to

agree. As a result, in trust-bft protocols, f byzantine replicas need just one non-faulty replica

to get any request committed.

If the primary is byzantine, and the network is unreliable, then the byzantine replicas can ensure

that neither the system makes progress, nor the primary is replaced. Such an attack only occurs

in existing trust-bft protocols, a consequence of their support for weak quorums.

(A2) Dependence on Byzantine Host. trust-bft protocols assume that none of the

trusted components are compromised, this despite some of the host replicas being byzantine. How-

ever, trusted components can crash fail, lose power, or restarted by the host. Under such conditions,

a trusted component may have its logs wiped-out or counters reset.

Prior works present no solutions on how to recover such a crashed trusted component without

violating safety. Further, our observations reveal that in the worst case, a recovering trusted

component may need to wait for states from all the replicas.

(A3) Sequential Transaction Processing. Existing trust-bft protocols vision higher

throughputs than their bft counterparts. However, they offer designs which are sequential and can

only process one client request at a time. This severely impacts their performance as bft protocols

have been shown to employ pipelining, multi-threading, and out-of-order message processing. As

a result, despite having f less replication, existing trust-bft protocols yield lower throughputs

than their bft counterparts.

Solutions: Following our observations that illustrate implicit challenges in the architecture of

existing trust-bft protocols, we set out to resolve these challenges. Next, we enlist our solutions.
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(S1) Crash Recovery Protocol. To allow a crashed trusted component recover post failure,

we present a succinct recovery protocol. Our recovery protocol ensures that the crashed trusted

component successfully recovers its state once it receives states from f + 1 other replicas.

(S2) Concurrent Trusted Consensus. To facilitate concurrent request processing by ex-

isting trust-bft protocols, we present simple modifications in the way a host replica accesses its

trusted components. Further, we state simple steps which can be employed to convert an existing

trust-bft protocol into its concurrent variant (we refer to these variants as Ctrust-bft).

(S3) Lightweight Live Consensus. Existing trust-bft protocols require each replica to

host a trusted component. Further, prior to sending any message, the host replica needs to get it

attested by its trusted component. This process is neither efficient, nor it prevents liveness anom-

alies (Observation A1). Hence, we present straightforward extensions of existing bft protocols,

which we refer to as lft-bft protocols to resolve these challenges. Our lft-bft protocols require

only the primary replica to access trusted components and offer efficient consensus than both bft

and trust-bft protocols.

6.1.1. Trusted Byzantine Fault Tolerance.

Although Pbft facilitates a bft consensus among the replicas of a system, it is clearly expensive.

Pbft requires multiple phases of quadratic communication complexity among 3f + 1 replicas.

Several recent works try to reduce the costs associated with Pbft by reducing the number of

phases or linearising the communication [48, 87, 137]. However, all these optimized bft protocols

still face two challenges:

(C1) Excessive Replicas. These bft consensus protocols require at least f more replicas

than their crash fault-tolerant counterparts [89, 107].

(C2) Equivocation. Replicas have the power to lie, that is, they can communicate different

messages to different replicas.

Chun et al. [24] introduced the concept of trusted components in bft consensus to resolve

challenges C1 and C2.

Expanded Notations. We assume our replicated service S to include a set I of trusted

components apart from sets R and C.
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Figure 6.1. Schematic representation of the Pbft-EA consensus protocol.

Definition 6.1.1. A trusted component t ∈ I is a cryptographically secure entity, which has a

negligible probability of being compromised by byzantine adversaries. t provides access to a shielded

execution environment. Any replica R can communicate with t only through a series of predefined

functions. Updates to t’s state are additive in nature and cannot be rollbacked.

As our service S is distributed, it is assumed that each R ∈ R has access to an independent co-

located trusted component tR. This allows tR to guarantee integrity of any function computation.

Further, tR can be requested to attest its computation using cryptographic signature schemes. To

achieve all of these properties, our service S makes the following two assumptions:

(1) Each tR is honest or non-faulty.

(2) if an adversary compromises a replica R, it cannot compromise its tR.

The assumptions made by our service are not new and our so prevalent in literature that in the

past two decades several novel bft protocols have been proposed that employ trusted components

to achieve arguably efficient consensuses. In the rest of this chapter, we refer to these protocols as

trust-bft protocols.

Optimal Trusted Computations: It is clear by now that these trusted components perform

some computation on behalf of the replicas, which allow trust-bft protocols to reduce replication

and provide non-equivocation. Prior works have shown that trusted components either provide

access to a trusted log [24] or trusted counter [92]. A2M [24] requires each trusted component

to provide access to several append-only trusted logs. Each replica could access a specific trusted

log through simple functions, such as append, advance, truncate, lookup, and end. TrInc [92]

proposed equipping each trusted component with monotonically increasing counters, and with

slight modifications, aforementioned functions can be used to access these counters. Following the

use of trusted counters by TrInc, almost all the subsequent trust-bft protocols have adhered to
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this design [28, 83, 133]. As a result, in the rest of this chapter, we primarily assume the use of

trusted counters and will explain the necessary differences in the case of trusted logs.

Description of Functionality: Irrespective of whether a trusted component provides access

to logs or counters, the underlying trust-bft protocol needs to provide APIs or functions that

can be used by replicas to access the corresponding trusted component. Further, each trusted

component provides access to multiple trusted-counters or trusted-logs. Generally, these counters

or logs can be accessed through the following two functions:

(1) Append(id, k, x) – Assume the id-th counter at some tR has value ct.

• If k =⊥ (sequence number is unspecified), tR binds x to ct+ 1.

• If k > ct, tR updates ct = k and binds x to ct.

In the case of a trusted log, x is appended to the position ct in the log. Finally, Append function

returns the following attestation 〈Attest(id, ct, x)〉tR as a proof of this binding.

(2) Lookup(id, ct) – In the case of trusted logs, returns an attestation 〈Attest(id, ct, x)〉tR
for the value bound at position ct in log id.

Fault-Tolerance Requirements: Existing trust-bft protocols expect that in a system of n =

2f + 1 replicas at most f replicas are byzantine.

This implies that these trust-bft protocols are able to provide higher fault-tolerance with a

smaller set of replicas (reduced replication). As these protocols employ trusted components, their

replicas are unable to equivocate, which in turn restricts the possible range of byzantine attacks [28].

To illustrate the general working of a trusted protocol, we analyze the design of the Pbft-EA

protocol, which is inspired from Pbft but employs trusted components and requires only 2f + 1

replicas [24]. We use Figure 6.1 to illustrate the steps. Both Pbft and Pbft-EA require same

number of phases to achieve consensus on a client transaction. However, there are some noteworthy

differences, which we state next:

(O1) Less Communication. Owing to a smaller set of replicas participating in each phase of

the consensus, Pbft-EA communicates less messages than Pbft.

(O2) Smaller Quorums. trust-bft protocols permit replicas to wait on smaller quorums.

For instance, in the Pbft-EA protocol, each replica R only waits for nf = f +1 Prepare messages
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before it can broadcast Commit messages. Similarly, when R receives nf = f+1 Commit messages,

it marks the client transaction as committed and executes the same.

(O3) Sequential Trusted Computations. Existing trust-bft protocols like Pbft-EA

require each message sent by a replica to be ordered and signed by the local trusted component.

To achieve this task, the trusted component tR at a replica R maintains a distinct set of counters

for each type of messages communicated during consensus. In the case of Pbft-EA protocol, tR

stores five distinct counters, corresponding to Preprepare, Prepare, Commit, Checkpoint,

and ViewChange messages.

The primary P calls the Append(id,m, k) on a client request m to assign it a sequence number

k. If k is valid, then tP increments the id-th preprepare counter accordingly and returns a attes-

tation 〈Attest(id, k,m)〉tP , which primary forwards to all replicas along with the Preprepare

message.

Each replica R on receiving the m′ := Prepare message can check if the accompanying attes-

tation is valid. If it is the case, then R calls the Append(id,m′, k) to assign it a sequence number k.

For a valid k, tR updates its id-th prepare counter and returns the attestation 〈Attest(id, k,m′)〉tR .

On receiving f +1 identical Prepare messages with attestations, R sends out m′′ := Commit mes-

sages with attestation 〈Attest(id, k,m′′)〉tR where this time k is the value of id-th commit counter.

Similarly, other counters are accessed as required by the underlying consensus protocol. For trusted

logs, the messages are appended at the k-th position in their respective logs (with identifier id).

This design of Pbft-EA protocol is inherited by every other trust-bft protocol and sharply

contrasts the design followed by existing bft protocols. In existing trust-bft protocols, every

replica has to return an attestation for each message it sends to other replicas. This attestation

serves as a proof that the message has been assigned a monotonically increasing counter value or

log position. This forces these protocols to process each message one-by-one [24, 28, 92, 133, 135]

(O4) Checkpoints. Like bft protocols, trust-bft protocols also share checkpoints, peri-

odically. These checkpoints reflect the state of a replica R’s trusted component tR and help to

truncate logs. If tR employs trusted logs, then it attests a snapshot of its logs and attaches it to

the outgoing Checkpoint messages.
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In the case tR employs trusted counters, a snapshot of its counters provides very little state

information. Hence, protocols employing trusted counters also include a minuscule log that can

hold a constant number of recent entries [92]. As a result, these protocols also a snapshot of this

minuscule log.

Unlike existing bft protocols, in a trust-bft protocol, each replica R marks its checkpoint as

stable if it receives Checkpoint messages from f + 1 other replicas (can include its own message).

(O5) Message Retransmission. Unlike bft protocols that allow messages to be lost, trust-

bft protocols expect that each message is eventually delivered. To achieve this goal, they expect

existence of some mechanism or technology that supports message retransmissions [24, 28, 133, 135].

6.1.2. Guarantees and Challenges.

Past two decades have given rise to several trust-bft protocols, such as Pbft-EA [24], MinBft [133],

MinZyzzyva [133], CheapBft [83], and HotStuff-M that stick by observations O1 to O5. We

now look at the safety and liveness guarantees offered by these protocols.

• Safety. trust-bft protocols provide same safety guarantees as their bft counterparts

under the assumption that no trusted component is faulty.

• Liveness. trust-bft protocols provide same liveness guarantees as their bft counterparts

under the assumption that all messages are eventually delivered.

Akin to existing bft protocols, the primary replica in trust-bft protocols can also act byzan-

tine. Although the primary cannot equivocate, it can avoid sending messages to some replicas.

Further, the primary P can decide to ignore one or more client requests. If such is the case,

then trust-bft protocols also provide access to a view-change protocol [24, 83, 133]. If at least

nf = f + 1 replicas trigger the view-change protocol (by broadcasting Viewchange message),

then P is replaced and another replica R ∈ R \ P is designated as the new primary. Notice

that the quorums to replace the primary in trust-bft protocols are also smaller than their bft

counterparts.

Despite their exciting designs, these trust-bft protocols possess several design limitations.

In the rest of this chapter, we attempt to illustrate these overlooked design limitations. First,

we illustrate how these trust-bft protocols offer restricted liveness in comparison to their bft

counterparts. Next, we illustrate how these trust-bft protocols are unsafe if trusted components
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at byzantine replicas crash. Finally, we argue that these trust-bft protocols lack opportunities

to run consensuses on multiple requests in parallel.

6.1.3. Lack of Liveness under Message Loss.

Existing trust-bft protocols claim to provide same liveness guarantees as their bft counter-

parts. However, these trust-bft protocols expect eventual message delivery through message

re-transmissions [24, 83, 133]. This is a stronger requirement than what is expected by traditional

bft protocols. Prior to arguing the practicality of message re-transmission assumption, we first

prove our claim.

Claim 1. In a replicated service S of replicas R, clients C, and trusted components I, where

|R| = n = 2f + 1, loss of messages to at least one replica can affect system liveness.

Proof. Assume a run of the Pbft-EA protocol. We know that F ⊂ R replicas are faulty

and |F| = f . Let us distribute the nf = |R \ F| non-faulty replicas into sets D and G, such that

1 ≤ |D| ≤ f and |G| = nf − |D| ≥ 1. Assume that the primary P is byzantine (P∈F) and all

the replicas in F want to prevent replicas in set D from participating in consensus for a client

transaction T . As a result, the replicas in F do not send any messages to replicas in D. Further,

assume that the Prepare and Commit messages from the replicas in G to those in D are lost.

Say, the replicas in F work together to ensure that the replicas in G successfully commit the

transaction T , but choose not to reply to the client. As a result, the client receives less than f + 1

responses and eventually, complains to all the replicas. Replicas in G will act on the complain by

replying back to the client as they have already executed T , while replicas in D will trigger the

view-change protocol. We know that for a view-change to take place at least f + 1 replicas should

agree. Hence, neither the view-change will take place, nor the client will receive sufficient responses

for transaction T . As a result client can no longer make progress, which violates the termination

guarantee as defined in Section 2.1. �

Our Claim 1 illustrates that existing trust-bft protocols cannot make progress even when one

non-faulty replica suffers message loss. For these protocols to continuously make progress, despite

message loss, there needs to be a mechanism that can guarantee timely message re-transmission.
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6.1.4. Weak Quorums.

Although Claim 1 proves that existing trust-bft protocols are not live, it is unclear how the

traditional bft protocols thwart such an attack. To explain this, we wish to highlight the existence

of weak quorums in trust-bft protocols.

As described earlier, trust-bft protocols have access to smaller quorums in comparison to

traditional bft protocols. For example, in the Pbft-EA protocol, f faulty replicas can get any

transaction committed if they receive support of one non-faulty replica. This implies that these

trust-bft protocols are limited in design by their weaker quorums–a little over 50% support is

needed to commit a transaction.

In comparison, bft protocols such as Pbft require at least 2f + 1 Commit messages to mark

a request committed (around 67% support). Notice that in bft protocols, there are n ≥ 3f + 1

replicas. The larger set of replicas in a bft protocol ensures that each committed transaction

receives support of at least a majority of non-faulty replicas (f + 1). As a result, the replicas in F

can prevent at most 1 ≤ |D| ≤ f replicas from participating in the consensus. Hence, the faulty

replicas are never in majority while determining the fate of any transaction.

This yields a stronger guarantee as either the client will receive f + 1 matching responses, or at

least f + 1 non-faulty replicas will be eager to replace the current primary. As a result, the system

continues making progress.

6.1.5. Message Retransmissions.

A key reason for existing trust-bft protocols to ignore the liveness attack stated in Claim 1 is

that they assume support for message re-transmissions. If every non-faulty replica in a trust-

bft protocol is guaranteed to participate in each consensus, then the system will continue making

progress. We wish to claim that this is a strong assumption, which is hard for any system to meet.

Prior to proving that message re-transmissions are hard to achieve, we need to design a simple

algorithm that dictates message re-transmissions under failures. Note: although all the existing

trust-bft protocols require message retransmissions, they do not present any algorithm or im-

plementation detail regarding the same. We use Figure 6.2 to show how a replica R1 can try

transmission of message m to another replica R2.
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Initialization:
// R1 sends a message m to R2.
// ∆ := digest(m), digest of message m

retransmit (used by R1 to resend message to R2) :

1: event R1 timeouts waiting for 〈Ack(∆)〉R2 message from R2 do
2: Resends the message m to R2.
3: event R1 receives an 〈Ack(∆)〉R2 message from R2 do
4: Marks the message m as sent.

ack-transmit (used by R2 to resend Ack message to R1) :

5: event R2 receives message m from R1 do
6: Sends 〈Ack(∆)〉R2 to R1.

Figure 6.2. A simple message retransmission protocol.

Although message retransmission protocol stated in Figure 6.2 requires just six steps, it does

not guarantee termination. For each message m transmitted by R1 to R2, there needs to be a

subsequent acknowledgement message 〈Ack(∆)〉R2 from R2 to R1. This 〈Ack(∆)〉R2 includes a

digest ∆ := digest(m) of m and is signed by R2. The reception of an 〈Ack(∆)〉R2 message by R1

proves to R1 that R2 did receive m. Further, as m can get lost, R1 may never receive an Ack from

R2. As a result, R1 needs to set a timer for each message m it transmits to R2. Once, the timer

expires, R1 retransmits the message m to R2.

Moreover, any message retransmission protocol should detect non-responsiveness of the byzan-

tine replicas. For example, if R2 is indeed byzantine, then it may never send an Ack message to

R1. Under such a case, the protocol of Figure 6.2 would never terminate. Next, we prove that

impossibility of message retransmissions.

Claim 2. Given a sender R1 and a receiver R2, such that R1 wishes to transmit a message m

to R2, it is impossible for R1 to conclude that R2 received m if the network is unreliable or R2 is

byzantine.

Proof. Let us assume that it is always possible for the sender R1 to conclude if the receiver

R2 received m or not. Hence, we need to consider two cases: (i) when the network is unreliable,

and (ii) when R2 is byzantine.

Case 1. Say R1 can conclude that R2 received m despite existence of an unreliable network.

This implies that R1 will be able to terminate the protocol in Figure 6.2. If this is the case, then R1

will always receive an Ack for m. As the network is unreliable, it is safe of assume that message
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m always gets lost. This implies that R2 may never receive m and as a result, never sends an

Ack. As a consequence, R1 will periodically timeout and resend m. This is a contradiction to our

assumption that R1 is able to terminate the protocol in Figure 6.2.

Case 2. Say R1 can conclude that R2 received m even if R2 is byzantine. This implies that

R1 will be able to terminate the protocol in Figure 6.2. If this is the case, then R1 will somehow

receive an Ack for m. As R2 is byzantine, despite receiving m, it may never send an Ack to

R1. As a consequence, R1 will periodically timeout and resend m. Notice that R1 cannot mark

R2 as byzantine as it is impossible for it to distinguish whether R2 is byzantine or the network is

unreliable. This contradicts our initial assumption. �

6.1.6. Lack of Safety under Trusted Component Failure.

With the advancement of technology, it is safe to assume that compromising these trusted com-

ponents is hard. However, any trusted component can simply crash or lose access to its log. As

a consequence, the trusted component will lose all its data or counter values. In this section, we

claim that a simple crash failure of a trusted component can make the system unsafe.

Crash Failures vs. Message Loss. We visualize crash failures different from message loss

or indefinite delays. A replica suffering message loss is similar to one that has been partitioned

from rest of the network (unable to communicate with other replicas). A key cause for partitioned

replicas or message loss is an unreliable network. Despite partitioning, a replica is aware of its state

and will eventually timeout and blame it on the primary by requesting a view-change. Whether

the view-change is successful or not depends on how quickly is the partitioning is resolved and how

many other replicas are interested to replace the primary. Under a crash failure, a replica may lose

its data. Once a replica is up again after a crash, it tries to recover its state by communicating

with other replicas. During a crash, a trusted component at a byzantine replica may loose value of

its logs or counters.

To prove our claim, we need to crash the trusted component of only one byzantine replicas.

Notice that we are not expecting any more failures than f as we only require the trusted component

at a byzantine replica to fail. Further, imagining such an attack is not hard as although a byzantine

replica cannot compromise its trusted components, it can always restart its hardware, destroy logs,
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and perform other external attacks. Prior to arguing the nature of our presented attack, we first

prove our claim.

Claim 3. In a service S, crash-failure of the trusted component tR ∈ I at a byzantine replica

R ∈ F violates safety.

Proof. Assume a run of the Pbft-EA protocol. We know that F ⊂ R replicas are faulty

and |F| = f . Let us distribute the nf = |R \ F| non-faulty replicas into sets D and G, such that

|D| = f and |G| = nf − f = 1. Assume that the primary P is byzantine (P∈F) and all the replicas

in F want to prevent replicas in set D from participating in consensus for a client transaction T .

Further, assume that the Prepare and Commit messages from the replica in G to those in D are

indefinitely delayed. However, replicas in F and G are successful in committing T and the client

receives f + 1 identical responses and marks the transaction complete.

Now, assume that the trusted component tR ∈ I for a replica R ∈ F crashes, loses the value of

its counters and restarts. On recovery, tR needs to wait for states from f other trusted components,

total f + 1 by including its own state. Assume tR only receives states from trusted components in

D. As all of these states have no knowledge of transaction T , so tR concludes no transaction has

been ordered. This results in a safety violation as we now have a majority of replicas in R that

does not marks T as committed even though the client assumes T as completed. �

6.1.7. Dependence on Byzantine Host.

To understand the safety violation presented in Claim 3, we need to analyze the steps to recovery.

First, failures of trusted component is an unexplored topic in the trust-bft literatures. Existing

trust-bft claim to guarantee consensus safety with small quorums of f +1 replicas until no trusted

component is byzantine. In Claim 3, we fail a trusted component.

The key reason these trust-bft protocols face the safety violation of Claim 3 is because they

have a dependence on trusted components at byzantine replicas. In comparison, in bft protocols,

a byzantine replica is free to assume any state after a crash as the underlying protocol is not

dependent on the safe recovery of the byzantine replica. This implies that in a bft protocol, if

a byzantine replica does not want to recover its state, it can start participating in the consensus

as soon as it restarts after the crash. This behavior does not affect the fate of already committed
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transactions as for each such transaction, there are always f +1 non-faulty replicas that have marked

the same.

For trust-bft protocols to prevent the attack of Claim 3, every crashed trusted component,

irrespective of whether it is co-located with a faulty or non-faulty replica, needs to wait for signed

states from f + 1 other trusted components before marking its recovery as complete. This implies

a failed trusted component cannot include its own state to reach this f + 1 count, something which

it could do during the Prepare, Commit, and Checkpoint phases. We summarize this in the

following definition.

Definition 6.1.2. A fail-crashed trusted component tR ∈ I at a replica R needs to wait for at-

tested states from f +1 other trusted components to recover its state. Further, tR cannot participate

in any phase of the consensus during its recovery.

6.1.8. Recovery Protocol.

Definition 6.1.2 illustrates that any crashed trusted component that wishes to recover its state

needs to wait for states from f + 1 other distinct trusted components. As at most f + 1 replicas out

of n are non-faulty so a failed tR may need to wait for messages from all the non-faulty replicas.

Why? Because the remaining f−1 replicas may act byzantine and may not want to help tR recover

its state. As a consequence, they may not send their states to tR.

To facilitate efficient recovery of tR, we present a recovery protocol in Figure 6.3. Using this

protocol, a recovering tR attempts to learn committed client requests (if any) corresponding to each

sequence number since the last checkpoint. If the primary P is byzantine, then it may ensure that

only one non-faulty replica commits each client request and all the f byzantine replicas participate

in each consensus. As a result, tR may end up waiting for messages from all the non-faulty replicas.

Furthermore, P may ask its tP to assign client requests non-consecutive but monotonically

increasing sequence numbers. This implies that no message may be assigned to some sequence

numbers. Such empty sequence numbers are considered skipped and delay the recovery protocol as

unless tR receives states from all the non-faulty replicas, it cannot generate the complete state.
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recover (used by R to facilitate its recovery) :

1: event Trusted component tR finds its logs empty or counters reset do
2: tR creates m := 〈Recover〉tR and forwards m to R.
3: R forwards m to all the replicas.

4: event R receives m := 〈Snapshot(l,S, C)〉tR′ from R′ do
5: Forwards m to tReplica, which performs following steps.
6: event tR waits for 〈Snapshot(l,S, C)〉tR′ from f + 1 replicas do
7: mc := Identifier of most recent checkpoint among all C.
8: ml := Largest identifier among all l.
9: S := Set of f + 1 S.

10: for i in mc to ml do
11: if Exists a request with sequence number i in S then
12: Update the state and add it to the log.

snapshot (used by R′ to help a crashed replica recover) :

13: event R′ receives message m := 〈Recover〉tR do
14: Forwards m to its trusted component tR′ .
15: event tR′ receives 〈Recover〉tR do
16: C := Last checkpoint with proofs (Checkpoint messages from f + 1 replicas).
17: S := All the committed requests with proofs since last checkpoint.
18: l := Highest sequencer number in S.
19: tR′ creates m := 〈Snapshot(l,S, C)〉tR′ and forwards to R′, which forwards m to R.

Figure 6.3. Recovery protocol to help a fail-crashed trusted component at a replica
recover its state.

Once tR has determined all the client requests, it updates its associated counters or logs and

is ready to participate in the consensus protocol. Further, during the recovery process, tR ignores

any other messages it receives.

Protocol Description. Our recover protocol requires two phases of communication and guar-

antees termination if the network is reliable. The protocol expects trusted components to log their

requests as counter-based designs cannot provide commit-proofs unless they also store their ex-

changed messages. In the first phase, the recovering replica R’s trusted component tR discovers

that its logs are empty or counters are reset. So, tR constructs a Recover message and requests

R to forward this message to all the replicas.

When a replica R′ 6= R receives a valid Recover message, then it forwards it to its tR′ . This

allows the tR′ to create a Snapshot message. This Snapshot message includes the highest agreed

checkpoint C and all the committed requests with proofs S since the last checkpoint. When the

recovering replica R receives Snapshot messages from f +1 distinct replicas, it initiates the process

of updating its state. For this, tR tries to find a request corresponding to each sequence number
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between the highest checkpoint and the largest committed identifier. Next, we argue termination

of our recovery protocol.

Theorem 6.1.3. If the network is reliable and a replica R delivers all the incoming Snapshot

messages to its crashed trusted component tR, then the tR can recover its state successfully if it

employs the algorithm of Figure 6.3.

Proof. Assume that the algorithm of Figure 6.3 does not terminate. This implies that a

crashed tR can never successfully recover. If such is the case, it implies that tR never got Snapshot

messages from f +1 distinct replicas. We know that the network is reliable and the replica R delivers

any Snapshot messages it receives to tR. Further, at most f − 1 replicas could act faulty. As a

result, at least f + 1 non-faulty replicas will send a Snapshot message to R. This contradicts our

assumption. �

6.1.9. Lack of Concurrency Opportunities.

In this section, we illustrate how existing trust-bft protocols inhibit opportunities of con-

currently processing multiple requests. Specifically, we want to argue that existing trust-bft

protocols are slower than their bft counterparts.

As illustrated in Observation O3, trust-bft protocols require their trusted components to

attest each message prior to broadcasting that message on the network. This attestation acts as

a proof that the trusted component logged the message at the required position or assigned the

message corresponding value of the counter. We use Claim 4 to prove that this design inhibits

concurrent processing of client requests.

Claim 4. In a service S employing Pbft-EA protocol, if a non-faulty primary P assigns two

transactions Ti and Tj sequence numbers i, j, such that i < j, then P cannot initiate consensus on

Tj before completing consensus on Ti.

Proof. Assume that P allows consensuses of Ti and Tj to run concurrently. This implies that

a replica R may receive Preprepare for Tj before Ti. Further, we know that when R receives

any transaction, it asks its tR to append it to the log or assign it a counter value and expects an

attestation in return. As a result, R would have an attestation 〈Attest(id, j, T j)〉tR , which it will

forward with the Prepare message to all the replicas.
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Now, when R receives Preprepare message for Ti, its tR will ignore this message as its log

or counter are already set at j (i < j) and the Append() function prevents processing a lower

sequence number request. As a result, R cannot forward a Prepare message for Ti. This implies

that the consensus of Ti may never complete, which contradicts our assumption as a non-faulty

primary always tries to successfully reach consensus on each request. �

Our Claim 4 applies to all the existing trust-bft protocols, irrespective of whether they employ

trusted logs or counters. Hence, these protocols are unable to concurrently run consensus on mul-

tiple client requests, which is employed by existing bft protocols to increase their throughput [21].

The key reason trust-bft protocols are unable to process requests concurrently is because the

Append operation only allows appending to monotonically increasing positions in the log. This

inhibits the primary replica from initiating multiple concurrent consensuses. We wish to claim that

trust-bft designs employing trusted-logs can be allowed to process client requests concurrently.

Notice that our claim do not extend to implementations employing trusted-counters.

6.1.10. Facilitating Concurrent Consensuses in Trusted Logs.

trust-bft protocols employing trusted components with trusted logs require a small set of changes

to facilitate concurrent request processing. As these protocols log all the requests since last check-

point, it is easy for non-faulty replicas to delay ordering client requests until execution. This implies

that to guarantee safety, each trusted component only needs to log each request and present a proof

when required. This allows us to present updated APIs for the log accessing functions.

(1) AppendC(id, x) – Assume the id-th log of a tR is at position ct. This function appends x

to the position ct, moves ct to ct+ 1, and returns the attestation 〈Attest(id, ct, x)〉tR as a proof

of this binding.

(2) LookupC(id,m) – Returns an attestation 〈Attest(id, S)〉tR where S is a snapshot of the

log holding m.

In the AppendC function, a tR appends a message m to the next available position in the log.

Notice that the replica R no longer proposes any sequence number for m. As a result, the sequence

number for each request corresponds to its position in the log. Similarly, in the LookupC function,

a tR returns as attestation a snapshot of the log that includes the message m.
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6.1.10.1. Protocol for Concurrent Consensus. With the help of our AppendC and LookupC

functions, it is easy to redesign a majority of existing primary-backup trust-bft protocols such

that they provide support for concurrent request processing. Next, we state the general flow for

these redesigned protocols.

• When the primary P receives a client request m, it uses AppendC function to log m at its

trusted component tP . In return, P receives an attestation 〈Attest(id, ct,m)〉tP , which suggests

that tP added m to the id-th preprepare log and ct acts as the sequence number for m.

• Prior to sending any message m, each replica R calls the AppendC(id,m) function to access

its tR. As a result, tR appends m to the log with identifier id.

• Once tR has appended m to the log, it takes a snapshot S of its log id and generates an

attestation 〈Attest(id, S)〉tR . The snapshot could be as simple as the last appended message m.

• Although we allow concurrent processing, we require access to trusted logs be either single-

threaded or in a mutex.

• Each replica R executes each request in the order suggested by tP . As a result, once a replica

R has completed consensus on a client request Tj, it delays executing Tj until it has executed every

transaction Ti, such that i < j.

Using the steps stated above, we can transform an existing primary-backup trust-bft protocol

into a variation that allows replicas to process requests concurrently. In the rest of the chapter,

we refer to such variations as Concurrent trust-bft (Ctrust-bft). Our Ctrust-bft protocols

employ the existing view-change protocols to replace the primary in case of failures. Further, the

recovery protocol we introduced in Section 6.1.8 can be applied to these protocols without any

changes. Such is the case because these Ctrust-bft protocols require their trusted components

to log all the transactions, albeit not in order. Moreover, all the replicas execute requests in the

order proposed by the primary1. Next, we prove that our Ctrust-bft protocols are safe.

Theorem 6.1.4. A service S = {R,C,t} employing a Ctrust-bft protocol where each trusted

component has access to trusted logs yields a safe consensus.

Proof. We prove this as follows:

1Our Ctrust-bft protocols can also employ optimizations that allow parallel execution of independent transactions
without affecting their safety [84].
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If the primary P is non-faulty, then all the non-faulty replicas in R participate in consensus of

each request proposed by P and execute them in the order they are logged by tP .

If the primary P is byzantine, then it can prevent at most D, 1 ≤ D ≤ f , non-faulty replicas

in executing any request. Such a primary may force the replicas in D to participate in consensus

of several requests but cannot force them to execute any request out-of-order. Notice that the

AppendC function disallows skipping any log position unlike the Append function. Further, P

needs support of at least g = D− f replicas to make client believe that its request is complete as a

client needs f + 1 identical responses. Moreover, P cannot equivocate as each request is assigned a

sequence number by its tP .

If P prevents a non-faulty replicas in executing any request, then it may get replaced. Post

committing a request, each replica R starts a timer which runs until the request is executed. If

the timer timeouts, then R sends a ViewChange message to all the replicas. When f + 1 replicas

support view-change, then the new primary helps all the replicas reach a common state and starts

the new view.

If the network is unreliable, then the messages sent by primary or replicas may get indefinitely

delayed or dropped. This will either prevent some replicas in executing the requests, or may cause

a primary replacement. However, it cannot make the system unsafe. �

6.1.11. Concurrency Dilemma of Trusted Counters.

In the previous section, we illustrated that it is possible to parallelize existing trust-bft protocols

that employ trusted logs. However, we cannot extend similar insights to the trusted counter based

implementations. In specific, if our Ctrust-bft protocols employ trusted counters instead of

trusted logs, then such implementations would be unsafe. Any Ctrust-bft protocol that wants

its trusted components to employ a trusted counters need to also provide a support for trusted

logs. We prove this next.

Claim 5. A service S = {R,C,t} employing a Ctrust-bft protocol where each trusted com-

ponent has access to only trusted counters cannot guarantee a safe consensus.

152



Proof. Assume that a Ctrust-bft protocol employing trusted counters yields a safe consen-

sus. This implies that each request executed by a replica R will persist across view-changes. In

specific, it is safe for a client to mark its request as complete if it receives f + 1 identical responses.

Let us divide n replicas into three sets: F = f be the faulty replicas, D = f be the non-faulty

replicas, and g = F − D be the remaining non-faulty replica. Assume that the primary P is

byzantine, P ∈ F . Let mi denote the message m with sequence number i assigned by tP (value of

the counter). We assume that P receives three client requests mi, i ∈ [1, 3].

Now, byzantine P sends Preprepare(m1) to g, Preprepare(m2) to D, and the replicas in

F receive Preprepare for all messages from m1 to m3. Further, assume that messages from g to

D and vice versa are lost and replicas in F only send required number of messages, to help g and

D to commit their respective messages.

As a result, replicas in g and D will successfully commit messages m1 and m2, respectively.

Further, g can execute m1 and reply to the client. Notice that replicas in D have to wait as they

do not have access to m1. However, replicas in F can successfully execute both m1 and m2 and

can reply to the clients.

The client for request m1 will receive f + 1 responses and will mark the request as complete.

Notice that all the trusted counters for replicas in g and D are at one. Assume that the replicas in

F − P avoid processing request m3. In such a case, the counters of replicas in F − P are at two.

Assume a view change takes place and g is partitioned (unable to communicate with any

replica). Let the new primary P′ be from D. P′ initiates new view once it receives ViewChange

messages from f + 1 replicas. In such a case, P′ may receive messages from replicas in D and one

replica in F . As replicas in D only committed m2, they have no knowledge of m1. The one faulty

replica from F will claim no knowledge of m1 by stating that it only received m2 and m3 from the

primary. To prove this it will show the value of its counters set at two. Hence, P′ will conclude

that no request got executed in previous view, and only m2 was committed. This decision makes

the system unsafe. �

6.1.12. Lightweight Trusted Consensus.

Ctrust-bft protocols aim to bridge the gap between the performance achieved by existing bft
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and trust-bft protocols. Although Ctrust-bft protocols scale better than their bft counter-

parts, their throughputs are limited by excessive logging. We now envision the design of byzantine

fault-tolerant protocols employing trusted components that can meet the following two goals:

(G1) No Trusted Logging. A Ctrust-bft protocol that does not require messages to be

logged in trusted logs.

(G2) Minimal Active Trusted Component. A Ctrust-bft protocol that requires only

few active trusted components.

Assume that we are able to derive the design of a Ctrust-bft protocol that satisfies our

Goals G1 and G2. Such a protocol would be lightweight, fast and trustable. Hence, we would refer

to these protocols as lft-bft protocols. These lft-bft protocols satisfy Goal G1 by requiring

each trusted component to only use trusted counters. To fulfill Goal G2, our lft-bft protocols will

require only a subset of trusted components to participate in each consensus. These participating

trusted components are termed as active while rest are designated as passive.

Our lft-bft protocols require only the primary replica to make use of its trusted component for

assign sequence numbers and attest the incoming client requests. Hence, this trusted component

at the primary is termed as active. At every other replica, the trusted components remain idle

(passive) and do not participate in the consensus.

3f + 1 Replicas: To reduce the amount of trusted logging and to facilitate concurrent request

processing with trusted counters, we need to expand our set of replicas. In specific, we fall back to

the number of replicas needed by existing bft protocols. Our lft-bft protocols expect a system

of n = 3f + 1 replicas. This larger set of replicas provides us with stronger quorums, which helps

to reduce the number of active trusted components and facilitates use of trusted counters.

Why use lft-bft protocols: Before we illustrate the design of our lft-bft protocols, we need

to argue the merit behind these designs. One of the prime reasons for opting trust-bft protocols

is that they help in reducing replication. This implies that by switching back to consensus protocols

that require 3f + 1 replicas, we will be forgoing the gains. Although such an observation is partly

true, it overlooks the costs introduced by existing trust-bft protocols to a replicated system.

We have already illustrated that existing trust-bft protocols cannot run concurrent consen-

suses on client requests. To resolve this challenge, we presented the design of our Ctrust-bft
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protocols. However, Ctrust-bft protocols do not meet our Goals G1 and G2. Managing trusted

logs is expensive. In each phase of consensus, replicas need to exchange attested states among each

other. Our lft-bft protocols not only avoid these costs but also require less communication than

their bft counterparts.

Further, our lft-bft protocols neither face the liveness anomaly of our Claim 1, nor do they

need message re-transmissions to avoid simple message losses. This allows them to provide same

liveness guarantees as their bft counterparts. Finally, as the trusted component at each replica is

passive, our lft-bft protocols do not require a special recovery mechanism to recover their state.

6.1.13. Designing a lft-bft protocol.

We now present steps to convert a primary-backup trust-bft protocol into a lft-bft protocol.

We expect each trusted component to be equipped with trusted counters. Further, we need to

make slight modifications in the APIs used by a replica R to access its trusted component tR.

(1) AppendL(id, x) – Assume the id-th counter of tR has value ct. This function associates ct

with message x and returns an attestation 〈Attest(id, ct, x)〉tR as a proof of this binding. Post

binding, tR increments ct to ct+ 1.

(2) Lookup(id, ct) – Performs no action and returns nothing.

Our lft-bft protocols do not require a Lookup function as non-primary replicas do not access

their trusted components during the consensus phases. This implies that only the primary replica

makes use of the Append function to access its trusted component. Next, we lay down the design

of a lft-bft protocol.

• A service S = {R,C,t} employing a lft-bft protocol to achieve consensus among its replicas

assumes |R| = n ≥ 3f + 1.

• On receiving a client request m := T , the primary P calls the Append(id,m) to access

its trusted component tP . As a result, tP binds the current value of its id-th counter ct to

m and returns an attestation 〈Attest(id, ct,m)〉tP . Next, P initiates consensus by sending the

Preprepare message and its attestation for m to all the replicas in R.

• When a replica R receives a Preprepare message from P, it verifies the attestation. If

the attestation is valid, it agrees to order m at sequence ct and follows the remainder steps of the

consensus protocol. However, R never accesses its passive tR.
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Figure 6.4. Schematic representation of the Min-LFT protocol where only pri-
mary requires access to trusted components.

• Each replica R executes each request in the order suggested by tP . As a result, once a replica

R has completed consensus on a client request Tj, it delays executing Tj until it has executed every

transaction Ti, such that i < j.

6.1.14. Case Study: Min-LFT.

In Section 2.1, we introduced the design of Pbft protocol. Although Pbft yields a safe consensus,

it requires three phases, of which two necessitate quadratic communication complexity. The design

of Pbft led to the Pbft-EA protocol, which reduces the amount of replication by f . Following

this, Veronese et al. [133] introduced the MinBFT protocol, which reduces the cost of consensus by

eliminating one phase of quadratic communication of Pbft-EA. However, MinBFT makes use of

trusted counters under the reduced replication setting (n = 2f + 1). As a result, MinBFT cannot

be converted into a Ctrust-bft protocol.

Using steps stated in Section 6.1.13, we can design a lft-bft-variant of Pbft. We refer to this

protocol as Min-LFT and use Figure 6.4 to represent its normal-case consensus flow. Although

the consensus steps for this protocol are self-explanatory, we highlight its key properties next.

(1) Min-LFT achieves consensus in two phases, and only one of those phases requires quadratic

communication complexity.

(2) Min-LFT requires active trusted components only at the primary replica.

(3) The primary replica require no trusted logs and uses only trusted counters.

(4) Min-LFT supports concurrent request processing.

(5) Each replica marks a request as prepared only it receives Prepare messages from 2f + 1

replicas. Hence, Min-LFT makes use of stronger quorums.
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In case of primary failure, Min-LFT employs Pbft’s view-change protocol. Like Pbft, the

new primary can only initiate a view-change if it receives ViewChange message from 2f + 1

replicas. Next, We prove the safety of Min-LFT’s consensus.

Theorem 6.1.5. In a service S = {R,C,t} where |R| = n = 3f + 1, Min-LFT protocol

guarantees a safe consensus.

Proof. If the primary P ∈ R is non-faulty, then P will require its trusted component tP to

attest each client request m. This attestation will associate a unique counter value ct with m and

all the non-faulty replicas will successfully execute m as the ct-th request in order.

In the case P is byzantine, it can prevent 1 ≤ D ≤ f non-faulty replicas from participating in

consensus for m. However, a non-faulty replica R can mark the ordering of m complete when it

receives Prepare messages from 2f + 1 distinct replicas. For this to happen, P needs to send the

Preprepare for m (along with its attestation) to a majority of non-faulty replicas (at least f + 1).

As a result, if a view-change takes place in future, there will be at least one non-faulty replica that

received m from P. Hence, m will persist across views.

In the case, P attempts to prevent replicas in R from executing one or more requests by

not sending Preprepare messages for consecutively sequenced requests, then P will be replaced

through a view-change. Post view-change, replicas will converge to a common state and will be

able to execute each request. �
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6.2. Byzantine Fault-Tolerant Serverless-Edge Architecture

With the rise of interactive and time-critical applications, the expected performance require-

ments are becoming more stringent. Emerging edge applications, specifically the Internet of Things

(IoT) applications, such as the ones in Industry 4.0, smart spaces, and transport technologies, ex-

pect time-critical responses. Further, emerging edge applications also include mobile applications

that employ immersive technologies such as Virtual and Augmented Reality (V/AR). These appli-

cations require fast compute in the order of ten milliseconds. This stringent latency requirement

makes relying on cloud data centers infeasible as the round-trip latency is in the range of 100

milliseconds to seconds.

The edge-compute architecture can mitigate high latencies due to cloud-based wide-area com-

pute as the data is processed at the edge of the network close to clients. However, edge-compute

architectures often struggle due to limited available storage. As a result, in this work, we envision

an edge-cloud model, where the storage and compute are distributed across the edge and cloud

nodes. The goal of this edge-cloud model is to reap the benefits of both worlds: edge nodes (by

placing time-critical compute and storage functions on edge nodes) and cloud nodes (by placing

extensive compute and storage functions on cloud nodes).

The edge-cloud model faces two daunting challenges: (1) edge nodes cannot be trusted, and

(2) the model needs to be lightweight. The edge nodes are untrusted as they may be operated by

multiple third-party providers that are not in the trust domain of the application. This creates

opportunities for byzantine or malicious attacks. As a result, the edge-cloud model needs to be

Byzantine Fault-Tolerant (bft). However, we may leverage the trust on the cloud—which is typ-

ically in the trust domain of the application such as a private cloud operated by the application

owner or operated by a public cloud partner. Hence, in our edge-cloud model, we trust the cloud,

but expect edge nodes to act byzantine.

We also know that edge nodes have access to limited compute resources in comparison to cloud

nodes. However, time-critical edge applications require access to a varying degree of computational

resources. Depending on the number of application users, the required number of resources throttles

between the high and low. This indicates that an edge application needs to reserve a large amount
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Cluster

Figure 6.5. The serverless-edge system model.

of compute nodes ahead of time. However, reserving hundreds of edge nodes ahead of time is

neither feasible nor beneficial.

In our edge-cloud model, we resolve this challenge by adopting the serverless cloud infrastruc-

ture, which enables lightweight and fine-grained reservation of compute resources. Relying on the

serverless architecture ensures that an application only reserves what it needs and when it needs,

which helps it to monetize its costs. However, a key challenge remains: how can the untrusted edge

nodes interact with the untrusted serverless cloud infrastructure to fulfill a client transaction.

In this work, we propose our ServerlessBFT protocol that tackles the challenge of reliably

connecting untrusted edge nodes and serverless cloud. To ensure that the combination of these

seemingly incompatible technologies does not require extensive coordination, our ServerlessBFT

protocol presents a modular pipeline that tackles each challenge in a specific stage of the pipeline:

bft coordination of edge devices, bft compute processing on serverless cloud, and data storage on

a trusted private database.

6.2.1. The Case for Serverless-Edge Model. Serverless technology eases the use of cloud

resources by allowing users to simply upload their functions (code) and leave the tasks of function

execution, server provisioning, and administration to the cloud. The success of serverless technology

can be gauged from the fact that all the major cloud providers also provide access to some serverless

infrastructure [79, 97]. When a user sends its function to a serverless cloud, the service provider

processes the request by spawning some workers or executor. As a result, the user’s focus is only on

how to design its application, while the serverless cloud focusses on how to execute the application.
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Figure 6.6. Byzantine-Fault Tolerant Serverless Architecture.

Traditional edge applications assume two types of nodes: (i) untrusted edge devices that are

deployed at the edge (for instance on cars for a smart traffic application), and (ii) trusted on-

premise nodes maintained privately by the application organization. Edge devices perform some

in-situ operations, such as data compression, before sending it to the on-premise nodes for processing

and storage.

There are two key challenges with the existing edge model: (i) edge nodes cannot be trusted,

and (ii) application organization may lack resources for a scalable on-premise cloud. To resolve

these challenges, we envision a new serverless-edge model (refer to Figure 6.5). Our serverless-edge

model consists of three major components: untrusted edge nodes, untrusted serverless cloud, and

trusted private storage. To ensure a reliable and lightweight coordination among these components,

we design our ServerlessBFT protocol. Our ServerlessBFT protocol views the set of edge

nodes as a bftsystem and employs appropriate consensus protocols to help edge nodes reach a

reliable agreement.

6.2.2. Serverless-Edge Infrastructure.

Our serverless-edge architecture comprises of three key components: (1) untrusted edge nodes, (2)

untrusted serverless cloud executors, and (3) trusted storage. We vision clients or end-users to

interact with our serverless-edge infrastructure to process their requests. As the three components

in our serverless-edge architecture may be operated by different organizations, which may not trust

each other, we need a resilient protocol that can sustain any adversarial actions. We achieve this

task through our ServerlessBFT protocol that is resilient against byzantine attacks.
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We use Figure 6.6 to illustrate the vision of our serverless-edge architecture. In this figure, we

introduce the notion of a lightweight shim and a trusted verifier apart from our key components.

Next, we explain the tasks of each component.

• Client. Any user that accesses an edge application employing our serverless-edge architecture

becomes a client in our system. We perceive each client interaction as a request or transaction.

• Shim. As the edge nodes perform in situ processing of client request, we cluster the neigh-

boring edge nodes into a shim. Shim nodes work together to validate and order client requests,

prior to forwarding them to the serverless cloud for processing. To achieve this task, shim nodes

participate in a bft consensus protocol. Our shim can employ any existing bft consensus protocol

to achieve agreement among the edge nodes.

• Serverless Exxecutors. Once the shim orders a client request, it forwards the request and

its ordering information to the serverless cloud provider. As we cannot trust the cloud, we spawn

multiple executors at the cloud to process the request. Further, cloud does not trust the shim

(edge nodes). Hence, prior to executing the client request, each executor validates the order for

this request. While executing a client request, executors may require access to the data. As a

result, we allow executors to communicate directly with the trusted storage.

• Verifier. As we trust the storage, we cannot permit executors (some of which could be

byzantine) to issue updates to the database post-execution of a client transaction. Hence, we place

a lightweight trusted verifier at the storage, which controls what updates can be applied to the

storage. The verifier collects results from the executors and once it has a quorum of matching

results, it replies to the client and updates the database.

• Storage. The trusted storage replies to the read requests from the executors and updates

the database on requests from the verifier.

6.2.3. Preliminaries.

To explain how our ServerlessBFT protocol manages resilient communication across our serverless-

edge infrastructure, we need to lay down some of the notations and assumption.

We represent our serverless-edge architecture A through a quintuple, A = {C,R, E ,S,V}. In

this architecture, we use C to denote the set of clients, R to denote the shim of edge nodes, E to
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denote the serverless cloud executors, V and S to denote the verifier and storage, respectively. Next,

we denote the byzantine fault-tolerance requirement expected by our ServerlessBFT protocol.

Fault-Tolerance Requirement at Shim. We use the notation F to denote the set of faulty

nodes in R, and notation NF = R \ F to denote the set of non-faulty nodes. Faulty nodes can

crash-fail or act byzantine. We write nR = |R|, fR = |F|, and nfR = |NF|. As shim nodes work

together to order client requests, they need to participate in a bft consensus protocol. Prior works

have illustrated that for a system of nodes to be bft, it should have at least nR nodes, where

nR ≥ 3fR + 1 (nfR > 2fR + 1) [21, 48, 87]. We expect our shim to meet this requirement.

Fault-Tolerance Requirement at Cloud. To handle attacks at the serverless cloud, we

require the service provider to spawn nE = |E| executors. Like shim, we denote the number of

faulty and non-faulty executors as fE and nfE , respectively. However, to handle fE faulty executors,

we only require nE ≥ 2fE + 1. This leads us to following two important observations:

(1) The values for fE and fR may or may not be same and depends on the application developer.

(2) If fE = fR = f , then our ServerlessBFT protocol expects at least f less executors than

the edge nodes in the shim. Our reduced set of executors is based on a noteworthy insight by Yin

et al. [136].

We use a function id() to assign an identifier to each replica R ∈ R and each executor e ∈ E . We

assume that non-faulty replicas and executors follow the protocol: on deterministic inputs produce

deterministic outputs. We do not make any assumptions on the behavior of the clients and permit

faulty replicas or executors to behave arbitrarily and perform coordinated attacks.

6.2.4. Architecture.

We now explain in detail how our ServerlessBFT protocol ensures resilient transaction processing

in the serverless-edge architecture. ServerlessBFT protocol aims to make the serverless-edge

architecture byzantine fault-tolerant by shielding clients and their trusted storage from attacks while

guaranteeing continuous transaction processing. We use Figure 6.7 to present the transactional flow

through our serverless-edge infrastructure.

In this figure, the shim consists of nR = 4 nodes, which participate in a bft consensus protocol

to order an incoming client transaction. As stated earlier, shim can employ any existing bft

protocol, such as Pbft [21], PoE [65], Zyzzyva [87], Sbft [48], and so on. For the sake of
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Figure 6.7. Schematic representation of the transactional flow in Serverless-
BFT protocol. Given a client transaction T , the nodes of the shim work together
to order this transaction, following which the primary P invokes the executors at
the service provider to execute T . Post execution, the executors send their results
to the verifier, which replies to the client.

explanation, we assume the nodes of the shim follow a primary-backup protocol, such as Pbft,

for ordering client transactions. Post consensus, ServerlessBFT requires the primary node P

to invoke nE = 3 executors at the serverless cloud. These executors send the results of executing

client transactions to the verifier V for validation and updating the database.

Client Request and Response. The ServerlessBFT framework gets into action when a

client c wants a transaction T to be processed. To fulfill this task, c creates a message 〈T 〉c and sends

this message to the primary node P of the shim.2 Notice that c employs DS to sign this message.

The client c marks 〈T 〉c as processed when it receives a Response message from the verifier V. As

c knows that V is a trusted entity in our infrastructure, it readily accepts the response.

Shim Ordering. To reliably order an incoming client request, ServerlessBFT requires the

shim to run a bft protocol. For the sake of explanation, we assume that the shim orders each client

request using the Pbft protocol. As a result, one of the edge nodes of the shim is designated as

the primary node. On receiving a client request 〈T 〉c, the primary P checks if 〈T 〉c is well-formed.

If this is the case, then primary initiates the consensus dictated by the Pbft protocol. Next, for

the sake of completeness, we re-iterate the Pbft protocol.

2 Some bft protocols require a client request to be sent to all the nodes.
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Pre-prepare. The primary P assigns a sequence number k to the well-formed client message

m := 〈T 〉c and sends it as a Preprepare to all the nodes of the shim. This Preprepare message

also includes a digest ∆ = digest(m), which is used in future communication. Notice that primary

signs this message using MAC, which provide sufficient guarantees for this phase.

Prepare. When a node R ∈ R receives a Preprepare message from the primary P, it run it

through a series of checks. If the checks are successful, then R agrees to support the order k for

this client request and broadcasts a Prepare message.

Commit. When a node R receives identical Prepare messages from nfR nodes, it marks the

request m as prepared and broadcasts a Commit messages. Notice that we require each node R to

employ DS to sign the Commit messages. Next, R waits for arrival of identical Commit messages

from nfR nodes If this is the case, then R proceeds to mark m as committed.

Serverless Cloud. When the primary P marks a request committed, it initiates the commu-

nication between the shim and the serverless cloud. Specifically, P invokes nE executors at the

cloud and sends each of them the Execute message for processing.

The Execute message includes the client request 〈T 〉c and a certificate. This certificate X

includes signatures of nfR distinct nodes and proves that a majority of shim nodes agreed to order

this request. Prior to executing the transaction T , each executor e ∈ E checks if the certificate X

is valid. If this is the case, then e attempts to execute T . During execution, if e requires access to

some data, it connects with the storage S and fetches the required data.

Although P invokes nE executors at the cloud, at no point during the execution, we require

these executors to interact with each other. Hence, each executor works independently of other

executors. Post execution, each executor e sends a Verify message to the verifier V, which includes

the result r of executing the transaction T .

Verifier and Storage. When the verifier V receives well-formed and identical Verify mes-

sages from nfE executors, then it has a guarantee that a majority of executors reached on the result

r. Hence, it sends a Response message to the client c. Next, V communicates with the storage S

and forwards the updates corresponding to the result r.
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Client-role (used by client c to request transaction T ) :

1: Sends 〈T 〉c to the primary P.
2: Awaits receipt of message Response(〈T 〉c, k, r) from V.
3: Considers T executed, with result r, as the k-th transaction.

Primary-role (running at the primary node P) :

4: event P receives 〈T 〉c do
5: Calculate digest ∆ := digest(〈T 〉c).
6: Broadcast Preprepare(〈T 〉c,∆, k) to all nodes (order at sequence k).

7: event P receives m := 〈Commit(∆, k)〉R messages from nfR nodes such that:
(1) each message m is well-formed and is sent by a distinct node R ∈ R.

do
8: X := set of DS of these nfR messages.
9: Send 〈Execute(〈T 〉c,X,m,∆)〉P to all executors e ∈ E ,

Non-Primary role (running at a node R ∈ R) :

10: event R receives Preprepare(〈T 〉c,∆, k) from P such that:
(1) message is well-formed, and R did not accept a k-th proposal from P.

do
11: Broadcast Prepare(∆, k) to all nodes in R.

All nodes role (running at the node R) :

12: event R receives Prepare(∆, k) messages from nfR nodes such that:
(1) each message is well-formed and is sent by a distinct node, R∗ ∈ R.

do
13: Broadcast 〈Commit(∆, k)〉R to all nodes in R.

Executor-role (running at the executor e ∈ E) :

14: event e receives 〈Execute(〈T 〉c,X,m,∆)〉P from P such that:
(1) message is well-formed,
(2) m := Commit(∆, k), and
(3) Certificate X includes nfR distinct DS on m.

do
15: while T not executed do
16: if Need to read some data-items then
17: Fetch required data-items from storage S
18: r := Result of executing T
19: Send Verify(〈T 〉c,X,m,∆, r) to verifier V.

Verifier-role (running at the verifier V) :

20: event V receives m′ := Verify(〈T 〉c, A,m,∆, r) messages from nfE executors such that:
(1) each message m′ is well-formed and is sent by a distinct executor e ∈ E .
(2) all have matching result of execution r.

do
21: Send 〈Response(∆, r)〉V to the client c.
22: Send writes to the storage S.

Figure 6.8. Byzantine Fault-Tolerant transaction processing by ServerlessBFT
protocol in the serverless-edge architecture.
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6.2.5. System Guarantees. Having described the flow of our ServerlessBFT protocol, we

now state the guarantees offered by our infrastructure. In specific, serverless-edge infrastructure

satisfies the following properties:

Shim Consistency.: If a non-faulty node commits a transaction T , then all non-faulty nodes

commit T .

Shim Non-Divergence.: If two non-faulty nodes order a transaction T at sequence number k

and k′, then k = k′.

Shim Termination.: If a non-faulty client sends a transaction T , then a non-faulty node will

commit T .

Executor Consistency.: If a non-faulty executor executes a transaction T , then all non-faulty

executors execute T .

Executor Termination.: If a non-faulty primary sends a transaction T , then a non-faulty execu-

tor will execute T .

Verifier Non-Divergence.: If the shim commits a transaction T at sequence k, then the verifier

will update the corresponding result at the storage at order k.

Shim consistency, shim non-divergence, executor consistency, and verifier non-divergence to-

gether guarantee safety, while shim termination and executor termination guarantee liveness.

ServerlessBFT framework guarantees safety in an asynchronous environment where the mes-

sages can get lost, delayed, or duplicated, and byzantine replicas can collude or act arbitrarily.

Further, our ServerlessBFT framework guarantees liveness only in the periods of synchrony.
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Each cluster runs Pbft to

select, locally replicate,
and certify a client request.

Primaries at each cluster

share the certified client
request with other clusters.

Order the certified requests,
execute them, and inform

local clients.

Local replication Inter-cluster sharing Ordering and execution

Figure 6.9. Steps in a round of the GeoBFT protocol.

6.3. Geo-Scale Consensus

To enable geo-scale deployment of a permissioned blockchain system, we believe that the un-

derlying consensus protocol must distinguish between local and global communication. To resolve

this challenge, we vision the design of a Geo-Scale Byzantine Fault-Tolerant consensus protocol

(GeoBFT) that uses topological information to group all replicas in a single region into a single

cluster. Likewise, GeoBFT assigns each client to a single cluster. This clustering helps in attaining

high throughput and scalability in geo-scale deployments. GeoBFT operates in rounds, and in

each round, every cluster will be able to propose a single client request for execution. Each round

consists of the three steps sketched in Figure 6.9: local replication, global sharing, and ordering and

execution, which we further detail next.

At the start of each round, each cluster chooses a single transaction of a local client. Next, each

cluster locally replicates its chosen transaction in a Byzantine fault-tolerant manner using Pbft.

At the end of successful local replication, Pbft guarantees that each non-faulty replica can prove

successful local replication via a commit certificate.

Next, each cluster shares the locally-replicated transaction along with its commit certificate

with all other clusters. To minimize inter-cluster communication, we use a novel optimistic global

sharing protocol. Our optimistic global sharing protocol has a global phase in which clusters ex-

change locally-replicated transactions, followed by a local phase in which clusters distribute any

received transactions locally among all local replicas. Finally, after receiving all transactions that

are locally-replicated in other clusters, each replica in each cluster can deterministically order all

these transactions and proceed with their execution. After execution, the replicas in each cluster in-

form only local clients of the outcome of the execution of their transactions (e.g., confirm execution

or return any execution results).
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CHAPTER 7

Conclusions

In this work, we presented protocols and design methodologies that can help scale large-scale

distributed database systems. These large-scale distributed applications often face crash-failures

and byzantine attacks. As a result, there has been a growing interest in designing resilient dis-

tributed applications, which is also the principle philosophy behind blockchain technology. The key

focus of this work is to scale permissioned blockchain fabrics and to ensure they remain consistent.

The first work of this thesis focusses on scaling commitment protocols, which assume a dis-

tributed database is split across partitions. An incoming client request may require access to data

from one or more partitions. As a result, the partitions need to agree on whether to commit or

abort the transaction. Traditionally, distributed systems have employed the two-phase commit

(2PC) protocol to reach such an agreement. However, prior works have illustrated that the 2PC

protocol is blocking. This led to the design of the three-phase commit (3PC) protocol, which re-

quires an additional communication phase to reach the agreement. This additional phase makes

the 3PC protocol expensive and unsuitable for industrial needs. In this thesis, we resolved this

problem by designing the EasyCommit protocol which leverages the best of both worlds (2PC and

3PC), that is, EC is non-blocking (like 3PC) and requires two phases (like 2PC). EasyCommit

achieves these goals by ensuring two key observations: (i) first transmit and then commit, and (ii)

message redundancy. Our evaluation of EC on our ResilientDB framework illustrate that EC

outperforms the 3PC protocol and scales nearly as good as the 2PC protocol. On further analysis,

we realized that the protocols like EC and 2PC cannot cater to the needs of geographically large

scale distributed systems as the partitions could be spread across geographically distant locations.

As a result, we also designed a topology-aware agreement protocol Geo-scale EasyCommit (GEC),

which is non-blocking, safe, live, and outperforms all the above protocol.

Although commit protocols like EC and GEC provide good scalability, they can only handle

node crash-failures. However, distributed applications can face byzantine attacks and network
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could be unreliable. Hence, several traditional systems employ replication to guarantee security

against these attacks. Prior works have employed byzantine fault-tolerant (bft) consensus protocols

to achieve consensus among the replicas. Our second work aims at designing a byzantine fault-

tolerant consensus protocol that is both efficient and secure. Existing bft algorithms face following

challenges: (i) they are communication expensive (require three phases of quadratic complexity),

(ii) require a large number of replicas, (iii) depend on clients, and (iv) need trusted components.

To resolve this challenge, we presented the design of our Proof-of-Execution (PoE) consensus

protocol. At the core of PoE are out-of-order processing and speculative execution, which allow

PoE to execute transactions before consensus is reached among the replicas. With these techniques,

PoE manages to reduce the costs of bft in normal cases, while guaranteeing reliable consensus for

clients in all cases. We envision the use of PoE in high-throughput multi-party data-management

and blockchain systems.

bft protocols like PoE and Pbft follow the primary-backup model where one replica is desig-

nated as the primary and others act as backups. Primary manages all the incoming client requests

and is responsible for initiating consensus on each request. Evidently, this primary also limits the

scalability of the system. To resolve this challenge, we present our RCC paradigm that takes as

input a bft protocol and parallelizes its consensus. RCC does so by requiring each replica to

concurrently run multiple instances of the input bft protocol. Further, RCC ensures that the

failure of one instance does not affect the functioning of other instances. Our evaluation of RCC

illustrates that it outperforms all the existing primary-backup protocols and is more resilient to

byzantine attacks than the other concurrent consensus protocols

Finally, to evaluate our scalable bft protocols, we designed ResilientDB, a high-throughput

yielding permissioned blockchain fabric. ResilientDB builds on top of a key intuition, can a well-

crafted system based on a classical bft protocol outperform a modern protocol? Our ResilientDB

fabric proves that designing such a well-crafted system is possible and even if such a system employs

a three-phase protocol, it can outperform another systems utilizing a single-phase protocol. This

endeavor requires us to dissect existing permissioned blockchain systems and highlight different

factors affecting their performance. ResilientDB fabric is based on these insights, employs multi-

threaded deep pipelines to balance tasks at replicas, and provides guidelines for future designs.
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[12] I. Bentov, P. Hubáček, T. Moran, and A. Nadler. Tortoise and hares consensus: the meshcash

framework for incentive-compatible, scalable cryptocurrencies, 2017. URL https://eprint.

iacr.org/2017/300.

[13] P. A. Bernstein and N. Goodman. Concurrency Control in Distributed Database Systems.

ACM Comput. Surv., 13(2):185–221, 1981. ISSN 0360-0300.

[14] P. A. Bernstein and N. Goodman. Multiversion Concurrency Control - Theory and Algo-

rithms. ACM TODS, 8(4):465–483, 1983. ISSN 0362-5915.

[15] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley Longman Publishing Co., 1987. ISBN 0-201-10715-5.

[16] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in

Database Systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

ISBN 0-201-10715-5.

[17] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication for the masses with BFT-

SMART. In 44th Annual IEEE/IFIP International Conference on Dependable Systems and

Networks, pages 355–362. IEEE, 2014. doi: 10.1109/DSN.2014.43.

[18] B. Blechschmidt. Blockchain in Europe: Closing the strategy gap. Technical report, Cog-

nizant Consulting, 2018. URL https://www.cognizant.com/whitepapers/blockchain-

in-europe-closing-the-strategy-gap-codex3320.pdf.

171

https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2017/12/Blockchain-for-Development.pdf
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2017/12/Blockchain-for-Development.pdf
https://eprint.iacr.org/2017/300
https://eprint.iacr.org/2017/300
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf
https://www.cognizant.com/whitepapers/blockchain-in-europe-closing-the-strategy-gap-codex3320.pdf


[19] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus. CoRR,

abs/1807.04938, 2018.

[20] M. Casey, J. Crane, G. Gensler, S. Johnson, and N. Narula. The impact of blockchain tech-

nology on finance: A catalyst for change. Technical report, International Center for Monetary

and Banking Studies, 2018. URL https://www.cimb.ch/uploads/1/1/5/4/115414161/

geneva21_1.pdf.

[21] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM

Trans. Comput. Syst., 20(4):398–461, 2002. doi: 10.1145/571637.571640.

[22] K. Chen, Y. Zhou, and Y. Cao. Online Data Partitioning in Distributed Database Systems.

In Proceedings of the 18th International Conference on Extending Database Technology, pages

1–12. OpenProceeding.org, 2015. ISBN 978-3-89318-067-7.

[23] Christie’s. Major collection of the fall auction season to be recorded with blockchain

technology, 2018. URL https://www.christies.com/presscenter/pdf/9160/RELEASE_

ChristiesxArtoryxEbsworth_9160_1.pdf.

[24] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-only memory:

Making adversaries stick to their word. SIGOPS Oper. Syst. Rev., 41(6):189–204, 2007. doi:

10.1145/1323293.1294280.

[25] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche. Upright

cluster services. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems

Principles, pages 277–290. ACM, 2009. doi: 10.1145/1629575.1629602.

[26] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making byzantine fault

tolerant systems tolerate byzantine faults. In Proceedings of the 6th USENIX Symposium on

Networked Systems Design and Implementation, pages 153–168. USENIX, 2009.

[27] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making byzantine fault

tolerant systems tolerate byzantine faults. In Proceedings of the 6th USENIX Symposium on

Networked Systems Design and Implementation, pages 153–168. USENIX Association, 2009.

[28] A. Clement, F. Junqueira, A. Kate, and R. Rodrigues. On the (Limited) Power of Non-

Equivocation. In Proceedings of the 2012 ACM Symposium on Principles of Distributed

Computing, page 301308. Association for Computing Machinery, 2012. ISBN 9781450314503.

172

https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://www.cimb.ch/uploads/1/1/5/4/115414161/geneva21_1.pdf
https://www.christies.com/presscenter/pdf/9160/RELEASE_ChristiesxArtoryxEbsworth_9160_1.pdf
https://www.christies.com/presscenter/pdf/9160/RELEASE_ChristiesxArtoryxEbsworth_9160_1.pdf


doi: 10.1145/2332432.2332490.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud

serving systems with YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing,

pages 143–154. ACM, 2010. doi: 10.1145/1807128.1807152.

[30] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Furman, S. Ghemawat, A. Gubarev,

C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,

D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford. Spanner: Google’s Globally-Distributed Database. In 10th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), pages

261–264. USENIX Association, 2012. ISBN 978-1-931971-96-6.

[31] V. Costan and S. Devadas. Intel sgx explained. Cryptology ePrint Archive, Report 2016/086,

2016. https://ia.cr/2016/086.

[32] V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal Hardware Extensions for Strong

Software Isolation. In 25th USENIX Security Symposium (USENIX Security 16), pages 857–

874, Austin, TX, Aug. 2016. USENIX Association.

[33] T. P. P. Council. Tpc benchmark c (revision 5.11). 2010.

[34] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ replication: A hybrid

quorum protocol for byzantine fault tolerance. In Proceedings of the 7th Symposium on

Operating Systems Design and Implementation, pages 177–190. USENIX, 2006.

[35] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi. Towards scaling

blockchain systems via sharding. In Proceedings of the 2019 International Conference on

Management of Data, pages 123–140. ACM, 2019. doi: 10.1145/3299869.3319889.

[36] S. Developers. Sqlite home page, 2019. URL https://sqlite.org/.

[37] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stonecipher, N. Verma, and

M. Zwilling. Hekaton: SQL Server’s Memory-optimized OLTP Engine. pages 1243–1254.

ACM, 2013. ISBN 978-1-4503-2037-5.

[38] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan. BLOCKBENCH: A

framework for analyzing private blockchains. In Proceedings of the 2017 ACM International

Conference on Management of Data, pages 1085–1100. ACM, 2017. doi: 10.1145/3035918.

173

https://ia.cr/2016/086
https://sqlite.org/


3064033.

[39] W. W. Eckerson. Data quality and the bottom line: Achieving business success through

a commitment to high quality data. Technical report, The Data Warehousing Institute,

101communications LLC., 2002.

[40] M. Eischer and T. Distler. Scalable byzantine fault-tolerant state-machine replication on

heterogeneous servers. Computing, 101:97–118, 2019. doi: 10.1007/s00607-018-0652-3.

[41] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy. BlockchainDB: A

shared database on blockchains. Proc. VLDB Endow., 12(11):1597–1609, 2019. doi: 10.

14778/3342263.3342636.

[42] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with

one faulty process. J. ACM, 32(2):374–382, 1985. doi: 10.1145/3149.214121.

[43] B. Fung. The embarrassing reason behind Amazons huge cloud computing outage this week.

GA, USA, 2017. The Washington Post.

[44] D. Gawlick and D. Kinkade. Varieties of concurrency control in ims/vs fast path. 8:3–10, 01

1985.

[45] L. Ge, C. Brewster, J. Spek, A. Smeenk, and J. Top. Blockchain for agricul-

ture and food: Findings from the pilot study. Technical report, Wageningen Uni-

versity, 2017. URL https://www.wur.nl/nl/Publicatie-details.htm?publicationId=

publication-way-353330323634.

[46] GideonGreenspan. MultiChain private blockchain–white paper, 2015. URL https://www.

multichain.com/download/MultiChain-White-Paper.pdf.

[47] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. doi: 10.1145/564585.

564601.

[48] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter, D.-A. Seredin-

schi, O. Tamir, and A. Tomescu. SBFT: A scalable and decentralized trust infrastructure.

In 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), pages 568–580. IEEE, 2019. doi: 10.1109/DSN.2019.00063.

174

https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-353330323634
https://www.wur.nl/nl/Publicatie-details.htm?publicationId=publication-way-353330323634
https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf


[49] W. J. Gordon and C. Catalini. Blockchain technology for healthcare: Facilitating the transi-

tion to patient-driven interoperability. Computational and Structural Biotechnology Journal,

16:224–230, 2018. doi: 10.1016/j.csbj.2018.06.003.

[50] J. Gray. Notes on data base operating systems. In Operating Systems, An Advanced Course,

pages 393–481. Springer-Verlag, 1978. doi: 10.1007/3-540-08755-9 9.

[51] J. Gray. The Transaction Concept: Virtues and Limitations (Invited Paper). VLDB, pages

144–154, 1981.

[52] J. Gray. A comparison of the Byzantine Agreement problem and the Transaction Commit

Problem, pages 10–17. Springer New York, 1990. ISBN 978-0-387-34812-4.

[53] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann

Publishers Inc., 1st edition, 1992. ISBN 1558601902.

[54] R. Guerraoui. Revisiting the relationship between non-blocking atomic commitment and con-

sensus, pages 87–100. Springer Berlin Heidelberg, 1995. ISBN 978-3-540-44783-2.

[55] S. Gupta. Resilient and scalable architecture for permissioned blockchain fabrics. In Z. Abed-

jan and K. Hose, editors, Proceedings of the VLDB 2020 PhD Workshop co-located with the

46th International Conference on Very Large Databases), August 31 - September 4, 2020,

volume 2652 of CEUR Workshop Proceedings. CEUR-WS.org, 2020.

[56] S. Gupta and M. Sadoghi. EasyCommit: A non-blocking two-phase commit protocol. In

Proceedings of the 21st International Conference on Extending Database Technology, pages

157–168. Open Proceedings, 2018. doi: 10.5441/002/edbt.2018.15.

[57] S. Gupta and M. Sadoghi. Blockchain Transaction Processing, pages 1–11. Springer Interna-

tional Publishing, 2018. doi: 10.1007/978-3-319-63962-8 333-1.

[58] S. Gupta and M. Sadoghi. Efficient and non-blocking agreement protocols. Distributed Parallel

Databases, 38(2):287–333, 2020. doi: 10.1007/s10619-019-07267-w.

[59] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi. An in-depth look of BFT con-

sensus in blockchain: Challenges and opportunities. In Proceedings of the 20th Inter-

national Middleware Conference Tutorials, Middleware, pages 6–10. ACM, 2019. doi:

10.1145/3366625.3369437.

175



[60] S. Gupta, J. Hellings, and M. Sadoghi. Brief announcement: Revisiting consensus protocols

through wait-free parallelization. In 33rd International Symposium on Distributed Computing

(DISC 2019), volume 146, pages 44:1–44:3. Schloss Dagstuhl, 2019. doi: 10.4230/LIPIcs.

DISC.2019.44.

[61] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi. Blockchain consensus unraveled: virtues

and limitations. In Proceedings of the 14th ACM International Conference on Distributed and

Event-based Systems, pages 218–221. ACM, 2020. doi: 10.1145/3401025.3404099.

[62] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi. Building high throughput permissioned

blockchain fabrics: Challenges and opportunities. Proc. VLDB Endow., 13(12):3441–3444,

2020.

[63] S. Gupta, S. Rahnama, J. Hellings, and M. Sadoghi. ResilientDB: Global scale resilient

blockchain fabric. Proc. VLDB Endow., 13(6):868–883, 2020. doi: 10.14778/3380750.3380757.

[64] S. Gupta, S. Rahnama, and M. Sadoghi. Permissioned blockchain through the looking glass:

Architectural and implementation lessons learned. In 40th International Conference on Dis-

tributed Computing Systems. IEEE, 2020.

[65] S. Gupta, J. Hellings, S. Rahnama, and M. Sadoghi. Proof-of-Execution: Reaching Consensus

through Fault-Tolerant Speculation. In Proceedings of the 24th International Conference on

Extending Database Technology, pages 301–312. OpenProceedings.org, 2021. doi: 10.5441/

002/edbt.2021.27.

[66] S. Gupta, J. Hellings, and M. Sadoghi. Fault-Tolerant Distributed Transactions on Blockchain.

Synthesis Lectures on Data Management. Morgan & Claypool, 2021. doi: 10.2200/

S01068ED1V01Y202012DTM065.

[67] S. Gupta, J. Hellings, and M. Sadoghi. RCC: Resilient Concurrent Consensus for High-

Throughput Secure Transaction Processing. In 37th IEEE International Conference on Data

Engineering, pages 1392–1403. IEEE, 2021. doi: 10.1109/ICDE51399.2021.00124.

[68] R. Harding, D. Van Aken, A. Pavlo, and M. Stonebraker. An Evaluation of Distributed

Concurrency Control. Proc. VLDB Endow., 10(5):553–564, 2017. ISSN 2150-8097.

[69] J. R. Haritsa, K. Ramamritham, and R. Gupta. The PROMPT Real-Time Commit Protocol.

IEEE TPDS, 11(2):160–181, 2000. ISSN 1045-9219.

176



[70] J. Hellings and M. Sadoghi. Coordination-free byzantine replication with minimal commu-

nication costs. In 23rd International Conference on Database Theory (ICDT 2020), volume

155, pages 17:1–17:20. Schloss Dagstuhl, 2020. doi: 10.4230/LIPIcs.ICDT.2020.17.

[71] J. Hellings, D. P. Hughes, J. Primero, and M. Sadoghi. Cerberus: Minimalistic multi-shard

byzantine-resilient transaction processing, 2020. URL https://arxiv.org/abs/2008.04450.

[72] J. L. Hennessy and D. A. Patterson. Computer Architecture, Fifth Edition: A Quantita-

tive Approach. Morgan Kaufmann Publishers Inc., 5th edition, 2011. ISBN 012383872X,

9780123838728.

[73] M. Herlihy. Blockchains from a distributed computing perspective. Commun. ACM, 62(2):

78–85, 2019. doi: 10.1145/3209623.

[74] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condition for Concurrent

Objects. ACM TOPLAS, 12(3):463–492, 1990. ISSN 0164-0925. doi: 10.1145/78969.78972.

[75] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data Quality and Record Linkage Tech-

niques. Springer, 2007. doi: 10.1007/0-387-69505-2.
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