UC Irvine UC Irvine Previously Published Works

Title

Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation.

Permalink https://escholarship.org/uc/item/6921d4ff

Journal

Clinical cancer research : an official journal of the American Association for Cancer Research, 15(3)

ISSN

1078-0432

Authors

Gerner, Eugene W Meyskens, Frank L, Jr

Publication Date

2009-02-01

Peer reviewed

Combination Chemoprevention for Colon Cancer Targeting Polyamine Synthesis and Inflammation

Eugene W. Gerner^{1,2} and Frank L. Meyskens, Jr.^{2,3}

Abstract Increased polyamine synthesis and inflammation have long been associated with colon carcinogenesis in both preclinical models and in humans. Recent experimental studies suggest that polyamines may be mechanistically involved in colonic inflammatory processes. Genetic epidemiology results indicate that a single nucleotide polymorphism influencing the expression of a polyamine biosynthetic gene is associated with both risk of colon polyp occurrence and recurrence, and the response to aspirin as a polyp preventive agent. A prospective, randomized, placebo-controlled clinical trial of combination difluoromethylornithine, a selective inhibitor of polyamine synthesis, and sulindac, a nonsteroidal anti-inflammatory drug, found that the 3-year treatment was associated with a 70% reduction of recurrence of all adenomas, and over a 90% reduction of recurrence of advanced and/or multiple adenomas, without evidence of serious toxicities. This proof-ofprinciple trial indicates that targeting polyamine synthesis and inflammation can be an effective strategy for preventing the occurrence of the advanced and/or multiple adenomas that are most closely associated with the development of colon cancers in humans.

Background

Virchow speculated about the role of chronic inflammation in cancer in the 1860s; this topic has been more recently reviewed (1). A century later, Russell and Snyder (2) were among the first to document high levels of ornithine decarboxylase (ODC) enzyme activity in proliferating cells and tissues, including those derived from various tumor types. The role of ODC, the first enzyme in the synthesis of the ubiquitous polyamines that are involved in growth, development, and cancer has been reviewed elsewhere (3).

Evidence for the efficacy of targeting inflammation and polyamine synthesis for cancer chemoprevention began to accumulate over 30 years ago. Chemoprevention of cancer is a strategy that uses treatments during the stages of carcinogenesis before the development of invasive cancer (4). Sporn (5) was among the first to propose combinations of agents for cancer chemoprevention. The rationale for this proposal followed after the success of combination chemotherapy for certain types of cancer (6), and offered the prospect of reduced toxicities by lowering doses of individual agents. Representative studies targeting polyamine synthesis and inflammation for chemoprevention of colon and intestinal carcinogenesis evaluated

©2009 American Association for Cancer Research.

doi:10.1158/1078-0432.CCR-08-2235

several rodent models treated with the selective ODC inhibitor $_{D,L-\alpha}$ -difluoromethylornithine (DFMO) alone and in combination with several nonsteroidal anti-inflammatory drugs, including piroxicam (7), aspirin (8), celecoxib (9), and sulindac (10). These combinations have proved to be potent inhibitors of colon and intestinal polyps in all models and, in the case of carcinogen-treated rats, invasive colon cancers.

Risk factors for colon cancer include both genetic and intestinal luminal factors. One heritable genetic risk factor, which conveys risk of colon cancer, is the adenomatous polyposis coli tumor suppressor gene (11). Adenomatous polyposis coli and the *K-RAS* oncogene are two of the most commonly mutated genes found in human colon cancers (12). As depicted in Fig. 1A, adenomatous polyposis coli and *K-RAS* are both activators of polyamine synthesis, albeit by different mechanisms (3). Polyamines, which derive from the amino acid ornithine and its precursor arginine, are also intestinal luminal risk factors. Dietary polyamines enhance intestinal and colonic tumorigenesis (13, 14). Colonic luminal polyamines are also produced by enteric bacteria; both diet and enteric bacteria provide sources of potential tumor-promoting polyamines for colonic epithelial cells (see Fig. 1B).

Colonic bacteria provide sources of other luminal risk factors for colon cancer. These bacteria metabolize primary bile acids to secondary bile acids, which have been associated with colon cancers in humans (15) and are capable of promoting colon carcinogenesis in rodent models (16). Dietary administration of the secondary bile acid deoxycholate induces a colitis-like phenotype in mice (17). This bile acid–induced inflammatory response is suppressed by loss of nitric oxide synthase 2 alleles in genetically engineered mice (18), which imply a role for the nitric oxide synthase 2 substrate arginine (see Fig. 1B). Other studies have provided a direct linkage between dietary arginine and intestinal and colonic tumorigenesis. These studies indicate that loss of nitric oxide synthase 2 alleles (19), or treatment

Authors' Affiliations: ¹The University of Arizona, Arizona Cancer Center and ²Cancer Prevention Pharmaceuticals, Tucson, Arizona; and ³The University of California-Irvine, Chao Family Comprehensive Cancer Center, Irvine, California Received 8/27/08; revised 9/16/08; accepted 9/17/08.

Grant support: NIH/National Cancer Institute, including CA23074, CA47396, CA59024, CN75019, CA72008, CA88078, CA95060, and CA123065.

Requests for reprints: Eugene W. Gerner, Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, AZ 85724. Phone: 520-626-2197; Fax: 520-626-4480; E-mail: egerner@azcc.arizona.edu.

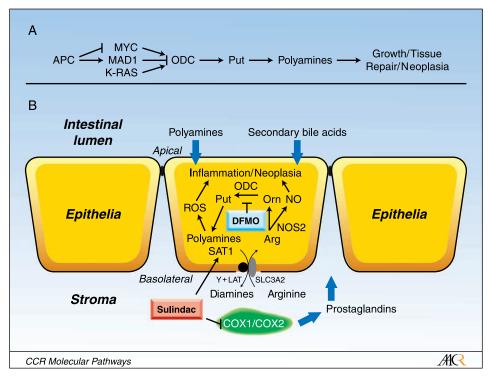


Fig. 1. *A*, ODC expression is regulated by a number of signaling pathways. The APC tumor suppressor gene influences the expression of the *MYC* oncogene and the *MYC* antagonist *MAD1* (34). These E-box transcription factors, in turn, bind to consensus elements, including two E-boxes flanking a SNP which has functional consequences for transcription factor binding, to regulate *ODC* transcription (27). ODC expression is also regulated by the *K-RAS* oncogene (35). ODC converts ornithine to the diamine putrescine. This diamine is the precursor for the longer chain amines spermidine and spermine. Genetic and pharmacologic evidence shows that this pathway is essential for normal growth, development, tissue repair, and neoplasia (3). *B*, the relationship between polyamine metabolism and inflammatory pathways in the colonic mucosa are depicted in this panel. Abbreviations include the following: reactive oxygen species (*ROS*), nitric oxide (*NO*), arginine (*Arg*), ornithine (*Orn*), putrescine (*Put*), cyclooygenease (*COX*), nitric oxide synthase (NOS), ODC, and SAT1. Diamines, including putrescine, monoacetylspermidine, and diacetylspermidine, are exported by a common transporter (36), which was recently identified by us to including the solute carrier protein SLC3A2 (23). SLC3A2 partners with members of the Y+LAT family to form an arginine transporter. The roles of luminal factors, including polyamines and secondary bile acids, and stronal factors, such as prostaglandins, are shown. DFMO and sulindac lower polyamine contents in colonic epithelial cells by suppressing polyamine synthesis and activating polyamine catabolism and export. Sulindac also inhibits mucosal cyclooxygenases, which are predominately expressed in the colonic stroma before the formation of epithelial neoplasia.

with DFMO (20), can suppress arginine-induced intestinal carcinogenesis. Together with the studies of Bernstein et al. (17, 18), these latter studies suggest a linkage between polyamines and inflammation, and polyamines, inflammation, and colon cancer.

This linkage may be more than simply an association. Microarray analysis of human colon cancer-derived cells identified the spermidine/spermine acetyltransferase (SAT1) as a target of the nonsteroidal anti-inflammatory drug sulindac (21). Sulindac and other nonsteroidal anti-inflammatory drug act by distinct transcriptional mechanisms to induce SAT1 and promote the export of diamines and acetylpolyamines (the products of SAT1) in both human cell and mouse models (14, 22). Acetylation and export work in concert with inhibition of polyamine synthesis to lower cell and tissue polyamine contents. A diamine and acetylpolyamine exporter has recently been identified as a component of the solute carrier and arginine transporter containing SLC3A2 and Y+LAT subunits. SAT1 physically associates with SLC3A2 (Fig. 1B; ref. 23). Because this complex works as an arginine/diamine (or acetylpolyamine) antiporter, increased production of the diamine putrescine as a consequence of increased ODC activity would enhance, whereas decreased production of putrescine would suppress, the activity of the SLC3A2/Y+LAT transporter. In certain cases, increased polyamine synthesis may be antiinflammatory by channeling arginine metabolism away from nitric oxide production (24). In this model, treatment with DFMO exacerbated the colitis, presumably by increasing nitric oxide levels. It is unknown whether DFMO would have a similar effect on inflammation-associated carcinogenesis in this model. However, these data suggest that DFMO combinations with nitric oxide inhibitors might be useful in this context. We have obtained evidence for channeling of polyamine metabolism with the unexpected finding that ODC, SAT1, and SLC3A2 are physically associated in colon-derived cells (23).

Polyamines contribute to inflammatory responses by mechanisms in addition to those affecting tissue arginine levels. Polyamines are oxidized by several amine oxidases to produce reactive oxygen species and aldehydes (Fig. 1B; ref. 25). Polyamines can also influence the expression of the proinflammatory gene cyclooxygenase 2 by a posttranscriptional mechanism (26).

Clinical-Translational Advances

The hypothesis that increased arginine might be associated with colon carcinogenesis in humans was evaluated in a genetic and dietary epidemiology study of patients in a cancer registry (9). Increased survival in colon cancer patients with a family history of this disease was associated with low consumption of red meat, which was used as a surrogate for arginine consumption.

759

Downloaded from clincancerres.aacrjournals.org on December 18, 2014. © 2009 American Association for Cancer Research.

The hypothesis that polyamines, inflammation, and carcinogenesis are linked is strengthened by several genetic epidemiology studies. Our group first reported that a single nucleotide polymorphism (SNP) in the ODC promoter, which displayed functional consequences for E-Box activator (e.g., MYC) and repressor (e.g., MAD1) binding (see Fig. 1A), was associated with risk of recurrence of colon polyps in a clinical cancer prevention trial (27). Six hundred eighty-eight individuals in the Wheat Bran Fiber prevention trial were genotyped for the ODC G316A SNP. The ODC 316AA genotype was associated with approximately a 50% reduction in risk of polyp recurrence, compared with those individuals with the ODC 316GG genotype (odds ratio, 0.48). In reported aspirin users, the ODC 316AA genotype was associated with a 90% reduction in risk of polyp recurrence, compared with nonaspirin use reporters with the ODC 316GG genotype. Hubner and coworkers (28) genotyped 546 participants for the ODC G316A SNP in the United Kingdom Colorectal Adenoma (CRA) Prevention trial of aspirin for CRA recurrence prevention. They found a similar reduction in risk of adenoma recurrence in people with the ODC 316AA genotype, compared with those with the ODC 316GG genotype (relative risk of 0.43). The risk of polyp recurrence in this trial was further decreased in the ODC 316AA group, compared with the ODC 316GG group, by aspirin use. A third group provided independent corroboration of an association between the ODC G316A SNP and aspirin use. Barry and coworkers (29) genotyped participants in a prospective, randomized study of aspirin for prevention of CRA conducted by the Polyp Prevention Study Group. The ODC G316A SNP was not an independent prognostic factor for adenoma recurrence but was a statistically significant predictor of response to aspirin for prevention of CRA recurrence in this study.

A model for the interaction between the *ODC* SNP and nonsteroidal anti-inflammatory drug action in colon carcinogenesis (3), which includes both cyclooxygenase-dependent and cyclooxygenase-independent actions of nonsteroidal antiinflammatory drug, is depicted in Fig. 1B.

This model has been tested over the past decade in a prospective, randomized placebo-controlled trial of combination DFMO and sulindac for prevention of recurrence in patients with prior CRA (30). Entry criteria for this trial included removal of a CRA within 1 year of study entry. Patients with genetic risk of colon cancer, such as individuals with familial adenomatous polyposis and other polyposis syndromes, were excluded. Participants with current or prior colon or other cancers were also excluded. Participants received the combination of DFMO (two 250-mg pills daily) and sulindac (one 150 mg pill daily), or placebo pills, for 3 years. Primary end points included adenoma recurrence and toxicity assessment. Treatment with DFMO and sulindac was associated with a 70% reduction in total polyps, and over a 90% reduction in both advanced adenomas and in patients with multiple recurrent adenomas, at the end of 3 years. The only statistically significant toxicity noted in this trial was a hearing loss of uncertain clinical significance, which seems to be limited to a small subset of participants (31).

The clinical trial of combination DFMO and sulindac serves as an important proof of the principle that targeting polyamine synthesis and inflammation is an effective method for prevention of recurrent colon polyps. The challenge facing us and other workers in this field is to bring this advance into clinical practice for the management of patients with high risk for colon and, potentially, other cancers. It is clear that this drug combination has some toxicities, and initial applications should be limited to those individuals where a clear positive benefit to risk ratio can be established, such as people with high risk of developing colon cancer. High-risk groups would include those with genetic risk factors, prior advanced and/or multiple colon adenomas, and prior colon cancer. Future clinical trials in all three of these risk groups are in the planning stages.

Drug availability is another serious challenge. Both DFMO and sulindac are old drugs, and DFMO has not been commercially available for some time. We have recently established a company to produce DFMO for future clinical cancer prevention and treatment trials in humans.

The time to completion of clinical trials that might support an approval by the Food and Drug Administration for a cancer prevention indication is a very serious problem that must be solved. Most epithelial cancers have long natural histories, with years often separating the development of invasive cancers after appearance of precancerous intraepithelial neoplasia (32). As evidenced by the approval of celecoxib for treatment of patients with the genetic syndrome familial adenomatous polyposis, which confers risk of colon cancer, the Food and Drug Administration has not accepted reduction in number of colon polyps as an indication of clinical benefit in this patient population. In the approval of celecoxib for familial adenomatous polyposis, the Food and Drug Administration expressed concerns regarding both clinical benefit and long term safety of the drug.

Cancer researchers should consider the example followed by investigators working to prevent deaths due to cardiovascular disease. It has been estimated that the dramatic decrease in deaths due to heart disease over the past 30 years are roughly equally divided between efforts to reduce risk factors, including use of chemoprevention methods, and mechanism-based therapies (33). Public and private sector interests involving academic research, professional medical and commercial pharmaceutical groups, aided by patient advocacy groups, need to work with the Food and Drug Administration to identify paths to implement cancer chemoprevention strategies into the standard practice of managing patients with high risk of colon and other cancers.

Disclosure of Potential Conflicts of Interest

The authors have an ownership interest in Cancer Prevention Pharmaceuticals, LLC.

References

- Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860–7.
- Russell D, Snyder SH. Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various

tumors. Proc Natl Acad Sci U S A 1968;60: 1420-7.

- Gerner EW, Meyskens FL, Jr. Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 2004;4:781–92.
- Sporn MB, Dunlop NM, Newton DL, Smith JM. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc 1976:35:1332–8.
- Sporn MB. Combination chemoprevention of cancer. Nature 1980;287:107 – 8.

760

Downloaded from clincancerres.aacrjournals.org on December 18, 2014. © 2009 American Association for Cancer Research.

- 6. Frei E 3rd. Combination cancer therapy: presidential address. Cancer Res 1972;32:2593–607.
- Nigro ND, Bull AW, Boyd ME. Inhibition of intestinal carcinogenesis in rats: effect of difluoromethylornithine with piroxicam or fish oil. J Natl Cancer Inst 1986;77:1309–13.
- Li H, Schut HA, Conran P, et al. Prevention by aspirin and its combination with α-difluoromethylornithine of azoxymethane-induced tumors, aberrant crypt foci and prostaglandin E2 levels in rat colon. Carcinogenesis 1999;20:425–30.
- Zell JA, Ignatenko NA, Yerushalmi HF, et al. Risk and risk reduction involving arginine intake and meat consumption in colorectal tumorigenesis and survival. Int J Cancer 2007;120:459–68.
- Ignatenko NA, Bessefsen DG, Stringer DE, et al. Combination chemoprevention of intestinal carcinogenesis in a murine model of familial adenomatous polyposis. Nutr Cancer 2008;60(S1):30–5.
- Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991;66:589–600.
- Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268–74.
- Duranton B, Nsi-Emvo E, Schleiffer R, Gosse F, Galluser M, Raul F. Suppression of preneoplastic changes in the intestine of rats fed low levels of polyamines. Cancer Res 1997:57:573–5.
- 14. Ignatenko NA, Besselsen DG, Roy UK, et al. Dietary putrescine reduces the intestinal anticarcinogenic activity of sulindac in a murine model of familial adenomatous polyposis. Nutr Cancer 2006;56:172–81.
- Reddy BS, Wynder EL. Metabolic epidemiology of colon cancer. Fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer 1977;39:2533–9.
- Reddy BS, Narasawa T, Weisburger JH, Wynder EL. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germfree rats. J Natl Cancer Inst 1976;56:441 – 2.

- Bernstein H, Holubec H, Bernstein C, et al. Unique dietary-related mouse model of colitis. Inflamm Bowel Dis 2006;12:278–93.
- Bernstein H, Holubec H, Bernstein C, et al. Deoxycholate-induced colitis is markedly attenuated in Nos2 knockout mice in association with modulation of gene expression profiles. Dig Dis Sci 2007;52: 628–42.
- Yerushalmi HF, Besselsen DG, Ignatenko NA, et al. The role of NO synthases in arginine-dependent small intestinal and colonic carcinogenesis. Mol Carcinog 2006;45:93–105.
- 20. Yerushalmi HF, Besselsen DG, Ignatenko NA, et al. Role of polyamines in arginine-dependent colon carcinogenesis in Apc(Min) (/+) mice. Mol Carcinog 2006;45:764–73.
- Babbar N, Ignatenko NA, Casero RA, Jr., Gerner EW. Cyclooxygenase-independent induction of apoptosis by sulindac sulfone is mediated by polyamines in colon cancer. J Biol Chem 2003;278: 47762–75.
- Babbar N, Gerner EW, Casero RA, Jr. Induction of spermidine/spermine N1-acetyltransferase (SSAT) by aspirin in Caco-2 colon cancer cells. Biochem J 2006; 394:317–24.
- Uemura T, Yerushalmi HF, Tsaprailis G, et al. Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem 2008;283: 26428–35.
- Gobert AP, Cheng Y, Akhtar M, et al. Protective role of arginase in a mouse model of colitis. J Immunol 2004;173:2109–17.
- Babbar N, Murray-Stewart T, Casero RA, Jr. Inflammation and polyamine catabolism: the good, the bad and the ugly. Biochem Soc Trans 2007;35:300–4.
- Parker MT, Gerner EW. Polyamine-mediated posttranscriptional regulation of COX-2. Biochimie 2002; 84:815–9.
- 27. Martinez ME, O'Brien TG, Fultz KE, et al. Pronounced reduction in adenoma recurrence associated with aspirin use and a polymorphism in the ornithine decar-

boxylase gene. Proc Natl Acad Sci U S A 2003;100: 7859-64.

- Hubner RA, Muir KR, Liu JF, Logan RF, Grainge MJ, Houlston RS. Ornithine decarboxylase G316A genotype is prognostic for colorectal adenoma recurrence and predicts efficacy of aspirin chemoprevention. Clin Cancer Res 2008;14:2303–9.
- **29.** Barry EL, Baron JA, Bhat S, et al. Ornithine decarboxylase polymorphism modification of response to aspirin treatment for colorectal adenoma prevention. J Natl Cancer Inst 2006;98: 1494–500.
- 30. Meyskens FLJ, McLaren CE, Pelot D, et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: a randomized placebo controlled, double-blind trial. Cancer Prev Res (Phila Pa) 2008;1:32–8.
- 31. McLaren CE, Fujikawa-Brooks S, Chen WP, et al. Longitudinal assessment of air conduction audiograms in a phase III clinical trial of difluoromethyornithine and sulindac for prevention of sporadic colorectal adenomas. Cancer Prev Res 2008;1: 514–21.
- **32.** O'Shaughnessy JA, Kelloff G, Gordon GB, et al. Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 2002;8:314–46.
- Ford ES, Ajani UA, Croft JB, et al. Explaining the decrease in U S. deaths from coronary disease, 1980–2000. N Engl J Med 2007;356:2388–98.
- Fultz KE, Gerner EW. APC-dependent regulation of ornithine decarboxylase in human colon tumor cells. Mol Carcinog 2002;34:10–8.
- 35. Ignatenko NA, Babbar N, Mehta D, Casero RA, Jr., Gerner EW. Suppression of polyamine catabolism by activated Ki-ras in human colon cancer cells. Mol Carcinog 2004;39:91–102.
- **36.** Xie X, Gillies RJ, Gerner EW. Characterization of a diamine exporter in Chinese hamster ovary cells and identification of specific polyamine substrates. J Biol Chem 1997;272:20484–9.

761

Clinical Cancer Research

Combination Chemoprevention for Colon Cancer Targeting Polyamine Synthesis and Inflammation

Eugene W. Gerner and Frank L. Meyskens, Jr.

Clin Cancer Res 2009;15:758-761.

Updated version Access the most recent version of this article at: http://clincancerres.aacrjournals.org/content/15/3/758

Cited Articles	This article cites by 35 articles, 13 of which you can access for free at: http://clincancerres.aacrjournals.org/content/15/3/758.full.html#ref-list-1
Citing articles	This article has been cited by 5 HighWire-hosted articles. Access the articles at: http://clincancerres.aacrjournals.org/content/15/3/758.full.html#related-urls
[

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.