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ABSTRACT OF THE DISSERTATION 

 

Flooding and atmospheric rivers in coastal Western U.S. watersheds: 

The role of hydrological initial conditions in a changing climate 

 

by 

 

Qian Cao 

Doctor of Philosophy in Geography 

University of California, Los Angeles, 2020 

Professor Dennis P. Lettenmaier, Chair 

 

A body of work over the last several decades has demonstrated that most major 

floods along the U.S. West Coast are attributable to atmospheric rivers (ARs). Recent 

studies suggest that observed changes in extreme precipitation associated with a general 

warming have not necessarily lead to corresponding changes in floods, and changes in 

antecedent hydrological conditions could be a primary causal mechanism. This study 

examines climate change impacts on AR-related floods and their modulation by 

antecedent soil moisture (ASM) conditions in three watersheds that form a transect along 

the U.S. Pacific Coast: the Chehalis River basin in Washington State, the Russian River 

basin in Northern California, and the Santa Margarita River basin in Southern California. 

All three basins are rain-dominant and frequented by ARs. I used the Distributed 
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Hydrology-Soil-Vegetation Model (DHSVM), a spatially distributed hydrological model, 

to reconstruct floods in all three basins. 

For historical AR flooding, based on a combination of observed and model-

simulated soil moisture in the Russian River basin, my results show that the storm runoff-

precipitation ratio during extreme precipitation events is much more strongly related to 

ASM than to storm total precipitation. If ASM is low, extreme precipitation may not lead 

to extreme discharge. When I used Global Climate Model (GCM)-projected future 

atmospheric forcings (primarily precipitation and temperature) in the three basins, my 

results show that the projected fraction of AR-related extreme discharge events slightly 

decreases in the Chehalis basin, but increases in the Russian and Santa Margarita River 

basins. These changes in California are driven by increases in AR-related extreme 

precipitation events, as well as projected increases in year-to-year volatility of annual 

precipitation, which increases the likelihood of concurrent occurrence of large storms and 

wet ASM. I also investigated the subseasonal forecast skill of AR-related flooding using 

the NOAA/Climate Testbed Subseasonal Experiment (SubX) database, applied to both 

AR- and non-AR related floods. I found that flood forecast skill drops quickly after week 

1. There is some probabilistic forecast skill in week 2, but only a hint of skill in weeks 3-

4, especially for annual maximum floods, notwithstanding some probabilistic skill for 

smaller floods in weeks 3-4. 
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Chapter 1. Introduction 

1.1 Background 

Floods are a pervasive natural hazard. Over the last 40 years, floods lead to an 

average annual property damage of $1.1 billion in the western U.S., and atmospheric 

rivers (ARs) account for 84% of these damages (Corringham et al., 2019). It is now well 

understood that most of the extreme precipitation events that lead to major floods along 

the U.S. Pacific Coast are associated with ARs (e.g. Ralph et al., 2006; Dettinger et al., 

2011; Neiman et al., 2011; Barth et al, 2017). ARs are long, narrow, and transient 

corridors of anomalously strong horizontal water vapor transport (Zhu and Newell, 1998; 

Ralph et al., 2018). Landfalling ARs greatly impact the hydrology of the U.S. West Coast 

(USWC) particularly where they interact with complex topography and lead to copious 

amounts of orographic precipitation (Gershunov et al., 2017). In recent years, an 

increasing number of studies have quantified how ARs move water vapor with the help of 

ground or satellite-based observations. At the same time, a number of AR detection 

methods have been developed and improved (e.g. Ralph et al., 2004, 2005, 2006; Neiman 

et al., 2009; Dettinger, 2011; Ralph and Dettinger, 2011; Lavers et al., 2012; Rutz et al. 

2014; Guan and Waliser, 2015; Gershunov et al., 2017; Guan et al. 2018). They are now 

primarily based on integrated water vapor (IWV) and IWV transport (IVT) (Shields et al., 

2018), quantities with more potential forecast improvement than for prediction of 

precipitation directly (e.g. Lavers et al., 2016). 

With the advent of AR detection tools, it is now possible to identify decades-long 

historical sequences of AR events and their landfall locations, at regional and global 

scales, through application of AR detection algorithms to reanalysis datasets, and in turn 
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to examine relationships with flood events. For example, Lamjiri et al. (2017) found that 

landfalling ARs account for 60-100% of extreme storms (with precipitation-total return 

intervals greater than 2 years) along the USWC. Similarly, by applying AR detection 

methods to Global Climate Model (GCM) output, the climate change impact on AR land-

falling activities can be examined, and changes in extreme precipitation associated with 

ARs can be projected. For example, the number of landfalling AR days is projected to 

substantially increase by the end of 21st century along the USWC (e.g. Espinoza et al., 

2018). 

Previous studies suggest that AR landfalls, AR-related storms, and runoff response 

to ARs along the USWC show strong seasonal and geographic signatures. Gershunov et 

al. (2017) examined the climate-scale variability of AR landfalls during the period 1948-

2017. They showed that AR landfalls have a marked seasonal progression from the 

Pacific Northwest in the late fall to northern California in early winter. However, 

climatological AR intensities do not entirely follow AR frequency, with peak intensity 

occurring in December in far Northern California (Gershunov et al., 2017). Lamjiri et al. 

(2017) examined AR-related storm characteristics over the conterminous U.S. (CONUS) 

using gridded hourly precipitation observations from 1948 to 2002. They found that 

storm precipitation totals along the USWC, in contrast to the southeastern U.S., were 

modulated more by storm durations than hourly intensities, indicating the importance of 

AR persistence to extreme storms. They also found that average storm duration generally 

decreases from the north to the south along the USWC. Konrad and Dettinger (2017) 

examined the runoff response to ARs over the Western U.S. during 1949-2015 using U.S. 

Geological Survey (USGS) daily mean stream gauge records. They found that high 
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runoff occurred mostly during ARs and was restricted to the coastal ranges and the 

western Sierra Nevada and Cascade Ranges, reflecting the spatial distribution of ARs and 

their increasing high-elevation intensity terrain (Konrad and Dettinger, 2017). 

One primary goal of AR studies is to better predict extreme precipitation events 

associated with ARs and thus to better predict flooding. However, it is well known that 

antecedent soil moisture (ASM) conditions are a key factor linking precipitation and 

runoff. Previous studies used in situ observations to examine the critical threshold of 

ASM to differentiate high or low runoff ratios (the amount of storm runoff divided by the 

amount of storm precipitation), but limited to very small catchments (e.g. Penna et al., 

2011; Radatz et al., 2013). Using satellite-based soil moisture, Crow et al. (2017) 

examined the relationship between ASM and observed storm runoff ratios in the South 

Central U.S. They found that the runoff ratio was more strongly correlated to ASM than 

storm total precipitation.  

Some studies have examined the impact of ASM on AR-related flooding, but 

mostly for a single event (e.g. Leung and Qian, 2009; Neiman et al., 2014). Ralph et al. 

(2013b) examined the impact of ASM, from in situ observations, on AR-related runoff 

events in a sub-basin (drainage area 163 km2) of California’s Russian River Basin from 

2004 to 2010 when there were soil moisture observations. They found that AR-induced 

heavy precipitation did not lead to significant streamflow when ASM was dry and that 

extreme floods usually occurred when ASM was quite wet. 

However, observation-based analysis alone is limited by its spatial and/or temporal 

coverage. Simulations from hydrologic models are also essential to better understand the 

role of ASM in (long-term) historic and especially future flood events. Recent studies 
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suggest that observed changes in extreme precipitation associated with a general warming 

have not necessarily lead to commensurate changes in floods, and changes in antecedent 

hydrological conditions could be a primary missing link (Sharma et al., 2018). For 

example, Wasko and Sharma (2017) used station observations to examine the sensitivity 

of extreme daily precipitation and discharge to changes in daily temperature. They found 

that changes in heavy rainfall events linked with observed warming did not lead to 

similar changes in streamflow in most regions globally possibly due to initial moisture 

conditions. Although the number of AR-related extreme precipitation events is projected 

to increase, ASM can have a large impact on AR-related floods especially in a warming 

climate. 

Subseasonal weather forecasts (1-4 week lead times) have not received much 

attention until recently. The past several years have witnessed a joint effort from the 

weather and climate communities to bridge the weather-climate prediction gap at 

subseasonal to seasonal lead times (Mariotti et al., 2018). A few subseasonal weather 

forecast databases have been developed, such as the NOAA/Climate Testbed Subseasonal 

Experiment (SubX) project (Pegion et al., 2019). The subseasonal prediction skill of ARs 

has been evaluated in both forecasts (DeFlorio et al., 2019) and reforecasts (e.g. DeFlorio 

et al., 2018; Mundhenk et al., 2018; Nardi et al., 2018). Yet, the usefulness of these 

databases on AR-related flooding has not been examined despite its considerable 

socioeconomic value. 
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1.2 Science questions 

Here, I seek to examine climate change impacts on AR-related floods and their 

modulation by hydrological initial conditions in coastal Western U.S. watersheds. The 

science questions I intend to address are: 

1) What is the role of hydrologic initial conditions on the interaction between 

surface climate forcings associated with ARs and the flood response at river basin scale	

in the current (historical) climate?  

2) How will climate change impact the role of hydrologic initial conditions on AR-

related floods along the U.S. West Coast? 

3) What is the subseasonal forecast skill (at 1-4 week lead times) of AR-related 

floods in coastal Western U.S. watersheds?  

I address these questions are addressed in the following three chapters. I select 

three coastal watersheds frequented by ARs as my study domain: the Chehalis River 

basin in Washington State, the Russian River basin in Northern California, and the Santa 

Margarita River basin in Southern California. They form a transect along the U.S. Pacific 

Coast and their locations reflect seasonal and geographic signatures of AR landfalls. 

Besides, all three basins are rain-dominant. I implement the Distributed Hydrology-Soil-

Vegetation Model (DHSVM) (Wigmosta et al., 1994) in each of the three basins.  Below, 

I summarize the three core chapters of this dissertation (Chapters 2-4), which finishes 

with overall conclusions in Chapter 5. 

Chapter 2 (published as Cao et al., 2019) focuses on the Russian River basin, 

which is the site of NOAA’s Hydrometeorology Testbed (HMT) soil moisture 

observation network (Ralph et al., 2013a) and has long-term records. This chapter 
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examines the interaction of ASM with AR storm characteristics in the current (historical) 

climate, addressing Question 1 using both observation- and simulation-based analyses. 

Chapter 3 (in revision as Cao et al., 2020a) examines how those relationships will 

change in the future across three basins based on model runs driven by downscaled 

Global Climate Model (GCM) forcings, which addresses Question 2. Question 3 is 

addressed in Chapter 4 (to be submitted to Journal of Hydrometeorology as Cao et al., 

2020b) via a series of modeling experiments using downscaled NOAA’s SubX forcings. 
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Chapter 2. The Role of Hydrological Initial Conditions on Atmospheric 

River Floods in the Russian River Basin 

This chapter has been published in its current form in the Journal of Hydrometeorology. 

© American Meteorological Society. Used with permission. The supplemental material 

for this chapter is provided in Appendix A. 
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Abstract 

A body of work over the last decade or so has demonstrated that most major floods 

along the U.S. West Coast are attributable to Atmospheric Rivers (ARs). Recent studies 

suggest that observed changes in extreme precipitation associated with a general warming 

of the Western U.S. have not necessarily led to corresponding changes in floods, and 

changes in antecedent hydrological conditions could be a primary missing link. Here we 

examine the role of antecedent soil moisture (ASM) conditions on historical AR flooding 

on California’s Russian River Basin, a coastal watershed whose winter precipitation 

extremes are dominated by ARs. We examined the effect of observed warming on ASM 

for the period 1950-2017. We first constructed an hourly precipitation product at 1/32o 

spatial resolution. We used the Distributed Hydrology-Soil-Vegetation Model (DHSVM) 

to estimate storm total runoff volumes and soil moisture. We found that up to 95% of 

Peaks Over Threshold (POT) extreme discharge events were associated with ARs. The 

storm runoff-precipitation ratio generally increased with wetter pre-storm conditions, and 
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the relationship was stronger as drainage area increased. We found no trends in extreme 

precipitation but weak downward trends in extreme discharge. The latter were mostly 

consistent with weak downward trends in the first 2-day storm precipitation. We found no 

trends in ASM, however, ASM was significantly correlated with peak flow. The ASM 

was affected more by antecedent precipitation than evapotranspiration and hence 

temperature increases had weak effects on ASM. 

 

2.1 Introduction 

A body of work over the last decade or so has demonstrated that most major floods 

along the U.S. West Coast are attributable to Atmospheric Rivers (ARs) (e.g. Ralph et al., 

2006; Dettinger et al., 2011; Neiman et al., 2011; Barth et al, 2017), which are long, 

narrow, and transient corridors of anomalously strong horizontal water vapor transport 

(Zhu and Newell, 1998; Ralph et al., 2018b). Accompanied by warm air temperatures and 

strong low-level winds, AR landfalls may lead to enhanced precipitation when interacting 

with the complex topography (Neiman et al., 2002). ARs make up 30-50% of annual 

precipitation on the U.S. Pacific Coast and thus contribute to the region’s water supply 

and water resources (Guan et al., 2010; Dettinger et al., 2011; Lavers and Villarini, 2015; 

Lamjiri et al., 2017). However, strong AR events can result in heavy precipitation and 

lead to disastrous flooding such as the coastal flooding in Southern California during late 

March 2018. Landfalling ARs account for 60-100% of extreme storms (with 

precipitation-total return intervals greater than 2 years) along the U.S. West Coast 

(Lamjiri et al., 2017) and 40–75% of extreme wind and precipitation events (exceeding 

the 98th percentile) over 40% of the coastlines worldwide particularly in the mid-latitudes 
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(Waliser and Guan, 2017). Moreover, ARs contribute more than half of the mean annual 

runoff and more than 80% of annual peak flows along the Pacific Northwest and 

Northern California coast (Paltan et al., 2017; Barth et al., 2017). 

Recent years have witnessed the rapid development of AR detection methods based 

on integrated water vapor (IWV) and IWV transport (IVT) (Shields et al., 2018) as well 

as increased ability to forecast ARs (e.g. Nayak et al., 2014; Lavers et al., 2016; Cordeira 

et al., 2017; Deflorio et al., 2018; Martin et al., 2018). A number of studies have been 

carried out to examine the key factors linking ARs and precipitation, such as the AR 

duration (Ralph et al., 2013b; Lamjiri et al., 2017; Nayak and Villarini, 2018), (IVT) 

intensity, and direction with respect to regional terrain orientation (Ralph et al., 2003; 

Neiman et al., 2011, 2013; Hughes et al., 2014; Hecht and Cordeira, 2017). The first two 

factors can be used as a scale to categorize AR events and their potential hydrologic 

impacts at a given location (Ralph et al., 2019). 

Hydrologic initial conditions play an important role in the natural links between 

precipitation and floods. Previous studies examined the critical threshold of antecedent 

soil moisture (ASM) to differentiate high or low runoff ratios (the amount of storm runoff 

divided by the amount of storm precipitation) based on in situ observations. For example, 

Penna et al. (2011) assessed the effect of ASM in the upper 30 cm layer (of clay 

loam/silty clay loam) on 40 runoff events with precipitation greater than 6 mm during 

June 2005-October 2006 in an alpine headwater catchment with a drainage area of 1.9 

km2. They found that the runoff ratio was mostly below 0.09 when soil saturation 

(percentage of porosity) was below 70%. Similarly, Radatz et al. (2013) found that runoff 

ratios were near zero when soil saturation was below 80% in the upper 30 cm layer of silt 
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loam during March 2004-September 2007 across 6 small agricultural watersheds in 

southwestern Wisconsin with areas ranging within 0.06-0.17 km2. Due to limitations of in 

situ observations, these studies focused on very small catchments. 

The development of satellite-based large-scale soil moisture monitoring products 

using L band microwave radiometry in recent years, such as the European Space 

Agency’s Soil Moisture and Ocean Salinity (SMOS) mission (Kerr et al., 2010) and the 

NASA’s Soil Moisture Active Passive (SMAP) mission (Entekhabi et al., 2010), have 

enabled studies at larger scales. Crow et al. (2017) examined the relationship between 

ASM from the Level-4 SMAP (SMAP_L4) product, which is based on the assimilation of 

SMAP brightness temperature observations into the Catchment Land Surface Model 

(LSM), and the storm runoff ratio from precipitation and streamflow observations in the 

South Central U.S. They found that the runoff ratio showed a much stronger (rank) 

correlation with pre-storm surface soil moisture than storm total precipitation.  

Sensitivity analyses using model simulations can help to better understand the role 

of ASM on floods. Castillo et al. (2003) conducted a stochastic sensitivity analysis in 

three small catchments (0.06-0.24 km2) in semiarid southeast Spain. By examining the 

simulation results from a combination of soil moisture and storm precipitation scenarios, 

they showed that the ASM was an important controlling factor of runoff during low and 

medium intensity storms but not for high intensity storms, during which floods were 

dominated by the infiltration-excess mechanism. A sensitivity analysis in the Fella Basin 

(623 km2) in Italy showed similar results (Nikolopoulos et al., 2011).  Their study used a 

spatially distributed hydrologic model to examine the sensitivity of flash flood response 

to initial wetness conditions by adjusting water table depth and thus the initial soil 
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moisture profile. In addition, Nikolopoulos et al. (2011) found that the sensitivity of flood 

response to initial wetness increased for increasing basin scale by examining the 

sensitivity across catchments with areas of 24, 165 and 329 km2. Thomas et al. (2016) 

examined the sensitivity of simulated peak flows to antecedent soil saturation in a 45 km2 

catchment in Iowa. They found that ASM became less important to peak flows as rainfall 

depth increased. 

Given the awareness of the importance of prestorm wetness conditions on runoff, 

some studies have examined the impact of ASM on AR flooding. Leung and Qian (2009) 

ran a 20-year simulation of regional climate with the Weather Research and Forecasting 

(WRF) model to examine AR-induced heavy precipitation and flooding events over the 

western U.S. from 1980 to 2000. They found that for two selected events with similar 

amounts of total precipitation, different ASM conditions could lead to a difference of 

more than 0.3 in the runoff ratio. Neiman et al. (2014) closely examined a single AR 

flood event in Northern California using in situ observations and found that flooding 

occurred shortly after the soil water content exceeded its field capacity during the 

heaviest rains at one study site. Ralph et al. (2013b) examined the impact of precursor 

soil moisture conditions on the streamflow in a sub-basin (drainage area 163 km2) of the 

Russian River Basin in Northern California during 91 AR events from 2004 to 2010. 

They used hourly observations of upslope IWV flux from the local AR observatory, 

precipitation and streamflow from gauges, as well as soil moisture from NOAA’s 

Hydrometeorology Testbed (HMT) (Ralph et al., 2013a). They found that AR-induced 

heavy precipitation did not lead to significant streamflow when precursor soil moisture 
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was below 20% (volumetric water content) and that extreme floods might occur when 

ASM was greater than about 35%. 

Recent studies have examined the role of changes in soil moisture on floods in a 

warming world. For example, Woldemeskel and Sharma (2016) examined trends in 

annual maximum precipitation and accompanying antecedent soil moisture (with 

antecedent precipitation index (API) as a surrogate) over the past century globally. In 

North America, they found positive trends in annual maximum rainfall but no trend in 

API, which they argued partially explained the lack of positive trends in annual 

maximum flows in this region. Berghuijs et al. (2016) argued that soil moisture changes 

are particularly important in areas, such as California, where flooding is caused by a large 

single precipitation excess event. By analyzing historical station records of precipitation 

and streamflow, Wasko and Sharma (2017) found that increased heavy rainfall events 

caused by warming did not lead to similar increases in the streamflow in most regions 

globally, suggesting the importance of initial moisture conditions in these areas. They 

found that the intensity of extreme precipitation (exceeding the 99th percentile) has 

decreased in the U.S. Northwest (including northern California) as temperatures have 

increased; this is in contrast to the general increasing pattern in the subtropics and 

temperate regions. Similar decreasing trends in both the annual maximum precipitation 

and the annual frequency of heavy precipitation in these regions were found by 

Mallakpour and Villarini (2017), based on the Climate Prediction Center (CPC) gridded 

daily precipitation product during the period 1948-2012. The extreme streamflow in these 

areas showed even greater negative response than extreme precipitation did to increased 

temperatures (Wasko and Sharma, 2017), indicating the influence of ASM conditions. 
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Yet, it is unclear whether the greater negative response of extreme discharge was caused 

by increased temperature or antecedent precipitation conditions (Sharma et al., 2018).  

Given this background, we address here the following motivating questions: 

1) What is the role of ASM on historical AR flooding in California’s Russian River 

Basin? 

2) How has observed warming during the period 1950-2017 affected ASM and thus 

extreme discharge events? 

We selected the Russian River Basin as our study domain because it is a coastal 

watershed where AR events frequently occur. Snow is rare, so the basin’s response to 

extreme precipitation generally is not conflated with a rain-on-snow contribution.  Based 

on observations, Ralph et al. (2006) found that all of the seven largest floods during the 

period 1997-2006 in this basin were due to heavy orographic precipitation caused by 

ARs. Topographic variations have little effect on the spatial variability of precipitation in 

this basin, thus avoiding the added complexity of the influence of snowmelt on stream 

flow that more commonly occurs in mountainous basins. Most importantly, the Russian 

River basin is the site of NOAA’s HMT soil moisture observation network which 

facilitates the evaluation of model simulations. 

 

2.2 Study region 

The Russian River Basin is located in Northern California.  It is bounded by the 

Coast Range both to the east and west (see Figure 2.1a). It has a drainage area of about 

3850 km2 at its mouth. Elevation ranges from sea level to 1324 m at the top of Mount 

Saint Helena. It is a rain-dominant basin with basin-average midwinter (December, 
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January and February) temperatures above 7.5 oC. It has dry summers and wet winters, 

with over 96% of the annual total precipitation (on average over our domain) falling 

between October and April. Annual precipitation ranged from 423 mm in water year 

(WY) 1977 to 2052 mm in WY 1983 with a mean of 1061 mm during the period 1950-

2017. 

 

Figure 2.1 (a) Study domain, with locations of USGS stream gauges and HMT soil moisture 
observation sites shown, and (b) precipitation gauge locations. The 15-km buffer for the 
precipitation gauges selection is shown in gray dashed line in (b). 

The main stem of the Russian River flows southward to its confluence with Mark 

West Creek north of Forestville, where it turns westward and flows into the Pacific 

Ocean. There are two reservoirs within the basin that are operated primarily for flood 

control: Coyote Dam (Lake Mendocino) on the East Fork Russian River near Ukiah, and 

Warm Springs Dam (Lake Sonoma) on Dry Creek west of Healdsburg (see Figure 2.1a). 

 

2.3 Data and methods 

We first constructed an hourly gridded precipitation product for the study period. 

We implemented the Distributed Hydrology-Soil-Vegetation Model (DHSVM) 
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(Wigmosta et al., 1994) over the entire basin and ran it at an hourly time step to obtain 

hydrographs and ASM for historical storm events during the period WY 1950-2017. We 

identified Peaks Over Threshold (POT) extreme precipitation events and extreme 

discharge events that were coincident with AR events. Using the hourly gridded 

precipitation and hourly simulated runoff and soil moisture, we investigated the role of 

ASM on historical AR flooding by examining the relationship between precursor soil 

moisture and storm runoff-precipitation ratios. Finally, we assessed the effect of warming 

using the model simulations where we detrended the meteorological forcings for long-

term temperature changes. 

a. Gridded hourly precipitation 

We derived hourly gridded precipitation data at a spatial resolution of 1/32o for the 

period WY 1950-2017. We first quality controlled the gauge data, then gridded the gauge 

daily precipitation, including the gauge hourly precipitation aggregated to daily, using the 

Mountain Mapper (MM) method (Schaake et al., 2004), and finally interpolated the 

gridded daily precipitation to hourly using the nearest hourly gauge. 

We took daily and hourly precipitation data from NOAA’s Cooperative Observer 

Program (COOP) network; Remote Automatic Weather Stations (RAWS); the 

Automated Surface Observing System (ASOS); the NOAA Hydrometeorological 

Automated Data System (HADS); the California Data Exchange Center (CDEC); and 

NOAA's Hydrometeorolgy Testbed (HMT). COOP stations have both hourly and daily 

precipitation records, some of which go back at least to WY 1950. We excluded COOP 

daily gauges without time of observation records. Gauges from the other networks all 

have hourly data with the earliest record going back to 1985.  We selected gauges within 
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a buffer of 15 km from the basin and excluded gauges with overlap among different 

networks. We used a total of 133 gauges, including 35 COOP daily gauges, 20 COOP 

hourly gauges, 38 HMT gauges, 2 ASOS gauges, 18 HADS gauges, 11 CDEC gauges, 

and 9 RAWS gauges (see Figure 2.1b). 

We performed a quality control (QC) for all hourly gauges following Cao et al. 

(2018). After the QC, we aggregated gauge hourly precipitation to daily. We considered 

daily precipitation as occurring between 0000 and 2400 Pacific Standard Time (PST; 

UTC-0800). Similarly, we used the aggregated daily data to QC the COOP daily gauges 

after we proportioned them to PST 24 h according to their observation time using the 

nearest hourly gauges.  

We used monthly precipitation from the Parameter-Elevation Regressions on 

Independent Slopes Model (PRISM; Daly et al. 1994, 2008) as a background 

precipitation distribution map. Following the MM method, we calculated ratios between 

daily gauge precipitation and the PRISM monthly climatologies at station grid nodes.  

We interpolated the ratios onto the 1/32o grids using the synergraphic mapping system 

(SYMAP) algorithm (Shepard 1984). Gridded daily precipitation were obtained by 

multiplication of the gridded ratios with the PRISM monthly climatology. Finally, we 

interpolated the gridded daily precipitation to hourly. For a given day in a grid cell, we 

first searched for the nearest precipitation gauge with complete and valid hourly data on 

that day, and then multiplied the hourly ratios (hourly precipitation divided by daily sum) 

by the daily precipitation in that grid cell. 
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b. Model implementation 

In order to obtain full hydrographs of historical storm events from sub-daily data 

and historical soil moisture conditions, we implemented the DHSVM model (Wigmosta 

et al., 1994) at a spatial resolution of 150 m over the entire Russian River Basin and ran it 

at an hourly time step for the (WY) 1950 to 2017 period. Given that there were two 

regulated reservoirs within the basin and naturalized streamflow was needed for our 

analysis, we used a version of DHSVM that includes a reservoir module (DHSVM-res) 

(Zhao et al., 2016). 

1) METEOROLOGICAL DRIVING DATA 

In addition to precipitation data, DHSVM also requires meteorological inputs 

including air temperature, wind speed, relative humidity, downward solar and longwave 

radiation at the model’s hourly time step. Similar to Cao et al. (2016), we calculated the 

last three using the Mountain Microclimate Simulation Model (MTCLIM) algorithms as 

described and implemented by Bohn et al. (2013).  We took wind speed data from the 

lowest atmospheric level in the NCEP-NCAR reanalysis output (Kalnay et al., 1996). We 

obtained daily maximum and minimum temperature data from 11 COOP stations with 

long-term temperature records. We interpolated the station temperature anomalies to a 

spatial resolution of 1/32o based on the PRISM 1981-2010 climatology. Details of the 

gridding approach can be found in Maurer et al. (2002) and Wood and Lettenmaier 

(2006). 

2) MODEL EVALUATION DATA 

There are 29 USGS gauges within the basin at which instantaneous (15-min) 

streamflow records are available, with the longest record dating from October 1987. We 
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selected six stream gauges with records longer than ~30 years for model calibration, 

including the upstream- and downstream-most ones (see Figure 2.1a). Two upstream 

gauges are free of reservoir effects, while the four downstream gauges are affected by 

reservoir regulation. We obtained hourly reservoir storage and elevation data from 

CDEC, with records starting from December 1988. There are 12 HMT soil moisture sites 

within the basin. We selected two sites, HBG and ROD, which had the longest records 

(starting from December 2006). The surface layer observation was at 10 cm depth. 

3) REMOVING RESERVOIR EFFECTS FROM STREAMFLOW OBSERVATIONS 

The reservoir module divides each reservoir into an inactive pool, a conservation 

pool (for water supply), a flood control pool and a surcharge pool, the elevations of 

which were obtained from the Sonoma County Water Agency (SCWA) for Lakes 

Mendocino and Sonoma. The release scheme used by DHSVM-res is based primarily on 

real-time water levels and predefined water demands. We estimated real-time water 

levels from storage through an empirical relationship based on historical CDEC records. 

Similarly, we estimated the real-time surface area (for the calculation of reservoir 

evaporation) from storage as based on CDEC storage observations and historical surface 

area time series from LandSat data. 

We evaluated the model simulations of streamflow at gauges throughout the basin 

and simulations of reservoir storage. We then calculated the difference of simulated 

streamflow without and with the reservoir module at each stream gauge affected by the 

reservoir regulations. We then added the difference back to the observed streamflow in 

order to create an estimate of naturalized flows. 
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c. AR-related POT extreme events 

We used the POT method to select extreme events, which samples observations 

above a given threshold value and considers a wider range of events than the block 

maxima approach (e.g. Lang et al., 1999; Begueria et al., 2011; Mallakpour and Villarini, 

2017). We first selected POT extreme precipitation events and POT extreme discharge 

events separately based on daily observations. We then identified the extreme events that 

were coincident with AR events. 

1) EXTREME PRECIPITATION EVENTS 

For the six long-term stream gauges on which we focused, we calculated the daily 

precipitation at each averaged over its upstream drainage area. We selected POT extreme 

precipitation events based on daily precipitation data. We defined events based on 

consecutive days with peak daily precipitation exceeding a given threshold. We selected 

thresholds to result in 1, 2, 3, 5 and 7 events per year on average, which we denote as 

POTN1, ... POTN7. Events were separated from each other by at least one day with daily 

precipitation below the threshold value, as in Mondal and Mujumdar (2015). 

We used the 6-hourly AR catalog of Gershunov et al. (2017) who applied an AR 

detection method based on both IWV and IVT to the National Centers for Environmental 

Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis data, 

starting with 1948. Ralph et al. (2018a) evaluated the performance of a diverse set of AR 

detection tools (ARDTs) in the Russian River Basin in comparison with the local AR 

observatory, including the three applied to the NCEP-NCAR data set: Rutz et al. (2014), 

Guan and Waliser (2015) and Gershunov et al. (2017). The three tools had similar 

parameters and geometric characteristics and hence showed similar performance in 
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capturing AR frequency, duration and intensity. All three tools inferred slightly higher 

AR contribution to precipitation compared with other ARDTs (Ralph et al., 2018a) due to 

their less stringent geometric criteria. We used the AR catalog of Gershunov et al. (2017) 

primarily because it spans the entire period of the NCEP-NCAR reanalysis up to near 

real-time. We extracted the NCEP-NCAR grid cells (at a relatively coarse 2.5o spatial 

resolution) that intersected the Russian River Basin and identified landfalling ARs. We 

examined the intersection of AR events from this catalog and POT extreme precipitation 

events identified as above. 

2) EXTREME DISCHARGE EVENTS 

For the selection of POT extreme discharge events, we first applied the 

independence criteria from the U.S. Water Resources Council (USWRC, 1982) to daily 

streamflow. According to these criteria the second flood peak of two consecutive events 

must be rejected if: 

 

N interval < 5 days+ log(A) or Xmin < (3 4) ⋅min[Q1,Q2 ]  (2.1) 

where Ninterval is the number of interval days between two peaks, A is the basin area in 

square miles, Xmin is the minimum intermediate flow between two peaks, and Q1 and Q2 

are two consecutive peak values. Same as extreme precipitation events, we set thresholds 

for the observed daily streamflow at each gauge after removing the reservoir effect to 

result in 1, 2, 3, 5 and 7 extreme discharge events per year on average. 

3) ESTIMATION OF STORM RUNOFF RATIOS 

The selections of POT extreme precipitation events and extreme discharge events 

were both based on daily observations. However, we needed the sub-daily data for the 

full hydrographs in order to estimate storm runoff ratios. Hence we calculated the runoff 
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ratios using hourly gridded precipitation from observations and hourly runoff from model 

simulations (readily available hourly discharge observations are too short for a period to 

be useful). 

For each POT extreme precipitation event, we calculated its runoff ratio, which is 

equal to the storm total runoff volume divided by storm total precipitation. We took the 

beginning of a precipitation event as the first hour with precipitation greater than 0.3 mm 

(to avoid small spikes in COOP hourly data). The event ends once the hourly 

precipitation becomes lower than 0.3 mm or when the AR event ends, if it is one, and 

exceeds the first criterion. The summation of precipitation over the event hours is the 

storm total precipitation. For a runoff event, we determined the start and end of events in 

the hourly simulated streamflow as follows: 1) An event starts with the rise of the 

hydrograph; 2) If there is no following event, the end of the event is determined using the 

constant-k method of Blume et al. (2007), in which k is the recession coefficient, but no 

longer than three days after the peak hour; 3) If there is an immediate following event 

before the end of this event, the event ends with the start of the following one. The 

summation of streamflow over the event hours is the storm total runoff. The estimated 

runoff ratio of a storm event may be larger than 1.0 since we did not separate the 

baseflow from the streamflow time series, and the criteria we used to determine the start 

and end of individual events might not be sophisticated enough for time series at such a 

high (i.e. hourly) temporal resolution especially for small storm events. To take POTN3 

events as an example, runoff ratios larger than 1 occurred less than 10% and 15 % of the 

time at downstream and upstream gauges, respectively. The ASM is defined as the 



	 28 

minimum value of the hourly surface-layer soil moisture within the 24 hours prior to the 

start of a precipitation event. 

d. Examination of warming effect 

The domain-average annual daily maximum temperature (Tmax) and daily minimum 

temperature (Tmin) increased by 0.8 oC and 1.3 oC respectively from 1950 to 2017, 

determined by linear regression. Tmin generally increased over the entire domain in all 

seasons, with slight decreases during fall and winter months in the southwestern part, 

while Tmax generally increased over the southern half of the domain and slightly 

decreased in the northern part especially during summer and fall months (see Figure A1). 

To evaluate the effect of temperature change on ASM and floods since 1950, we 

constructed scenarios representing the temperature conditions in 1950 and 2017. 

Following Hamlet and Lettenmaier (2007), we detrended the temperature time series for 

each 1/32o grid cell and each calendar month by removing the linear trends in the 

monthly average Tmax and Tmin over the period of WY 1950-2017 relative to the pivot 

year 1950 (denoted as “T1950”) and 2017 (denoted as “T2017”) based on the following 

equation.  

 

Tadj[month][year]=Torig[month][year]+Trend[month]⋅ ( pivot _ year  - year)  (2.2) 

Under both scenarios, we assume that precipitation is not affected by temperature 

and stays unchanged. By comparing the ASM and flood response between the scenarios 

T1950 and T2017, we evaluate the impact of temperature increases without the influence 

of precipitation change over the past 68 years. 
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2.4 Results 

a. Model evaluation 

We first assessed the precipitation gridding method. We then evaluated the model 

performances for reservoir storage, streamflow, storm total runoff volume and soil 

moisture. We also compared the composite time series of hourly streamflow during 

extreme precipitation events.  We summarize each of these evaluations below. 

1) GRIDDED PRECIPITATION 

We assessed the accuracy of the precipitation gridding method by systematically 

removing individual stations within the basin one at a time and evaluating the gridded 

product at the station grid in comparison with the removed station following Cao et al. 

(2018). The predicted precipitation at station locations showed reasonable matches with 

the available observations during the period WY 1950-2017, with the coefficient of 

determination (R2) ranging from 0.83 to 1.0 and root-mean-square error (RMSE) ranging 

from 0.3 mm/day to 6.5 mm/day (mostly smaller than 3 mm/day (see Figure A2)). 

2) STREAMFLOW AND STORM TOTAL RUNOFF VOLUME 

We evaluated model performance for reservoir storage using R2, RMSE and bias. 

For the hourly storage calibration, the R2 values were 0.72 and 0.77, the RMSEs were 

15.0 and 16.0 million m3, and the biases were 11.3 and 11.8 million m3 for Lake 

Mendocino and Lake Sonoma respectively (see Table 2.1 and Figure A3). In terms of 

elevation, the RMSEs were 2.2 m and 1.7 m, and the biases were 1.6 m and 1.2 m 

respectively. Model performance in the validation periods was similar to the calibration 

periods at Lake Mendocino but slightly degraded at Lake Sonoma. 
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Table 2.1 Streamflow [cubic meters per second (cms)] and reservoir storage calibration statistics. 
DA is drainage area and KGE is the Kling-Gupta efficiency. All statistics are for hourly data. The 
unit of RMSE and bias for reservoir storage is in million cubic meters and the unit for reservoir 
elevation is in meters. 

USGS 
Gauge Location DA [mi2] Reservoir 

impact 

Calibration periods  
(2005-2014) 

Validation periods  
(1991-2000) 

KGE RMSE 
[cms] 

Bias 
[cms] KGE RMSE 

[cms] 
Bias 

[cms] 
11461500 Calpella 92 N 0.67 7.5 3.7 0.60 8.2 4.5 
11461000 Ukiah  100 N 0.69 8.2 2.7 0.72 8.0 2.7 
11462500 Hopland 362 Y 0.84 19.9 7.6 0.86 20.3 8.2 
11463000 Cloverdale 503 Y 0.90 22.0 8.6 0.91 23.0 9.3 
11464000 Healdsburg 793 Y 0.93 31.3 11.9 0.92 32.5 12.5 
11467000 Guerneville 1338 Y 0.87 48.2 19.3 0.90 49.2 19.6 

Reservoir Location DA [mi2] Variable 
Calibration periods 

(2005-2014) 
Validation periods 

(1991-2000) 
R2 RMSE Bias  R2 RMSE  Bias 

Coyote Lake 
Mendocino 105 

Storage 0.72 15 11.3 0.73 13 9.2 
Elevation 0.72 2.2 1.6 0.73 1.9 1.4 

Warm 
Springs 

Lake 
Sonoma 130 

Storage 0.77 16 11.8 0.73 17 11.7 
Elevation 0.77 1.7 1.2 0.73 1.8 1.2 

 
We used the Kling-Gupta efficiency (KGE) (Gupta et al., 2009), RMSE and bias to 

evaluate the goodness-of-fit between hourly streamflow observations and hourly 

simulations at the six selected stream gauges throughout the basin (see Figure 2.1a for 

gauge location). The simulations at gauges affected by reservoir regulations were from 

the model runs with the reservoir module activated. For the calibration period, the KGE 

ranged from 0.67 to 0.93; the RMSE ranged from 7.5 to 48.2 cms, and the bias ranged 

from 2.7 to 19.3 cms (see Table 2.1 and Figure A4). Model performance in the validation 

periods was similar to the calibration periods. The KGE was the highest at the 

downstream gauge 11464000. 

In addition, we compared the observed (with reservoir effects removed) and 

simulated storm total runoff volumes calculated from the hourly data at six stream gauges 

for POTN3 (three events per year on average) extreme precipitation events during WY 
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1988-2017, which is the period when there were available observations for hourly 

streamflow (see Figure A5). The R2 ranged from 0.68 to 0.95, with better match 

downstream. 

3) SOIL MOISTURE 

We evaluated the model performance of surface-layer soil moisture simulations at 

the HBG and ROD sites using R2, RMSE and bias (see Figure 2.2). For hourly soil 

moisture, the R2 values were 0.72 and 0.86, the RMSEs were 7.1% (volumetric water 

content) and 4.2%, and the biases were 5.2% and 3.2% for HBG and ROD respectively 

during late fall and winter months (October-March) from WY 2007 to WY 2017, the 

period when there were available observations. 

	
Figure 2.2 Comparison of simulated and observed surface-layer soil moisture at (a) HBG and (b) 
ROD sites during late fall and winter months (October–March) of WY 2007–17. The simulation 
is from the 150-m (model spatial resolution) pixel nearest to the observation site.  
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4) PEAK HOUR OF STREAMFLOW	

Figure 2.3 shows the composite time series of POTN3 extreme precipitation events 

during WY 2007-2017. The simulated hourly streamflow showed reasonable matches 

with the observed hourly streamflow at downstream gauges. However, its performance 

was not as good at upstream gauges, which have relatively small drainage areas and 

where the simulated streamflow arguably is more sensitive to the quality of the 

precipitation forcings than at downstream gauges.  Furthermore, there are very few long-

term precipitation gauges in the headwater areas. The peak hour of observed streamflow 

gradually increased from 14 hours at the upstream-most gauge (11461500) to 40 hours at 

the downstream-most gauge (11467000). The simulated streamflow showed the best 

match for peak hour at gauge (11463000) in the middle of the basin. 

	
Figure 2.3 Composite time series of observed and simulated hourly streamflow and surface-layer 
soil moisture at ROD site of POTN3 extreme precipitation events during WY 2007–17 at six 
USGS stream gauges ranked by drainage area. Peak hours of the composite observed and 
simulated streamflow are shown in gray solid line and gray dashed line, respectively. 
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Figure 2.4 POTN3 extreme precipitation events (with threshold set to three events per year on 
average) based on gridded daily precipitation averaged over the upstream drainage area at six 
USGS stream gauges during WY 1950–2017. 

 

b. The role of AR in extreme events 

We set thresholds of POT extreme precipitation events to make sure there were 1, 

2, 3, 5 and 7 events per year on average. Figure 2.4 shows the POT extreme precipitation 

events when the threshold was set to three events per year at six stream gauges from 

upstream most to downstream most throughout the basin during WY1950-2017, in which 

most of the events were AR-related. Table 2.2 summarizes the percentage of events that 

are related to ARs with different threshold values. We can see that the percentage of AR-

related precipitation events increased as the threshold increased. The AR contribution 

increased (from 81.9%-83.0% with a mean of 82.5% to 95.6%-100.0% with a mean of 

98.8%) across the gauges when the threshold increased from POTN7 to POTN1. Also, no 

more than one non AR-related POT event across six gauges was in the upper 25th 
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percentile of all extreme precipitation events when the threshold was higher than three 

events per year. Even when the threshold was set to five or seven events per year, no 

more than four of them fell into the upper 25th percentile (see Table 2.2). The median 

(peak) precipitation of AR-related POT extreme precipitation events was greater than non 

AR-related events by 7.8%-23.2% across six gauges with a threshold of POTN3 and by 

23.1%-34.9% with a threshold of POTN7 (see Table A1).  

Table 2.2 Statistics of POT extreme precipitation and discharge events at six USGS stream 
gauges. Variable N is the number of events and Nupper25th is the number of events in the upper 25th 
percentile. 

POT extreme 
precipitation 

events 

Threshold 
[N/yr.] 

USGS stream gauge 

11461500 11461000 11462500 11463000 11464000 11467000 

AR-related 
percentage 

[%] 

1 100.0 100.0 100.0 100.0 97.1 95.6 
2 96.3 95.6 97.1 96.3 96.3 94.9 
3 91.7 93.1 92.6 93.6 94.6 95.6 
5 86.5 88.5 87.1 87.6 86.8 87.4 
7 81.9 83.0 82.6 83.0 82.1 82.6 

        

Nupper 25th 
(AR/Non 

AR) 

1 17/0 17/0 17/0 17/0 17/0 17/0 
2 34/0 34/0 34/0 34/0 34/0 34/0 
3 51/0 51/0 51/0 51/0 50/1 50/1 
5 84/1 85/0 85/0 84/1 83/2 82/3 
7 115/4 116/3 116/3 116/3 115/4 115/4 

POT extreme 
discharge 

events 

Threshold 
[N/yr.] 

USGS stream gauge 

11461500 11461000 11462500 11463000 11464000 11467000 

AR-related 
percentage 

[%] 

1 95.6 92.6 95.6 97.1 97.1 91.2 
2 90.4 94.9 92.6 93.4 93.4 85.3 
3 83.9 88.8 88.2 88.7 88.7 80.4 
5 75.3 78.8 73.2 74.4 73.5 68.5 
7 69.0 69.7 65.5 65.1 64.3 59.9 

        

Nupper 25th 
(AR/Non 

AR) 

1 17/0 17/0 17/0 17/0 17/0 17/0 
2 33/1 33/1 34/0 34/0 34/0 33/1 
3 48/3 49/3 51/0 51/0 51/0 45/6 
5 79/6 80/5 78/7 81/4 81/4 75/10 
7 110/9 113/6 110/9 112/7 112/7 104/15 
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We set the same thresholds for POT extreme discharge events. The AR 

contribution increased from 59.9%-69.7% with a mean of 65.6% to 91.2%-97.1% with a 

mean of 94.9% across the gauges when the threshold increased from POTN7 to POTN1. 

No more than one non AR-related POT event across six gauges was in the upper 25th 

percentile of all extreme discharge events when the threshold was higher than two events 

per year (see Table 2.2). The median (peak) discharge of AR-related POT extreme 

discharge events was greater than non AR-related events by 34.6%-44.8% across six 

gauges with a threshold of POTN3 and by 80.0%-213.2% with a threshold of POTN7 (see 

Table A1). 

c. The role of ASM in historical AR flooding 

1) EXTREME PRECIPITATION EVENTS 

(i) Observation-based examination 

We examined the relationship between the ASM and runoff ratio in the POTN3 

extreme precipitation events based on observations at six stream gauges throughout the 

basin during WY 2007-2017 (the period when hourly soil moisture observations were 

available at two of the HMT sites and hourly streamflow observations were available at 

USGS gauges). Following Crow et al. (2017), we used the Spearman rank correlation 

coefficient Rs to evaluate the strength of the potentially nonlinear relationship between 

ASM and the runoff ratio. Figure 2.5a shows the observed runoff ratio versus the 

observed ASM at the ROD site. The Rs values generally were higher at downstream 

gauges than upstream gauges, ranging from 0.71 to 0.82, with the highest value at the 

downstream-most gauge 11467000. A similar pattern was found for the relationships 

between the simulated runoff ratio and simulated ASM at the ROD site, with Rs ranging 
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from 0.76 to 0.88 (see Figure 2.5b). Similarly, the ranges of Rs for the observation versus 

observation and model versus model comparisons at the HBG site are 0.63-0.75 and 0.55-

0.73, respectively (see Figure 2.5c-d). 

	

Figure 2.5 Comparison of the observation-based and simulation-based relationships between 
runoff ratio and ASM of POTN3 extreme precipitation events (with threshold set to three events 
per year on average) during WY 2007–17 (period of available soil moisture observations) at six 
USGS stream gauges ranked by drainage area, including (a) observed runoff ratio vs. observed 
ASM at ROD site; (b) simulated runoff ratio vs. simulated ASM at ROD site; (c), (d) as in (a), 
(b), but at HBG site; and (e) simulated runoff ratio vs. simulated ASM averaged over upstream 
drainage area of the stream gauge. The observed runoff ratio is calculated based on gridded 
hourly precipitation and observed hourly streamflow with reservoir effects removed. The 
simulated runoff ratio is calculated based on gridded hourly precipitation and simulated hourly 
streamflow. 
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Relatively long soil moisture observation records were available only at the HBG 

and ROD sites; however, we simulated soil moisture for the entire basin. For each stream 

gauge, we calculated the average ASM over its upstream drainage area. The Rs between 

simulated runoff ratios and simulated upstream average ASM ranged from 0.78 to 0.91, 

higher than the above Rs values calculated based on ASM at one single site (see Figure 

2.5e). The Rs across gauges generally increased as drainage area increased. Besides, the 

POTN3 extreme precipitation events followed by POTN1 extreme discharge events 

generally had a wet prestorm condition (see Figure 2.5e). Also, the top POTN1 extreme 

discharge events were all related to ARs during WY 2007-2017. 

(ii) Simulation-based examination 

Given that the model produced plausible reproductions of observed streamflow and 

soil moisture, we examined the relationship between the ASM and runoff ratio in the 

POTN3 extreme precipitation events related to ARs based on simulated hourly streamflow 

and simulated hourly soil moisture at six stream gauges throughout the basin during WY 

1950-2017. Figure 2.6 shows boxplots of the simulation-based runoff ratios versus 

possible influencing factors including maximum precipitation intensity, average 

precipitation intensity, storm total precipitation and ASM. The plots show that runoff 

ratio was barely affected by either the maximum or average precipitation intensity (see 

Figure 2.6a-b). It generally increased, in terms of the median value, as storm total 

precipitation increased, but with a wide range regardless of the total precipitation (Figure 

2.6c).  
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Figure 2.6 Boxplots with an interval of 20th percentile of the simulation-based runoff ratio vs. 
the (a) maximum precipitation intensity, (b) average precipitation intensity, (c) storm total 
precipitation, and (d) ASM of POTN3 extreme precipitation events (with threshold set to three 
events per year on average) during WY 1950–2017 at six USGS stream gauges ranked by 
drainage area. The Spearman’s rank coefficient (Rs) between the runoff ratio and ASM vs. the 
storm total precipitation is shown as blue triangles in (c). 

In contrast, the runoff ratio is much more strongly related to ASM, with Rs 

increasing slightly from 0.78 at upstream gauge 11461000 to 0.86 at downstream gauge 

11467000 for all POTN3 extreme precipitation events (Figure 2.6d). When ASM was in 

the lower 20th percentile, the runoff ratios were low regardless of precipitation intensity. 

ASM, however, had a smaller effect on the runoff ratios as storm total precipitation 

increased, especially at downstream gauges (Figure 2.6c). 
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In order to compare the relationship between the ASM and runoff ratio for AR- and 

non-AR events, we set the threshold lower to include more events, so that we have 

enough non-AR events to get reasonable statistics. We set the threshold of POT extreme 

precipitation events to make sure there were 10 events per year on average. For 680 POT 

extreme precipitation events during the period WY 1950-2017, there were 506-515 AR 

events and 165-174 non-AR ones across six gauges. The runoff ratio was generally 

higher for AR events than non-AR events given the same threshold of ASM since storm 

precipitation was generally larger for AR events (see Figure 2.7). 

	
Figure 2.7 Boxplots with an interval of 20th percentile of the simulation-based runoff ratio vs. 
ASM of POTN10 extreme precipitation events (with threshold set to 10 events per year on 
average) during WY 1950–2017 at six USGS stream gauges. The POT events are categorized by 
ARs and non ARs, with number of events shown in legends. 

2) EXTREME DISCHARGE EVENTS 

Our analysis above shows that extreme precipitation events lead to extreme 

discharge events when ASM is wet or when storm total precipitation is large enough (see 
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section 5 for more discussion). In this section, we examine the relationship between the 

ASM, storm precipitation and peak daily flow in the POTN1, POTN2, and POTN3 extreme 

discharge events based on observed daily streamflow and simulated hourly soil moisture 

at six stream gauges throughout the basin during WY 1950-2017.  

First, we examined the relationship between accumulated storm precipitation and 

observed peak daily flow given antecedent soil moisture. We used durations ranging from 

6 hours to 72 hours since the start of storm precipitation during each extreme discharge 

event so that we could determine which duration of precipitation most strongly affects the 

peak flow (see Figure 2.8 for results). The correlation generally increased as duration 

increased and peaked around 48 hours for most gauges in POTN2 and POTN3 events. The 

correlation peaked at a longer duration for some gauges in POTN1 events. For 

consistency, we used the first 2-day (48-hour) accumulated storm precipitation (denoted 

as SP2d) in the analysis described below. 

	
Figure 2.8 Relationship between accumulated precipitation and observed peak daily flow given 
ASM in (a) POTN1 extreme discharge events (with threshold set to one event per year on 
average), (b) POTN2 extreme discharge events (two events per year on average), and (c) POTN3 
extreme discharge events (three events per year on average) during WY 1950–2017 at six USGS 
stream gauges. 
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We then examined the partial correlation between the SP2d and observed peak daily 

flow (denoted as PF) given ASM (denoted as rSP2d&PF-ASM), and the partial correlation 

between ASM and observed PF given SP2d (denoted as rASM&PF-SP2d) (see Figure 2.9a). 

SP2d had higher correlations with observed PF, ranging from 0.69 to 0.80 across six 

gauges in POTN3 events, than ASM with observed PF, ranging from 0.40 to 0.67 across 

six gauges in POTN3 events, but all correlations are statistically significant with p<=0.01. 

rASM&PF-SP2d generally increased with drainage areas. Both correlations were higher when 

using the simulated PF since the ASM was from the model (see Figure 2.9b). The effects 

of POT threshold on rSP2d&PF-ASM and rASM&PF-SP2d varied by gauge location. 

	

Figure 2.9 (a) Correlation between first 2-day accumulated storm precipitation and observed 
peak daily flow given ASM (denoted as rSP2d&PF-ASM), and correlation between ASM and observed 
peak daily flow given first 2-day accumulated storm precipitation (denoted as rASM&PF-SP2d) in 
POTN1, POTN2, and POTN3 extreme discharge events (i.e., one, two, and three events per year on 
average) during WY 1950–2017 at six USGS stream gauges. (b) As in (a), but with simulated 
peak daily flow. All correlations are statistically significant with p ≤ 0.01. 
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d. Warming effect 

1) TRENDS IN HISTORICAL POT EXTREME EVENTS 

We examined the trend in POT extreme precipitation events (based on gridded 

daily precipitation averaged over drainage area) and POT extreme discharge events 

(based on observed daily streamflow with reservoir effects removed) at six stream gauges 

throughout the basin with thresholds POTN1, POTN2 and POTN3 during WY 1950-2017 

(see Table A2). Trends in POT extreme discharge events are not necessarily in agreement 

with trends in POT extreme precipitation events since whether the extreme precipitation 

events lead to extreme discharge events depends strongly on ASM (and more weakly on 

storm total precipitation).  

No significant trends were found in extreme precipitation. However, weak (but 

statistically significant) downward trends were found at some gauges for extreme 

discharge, particularly in POTN2 extreme discharge events (see Figure 2.10a), which are 

consistent with weak (but statistically significant) downward trends in the SP2d of 

extreme discharge events at most gauges (see Figure 2.10c). However, statistically 

significant downward trends in the SP2d do not necessarily lead to significant decreases in 

PF despite their high correlation due to the influence of ASM, which is most obvious at 

downstream gauges. One hypothesis for the stronger trends in SP2d as contrasted with PF 

shown in Figure 2.10 is that the absence of trends in ASM (see Figure 2.10b) is 

(somewhat) modulating the trends in precipitation. The absence of trends in ASM could 

be related to a) cancellation of increased evaporative demand due to warmer temperature 

by slight increases in small precipitation amounts, which would need additional analysis, 
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b) timing of the events, which is pretty critical for fall vs. winter. This is a topic that 

could be investigated in detail in future work. 

	

Figure 2.10 Trends in (a) observed peak daily streamflow and (b) ASM from model hourly 
simulation, and (c) first 2-day accumulated storm precipitation of POTN2 extreme discharge 
events (threshold set to two events per year on average). The p values are shown in plots, 
categorized by p ≤ 0.01, 0.01 < p ≤ 0.05, 0.05 < p ≤ 0.1, p ≤ 0.1, and p > 0.1, with positive trends 
are marked in blue and negative in red. The p values not greater than 0.1 are marked in bold font. 

Both extreme discharge and its corresponding SP2d generally decreased at all 

gauges in POTN1, POTN2 and POTN3. In contrast, ASM only decreased at 2, 3 and 4 

gauges in POTN1, POTN2 and POTN3, but none of the trends in ASM were significant 

except the one (p<0.1) at Gauge 11462500 in POTN3 events (see Table A2). 
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Figure 2.11 Correlation between first 2-day accumulated storm precipitation and observed peak 
daily flow given ASM (rSP2d&PF-ASM), and correlation between ASM and observed peak daily flow 
given first 2-day accumulated storm precipitation (rASM&PF-SP2d) in (a) POTN1, (b) POTN2, and (c) 
POTN3 extreme discharge events (i.e., one, two, and three events per year on average) during WY 
1950–2017 at six USGS stream gauges. (top panel) Events in late fall (October–December) and 
(bottom panel) events in winter (January–March). All correlations are statistically significant with 
p ≤ 0.05. The ones with p ≤ 0.01 are shown by solid symbols. 
 

2) TEMPERATURE EFFECT 

In order to assess the effect of increased temperature alone, we compared the trends 

in extreme discharge under temperature scenarios T1950 and T2017 (see Table A2). The 

relative change in trends of extreme discharge was very small:  from  -2.4%~5.7% across 

six gauges in POTN2 extreme discharge events (in all cases, extreme discharge was on 

average smaller for T2017 than T1950 especially at downstream gauges, presumably 

because of increased evapotranspiration and hence decreased ASM). We also examined 

the correlation between ASM and observed PF in extreme discharge events given SP2d 

under T1950 and T2017 in late fall (Oct-Dec) and winter (Jan-Mar) months (see Figure 
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2.11). ASM had a larger impact on extreme discharge in winter than in late fall months at 

the upstream gauges, and the reverse was true at downstream gauges. Warming slightly 

increased the effect of ASM on extreme discharge in the late fall months but had little 

effect in the winter months, possibly due to that there usually are enough minor storms in 

winter and ASM is fairly wet. 

 

2.5 Discussion 

We note that there are some limitations of our study based on the available data.  

One is the low spatial resolution of the NCEP-NCAR reanalysis dataset that the AR date 

catalog is based on. Other limitations are the representaton of reservoir impacts on 

streamflow, and systematic modeling error (especially at upstream gauges). We used the 

AR catalog based on the NCEP-NCAR dataset because of its long record. Despite of its 

coarse spatial resolution, others have found that AR detection algorithms based on the 

NCEP-NCAR reanalysis identify (mostly) the same storms as other reanalysis datasets 

with finer spatial resolution (but shorter records) -- e.g. ERA-Interim and MERRA2 -- 

particularly the stronger and longer ones (Ralph et al., 2018a). We used a reservoir 

module, DHSVM-res, to remove the reservoir impacts on streamflow at downstream 

gauges to estimate naturalized flows (see Table 2.1 and Figures A3-A5 for model 

performance). Finally, to mitigate the potential impacts of the systematic modeling error, 

we used observations in the analysis where they were available as much as possible such 

as the long-term trend analysis of the peak flow in section 4.4.  

As mentioned above, we selected both POT extreme precipitation events and 

extreme discharge events based on daily observations, as in many previous studies (e.g. 
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Lang et al., 1999; Begueria et al., 2011; Mallakpour and Villarini, 2017). However, 

runoff ratios as well as peak daily discharges are more strongly related to storm total 

precipitation than peak daily precipitation. In other words, POT extreme precipitation 

events may not necessarily lead to POT extreme discharge events of the same category. 

Figure 2.12 shows corresponding categories of peak observed daily flow led by POTN1, 

POTN2, and POTN3 extreme precipitation events during WY 1950-2017 at downstream-

most USGS Gauge 11467000 (Russian River near Guerneville). In general, almost all 

extreme precipitation events led to extreme discharge events of the same category when 

upstream average ASM was wetter than 32%, corresponding to the 60th percentile of 

ASM conditions in all POTN3 extreme precipitation events during WY1950-2017. When 

ASM was very dry (lower than 25%, corresponding to the 20th percentile), POTN1, 

POTN2, and POTN3 extreme precipitation events with storm total precipitation exceeding 

209 mm, 204 mm and 70 mm, respectively, might still be able to lead to extreme 

discharge events of the same category. 

	
Figure 2.12 Corresponding categories of peak observed daily flow led by (a) POTN1, (b) POTN2, 
and (c) POTN3 extreme precipitation events (i.e., one, two, and three events per year on average) 
during WY 1950–2017 at downstream-most USGS gauge 11467000 (Russian River near 
Guerneville). 
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Table 2.3 Simulation-based runoff ratio and ASM of discharge events with crest exceeding major 
flood stage (40 ft) at the downstream-most USGS gauge 11467000 (Russian River near 
Guerneville) during WY 1950–2017. The NWS flood stage observations are measured at the 
USGS gauge 11467002 (Russian River at Guerneville), a few kilometers away from the USGS 
gauge 11467000. 

NWS 
event 
rank 

Date 

Observed 
crest of 

flood stage 
[ft] 

Simulated 
hourly 
peak 
[cms] 

Simulation-
based 

runoff ratio 

Simulated ASM 
[volumetric 

water content 
expressed as %] 

Simulated ASM 
percentile in 

historical POTN3 
precipitation events 

[%] 
1 2/18/1986 49.5 3545 1.15 40.2 100.0 
2 1/10/1995 48.0 4046 0.88 36.0 94.8 
3 12/23/1955 47.6 4004 1.02 38.4 98.4 
4 12/23/1964 47.4 4491 0.76 34.3 85.3 
5 1/1/1997 45.0 2326 1.16 38.3 97.9 
6 1/5/1966 42.5 3134 0.88 35.0 90.6 
7 1/1/2006 41.8 3169 0.67 34.0 80.6 
8 3/10/1995 41.5 1780 0.25 28.5 31.9 
9 1/24/1970 41.3 3067 1.09 39.7 99.5 

10 2/1/1963 41.1 1963 0.89 33.6 77.0 
11 1/17/1974 40.7 2555 0.83 36.0 95.3 
12 1/27/1983 40.4 2699 0.76 34.6 86.4 
13 2/25/1958 40.2 2201 0.86 34.6 86.9 

Median 3067 0.88 35.0 90.6 
Max 4491 1.16 40.2 100.0 
Min 1780 0.25 28.5 31.9 

 

For the same gauge, we further examined its runoff ratios and ASM for the largest 

historical extreme discharge events with crests exceeding flood stage (see Table 2.3). For 

these flood events, the runoff ratio ranged from 0.25 to 1.16 with a median value of 0.88. 

The lowest value of 0.25 for the event on 3/10/1995 was due to a consecutive dependent 

small peak in the hourly streamflow data, leading to an early end of the streamflow event 

according to the predefined event separation criteria. Aside from this event (classification 

of which arguably is an artifact of the storm precipitation identification procedure), all of 

the historical major flood events had simulation-based runoff ratios greater than 0.67 and 

ASM greater than 33.6%, the latter corresponding to the 77th percentile of ASM 
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conditions in all POTN3 extreme precipitation events during WY1950-2017. Ralph et al. 

(2019) examined the relationship between the AR scale and major flooding at this gauge 

(see Table 5 in their paper). They found that 6 out of 10 AR events in the highest 

category (in terms of IVT intensity and AR duration) were associated with major 

flooding during 1980-2017. They hypothesized that the three that did not lead to major 

flooding (one occurred when streamflow data were not available) were related to dry 

soils. We showed here (see Table A3) that the ASM values were less than 20% 

(volumetric water content expressed as %) for these three events, which corroborates 

their hypothesis. Furthermore, 5 out of the 6 AR events that led to flooding had ASM 

values greater than 32%. The remaining one was the smallest flood event among the six, 

with an ASM of 22%. 

Long-term trends in temperature alone had little effect on the ASM in POT extreme 

discharge events, indicating that the changes in ASM were largely caused by antecedent 

precipitation. We examined the relative effects of temperature and antecedent 

precipitation on ΔASM by calculating the partial correlation between ΔASM and 

accumulated precipitation given accumulated evapotranspiration (ET) (denoted as rΔASM 

&P-ET), and partial correlation between ΔASM and ET given P (denoted as rΔASM &ET-P) 

under different pre-event durations (from 2 days to 12 weeks) in late fall (Oct-Dec) and 

winter (Jan-Mar) (see Figure A6a-b). The accumulated P had a larger effect on ΔASM 

than ET, and its relative effect decreased as pre-event duration lengthened. The influence 

of ET on ΔASM was larger in late fall than winter. We further examined the impact of 

warming on ΔASM. Warming slightly increased the effect of ET on ΔASM in late fall 



	 49 

especially when the pre-event duration exceeded one month. Warming barely affected the 

influence of ET on ΔASM in winter. 

 

2.6 Conclusions 

We first assessed the contribution of ARs to the extreme precipitation and extreme 

discharge events based on daily observations in California’s Russian River Basin using 

the POT method with varying thresholds (hence, number of events) during WY 1950-

2017. We then examined the role of ASM on historical AR flooding to answer two 

questions: 1) Under what ASM conditions would extreme precipitation events lead to 

extreme discharge events of the same POT category? 2) For extreme discharge events, 

what is the role of ASM on peak flow? Recent studies suggest that observed changes in 

extreme precipitation associated with a general warming have not necessarily lead to 

corresponding changes in floods, and changes in ASM could be a primary missing link. 

We finally examined how the observed warming during the past 68 years had affected 

ASM and thus extreme discharge events. Based on our analysis, we find that: 

1) Most extreme precipitation and flood events in the Russian River Basin are 

associated with ARs – up to 99% of extreme precipitation events and up to 95% of flood 

events, depending on the threshold used. The non-AR events were mostly of minor 

severity, with very few falling in the upper 25th percentile of all extreme precipitation or 

discharge events. 

2) The runoff ratio during extreme precipitation events is much more strongly 

related to ASM than to storm total precipitation. When ASM is wet (e.g. upstream 

average ASM greater than 32% at the downstream-most stream gauge 11467000, Russian 
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River near Guerneville) or storm precipitation is sufficiently large, almost all extreme 

precipitation events lead to extreme discharge events of the same POT category. Among 

the extreme discharge events, however, the first 2-day storm precipitation had a greater 

effect on the peak flow than did ASM, but the effects of ASM on peak flow increases as 

drainage area increases. 

3) We found no trends in the magnitude of extreme precipitation but weak 

downward trends in the magnitude of extreme discharge at some stream gauges in the 

Russian River Basin during the period WY 1950-2017. We found no trends in ASM for 

extreme discharge events despite the fact that ASM was significantly correlated with 

peak flow; rather downward trends in extreme discharge are caused mostly by changes in 

the first 2-day storm precipitation. The ASM for extreme discharge events (which occur 

mostly in late fall and winter) were affected more by antecedent precipitation than 

evapotranspiration and hence temperature increases had weak effects on ASM. 
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Chapter 3. Floods due to atmospheric rivers along the U.S. West Coast: 

The role of hydrological initial conditions in a warming climate 

This chapter has been submitted in its current form to the Journal of Hydrometeorology 

and now in revision. The supplementary materials for this chapter are provided in 

Appendix B. 

Cao, Q., A. Gershunov, T. Shulgina, F.M. Ralph, N. Sun, and D.P. Lettenmaier, 2020: 

Floods due to atmospheric rivers along the U.S. West Coast: The role of hydrological 

initial conditions in a warming climate, Journal of Hydrometeorology, (in revision). 

 

Abstract 

Precipitation extremes are projected to become more frequent along the U.S. West 

Coast due to increased atmospheric river (AR) activity, but the frequency of less intense 

precipitation events may decrease. Antecedent soil moisture (ASM) conditions can have a 

large impact on flood responses especially if decreased pre-storm precipitation and 

increased antecedent evaporative demand in a warming climate result in reduced soil 

moisture at the onset of extreme precipitation events. We examine the impact of ASM on 

AR-related floods in a warming climate in three basins that form a transect along the U.S. 

Pacific Coast: the Chehalis River basin in Washington, the Russian River basin in 

Northern California, and the Santa Margarita River basin in Southern California. We ran 

the Distributed Hydrology-Soil-Vegetation Model (DHSVM) over each of the three river 

basins using forcings downscaled from 10 Global Climate Models (GCMs). We 

examined the dynamic role of ASM by comparing the changes of the largest 50, 100 and 

150 extreme events in two periods, 1951-2000 and 2050-2099. In the Chehalis basin, the 
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projected fraction of AR-related extreme discharge events slightly decreases. In the 

Russian basin, this fraction increases, however, and more substantially so in the Santa 

Margarita basin. This is due to increases in AR-related extreme precipitation events, as 

well as the fact that the relationship of AR-related extreme precipitation to extreme 

discharge is strengthened by projected increases in year-to-year volatility of annual 

precipitation in California, which increases the likelihood of concurrent occurrence of 

large storms and wet ASM conditions. 

 

3.1 Introduction 

Atmospheric rivers (ARs) are responsible for most of the storm events leading to 

extreme precipitation and runoff along the U.S. West Coast (e.g. Ralph et al., 2006; 

Dettinger et al., 2011; Neiman et al., 2011). Most floods and flood damages in the West 

have been explicitly linked to ARs (Barth et al, 2017; Konrad and Dettinger, 2017, 

Corringham et al., 2019). Over the past decade, several studies have examined the 

potential impact of climate change on AR land-falling activity in this region, in order to 

better project the changes in extreme precipitation associated with ARs. Using seven 

Global Climate Models (GCMs), Dettinger (2011) projected that the number of 

landfalling ARs in California would increase by ~30% in the 21st century. The peak AR 

intensity, storm temperature and the length of AR season would increase as well. 

Espinoza et al. (2018) cross-compared their results with previous studies focused on the 

U.S. West Coast (Hagos et al., 2015; Gao et al., 2015; Payne and Magnusdottir, 2015; 

Warner et al., 2015; Shields and Kiehl, 2016). Despite great discrepancies in the 

projected landfalling AR frequency changes, all of these studies showed that the number 
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of landfalling AR days would substantially increase by the end of 21st century along the 

U.S. West Coast under the Representative Concentration Pathway (RCP) 8.5 emission 

scenario. So would the AR intensity, in terms of the integrated water vapor transport 

(IVT) (Warner et al., 2015; Espinoza et al., 2018). These changes in ARs will increase 

both the number of extreme precipitation days and the peak precipitation intensity along 

the U.S. West Coast where they interact with complex topography and lead to orographic 

precipitation (Hagos et al., 2015; Warner et al., 2015). 

Although extreme precipitation associated with ARs will increase in a warming 

climate, a commensurate increase in high flows may not be expected on the basis of 

theory and observational evidence (Sharma et al., 2018). Antecedent hydrological 

conditions play an important role in the linkage between extreme precipitation and 

flooding. By analyzing historical station records of precipitation and streamflow over the 

contiguous U.S. during 1950-2000, Ivancic and Shaw (2015) found that extreme (99th 

percentile) precipitation only led to extreme (99th percentile) discharge 36% of the time. 

When the antecedent soil moisture (ASM) conditions were wet, the percentage increased 

to 62%. Furthermore, Wasko and Sharma (2017) examined the sensitivity of extreme 

daily precipitation and discharge to changes in daily temperature based on station 

records. They found that changes in heavy rainfall events linked with observed warming 

did not lead to similar changes in streamflow in most regions globally possibly due to 

initial moisture conditions. Wasko and Nathan (2019) assessed the influence of changes 

in rainfall and ASM on trends in flooding at stream gauges in Australia. They used a 

quantile regression method in order to assign a recurrence interval to trends beyond the 

mean sampling frequency. They found that only for the most extreme flood flows with 
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return period larger than 40 years, the trend in peak flows was similar in magnitude to the 

trend in extreme precipitation, indicating that ASM is especially important in modulating 

the response of floods that are not very rare. Bennett et al. (2018) examined the effect of 

ASM (using antecedent precipitation as a proxy) on flood volume in 100 Australian 

catchments with sub-daily streamflow and precipitation observations. They found that 

although flood-producing precipitation was the dominant driver of flood magnitudes, the 

elasticity of flow to antecedent precipitation was about one third of the elasticity to flood-

producing precipitation, however the influence of antecedent precipitation weakened as 

event magnitudes increased. 

Changes in ASM and their impact on flood response are especially important in 

areas like the U.S. West Coast where flooding is typically caused by large single 

precipitation excess events (Berghuijs et al., 2016) and where precipitation is strongly 

winter-dominant, with many potentially flood-inducing events occurring relatively early 

in the wet season when soils tend to be dry. Cao et al. (2019) examined the role of ASM 

in historical AR flooding on California’s Russian River Basin, a coastal watershed whose 

winter precipitation extremes are dominated by ARs. They showed that low ASM was an 

offsetting factor for the three AR Category 5 (the highest category of ARs on the scale 

defined by Ralph et al. (2019)) events that did not lead to major flooding during 1980-

2017. They also found that the ASM was affected more by antecedent precipitation than 

evapotranspiration (ET) and hence temperature increases had relatively modest effects on 

ASM. 

Warming is expected to become increasingly pronounced by the end of 21st 

century especially under the RCP8.5 global emissions scenario (Rogelj et al., 2012) as 
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will its likely impact on ASM. Meanwhile, studies suggest that although the frequency of 

extreme precipitation will increase, the frequency of low to medium intensity 

precipitation will decrease and offset the change in annual precipitation along the U.S. 

West Coast (e.g. Pierce et al. 2013b; Polade et al., 2017; Gershunov et al., 2019). By 

analyzing the ensemble average of daily precipitation of 28 GCMs from the Phase 5 of 

Coupled Model Intercomparison Project (CMIP5), Polade et al. (2014) found that there 

would be slightly more dry days (with precipitation < 1 mm) in this region by the end of 

the 21st century under the RCP8.5 emissions scenario.  

In California, the climate projections indicated robust increases in the frequency of 

heavy and extreme precipitation, but decreases in the frequency of low-medium intensity 

precipitation, with the latter mainly occurring in the fall and spring months (Pierce et al. 

2013b; Polade et al., 2017). Gershunov et al. (2019) examined the role of ARs in future 

precipitation regime change over the western U.S. using projections from 16 CMIP5 

GCMs. They identified five GCMs that they deemed most realistic in terms of their 

performance in capturing the statistics of historical AR events and AR contribution to 

total annual precipitation (they denoted these GCMs as “Real-5”). They found that the 

Real-5 GCMs projected, with a significant reduction of projection uncertainty in 

comparison with the full ensemble, less frequent but more intense precipitation from 

ARs. This in turn translated into more volatility of year-to-year total annual precipitation, 

especially in California. This suggests a more flood- and drought-prone future 

precipitation regime and may affect the importance of ASM considerations.  

Along the U.S. West Coast, Gershunov et al. (2019) found (based on the Real-5 

GCMs) the frequency of the heavy (90th-99th percentile) and extreme (>99th percentile) 
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precipitation generally increased due to increased AR activity, with the greatest increase 

projected in northern California, while the frequency of medium-intensity (30th-90th 

percentile) precipitation decreased due to non-AR events. These changes in low-medium 

intensity precipitation would lead to lengthening dry periods (punctuated by stronger 

precipitation extremes); taken together with increased temperature, they may exert a 

synergic effect on ASM thus mitigating flood response to increased extreme 

precipitation. 

A proliferation of previous studies has assessed projected future changes in floods 

over the western U.S. Much of the work has focused on mountainous regions with snow 

cover since snow-dominant basins are more sensitive than rain-dominant basins to 

increased temperatures where warming tends to mitigate the effects of increased 

precipitation on flooding by causing reductions in spring snowpack (Hamlet and 

Lettenmaier, 2007). Some previous work evaluated coastal river basins, most of which 

have little to modest snow effect.  Such basins will be the focus of our study. Most of the 

earlier studies used the Variable Infiltration Capacity (VIC) land surface model (Liang et 

al., 1994) driven by downscaled GCM forcings to examine the projected changes in 

extreme flows. They projected that flood risks, in terms of both magnitude and frequency 

of floods, will increase along the U.S. West Coast over the remainder of the 21st century 

due to projected increases in winter precipitation (e.g. Salathé et al., 2014; Tohver et al., 

2014; Pagán et al., 2016; Mallakpour et al., 2018; Maurer et al., 2018; Naz et al., 2016, 

2018). All of these studies focused on assessing the projected changes in floods, yet none 

examined the changes in the context of the AR contribution or the role of ASM. 
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Although the number of AR-related extreme precipitation events is projected to 

increase in a warming climate in many GCMs (and notably those that best reproduce 

historic storm statistics, e.g., Real-5), ASM can have a large impact on AR-related floods 

especially if decreased pre-storm low-medium intensity precipitation frequency and 

increased antecedent evaporative demand result in reduced soil moisture at the onset of 

extreme precipitation events. Given this background, we address here the following 

motivating questions: 

1) How will ARs’ contribution to floods change along the U.S. West Coast by the 

end of 21st century? 

2) How will climate change affect ASM and what is its role in modulating flood 

response in a warming climate? 

 

3.2 Study region 

We selected three watersheds that form a transect along the U.S. Pacific Coast: the 

Chehalis River basin in Washington State, the Russian River basin in Northern 

California, and the Santa Margarita River basin in Southern California. The three river 

basins have drainage areas of 5400 km2, 3850 km2 and 1870 km2, respectively (see 

Figure 3.1). Gershunov et al. (2019) used the first two and another one next to the Santa 

Margarita River basin to represent projected precipitation regimes in the western U.S. 

coastal domain. We selected these three basins as our study domain because 1) they are 

coastal watersheds frequented by ARs and their geographical locations reflect different 

AR landfalling signatures; 2) all of them are rain-dominant basins with relatively modest 

topographic variations (elevation ranges of 0-1429 m, 0-1324 m and 143-1736 m, 
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respectively), which avoids the added complexity of the influence of snowmelt on stream 

flow that more commonly occurs in mountainous basins; 3) they are somewhat less 

developed (although there are two dams in the Russian River basin) in comparison with 

surrounding heavily developed and urbanized basins.  

	
Figure 3.1 Map of study region including a) the Chehalis River basin in Washington State, b) the 
Russian River basin in Northern California, and c) the Santa Margarita River basin in Southern 
California. 
	

The Pacific Coastal region has strongly winter-dominant precipitation and mostly 

dry summers. The annual precipitation of the Chehalis, Russian and Santa Margarita 

basins ranged between 1500-3100 mm, 500-2200 m and 145-905 mm, respectively, 

during water years (WY) 1951-2000, with 85%, 95% and 91% of precipitation falling 

between October and April. 
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3.3 Data and methods 

We implemented the Distributed Hydrology-Soil-Vegetation Model (DHSVM) 

(Wigmosta et al., 1994), the parallel version (William et al. 2019), in the three basins 

with essentially the same model setup as in Cao et al. (2019). We ran it at an hourly time 

step in order to obtain hydrographs and ASM. Our analyses include two parts: 1) we 

examine the AR contribution to historical floods and the role of ASM on historical AR 

flooding in each of the basins during WY 1951-2000 using meteorological forcings from 

gridded observations; 2) we assess the changes in AR contribution to future flood events 

and the changes in ASM using downscaled GCM forcings (under the RCP8.5 scenario) 

by comparing simulated flood statistics for the periods WY 1951-2000 with WY 2050-

2099. 

3.3.1 Model implementation 

We implemented the DHSVM at a spatial resolution of 150 m as in Cao et al. 

(2019) over the Chehalis, the Russian and the Santa Margarita river basins. We ran the 

model at an hourly time step in order to obtain full hydrographs of storm events from 

sub-daily data and soil moisture conditions. The model requires meteorological driving 

data at its hourly time step, the preparation of which is described in section 3.2. The 

model inputs include DEM, soil class, land cover type, soil depth and flow direction. The 

first three were taken from the NASA Shuttle Radar Topography Mission (SRTM) 90-m 

product, the USDA STATSGO2 data, and the US Geological Survey (USGS) 30-m 

GAP/LANDFIRE land cover map based on the 2001 imagery, respectively, which were 

resampled to model’s 150 m resolution. Soil depths and flow directions were determined 
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using scripts included in DHSVM as described in Cao et al. (2016). In this study, we did 

not consider future land cover change. 

We first calibrated the model in each basin using meteorological forcings from 

gridded observations, for which we selected USGS stream gauges with relatively 

complete records that go back to WY 1951 in each basin. We then ran the model and 

evaluated simulations of historical flood events and GCM-projected changes. 

3.3.2 Meteorological forcing data 

3.3.2.1 Historical events 

For historical events, we used the meteorological forcings of Livneh et al. (2015) 

for the period of WY 1951-2000. It is a daily dataset of gridded observations at a spatial 

resolution of 1/16o, with variables including daily precipitation, daily maximum and 

minimum temperature. Its wind data is from the lowest level of the National Centers for 

Environmental Prediction and National Centers for Atmospheric Research 

(NCEP/NCAR) reanalysis (Kalnay et al., 1996). DHSVM requires meteorological inputs 

including precipitation, wind speed, air temperature, relative humidity, downward solar 

and longwave radiation at the model’s hourly time step. The hourly calculation of the last 

four variables was performed using the Mountain Microclimate Simulation Model 

(MTCLIM) algorithms as described and implemented by Bohn et al. (2013). Wind speed 

was taken to be constant throughout a day. Given that fine-timescale precipitation data is 

important to hydrologic predictions in small watersheds, we separately describe the 

hourly disaggregation of precipitation in section 3.2.3. 

3.3.2.2 GCM projected changes 
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We used downscaled forcings from 10 GCMs (see Table B1) under the RCP8.5 

emission scenario for the control period of WY 1951-2000 and the future period of WY 

2050-2099. Pierce et al. (2014) statistically downscaled the CMIP5 GCM daily minimum 

and maximum temperature, and daily precipitation to 1/16o using Localized Constructed 

Analogs (LOCA), with Livneh et al. (2015) dataset as the observed training dataset. As 

mentioned in the Introduction, Gershunov et al. (2019) evaluated the performance of 16 

GCMs that archived variables sufficient to identify ARs in reproducing the key statistical 

features of historical landfalling AR activity and its contribution to total precipitation in 

comparison with an AR catalog (Gershunov et al., 2017) derived from the NCEP/NCAR 

reanalysis dataset. They identified five GCMs, the Real-5, that were most realistic in 

capturing the historical AR events. We selected 10 GCMs for this study based on their 

evaluation results, including the Real-5 (see Table B1). These 10 GCMs, among the 16 

GCMs used in Gershunov et al. (2019), also showed relatively good credibility in 

reproducing observed metrics of precipitation at the seasonal, annual and decadal scales 

in the Southwest (Rupp et al., 2013). The disaggregation of daily to hourly 

meteorological inputs was the same as for historical events. 

3.3.2.3 Hourly disaggregation of precipitation 

Following Westra et al. (2012), we disaggregated the gridded daily precipitation in 

each basin to hourly using a regionalized method of fragments (denoted as “MoF”) 

algorithm. We first collected hourly precipitation data from NOAA’s Hourly 

Precipitation Data (HPD) database. We selected stations within a buffer of 15 km from 

each basin boundary and with records longer than 5 years. There are 12, 25 and 15 

stations that met our criteria in the Chehalis, Russian and Santa Margarita basins, 
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respectively. Some stations have records that go back at least to WY 1951. We performed 

quality control (QC) for the hourly stations following Cao et al. (2018). 

Based on the MoF method, for a given 1/16o grid cell and for a given wet day, we 

searched for days within a moving window of ±15 days centered on that day across all 

years of record and across 4 nearby HPD stations, from which we selected the wet days 

from station data with the same previous- and next-day wetness state (i.e. precipitating or 

not) as the grid data to account for continuity. The selected daily station precipitation was 

then ranked by its absolute deviation from the gridded daily precipitation. We found up to 

10 nearest neighbors with absolute deviations less than 10% of the gridded precipitation, 

and randomly drew one of them with probabilities determined by the previous ranking. 

The selected fragment (hourly ratio of station data to its daily precipitation) was then 

multiplied to the grid daily precipitation. 

3.3.3 AR-related extreme events 

We first used the Peaks Over Threshold (POT) method to identify extreme 

precipitation and extreme discharge events. For the latter, we also examined the annual 

maximum flow (AMF) events as this is a common characterization of flood flows. We 

then examined ARs’ contribution to extreme events by identifying the ones that were 

coincident with AR events. 

We selected POT extreme precipitation and extreme discharge events based on 

daily data. The POT method samples observations above a given threshold value and 

considers a wider range of events than the block maxima approach (e.g. Lang et al., 1999; 

Begueria et al., 2011; Mallakpour and Villarini, 2017). We first applied independence 

criteria to the data as in Cao et al. (2019). For precipitation events, they were separated 
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from each other by at least one day with daily precipitation below the threshold value. 

We selected thresholds to result in 1, 2 and 3 events per year on average, which we 

denote as POTN1P, POTN2P, and POTN3P. Because we are interested in the dynamic role of 

ASM on floods in a changing climate, we used separate thresholds for the historical 

climate and future climate periods, which results in same numbers of events for the two 

periods and keeps a focus on the largest ones. For extreme discharge, we used criteria on 

the interval between two peaks and a relative threshold on the intermediate flow from the 

U.S. Water Resources Council (USWRC, 1982). Similar to precipitation events, we set 

thresholds (separately for the two climate periods) for daily streamflow at each stream 

gauge to result 1, 2 and 3 extreme discharge events per year on average, which we denote 

as POTN1D, POTN2D and POTN3D. 

To examine the AR contribution to extreme events, we identified the POT events as 

well as AMF that were coincident with AR events. For historical events, we used the AR 

catalog of Gershunov et al. (2017), which is based on the NCEP/NCAR reanalysis 

(denoted as “SIO-R1”). For the GCM projected changes, we used the AR catalogs of 

Gershunov et al. (2019) which they developed through application of the same automated 

AR detection scheme that they applied to historical observations to daily GCM output. 

For each catalog, we extracted the grid cells that intersected each basin and identified 

landfalling ARs. 

3.3.4 The role of ASM 

We examined the role of ASM on historical floods by evaluating the relationship 

between precursor soil moisture and storm runoff-precipitation ratios, which we took as 

storm total runoff volume divided by storm total precipitation. We used the definition of 
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precipitation and runoff events following Cao et al. (2019). For a POT extreme 

precipitation event selected based on daily data, we calculated the storm total 

precipitation based on hourly forcings. We took the beginning of a precipitation event as 

the first hour with precipitation exceeding a certain threshold and the end of event as the 

hour with precipitation dropping below that threshold. The summation of precipitation 

over the event hours is the storm total precipitation. For a POT extreme runoff event 

selected based on daily data, we calculated the storm total runoff using hourly model 

simulations. The start of a runoff event is the hour of the rise of the hydrograph and the 

end of event is determined by the constant-k method of Blume et al. (2007) but no longer 

than three days after the peak hour or the start of the following event. We defined ASM 

as the minimum value of the hourly surface-layer soil moisture from model simulations 

within the 24 hours prior to the start of a precipitation event. 

We examined the role of ASM in modulating flood response in a warming climate 

in two ways. We first examined the changes in the connection between extreme 

precipitation and extreme discharge events during two periods, WY 1951-2000 and WY 

2050-2099. Specifically, we examined changes in the probability of extreme precipitation 

events leading to extreme discharge events of the same POT threshold, which we denote 

as Pr(POTN1D|POTN1P), Pr(POTN2D|POTN2P) and Pr(POTN3D|POTN3P) for events with 

threshold set to 1, 2 and 3 events per year on average. We then examined the role of ASM 

in modulating flood response to extreme precipitation by examining changes in the 

magnitude of peak flows. We focused on the AMF and its related storm precipitation and 

ASM. Since the patterns in the changes are similar during the POT extreme discharge 

events, the results of the POT event analysis were shown in the supplement. 
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3.4 Results 

3.4.1 Model evaluation 

For the streamflow evaluation, we selected stream gauges with relatively complete 

daily records going back to the 1950s throughout each basin, including 6, 6 and 3 gauges 

in the Chehalis, Russian and Santa Margarita basins respectively. We used the Kling-

Gupta efficiency (KGE) (Gupta et al., 2009), normalized root-mean-square error 

(NRMSE) and relative bias to evaluate the goodness-of-fit between daily streamflow 

observations and aggregated daily simulations at each gauge (see Table B2).  

In the Chehalis basin, KGE ranged from 0.69 to 0.89; NRMSE ranged from 0.36 to 

0.49, and the relative bias ranged from -10% to 23% across the six gauges during the 

calibration period (1986-2000). Model performance in the verification period (1971-

1985) was similar to that during the calibration period. In the Russian basin, the 

downstream gauges are influenced by two reservoirs. We obtained the naturalized flows 

at these gauges by calculating the difference between simulated streamflow without and 

with implementation of the DHSVM reservoir module (Zhao et al., 2016) at each gauge 

and then adding the difference back to the observations, following Cao et al. (2019). 

After doing so, KGE ranged from 0.68 to 0.93; and NRMSE ranged from 0.24 to 0.46, 

and the relative bias ranged from -6% to 28% across the six gauges during the calibration 

period. KGE was highest at the downstream-most gauge. In the Santa Margarita basin, 

KGE ranged from 0.53 to 0.74; NRMSE ranged from 0.66 to 0.68, and the relative bias 

ranged from -32% to 3% across three gauges during the calibration period. The NRMSE 

was larger in this basin compared with the other two partly due to its smaller magnitude 
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of streamflow. We also evaluated model performance for peak flows (see Figure 3.1 for 

stream gauge locations). Figure 3.2 shows the distribution of simulated peak (daily) 

discharge in POTN3D in comparison with observations during the period of WY 1951-

2000 at selected upstream and downstream USGS gauges. The simulations matched the 

observations reasonably well in each of the basins, except for some general 

underestimation at the upstream gauge in the Russian and some overestimation for the 

upper tail at the downstream gauge in the Santa Margarita. 

	

Figure 3.2 Comparison of simulated and observed POTN3D (extreme discharge events with 
threshold set to three events per year) at selected upstream (upper row) and downstream (bottom 
row) USGS gauges in three basins during the period WY 1951-2000. 

	

3.4.2 Historical events 

3.4.2.1 Role of ARs 

We set thresholds of POT extreme events during WY 1951-2000 to make sure there 

were 1, 2 and 3 events per year on average. For extreme precipitation, 60%-74% 
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(depending on the threshold used) of the POT events were coincident with ARs in the 

Chehalis River basin, based on the SIO-R1 AR date catalog (see Table B3). In the 

Russian River basin, the AR-related percentages were 95%-98%, while in the Santa 

Margarita River basin, the AR-related percentages were 60%-78%. The AR-related 

percentages increased as the POT threshold increased in all three basins, and the 

percentages were highest in the Russian River basin, which is located in the vicinity of 

the most intense AR activity along the U.S. west coast. In particular, ARs have the 

greatest contribution to total annual precipitation along the U.S. west coast in this area 

(Gershunov et al., 2017). The AR-related percentages were lower for the future climate 

projections based on the ensemble mean of all 10 GCMs, 51%-60%, 65%-75% and 31%-

41% respectively in three basins (see Table 3.1). The AR-related percentages based on 

the mean of Real-5 GCMs matched with the observations slightly better than the full 

ensemble except in the Santa Margarita basin (see Table B3). 

Table 3.1 Fraction [%] of AR-related POT extreme precipitation events, POT extreme discharge 
events, and annual maximum flow (AMF) events in three river basins based on the ensemble 
average of 10 GCMs. 

River 
Basin Period 

Extreme precipitation events Extreme discharge events 
POTN1P POTN2P POTN3P POTN1D POTN2D POTN3D AMF 

Chehalis 
WY 1951-2000 60 55 51 58 52 47 51 
WY 2050-2099 58 54 50 58 50 45 51 

Change -2 -1 -1 0 -2 -2 0 

         

Russian 
WY 1951-2000 75 70 65 67 56 48 59 
WY 2050-2099 77 72 65 71 62 54 63 

Change 2 2 0 4 6 6 4 

         

Santa 
Margarita 

WY 1951-2000 41 36 31 34 29 25 30 
WY 2050-2099 46 41 38 43 37 33 38 

Change 5 5 7 9 8 8 8 
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The AR contribution to extreme discharge also increased as the POT threshold 

increased. 66%-80% of the POT events were coincident with ARs in the Chehalis basin, 

based on the SIO-R1 AR date catalog (see Table B4). In the Russian basin, the AR-

related percentages were 85%-98%, while in the Santa Margarita basin, the AR-related 

percentages were 51%-72%. Figure 3.3 shows the POTN3D events that were coincident 

with ARs in three basins based on the SIO-R1 catalog. In terms of AMF events, they 

were 70%, 86% and 60% coincident with landfalling ARs in the three basins 

respectively. The AR-related percentages of POT events were lower based on the 

ensemble mean of all 10 GCMs, which were 47%-58%, 48%-67% and 25%-34% 

respectively in three basins (see Table 3.1). The AR-related percentages of AMF events 

were 51%, 59% and 30% respectively in the three basins, based on the ensemble mean of 

all 10 GCMs. Similar to extreme precipitation events, the AR-related percentages based 

on the mean of the Real-5 GCMs matched the observations slightly better than the full 

ensemble except in the Santa Margarita basin (see Table B4). In summary, the GCM-

based results capture the geographic pattern of historical relative contributions of ARs to 

extreme precipitation and discharge in the three basins, although the models tend to 

underestimate the magnitudes of these contributions. 
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Figure 3.3 AR-related POTN3D (extreme discharge events with threshold set to 3 events per year 
on average) based on simulated daily streamflow at basin outlets of a) Chehalis River basin, b) 
Russian River basin, and c) Santa Margarita River basin during WY 1951-2000. 

	
3.4.2.2 Role of ASM 

We examined the relationship between the ASM and runoff ratio in the POTN3P 

events. Our previous analysis in the Russian basin (Cao et al., 2019) showed that the 

runoff ratio was much more strongly related to ASM than to storm precipitation. The 

same was found in the other two basins (see Figure 3.4). Following Crow et al. (2017), 

we used the Spearman rank correlation coefficient Rs to evaluate the strength of the 

potentially nonlinear relationship between ASM and the runoff ratio, which were 0.76, 

0.81 and 0.74 in the three basins respectively.  



	 80 

	
Figure 3.4 Box plots with an interval of 20th percentile of the simulation-based runoff ratio versus 
the antecedent soil moisture (ASM) and storm total precipitation of POTN3P (extreme 
precipitation events with threshold set to 3 events per year on average) in three basins during WY 
1951-2000. 

In our previous analysis, we also showed that when ASM is high or storm 

precipitation is sufficiently large, extreme precipitation events can lead to extreme 

discharge events of the same POT threshold (see Figure 12 in Cao et al. (2019)). On the 

other hand, if the ASM is low, extreme precipitation may not lead to extreme discharge 

of the same POT threshold. In the following section, we examine whether the future 

increases in storm precipitation could outweigh the effects of future changes in ASM and 

thus enhance the connection of extreme precipitation and extreme discharge. 

3.4.3 GCM projected changes 

3.4.3.1 Changes in AR contribution to extreme precipitation and discharge events 

We examined changes in AR contributions to extreme precipitation and extreme 

discharge events by comparing the periods WY 1951-2000 with WY 2050-2099 based on 

the ensemble mean of all 10 GCMs (see Table 3.1; the results based on the Real-5 GCMs 



	 81 

are given in Table B5). The percentage of AR-related POTN1P, POTN2P and POTN3P 

precipitation events changed by -2%~1% in the Chehalis basin, 0%~2% in the Russian 

basin, and 5%~7% in the Santa Margarita basin. However, the changes in percentage of 

AR-related discharge events were different from that of extreme precipitation events. The 

percentage of AR-related POTN1D, POTN2D and POTN3D events changed by -2%~0% in 

the Chehalis basin, 4%~6% in the Russian basin, and 8%~9% in the Santa Margarita 

basin. Similar to POT extreme discharge events, the percentage of AR-related AMF 

events stayed unchanged in the Chehalis basin based on the mean of the full ensemble, 

but increased by 4% and 8% in the Russian and Santa Margarita basins, respectively. 

Nonetheless, the POT thresholds generally increased for both extreme precipitation and 

extreme discharge events in all basins (see Tables B3-B4). 

3.4.3.2 Changes in the relationship of extreme precipitation to extreme discharge 

Given that there were mismatches in the changes in AR contributions to extreme 

precipitation and extreme discharge events in the three basins, the relationship between 

extreme precipitation and extreme discharge might have changed. We examined future 

changes in the probability of extreme precipitation events leading to extreme discharge 

events of the same POT threshold by comparing the full GCM ensemble during the 

periods WY 1951-2000 and WY 2050-2099 (see Figure 3.5). Following Maurer et al. 

(2018), we used the Wilcoxon signed-rank (non-parametric) test to determine whether 

there is any significant change in the relevant probabilities among various GCM 

projections. In the Santa Margarita basin, Pr(POTN1D|POTN1P), Pr(POTN2D|POTN2P) and 

Pr(POTN3D|POTN3P) are all projected to significantly increase (p<0.1) at the basin outlet. 

In the Russian basin, the probabilities of all three thresholds are projected to increase at 
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the basin outlet but only the increase of Pr(POTN1D|POTN1P) is statistically significant. 

However, there is no statistically significant change at the Chehalis basin outlet for any 

threshold, and in fact, the Pr(POTN1D|POTN1P) and Pr(POTN2D|POTN2P) are projected to 

slightly decrease. 

	
Figure 3.5 Box plots of the probability of extreme precipitation events leading to extreme 
discharge events of the same POT thresholds based on GCM ensembles during the periods of WY 
1951-2000 and WY 2050-2099. The p values of the Wilcoxon signed-rank test are shown in 
plots, with values not greater than 0.1 marked in bold font. 

To eliminate the impact of drainage area (denoted as DA) differences in the three 

basins (as well as the potential impact of the relationship between peak daily precipitation 

and storm total precipitation), we further examined the probability of changes at the sub-

basin level. Specifically, we grouped the sub-basins into small and large categories by 
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DAs below or above 1000 km2, a threshold used in previous studies (e.g. Ivancic and 

Shaw, 2015; Wasko and Sharma, 2017; Wasko and Nathan, 2019).  Figures 3.5b, e, and h 

show results for sub-basins with drainage areas of greater than 1000 km2, and Figures 

3.5c, f, and i for sub-basins with DA less than 1000 km2). The pattern of changes across 

the three basins was generally similar to those at the basin outlets, but changes tended to 

be more significant for the smaller drainage areas. 

Based on the analysis of historical events in the Russian River basin (Cao et al., 

2019), we hypothesize that there are two ways that the future relationship between 

extreme precipitation and extreme discharge may be strengthened. One is through 

increases in storm precipitation; hence we first examined the role of ARs since they are 

usually associated with the most extreme precipitation events. The other is that large 

storms and wet ASM conditions are more likely to be concurrent; hence we examined the 

ASM and timing of extreme precipitation events. 

a. Role of ARs 

Figure 3.6 shows the probabilities conditioned on ARs (i.e. when extreme 

precipitation events were associated with ARs). The probabilities were higher in all three 

basins during each of the two periods (WY 1951-2000 and WY 2050-2099) in 

comparison with no conditioning. For the projected changes in Pr(POTD|POTP), there 

was still no statistically significant change in the Chehalis basin, but the 

Pr(POTN1D|POTN1P) slightly increased in terms of the median value. In the Russian basin, 

the increase of Pr(POTN1D|POTN1P) was still statistically significant at the basin outlet, 

and there were more statistically significant changes in sub-basins for POT events with 

lower thresholds, indicating that the changes in AR-related storm precipitation were 
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sufficiently large to lead to more extreme discharge of the same POT threshold. In the 

Santa Margarita basin, the probabilities still increased both at the basin outlet and within 

sub-basins, but less significant increases were possibly due to the relatively small number 

of AR-related extreme precipitation events in this basin. 

	

Figure 3.6 Same as Figure 3.5 but for extreme precipitation events conditioned on ARs. 

 

b. Role of ASM 

Whether an extreme precipitation event could lead to an extreme discharge event 

depends not only on storm total precipitation but also on ASM. We first examined the 

average changes in storm precipitation and ASM (see Figure 3.7). Storm precipitation 
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generally increased in all three basins across all three POT thresholds, but the average 

changes in ASM varied among basins. When we sorted the POTP events by the POTD 

threshold of their peak flows, both the storm precipitation and ASM are higher on 

average (see Figure B1) for the POTP events that lead to the POTD of the same threshold. 

	
Figure 3.7 CDF of storm total precipitation, storm occurrence dates and antecedent soil moisture 
(ASM) conditions in three basins during POTN1P, POTN2P and POTN3P events (i.e. extreme 
precipitation events with thresholds set to 1, 2 and 3 events per year on average). 
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We further examined the seasonal timing of the POT events (see Figure 3.7 and 

B2). The mean occurrence date of historical POTN3D events became later progressing 

from north to south along the coast:  around mid January in the Chehalis basin, late 

January in the Russian basin, and early February in the Santa Margarita basin. Extreme 

discharge events historically occurred from mid-November to mid-March in the Chehalis 

basin when the soil was relatively wet and when it was close to the peak of the AR season 

in the Pacific Northwest region (Gershunov et al. 2017). Sorting the POTP events by their 

occurrence dates shows that low ASM occurs more often during the shoulder seasons 

(see Figure B2), which is projected to become even lower, possibly due to precipitation 

frequency loss (see Figure B3 for the seasonal cycle of ASM). Large storms are projected 

to occur more often in the late fall in the Chehalis River basin (see Figure B2), which will 

be increasingly strongly affected by carry-over (dry) ASM from the previous summer, 

and are increasingly unlikely to lead to extreme runoff events. In contrast, large storms 

are projected to occur more often in the winter in the Russian and Santa Margarita River 

basins due to the delayed onset of winter precipitation in California (Pierce et al. 2013b). 

We examined the Rs between storm precipitation and ASM during POT extreme 

precipitation events (see Figure 3.8). There is no clear pattern of changes in Rs in the 

Chehalis River basin. The Rs is generally projected to increase, however, in the Russian 

and Santa Margarita River basins for POTN2P and POTN3P events. Nearly half of the Rs 

values are projected to be significant (p<0.1) among 10 GCMs, indicating that a large 

storm is projected to be more likely to follow a wet ASM condition as the year-to-year 

volatility of annual precipitation is projected to increase in California. 
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Figure 3.8 The Spearman’s rank correlation (Rs) between storm precipitation and antecedent soil 
moisture (ASM) during POTN1P, POTN2P and POTN3P events (i.e. extreme precipitation events 
with thresholds set to 1, 2 and 3 events per year on average). The correlations with p values not 
greater than 0.1 are shown as solid symbols. 

3.4.3.3 Changes in AMF flows 

We next examine changes in the magnitude of AMF events, as well as storm 

precipitation and related ASM based on the ensemble mean of all 10 GCMs (see Figure 

3.9). The pattern of changes in these variables was similar to POTN1D events (see Figure 

B4), which hence are not shown here. The magnitude of AMF and its storm precipitation 

showed an overall increase in all three basins. The AMF (averaged over 50 years) 

increased by 21%, 29% and 48% respectively in the Chehalis, Russian and Santa 

Margarita basins. Storm precipitation increased by 17%, 26% and 38%. However, the 

ASM preceding future AMF events is not projected to change much --  2%, 1% and -2% 

on average in the three basins. Small increase in ASM occurred over all quartiles in the 
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Chehalis basin, for the upper three quartiles in the Russian basin, and only over the upper 

quartile in the Santa Margarita basin. When we sort the variables by the CDF of AMF 

events, we can see that the influence of changes in ASM on AMF varies among 

individual events (see Figure B5). 

	
Figure 3.9 CDF of peak daily flow, storm total precipitation, antecedent soil moisture (ASM) 
conditions, and event occurrence dates during annual maximum flow (AMF) events, as well as 
annual precipitation in a) Chehalis River basin, b) Russian River basin, and c) Santa Margarita 
River basin based on the ensemble of 10 GCMs. 
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We further examined the correlation between storm precipitation and AMF given 

ASM (denoted as “rSP&AMF-ASM”), and correlation between ASM and AMF given storm 

precipitation (denoted as “rASM&AMF-SP”) during WY 1951-2000 and WY 2050-2099 (see 

Figure B6). The rASM&AMF-SP is projected to slightly decrease (p<0.1 in the Wilcoxon test) 

among GCMs, yet still significant, in the Russian River basin where storm precipitation 

is projected to increase most among three basins caused by ARs. No statistically 

significant changes were found in the other two basins. 

 

3.5 Discussion 

We examined changes in the magnitude of extreme floods with return periods of 4, 

10, 20, 50 and 100 years by fitting the Generalized Extreme Value (GEV) distribution to 

the AMF from each GCM (see Figure B7). Mallakpour et al. (2019) evaluated different 

distributions for the AMF in multiple basins in California and found the GEV performed 

best in most cases. We used the Wilcoxon test to determine whether there is any 

significant change in the percent change of flood magnitude between WY 2050-2099 and 

WY 1951-2000 (see Figure 3.10). The full GCM ensemble projects significant increases 

(p<0.05) in the magnitude of floods with all return periods in all three basins. The Real-5 

GCMs (arguably the most realistic in terms of capturing historical AR event statistics; see 

SM1 in the supplemental material) project significant increases (p<0.05) in the 4, 10 and 

20-year floods in the Chehalis River basin, the 4-year floods in the Russian River basin 

(despite of much higher median values for all extreme floods in comparison with the full 

GCM ensemble), and the 100-year floods in the Santa Margarita River basin, where the 

fraction of AR-related AMF events increases most. 
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Figure 3.10 Percent change in 4, 10, 20, 50 and 100-year recurrence interval flow between WY 
2050-2099 and WY 1951-2000. The upper row is based on the ensemble of 10 GCMs and the 
lower row is based on the Real-5 GCMs. The p values not greater than 0.05 are marked in bold 
font. 

As mentioned above, the ASM associated with AMF events generally (slightly) 

increased in the Chehalis and Russian basins, while they slightly decreased in the Santa 

Margarita basin. We examined what caused the changes in ASM in the three basins, 

specifically changes in temperature vs. changes in antecedent precipitation. Figure 3.11 

shows the correlation between the changes in soil moisture (ΔSM) and antecedent 

precipitation (P) given evapotranspiration (ET) (denoted as “rΔSM&P-ET”), and the 

correlation between ΔSM and ET given P (denoted as “rΔSM&ET-P”) for different pre-event 

durations (from 2 days to 12 weeks). The figure shows that the ASM are affected more 

by P than ET in each of the basin during both periods, except for the Chehalis basin 

during WY 1951-2000 due to the influence of seasonality of events. When they are 

examined in separate seasons (i.e. late fall and winter), the relative influence of P is larger 

than ET. For the Santa Margarita basin in Southern California where the projected loss of 

(non-AR) heavy precipitation is most pronounced (Polade et al. 2014, 2017; Gershunov 
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et al. 2019), the correlation between ΔSM and P given ET is much higher than in the 

other two basins, indicating that precipitation regime change is a relatively more 

important driver of projected ASM changes in this basin. In the meantime, the relative 

influence of ET on ΔSM is smallest in the Chehalis basin, intermediate in the Russian 

basin, and largest in the Santa Margarita basin. Warming shows a greater impact on ASM 

of AMF events in the Santa Margarita basin, where the change in precipitation regime 

may exert a synergetic effect that makes the ASM more vulnerable to warming. This may 

be the case for other Mediterranean climate regimes as well, where precipitation 

frequency loss is even more pronounced (Polade et al. 2017). 

	
Figure 3.11 Effects of temperature and antecedent precipitation conditions on changes of 
antecedent soil moisture (ΔSM) of annual maximum flow events in a) the Chehalis River basin, 
b) the Russian River basin, and c) the Santa Margarita River basin, which are examined as 
correlation between ΔSM and accumulated precipitation (P) given accumulated 
evapotranspiration (ET), and correlation between ΔSM and ET given P under different pre-event 
duration. The upper row is for the period of WY 1951-2000 and the bottom row is for the period 
of WY 2050-2099. 
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We note here some limitations of our study. One is that there are uncertainties in 

the AR-related percentages of extreme events we reported here, partly related to the low 

spatial resolution of both the NCEP–NCAR reanalysis dataset and the GCMs that the AR 

date catalogs are based on. However, Ralph et al (2018) showed that the derived 

landfalling AR catalogs were not sensitive to reanalysis spatial resolution (this was 

specifically for the Russian River basin) but were much more sensitive to the detection 

methodology used. Also, the SIO-R1 catalog we used here was highlighted by Ralph et al 

(2018) as relevant for precipitation-related studies as it was specifically developed with 

precipitation applications in mind and evaluated with independent precipitation data 

(Gershunov et al. 2017). In terms of the uncertainties in percentages based on GCMs, 

rather than their spatial resolution, a greater uncertainty appears to be GCM biased in 

IVT — mostly wet, but some unrealistically dry, as is discussed in Gershunov et al. 

(2019). Hence we focused more on changes in the percentages than their absolute values. 

Other limitations are related to meteorological forcings. For example, Pierce et al. 

(2013a) showed that the algorithm we used here to estimate humidity might not preserve 

the original global model’s humidity trends, but they also pointed out that coastal areas 

were less biased than the interior areas. Additionally, some studies have shown the 

impact of warming on the intensification of precipitation at sub-daily time scales (e.g. 

Westra et al., 2013, 2014; Meredith et al., 2019), indicating that atmospheric states may 

need to be considered in the precipitation disaggregation for the future period, which will 

be included in our future work. 
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3.6 Conclusions 

Recent studies have projected large increases in AR activity along the U.S. West 

Coast, which are projected to be associated with increases in extreme precipitation events 

during the 21st century (e.g. Hagos et al., 2015; Warner et al., 2015; Gershunov et al., 

2019). However, ASM is a primary link between precipitation and flooding, and might 

decrease with projected decreases in pre-storm low-medium intensity precipitation 

frequency, and increased antecedent evaporative demand associated with warming.  This 

would mitigate the flood response to increases in extreme precipitation caused by ARs. 

Here, we first examined changes in AR contributions to the largest 50, 100 and 150 

extreme discharge events in three river basins along the U.S. West Coast in two periods, 

WY 1951-2000 and WY 2050-2099 for three rainfall-dominated watersheds (only the 

Chehalis has modest contributions of snowmelt to flood runoff). We then examined how 

ASM is likely to change in the future and assessed its effect on changes in flood 

response, particularly on the relationship of extreme precipitation to extreme discharge, 

and on the magnitude of AMF. Based on our analysis, we find: 

1) Historically most extreme discharge events in all three river basins have been 

AR-related (specific fractions depend on the POT threshold used and the specific river 

basin). In a warmer climate the projected fraction of AR-related extreme discharge events 

will decrease slightly in the northernmost Chehalis River basin, primarily due to slight 

decreases in the fraction of AR-related extreme precipitation events. However, in the 

Russian River basin and even more in the southernmost Santa Margarita River basin the 

fraction of AR-related extreme discharge events will increases, partly due to increases in 

the fraction of AR-related extreme precipitation events, and partly due to changes in the 
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relationship between extreme precipitation and extreme discharge (discussed below). The 

changes in fraction slightly increase as the threshold decreases.  

2) Changes in the fraction of AR-related extreme discharge events differ from 

changes in the (fraction of) AR-related extreme precipitation events, due to changes in 

the relationship of extreme precipitation to extreme discharge. The relationship is 

projected to become slightly weaker in the Chehalis River basin, possibly due to a) 

modest increases in storm precipitation, b) increases in the number of extreme 

precipitation events that occur in the shoulder seasons when ASM is relatively dry (and is 

projected to become drier as a result of precipitation frequency loss), and c) little change 

in precipitation volatility relative to the other two basins. The relationship is projected to 

become significantly stronger in the Russian River basin for POT events of the highest 

threshold, and likewise in the Santa Margarita River basin for POT events of all 

thresholds, partly due to large storms being more likely to follow wet ASM conditions as 

the year-to-year volatility of annual precipitation is projected to increase in California. 

When extreme precipitation events are conditioned on ARs, the relationship is projected 

to become stronger in all three basins, especially in the Russian River basin. 

3) The ASM associated with AMF events is projected to slightly increase (on 

average) in the Chehalis and Russian River basins, while the ASM is projected to slightly 

decrease (on average) in the Santa Margarita River basin, where the loss of non-AR 

precipitation frequency is most pronounced and hence it may exert a synergetic effect 

that makes the ASM more sensitive to warming. The influence of changes in ASM on 

AMF varies among individual events in three basins, but the relative effect of ASM on 

AMF given storm precipitation is projected to become slightly weaker (yet still 
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significant) in the Russian River basin where storm precipitation is projected to increase 

most among three basins caused by ARs. 

4) In terms of the general changes in extreme floods, the full GCM ensemble 

projects significant increases in the magnitude of 100-year floods in all three basins. The 

“Real-5” (five most realistic GCMs in terms of their reproduction of historical AR event 

statistics) project relatively small increases in the magnitude of the 100-year flood in the 

Chehalis River basin but greater increases in the Russian and Santa Margarita River 

basins than the full GCM ensemble. Their projections show that, however, the increase in 

the magnitude of 100-year flood is only significant in the Santa Margarita River basin, 

where the number of AR-related AMF events increases most and the year-to-year 

volatility of annual precipitation is projected to increase most. Differences in the results 

indicate that caution is needed in the selection of GCMs for future flood analyses in these 

basins. 
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Chapter 4. Evaluation of the subseasonal forecast skill of atmospheric 

river floods in coastal Western U.S. watersheds 

This chapter will be submitted to the Journal of Hydrometeorology as 

Cao, Q., Shraddhanand Shukla, Michael J. DeFlorio, F. Martin Ralph, and Dennis P. 

Lettenmaier, 2020: Evaluation of the subseasonal forecast skill of atmospheric river 

floods in coastal Western U.S. watersheds. Journal of Hydrometeorology, (in prep). 

The supplementary materials for this chapter are provided in Appendix C. 

 

Abstract 

Atmospheric rivers (ARs) are responsible for most of the storm events leading to 

extreme precipitation and runoff along the U.S. West Coast. The time scale of 

subseasonal forecasting (days to about a month) is critical to proactive disaster mitigation 

efforts, including responses to AR-related flooding. The NOAA/Climate Testbed 

Subseasonal Experiment (SubX) project has produced a reforecast data base that facilities 

evaluation of the potential to forecast AR-related floods. Here, we examine the SubX 

precipitation and temperature forecast skill, as well as resulting flood forecast skill, with 

particular attention to the role of hydrologic factors, particularly antecedent soil moisture 

(ASM) that modulate the relationship between meteorological and hydrological forecast 

skill. We focus in particular on SubX forecasts of AR-related flooding along the coastal 

Western U.S. with lead times of 1-4 weeks using the Distributed Hydrology-Soil-

Vegetation Model (DHSVM). We study three watersheds that form a transect along the 

U.S. Pacific Coast: the Chehalis River Basin in Washington, the Russian River Basin in 

Northern California, and the Santa Margarita River Basin in Southern California. We find 
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that the SubX forecast skill of extreme discharge events drops quickly after week 1, 

during which there is relatively strong deterministic forecast skill. We find some 

probabilitistic forecast skill in week 2, but negligible skill in weeks 3-4, especially for 

annual maximum floods (one event per year on average), notwithstanding some 

probabilistic skill for smaller floods in weeks 3-4. We also find that forecast skill is 

strongly influenced by ASM, with higher forecast skill when ASM is wet especially at 

shorter lead times and for lower flood thresholds. Using ensemble streamflow prediction 

(ESP) and reverse-ESP experiments, we find that at short forecast lead times, ASM 

dominates streamflow forecast skill, while SubX forecast skill dominates at longer lead 

times. The length of lead times for which ASM has a stronger influence on flood forecast 

skill is longer in the northern-most (Chehalis) basin, and generally decreases north to 

south. 

 

4.1 Introduction 

Atmospheric rivers (ARs) are responsible for most of the storm events leading to 

extreme precipitation and runoff along the coastal Western U.S. (e.g. Ralph et al., 2006; 

Dettinger et al., 2011; Neiman et al., 2011; Barth et al, 2017; Konrad and Dettinger, 

2017). Recently, the subseasonal prediction skill of ARs has been evaluated in both 

forecasts (DeFlorio et al., 2019) and reforecasts (e.g. DeFlorio et al., 2018; Mundhenk et 

al., 2018; Nardi et al., 2018) using newly emerged subseasonal weather forecast data sets. 

To date, however, the usefulness of these forecasts for AR-related flooding has not been 

examined. 
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Although the time scale of subseasonal weather forecasts is critical to proactive 

disaster mitigation efforts, such as reservoir operations for flood control, it has not 

received much attention until recently (Vitart et al., 2017). The past several years have 

witnessed a joint effort from the weather and climate communities to bridge the weather-

climate prediction gap at the subseasonal to seasonal (S2S) range (Mariotti et al., 2018), 

which typically is defined by lead times ranging from about one to four weeks. A few 

subseasonal forecast data bases have been developed, such as the World Weather 

Research Programme (WWRP)/World Climate Research Program (WCRP) Subseasonal 

to Seasonal (S2S) Prediction Project (Vitart et al., 2017) and the NOAA/Climate Testbed 

Subseasonal Experiment (SubX) project (Pegion et al., 2019). 

Several recent studies have evaluated hindcasts of precipitation from the 

WWRP/WCRP S2S database. For example, Lin et al. (2018) examined the forecast skill 

of 11 S2S models for extreme precipitation at a lead time of about 2 weeks for a 2017 

flood event in eastern Canada. They found that most of the models predicted above-

normal precipitation during the flood event but most underestimated precipitation 

amounts in comparison with observations, possibly due to the underestimation of the 

amplitudes of the Madden-Julian Oscillation (MJO) teleconnections in boreal winter. Pan 

et al. (2019) evaluated S2S precipitation prediction skill over the western U.S. 

WWRP/WCRP S2S data base. They found that the best-performing models had useful 

deterministic skill at week 2 but beyond that only their probabilistic skill was useful. 

They also found that the model performances varied by the phases of El Niño–Southern 

Oscillation (ENSO) and MJO, which are two dominant tropical variations affecting 

precipitation, especially for the West Coast of North America.  
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In addition, a few studies have examined the potential application of the 

WWRP/WCRP S2S precipitation forecasts for streamflow forecast. For example, Schick 

et al. (2019) examined the forecast skill of the European Centre for Medium-Range 

Weather Forecasts (ECMWF) model, one of the eleven S2S models, in predicting 

monthly average streamflow at lead times of zero and 20 days in 16 European 

catchments. They used the model output statistics (MOS) method to regress observed 

streamflow on ECMWF hindcast data. They found that prediction skill of monthly 

streamflow was frequently absent in comparison with streamflow climatology, especially 

at the lead time of 20 days. Furthermore, forecast skill varied greatly among the predictor 

combinations, catchments and dates of prediction. Li et al. (2019) evaluated the 

precipitation forecasts of eight S2S models for streamflow simulation, particularly for 

extreme events, using a hydrologic model applied to four basins in China, with drainage 

areas of 3,312-52,150 km2. They found that the S2S models had some prediction skill for 

daily precipitation up to a lead time of 11 days. They also found that bias-corrected 

streamflow simulations outperformed bias-corrected precipitation in simulating the 

amount of maximum continuous streamflow and peak flows. 

All the above studies used the WWRP/WCRP S2S database. The NOAA’s SubX 

differs from it by having a research-to-operations focus, and hence includes operational 

as well as research models and produces forecasts in near real-time (Pegion et al., 2019). 

Here, we instead use NOAA’s SubX reforecast precipitation and temperature subseasonal 

reforecasts given its almost immediate availability of forecasts, with specific attention to 

AR-related storms and flooding along the coastal Western U.S. Pegion et al. (2019) 

evaluated the skill of the week 3 averages (average of days 15-21 of the forecast period) 
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of the seven SubX models globally. They found greater skill in temperature as contrasted 

with precipitation forecasts for lead three weeks. Baker et al. (2019) found similar results 

in an evaluation of the skill of the Climate Forecast System version 2 (CFSv2), one of the 

SubX models, over the conterminous United States (CONUS) domain. Despite the fact 

that precipitation skill dropped quickly by weeks 2-3, the West Coast showed the highest 

skill over the CONUS during the winter months (Baker et al., 2019). 

The forecast skill of meteorological forcings (particularly precipitation) is an 

important determinant of flood prediction skill, however antecedent hydrological 

conditions play an important role as well (e.g. Mahanama et al., 2008). For instance, low 

antecedent soil moisture (ASM) (as is often the case along the Pacific Coast early in the 

winter season) has been shown to be an offsetting factor for several extreme historical 

AR events in California’s Russian River basin that otherwise would have lead to major 

flooding (Cao et al., 2019).  

Ensemble streamflow prediction (ESP) and reverse-ESP (revESP) experiments 

have been used in previous studies to examine the relative importance of initial 

hydrological conditions (denoted as “IHCs”) and climate forecast error as sources of 

streamflow forecast uncertainty at seasonal time scales (e.g. Wood and Lettenmaier, 

2008; Li et al., 2009; Shukla and Lettenmaier, 2011). In ESP, a hydrologic model with 

assumed perfect IHCs is forced by an ensemble of meteorological forcings resampled 

from past observations. In contrast in revESP, the model is forced with assumed perfect 

meteorological forecasts with an ensemble of resampled IHCs. Here we used the 

ESP/revESP method(s) to partition the relative contributions of ASM and meteorological 

forecast skill to errors in flood forecasts at subseasonal time scales.  
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In addition to the ESP/revESP construct for partitioning the role of IHCs and 

meteorological forecast skill in hydrologic forecasts, ESP can be used as a baseline for 

determining the contribution of meteorological forecast skill to hydrological (e.g. 

streamflow) forecast skill (Li et al., 2009). For example, Monhart et al. (2019) compared 

a traditional ESP approach with subseasonal forecasts from ECMWF (after statistical 

downscaling) in three alpine catchments with areas of 80-1,700 km2. They found the 

ECMWF forecasts could provide added value relative to ESP especially at shorter lead 

times. 

Given this background, our motivating questions are: 

1) What is the subseasonal forecast skill (at 1-4 week lead times) of AR-related 

flooding in coastal Western U.S. watersheds? 

2) What are the relative contributions of ASM and subseasonal weather forecast 

uncertainties to errors in flood forecasts? Are SubX-based streamflow forecasts more 

skillful than traditional ESP? 

 

4.2 Study region 

We focused on three watersheds that form a transect along the U.S. Pacific Coast: 

the Chehalis River basin in Washington State, the Russian River basin in Northern 

California, and the Santa Margarita River basin in Southern California.  These are the 

same watersheds used in our previous study, Cao et al. (2020), where we examined future 

climate impacts on the role of ASM in AR-related floods. AR landfalls show a marked 

seasonal progression from the Pacific Northwest in the late fall when they are most 

frequent to northern California in early winter (Gershunov et al., 2017). The geographical 
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locations of these three watersheds reflect different AR landfalling signatures. Their 

drainage areas are roughly similar (5400 km2, 3850 km2 and 1870 km2, respectively for 

the Chehalis, Russian, and Santa Margarita) (see Figure 4.1). The precipitation in all 

three basins is strongly winter-dominant, varying, on an annual basis, from 1560-2700 

mm, 320-1580 m and 160-750 mm in the Chehalis, Russian and Santa Margarita River 

basins, respectively, during 1999-2016.  During these years, 79%, 87% and 83% of 

precipitation fell between October and March. 

	
Figure 4.1 Map of study region including a) the Chehalis River basin in Washington State, b) the 
Russian River basin in Northern California, and c) the Santa Margarita River basin in Southern 
California. 

 

4.3 Data and methods 

We first downscaled the SubX output to a finer spatial resolution, given its coarse 

native resolution of 1o×1o with respect to our study domain, and the high spatial 

resolution of our hydrological model. We implemented the Distributed Hydrology-Soil-

Vegetation Model (DHSVM) (Wigmosta et al., 1994; see Chapter 3 for details of the 
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model implementation) in the three basins and ran the model with the downscaled SubX 

forcings. We then evaluated the skill of streamflow forecasts relative to observations. We 

also examined how the relative contribution of meteorological forcings and ASM to 

errors in flood forecasts evolved with lead time. 

4.3.1 Downscaling of meteorological forcings 

We used 5 out of 7 models in the SubX database (available at 

http://iridl.ldeo.columbia.edu/SOURCES/.Models/.SubX/), excluding one model with 

only one ensemble member. There are 26 ensemble members in total for the five models 

we used (see Table 4.1). The reforecasts (retrospective forecasts) cover the period 1999-

2016. We only used data during winter months (Oct-Mar) when most precipitation events 

occur. The initialization interval of the models is at least once a week and the lead time is 

at least 32 days. The spatial resolution of the SubX output is 1o×1o and its temporal 

resolution is daily. We downscaled the SubX output to 1/16o×1/16o using the gridded 

observation dataset of Livneh et al. (2013) (extended to 2018 as described in Su et al., 

2020) as the training dataset. 

Table 4.1 List of SubX models used in this study 

Model Ens 
Members 

Init Interval 
[days] 

Forecast period 
[days] Reference(s) 

ECCC-GEPS5 4 7 32 Lin et al. (2016) 

EMC-GEFS 11 7 35 Zhou et al. (2016, 2017); 
Zhu et al. (2018) 

ESRL-FIMr1p1 4 7 32 Sun et al. (2018a,b) 

GMAO-GEOS_V2p1 4 5 45 

Koster et al. (2000); 
Molod et al. (2012); 
Reichle and Liu (2014); 
Rienecker et al. (2008) 

RSMAS-CCSM4 3 7 45 Infanti and Kirtman (2016) 
 



	 113 

We used two statistical downscaling methods: a) Bias Correction and Spatial 

Downscaling (BCSD) (Wood et al., 2004) and b) Localized Constructed Analogs 

(LOCA) (Pierce et al., 2014). We implemented BCSD at a daily time scales. Daily BCSD 

has been shown to be an effective approach for removing bias (e.g. Monhart et al., 2018; 

Baker et al., 2019) in atmospheric model output. We applied daily BCSD to precipitation, 

maximum daily temperature (Tmax), minimum daily temperature (Tmin) and wind 

speed.  

Some analyses have indicated that constructed analog-based techniques may 

outperform daily BCSD in capturing the magnitude of extremes (e.g. Abatzoglou and 

Brown, 2012). Therefore we also implemented the constructed analog-based method, 

LOCA, for the downscaling of precipitation, arguably the most important hydrologic 

forcing. We summarize these two approaches briefly below. 

4.3.1.1 Daily BCSD 

There are two steps in daily BCSD: 1) spatial (bilinear) interpolatation of the 1o×1o 

daily SubX model output to 1/16o×1/16o; 2) for each 1/16o grid cell, application of the 

quantile mapping (QM) method (Wood et al., 2002) for bias correction. The training 

period we used was 1999-2016. We applied both steps to each of the five SubX models.  

When applying the QM, we pooled the reforecast days and observation days with 

similar climatology (see Figure C1 for illustration). In so doing, we wanted to preserve 

the forecast skill with respect to lead times. Hence we performed the QM in a lead-time-

dependent manner similar to Monhart et al. (2018) in their bias correction of ECMWF 

model output. The general steps in our processing included: a) for a given forecast 

initialization date, we first found the initialization falling within a 15-day window 
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centered on the given forecast initialization date over the 18 year reforecast period; b) for 

each lead on the given initialization date, we selected the reforecast days with the same 

lead time from all ensemble members of the same model; c) we pooled the climatology 

(observations) based on a 15-day window centered on reforecast calendar days over 18 

years; d) we replaced the reforecast value with a value from the observation climatology 

with the same quantile based on their empirical distributions.  

When the percentile of a reforecast value was outside the range of the empirical 

percentile of observations (based on Weibull plotting positions), we fit theoretical 

probability distributions to the data. Following Wood et al. (2002), we used the Gumbel 

distribution for upper tails and the Weibull distribution for lower tails for precipitation. 

Additionally, we examined the effect of populating the sample distribution in step b) by 

pooling the following seven days (denoted as “BCSD_7d”) versus using one day only 

(denoted as “BCSD_1d”). 

Similar to precipitation, we applied daily BCSD to Tmax, Tmin and wind speed. 

For temperature, we used a normal distribution for the tails. For wind speed, we used 

only the empirical distribution. 

4.3.1.2 LOCA 

We also used used LOCA (Pierce et al., 2014) for the downscaling of precipitation. 

We used the same 1999-2016 as for daily BCSD. Before applying LOCA, we applied 

bias correction of the coarse SubX grids, using the same QM steps as bor BCSD (section 

3.1.1).  

The general procedures of LOCA include: a) after daily observations are coarsened 

to 1o×1o, a seasonal spatial mask is generated for each coarse grid cell by excluding those 
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with no spatial correlation. This step aims to limit the analog pool domain at the regional 

scale; b) select 30 analog days for each coarse grid cell at the regional scale, by 

minimizing the root mean squared error (RMSE) between a target day and calendar days 

within a 45-day window over the training period excluding the target year; c) after the 

SubX data and the coarsened observation are interpolated to 1/16o×1/16o, the single best 

matching day is determined at the local scale by minimizing the RMSE over a region of 

21×21 1/16o grid cells between a target day and the 30 analog days. The first three steps 

only area based on coarsened observations; d) calculate a scaling factor from c) and scale 

the fine scale observation data.  

After these steps, we added an additional bias correction step following Abatzoglou 

and Brown (2012). We applied a final QM procedure to the downscaled output to ensure 

statistical moments of the downscaled data conform to observations. This step is basically 

the same as the QM in Section 3.1.1. When applying LOCA, we also compared the 

pooling of the following seven days (denoted as “LOCA_7d”) versus using one day only 

(denoted as “LOCA_1d”) in the QM for both coarse and fine grid cells. 

4.3.2 Model implementation 

We implemented DHSVM in the three basins with essentially the same model 

setup as in Cao et al. (2020). DHSVM requires meteorological inputs including 

precipitation, wind speed, air temperature, relative humidity, downward solar and 

longwave radiation. In order to run the model at an hourly time step, we disaggregated 

the daily data to hourly using the Mountain Microclimate Simulation Model (MTCLIM) 

algorithms as described and implemented by Bohn et al. (2013). We did this for both 

Livneh et al. (2013) data and downscaled SubX data. 
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After model calibration, we ran the model using the Livneh et al. (2013) forcings 

for the period 1999-2016 as a control run. The initialization interval for most SubX 

models is seven days, but different models are initialized on different days. One primary 

purpose of the control run was to provide IHCs for each model run using SubX forcings. 

A multi-model ensemble is usually generated by averaging all forecasts from the same 

start date, has been termed a lagged average ensemble (Vitart et al., 2017; Pegion et al., 

2019). Following this method, we output model states for the 7th, 14th, 21st and 28th of 

each month. This results in 432 IHC dates in total over 18 years. For each IHC date, we 

identified the latest SubX model initialization date within the previous week. For each 

SubX ensemble member and each initialization date, we ran DHSVM for 28 days (four-

week forecast). 

4.3.3 Assessment of streamflow forecast skill 

4.3.3.1 Identification of AR-related extreme events 

We used the Peaks Over Threshold (POT) method to identify extreme discharge 

events as in Cao et al. (2020). We first applied the event independence criteria from 

USWRC (1982) to daily streamflow data in order to identify independent discharge 

events. We set thresholds at each stream gauge that resulted in 1, 2 and 3 extreme events 

per year on average, which we denote as POTN1, POTN2 and POTN3. 

We examined AR contributions to extreme events by identifying the flood events 

that were coincident with AR events. The AR date catalog we used is based on ECMWF 

Reanalysis-Interim (ERA-Interim) data set, from Guan and Waliser (2015). We extracted 

the grid cells from the catalog that intersected each basin and identified them as potential 

AR-related floods. 
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4.3.3.2 Evaluation metrics 

We used the evaluation metrics from DeFlorio et al. (2019) where they assessed the 

subseasonal forecast skill of ARs, including 1) debiased Brier skill score (BSS) (Weigel 

et al., 2007), which is used to evaluate the skill of probabilistic forecasts; 2) Relative 

Operating Characteristic (ROC; Hanley and McNeil, 1982)-like diagrams, which account 

for both hit rate and false alarm rate in a lead-dependent manner.  We discuss these two 

skill measures and our application of them briefly below. 

a. BSS 

The BSS is a relative measure of probabilistic skill that is sensitive to small 

ensemble sizes. Following DeFlorio et al. (2019), we used the debiased BSS, which adds 

a correction term in the denominator of BSS to overcome the small ensemble size issue. 

The debiased BSS can be calculated as follows: 

	 BSS = 1- BS
BSref +D

	 (4.1) 

	 BS = 1
N

Pi −Oi( )
2

i=1

N
∑ 	 (4.2) 

	 BSref  = 1
N

Pclim −Oi( )
2

i=1

N
∑ 	 (4.3) 

	 D = 1
M
Pclim 1− Pclim( ) 	 (4.4) 

where N is the number of reforecast samples during Oct-Mar; Pi represents the forecast 

ability of a particular level of discharge events, which is the fraction of ensemble 

members that predict maximum discharge falling into a particular category during a 

week-long lead period for a single reforecast event; Oi is the binary representation of 

whether the observed discharge fell into that category (1 if yes, 0 if no); M is the 

ensemble size; and Pclim is the probability of the reference climatology. 
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This metric can be sensitive to the choice of the reference climatology (Bartholmes 

et al., 2009). Here, we focused on POT extreme discharge events. For POTN1 events (with 

threshold set to one event per year on average), the Pclim is set to 1/24, corresponding to 

one extreme event occurring over 6 months (i.e. 24 weeks). For POTN2 events (with 

threshold set to two events per year on average), Pclim is set to 2/24, and so forth. BSS 

ranges from -∞ to 1. Values above 0 indicate that the reforecast skill is higher than skill 

from a forecast using reference climatology. 

b. ROC-Like Diagrams 

A ROC-Like diagram shows the ensemble mean, hit rates, and false alarm rates. 

The hit rate is calculated as the number of hits divided by the total number of hits + 

misses. The false alarm rate is calculated as the number of false alarms divided by the 

total number of false alarms + correct rejections. For each POT category and each week 

of lead time, the terms comprising these rates are defined as below: 

Hit = an event is observed and it is forecasted. 

Miss = an event is observed but it is not forecasted. 

False alarm = an event is forecasted but it is not observed. 

Correct rejection = an event is not forecasted and it is not observed. 

4.3.4 ESP and revESP implementation 

In our implementation of ESP, we used IHCs from Section 3.2. ESP considers the 

IHCs to be “true” and the model is forced with resampled gridded observations. For each 

IHC date, we extracted the following 28-days of observed forcings for the same calendar 

day period over the 18 years of the reforecast period. We then forced the model with 18 
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ensemble members starting from the IHC date for a period of 28 days. We compared the 

SubX-based forecasts with ESP to see which was most skillful. 

Similarly, revESP samples IHCs from climatology to initialize the model, which is 

forced with “true” observations. For a given forecast date, the revESP experiments 

sampled 18 IHCs for the same calendar day over 18 years to initialize the model. The 

model was then forced with the true (observed) forcings for a period of 28 days. 

	
Figure 4.2 Precipitation skill (in correlation) of SubX models averaged over each basin and each 
month before bias correction. 



	 120 

4.4 Results 

4.4.1 Evaluation of SubX reforecast focings 

4.4.1.1 Precipitation and temperature skill 

We examined the precipitation skill of the individual SubX models, as well as the 

multimodel ensemble mean (denoted as “MME”), at lead times of 1-4 weeks in each 

basin (see Figure 4.2). We examined each month during the Oct-Mar period separately as 

well. Figure 4.2 shows that precipitation skill (as measured by correlation with 

observations) drops quickly after week 1. In week 2, almost all models have positive 

correlations in all months, but by week 3, some models show no skill in certain months. 

Over all months (Oct-Mar; see bottom panel in Figure 4.2), the precipitation skill of 

individual models in the Chehalis River basin are 0.58~0.73, 0.20~0.31, 0.06~0.13, and -

0.08~0.07 at lead times 1-4 weeks, respectively, while those of MME are 0.74, 0.28, 

0.16, and 0.01. The precipitation skill of individual models in the Russian River basin are 

0.67~0.73, 0.25~0.37, 0.05~0.17, and 0.02~0.08, while those of MME are 0.74, 0.36, 

0.13, and 0.03. In the Santa Margarita River basin, the skills of individual models are 

0.48~0.63, 0.21~0.28, 0.05~0.14, and -0.10~0.08, while those of MME are 0.60, 0.21, 

0.06, and 0.00.  Overall, model skills in the Chehalis and Russian River basins are 

similar, but are somewhat lower in the Santa Margarita basin. 

In terms of skills averaged over weeks 1-4, the skills of individual models are 

0.22~0.30, 0.27~0.32, and 0.19~0.28 in the three basins respectively, while those of 

MME are 0.30, 0.32 and 0.22. Among individual models, ECCC-GEPS5 performed the 

best in the three basins. It had similar skill to MME in the Chehalis and Russian River 

basins, and even higher skill than MME in the Santa Margarita River basin. However, 
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model performances varied by lead time, month, and basin. No individual model had 

consistently better performance than others in weeks 3-4 across the three basins. 

	
Figure 4.3 Maximum daily temperature (Tmax) skill (in correlation) of SubX models averaged 
over each basin and each month before bias correction. 

We also examined the temperature forecast skill. Figure 4.3 shows the results for 

Tmax. (Since the patter for Tmin is similar, it is shown in supplement Figure C2). Similar 

to precipitation, Tmax skill drops quickly after week 1. However, there are fewer 
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negative correlations for Tmax in weeks 3-4 in comparison with precipitation. In general, 

Tmax generally has higher skill than precipitation in week 2-4. 

Over all months (Oct-Mar; see bottom panel in Figure 4.3), the Tmax skills of 

individual models were 0.61~0.71, 0.37~0.46, 0.20~0.25, and 0.12~0.21 at lead times of 

week 1-4 respectively for the Chehalis River basin, while those of MME were 0.70, 0.47, 

0.27 and 0.18. The Tmax skills for individual models in the Russian River basin were in 

the range 0.65~0.77, 0.38~0.48, 0.13~0.25, and 0.01~0.21, while those of MME were 

0.79, 0.52, 0.22 and 0.08. In the Santa Margarita River basin, the skills of individual 

models were in the range 0.68~0.79, 0.36~0.46, 0.09~0.17, and -0.10~0.18, while those 

of MME are 0.80, 0.48, 0.10 and 0.03. Averaged over weeks 1-4, the skills of individual 

models were 0.34~0.38, 0.31~0.42, and 0.26~0.39 in three basins respectively, while 

those of MME are 0.42, 0.40 and 0.35.  Overall, temperature skills were roughly similar 

in the Russian and Santa Margarita River basins, and slightly lower in the Chehalis. 

4.4.1.2 Performance of downscaling methods 

We examined the performance of daily BCSD and LOCA. Figure 4.4 shows the 

precipitation skill of one SubX model, EMC-GEFS, before and after applying these two 

methods. The difference in precipitation skills before and after applying either daily 

BCSD or LOCA is very small, which meets our expectation since the QM is done in a 

lead-time-dependent manner. For the averaged skill over week 1-4 and over all months, 

the difference is within 0.00, 0.01 and 0.03 in the Chehalis, Russian, and Santa Margarita 

River basins, respectively, with the largest difference associated with LOCA_1d (LOCA 

with the pooling of one day only in each init). 
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Figure 4.4 Basin-average precipitation skill (correlation) in one of SubX models, EMC-GEFS, 
before and after applying daily BCSD and LOCA in three basins. 

Figure 4.5 shows the basin-average relative bias of precipitation forecasts in EMC-

GEFS, before and after applying daily BCSD and LOCA in three basins. Before applying 

daily BCSD, the basin-average relative biases over all months were -21%, -3% and -32% 

in the three basins respectively. They were reduced to 1%, -2% and 1% after applying 

BCSD_7d, and 1%, 1% and 8% after applying BCSD_1d. The change in relative bias is 

small in the Russian River basin because the values reported here are averaged over the 

basin and over all months. The change in each month as well as in spatial patterns is 

much larger. It is more spatially coherent after bias correction (see Figure C3-C5). 

Similarly, before applying LOCA, the basin-average relative biases over all months were 

-25%, -1% and -26% in the three basins respectively. They changed to -1%, -2% and 1% 

after applying BCSD_7d, and 0%, 2% and 5% after applying BCSD_1d. 
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Figure 4.5 Basin-average relative bias of precipitation in one of SubX models, EMC-GEFS, 
before and after applying daily BCSD and LOCA in three basins. 

For each month (from Oct to Mar) and each lead week, the relative biases were 

reduced to less than ±10% after bias correction in most cases in the Chehalis and Russian 

River basins, while in the Santa Margarita River basin, the relative biases after bias 

correction were larger, especially in dry months. In most cases, they are within ±20%. 

The difference between BCSD_7d and LOCA_7d, or BCSD_1d and LOCA_1d, is 

generally smaller than the difference between BCSD_7d and BCSD_1d, or LOCA_7d 

and LOCA_1d. Across basins, LOCA performed slightly better in terms of bias in 

comparison with BCSD in the Santa Margarita River basin, but the performance of the 

two methods was similar performance in the other two basins. Given that the 
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computational time and effort of LOCA are several times higher than BCSD, we report 

the streamflow forecast skill only for BCSD below.	

4.4.2 Hydrologic model evaluation 

We evaluated simulated streamflow from the control run, forced by the Livneh et 

al. (2013) data. We used the Kling-Gupta efficiency (KGE) (Gupta et al., 2009), 

normalized root-mean-square error (NRMSE) and relative bias to evaluate the goodness-

of-fit between daily streamflow observations and aggregated daily simulations at the 

downstream-most USGS stream gauge in each basin (for other gauges, see Table C1). 

The KGE, NRMSE and relative bias were 0.94, 0.26 and 3.5% respectively in the 

Chehalis River basin during the calibration period 1999-2007. They were 0.89, 0.27 and 

9.2% in the Russian River basin, and 0.56, 0.57 and 27.4% in the Santa Margarita River 

basin.  Reduced performance of the model in the Santa Margarita basin likely is related to 

the more variable precipitation regime there. Model performance deteriorated slightly 

during the validation period (2008-2016) in the Russian River basin, but was similar in 

calibration and validation periods in the other two basins. 

	
Figure 4.6 Evaluation of hydrologic model performance: simulated versus observed daily peak 
flow of POTN3 extreme discharge events (with threshold set to 3 events per year on average) 
during the period of 1999-2016. The events associated with ARs are marked by circles filled with 
red color. 
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We examined model performance during extreme discharge events given our 

interest in flood forecasting. Figure 4.6 compares simulated and observed peak flows for 

POTN3 extreme discharge events during the SubX period. The simulated peak flows 

generally align with observations in three basins, with some underestimation for smaller 

events in the Chehalis and Santa Margarita River basins. In Figure 4.6, we also show 

model performance for AR events. The percentages of POTN3 extreme discharge events 

that were coincident with ARs during 1999-2016 are 52%, 74% and 41% respectively in 

the Chehalis, Russian and Santa Margarita River basins. We can see that most of the 

largest extreme discharge events were AR-related, especially in the Russian River basin. 

	
Figure 4.7 Brier skill score (BSS) over weeks 1-4 lead time for POTN1, POTN2 and POTN3 
extreme discharge events (with threshold set to 1, 2 and 3 events per year on average). 

4.4.3 Assessment of streamflow forecast skill 

Figure 4.7 shows the BSS values for week 1-4 lead time for POTN1, POTN2 and 

POTN3 extreme discharge events (with thresholds set to 1, 2 and 3 events per year on 

average) in the three basins. For the POTN1 events, the BSS drops quickly after week-1 

and is close to 0 after week-2 in the Chehalis and Russian River basins. BSS is a little 

higher in week-3 in the Santa Margarita River basin in comparison with the other two 

basins, but this could be due to large uncertainty in this basin. When we lower the 
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threshold to POTN2 and POTN3, BSS increases in all weeks, which may be partly due to 

the influence of ASM. 

	
Figure 4.8 ROC-like diagrams (ensemble mean hit rate vs. false alarm rate) of POTN1, POTN2 and 
POTN3 extreme discharge events in three basins, for a) all events; b) events with wet initial 
hydrological conditions (IHCs) vs. events with dry IHCs, separated by median values; c) AR-
related events vs. non AR-related ones; and d) events with large storm precipitation vs. events 
with small storm precipitation, separated by median values. 

We examined the hit rate and false alarm rate in ROC-Like diagrams (see Figure 

4.8a). For POTN1 events, the hit rate drops quickly from week-1 to week-2 in all three 

basins and the false alarm rate slightly increases. After week-2, the positive skill is very 

low. As the threshold is lowered to POTN2 and to POTN3, the hit rate increases but so 

does the false alarm rate. Across basins, the hit rate in the Santa Margarita River basin is 

higher after week-1 in comparison with the other two basins, but its false alarm rate is 
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also higher, indicating the large natural variability (and hence forecast uncertainty) in this 

basin. 

4.4.4 The role of ASM in streamflow forecast 

Streamflow forecast errors and lead times for ESP and revESP experiments are 

shown in Figure 4.9. The RMSE for ESP generally increased with lead time in all three 

basins but with large variations in the Santa Margarita River basin. The RMSE for 

revESP generally decreased with lead times in all three basins but also with large 

variations in the Santa Margarita River basin. The RMSE for revESP was larger than that 

for ESP in the first few days, indicating that ASM dominates the streamflow forecast skill 

at shorter lead times. We also compared ESP with SubX-based forecasts. The RMSE for 

SubX eas lower than ESP over all lead times in all three basins, with a few exceptions in 

the Santa Margarita River basin.  This indicates that SubX forecasts are more skillful than 

ESP. In addition, we compared the effect of populating the sample distribution for QM in 

daily BCSD by pooling the following seven days of a model day versus using one day 

only. We found that the RMSE of BCSD_7d was slightly lower than the latter for 

BCSD_1d, but the difference increased with lead times. 

	
Figure 4.9 RMSE of streamflow forecasts for ESP, revESP, and SubX-based forecasts. 

We further examined the RMSE ratios to evaluate the relative contributions of 

ASM and subseasonal weather forecast skill to streamflow forecast skill. Figure 4.10 
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shows the ratios by month. The ESP-based ratio is generally higher than the SubX-based 

ratio, but the difference becomes smaller with lead time. If the RMSE ratio is less than 

one, we infer that ASM dominates the streamflow forecast skill and vice versa.  

	
Figure 4.10 Variation of RMSE ratios (RMSEESP/RMSErevESP and RMSESubX/RMSErevESP) with 
lead time in three river basins in each month from October to March. The lead time when 
RMSESubX/RMSErevESP exceeds one is marked by a vertical gray line. 

Figure 4.10 shows that the lead time when the SubX-based ratio exceeds one 

generally decreases from October to March in all three basins, suggesting that ASM 

dominates the streamflow forecast skill in fall months, but that the effect is reduced 

through the winter. This makes sense, as early fall soil moisture is dominated by the 

prolonged preceding summer dry period. Across the three basins, the lead time when 

SubX forecast skill starts to dominate streamflow forecast skill generally decreases from 
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north to south. Overall, the SubX forecast skill starts to dominate streamflow forecast 

skill after week-1 except in October months. 

 

4.5 Discussion 

In Section 4.3, we showed that the forecast skill of extreme discharge events 

generally increased at all leads when the POT threshold was reduced (see Figure 4.7 and 

Figure 4.8a) – meaning that our event population becomes less dominated by the largest 

floods. Here we further examine the potential influencing factors, such as IHCs, ARs, and 

storm precipitation. We separated all POT events shown in Figure 4.8a into two groups 

for each factor. The three pairs for comparison are: 1) events with wet IHCs vs. events 

with dry IHCs, separated by median values; 2) AR-related events vs. non AR-related 

events; 3) events with large storm precipitation vs. events with small storm precipitation, 

separated by median values (see Figure 4.8b-d).  

Figure 4.8b shows that forecast skill is generally higher when IHCs are wet than 

dry for all weeks and across all basins, except for weeks 3-4 in the Russian River basin. 

However, the difference between the two groups decreases as the POT threshold 

increases and lead time increases. Also, forecast skill is generally higher for the non AR-

related events than for AR-related ones (see Figure 4.8c). If we consider the POTN3 

events, which have a larger sample size (and hence smaller magnitudes) than the other 

two POT categories, this tendency (higher skill for non-AR events) is stronger in weeks 

1-2 in the Chehalis and Russian River basins, and for all lead times in the Santa 

Margarita River basin. Events associated with ARs generally have higher storm 

precipitation than non-AR events, so this suggests that forecast skill is higher for less 
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extreme events, which is not particularly encouraging for hazard mitigation aspects of 

extended weather prediction. The pattern for the skill of events separated by storm 

precipitation indicates similar message to that by ARs (see Figure 4.8d). The forecast 

skill of extreme discharge events is higher when storm precipitation is small. Despite the 

fact that AR vs non-AR, and groups separated storm precipitation amounts show the 

above differences (higher forecast skill for smaller events), they are not as distinct as the 

effects of IHCs -- especially at shorter lead times and for lower POT thresholds. 

 

4.6 Conclusions 

We examined the performance of SubX reforecasts for subseasonal forecasts of 

AR-related flooding in three watersheds along the coastal Western U.S. We first 

evaluated SubX forecast skill for precipitation and temperature. After the statistical 

downscaling and bias correction of the forcings, we ran the DHSVM model in each of the 

three basins, with focus on peak-over-threshold events in the period 1999-2016. We 

further evaluated the relative contributions of ASM and subseasonal weather forecast 

skill to streamflow forecast skill with leads from one to four weeks using ESP and 

revESP experiments. Based on our analysis, we find  

1) Over all months (Oct-Mar), SubX precipitation skill drops quickly after week 1 

lead, but still has useful skill at weeks 2-3, while at week 4, most models show negligible 

skill. ECCC-GEPS5 overall performed best among individual models for all basins, with 

performance that is comparable with MME. Precipitation forecast skill is generally higher 

in the Chehalis and Russian River basins than in the Santa Margarita River basin 

(towards the southern end of our domain). Generally, there is higher skill in temperature 
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than precipitation forecasts, with all models showing usable skill through lead 3 weeks, 

but all showing little or no skill at week 4. For precipitation downscaling and bias 

correction, the difference between the two methods we examined, daily BCSD and 

LOCA, was smaller than the difference resulted from choices in the pooling of days (7 

days vs. 1 day) with similar climatology. 

2) SubX-based forecast skill for extreme discharge events drops quickly after week 

1, with minimal forecast skill by week 3 for the largest (POTN1) events. Forecast skill 

was slightly higher for smaller events (lower POT thresholds). Furthermore, forecast skill 

was generally lower for AR storms than for non-AR storms. However, forecast skill is 

influenced more strongly by IHCs than by storm magnitude with lower skill when IHCs 

are dry, especially at shorter lead times and with lower POT thresholds (forecast skill is 

diminished less by IHCs for large as contrasted with small storms). 

3) SubX-based streamflow forecast skill is higher than that of ESP-based forecasts 

in all cases with usable precipitation forecast skill (most meaning leads of three weeks or 

less). Across months, the length of lead times for which ASM dominates streamflow 

forecast skill generally decreases through the wet season months. Across basins, the lead 

time when the SubX forecast skill starts to dominate streamflow forecast skill generally 

decreases from the north to south, but generally occurs at leads no longer than one week 

except in October months. 
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Chapter 5. Conclusions and recommendations for future work 

5.1 Conclusions 

In this dissertation, I have examined the effects of hydrologic initial conditions on 

atmospheric river (AR)-related floods and how they will change in a warming climate, 

using a transect of three rain-dominant watersheds along the U.S. Pacific Coast. The three 

watersheds are the Chehalis River basin in Washington State, the Russian River basin in 

Northern California, and the Santa Margarita River basin in Southern California. Due to 

their locations, floods in all three are dominated by the seasonal and geographic 

signatures of landfalling ARs. I applied the Distributed Hydrology-Soil-Vegetation 

Model (DHSVM) in each of the three basins to perform modeling experiments, which are 

the core of my analysis. 

The first science question I posed in Chapter 1 is: “What is the role of hydrologic 

initial conditions on the interaction between surface climate forcings associated with 

ARs and the flood response at river basin scale in the current (historical) climate?” To 

address this question, Chapter 2 examines the role of antecedent soil moisture (ASM) on 

historical AR-related flooding in California’s Russian River Basin during the period 

water years (WY) 1950-2017. It uses a combination of observation- and simulation-based 

analyses. It concludes that most extreme precipitation and flood events in this basin are 

associated with ARs. The runoff ratio during extreme precipitation events is much more 

strongly related to ASM than to storm total precipitation. Not all extreme precipitation 

events can lead to extreme discharge events of the same peaks over threshold (POT) 

category especially when ASM is low. Among the extreme discharge events, however, 
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the first 2-day storm precipitation has a greater effect on the peak flow than does ASM, 

but the effects of ASM on peak flow increase as drainage area increases. 

Chapter 2 also examines trends in extreme precipitation and discharge over the past 

68 years. There are no statistically significant trends in the magnitude of extreme 

precipitation, but there are weak downward trends in the magnitude of extreme discharge 

at some stream gauges. There are no statistically significant trends in ASM associated 

with extreme discharge events despite the fact that ASM is significantly correlated with 

peak flow; rather downward trends in extreme discharge are caused mostly by changes in 

the first two days of storm precipitation. Using a modeling experiment, I also find that the 

ASM for extreme discharge events in the Russian River basin is affected more by 

antecedent precipitation than by evapotranspiration and hence observed temperature 

increases have only weakly affected ASM over the past 68 years. 

The second science question posed in Chapter 1 is: “How will climate change 

impact the role of hydrologic initial conditions on AR-related floods along the U.S. 

West Coast?” Chapter 3 addresses this question using model simulations driven by 

downscaled global climate model (GCM) forcings in each of the three basins. Chapter 2 

shows that when ASM is wet or storm precipitation is sufficiently large, almost all 

extreme precipitation events lead to extreme discharge events in the same POT category. 

On the other hand, if the ASM is low, extreme precipitation may not lead to extreme 

discharge of the same POT category. However, ASM might decrease with projected 

decreases in pre-storm low to medium intensity precipitation, and increased evaporative 

demand associated with warming. Therefore, Chapter 3 examines whether future 

increases in storm precipitation could outweigh the effects of future changes in ASM and 
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thus enhance the connection of extreme precipitation and extreme discharge. It does so by 

examining changes in AR contributions to the largest 50, 100 and 150 extreme 

precipitation and discharge events in the three river basins in two periods, WY 1951-2000 

and WY 2050-2099. In particular, it examines how ASM is likely to change in the future 

and how changes in ASM will affect the relationship of extreme precipitation and 

extreme discharge. 

In Chapter 3, I find that the projected (consensus of 10 GCMs) fraction of AR-

related extreme discharge events slightly decreases in the Chehalis basin. In the Russian 

River basin, this fraction increases, however, and more substantially so in the Santa 

Margarita basin. This is due to two effects. First, AR-related extreme precipitation events 

increase in frequency in the two California watersheds. Second, the relationship of AR-

related extreme precipitation to extreme discharge is strengthened by projected increases 

in year-to-year volatility of annual precipitation in California. This increases the 

likelihood of concurrent occurrence of large storms and wet ASM conditions. In addition, 

the influence of changes in ASM on annual maximum floods (AMF) varies among 

individual events in three basins, but the relative effect of ASM on AMF given storm 

precipitation is projected to become slightly weaker (yet still significant) in the Russian 

River basin where storm precipitation is projected to increase most among three basins 

caused by ARs. 

The third science question posed in Chapter 1 is: “What is the subseasonal 

forecast skill (at 1-4 week lead times) of AR-related flooding in coastal Western U.S. 

watersheds?” To address this question, in Chapter 4 I evaluate the performance of the 

NOAA/Climate Testbed Subseasonal Experiment (SubX) project reforecast forcings 
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(after statistical downscaling and bias correction) applied to subseasonal forecasts of AR-

related flooding in the three watersheds during the period 1999-2016. I find that the SubX 

forecast skill for extreme discharge events drops quickly after week 1, during which there 

is relatively strong deterministic forecast skill. There is some probabilistic forecast skill 

in week 2, but negligible skill in weeks 3-4, especially for annual maximum floods (one 

event per year on average), notwithstanding some probabilistic skill for smaller floods in 

weeks 3-4. 

Moreover, Chapter 4 shows that flood forecast skill is strongly influenced by ASM, 

with higher forecast skill when ASM is wet especially at shorter lead times and for lower 

flood thresholds. Via ensemble streamflow prediction (ESP) and reverse-ESP 

experiments, I show in Chapter 4 that that at short forecast lead times, ASM dominates 

streamflow forecast skill, while SubX forecast skill dominates at longer lead times. The 

length of lead times for which ASM has a stronger influence on flood forecast skill is 

longer in the northern-most (Chehalis) basin, and generally decreases north to south. 

 

5.2 Recommendations for future work 

This dissertation has demonstrated the important role of ASM in AR-related 

flooding in coastal Western U.S. watersheds under both current and future conditions. 

My focus has been on three rain-dominant watersheds that reflect AR landfall signatures. 

There are significant differences across basins, but they are generally systematic, and 

reflect the nature of storm and inter-storm characteristics. Future work could extend the 

analyses to other watersheds and to the regional scale, and in particular could consider 

the more complex set of factors that govern extreme runoff in snow-affected watersheds. 
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Chapter 3 examined projected changes in the magnitude of extreme (order 100-

year) floods in the three basins. The full GCM ensemble (10 models) projects significant 

increases in extreme floods all three basins. However, the “Real-5” (five most realistic 

GCMs in terms of their reproduction of historical AR event statistics) project relatively 

small increases in the magnitude of the 100-year flood in the Chehalis River basin but 

greater increases in the Russian and Santa Margarita River basins than the full GCM 

ensemble. Understanding the nature and cause of across-GCM differences in AR 

projections and their implications for future flood risk along the Pacific Coast could be 

the subject of future studies. Across-GCM differences indicate that caution is needed in 

the selection of GCMs for future flood analyses.  Furthermore, as the Phase 6 of Coupled 

Model Intercomparison Project (CMIP6) suite of models of becomes available, there will 

be interest in examining their implications for extreme flooding in the region. 

Chapter 4 examined the subseasonal forecast skill of AR-related flooding in three 

watersheds using the NOAA’s SubX data base. Future work of this chapter could 

examine the role of ASM in flood forecast for different AR categories. Ralph et al. 

(2019) introduced a scale based on AR duration and (integrated water vapor transport, 

IVT) intensity to categorize AR events and their potential hydrologic impacts at a given 

location. AR events can be categorized from Cat 1, which are primarily beneficial, to Cat 

5, which are primarily hazardous. Corringham et al. (2019) showed that flood damages as 

in US dollars increased exponentially as AR category increased from Cat 2 to above, in 

the western U.S. during the period 1978-2017. Chapter 2 examined the role of ASM in 

historical AR flooding on California’s Russian River Basin. I showed that low ASM was 

an offsetting factor for the three AR Cat 5 events that did not lead to major flooding 
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during 1980-2017. However, the role of ASM in subseasonal flood forecast for different 

AR categories needs to be further explored. 

There is a great deal of future work to be explored on this topic, from both 

meteorological and hydrological aspects. Recent studies suggest promising windows of 

opportunity to improve meteorological prediction skill at subseasonal to seasonal time 

scales, by leveraging specific climate phenomena or conditions for a predictable signal 

above the weather noise, which should be examined in the context of ARs especially 

along the U.S. Pacific Coast (DeFlorio et al., 2019; Mariotti et al., 2020). To improve 

hydrologic prediction, on one hand, the ASM/runoff coupling strength in hydrologic 

models needs to be evaluated and improved in order to more accurately reflect 

observation-based relationships (Crow et al., 2018). On the other hand, the representation 

of hydrological initial conditions in models can be improved by integrating soil moisture 

measurements from in situ observations and satellite-based products. A diverse and 

multi-tiered observational network has been newly implemented in California (Hatchett 

et al., 2020). From that as well as the ongoing effort in observation and modeling, the 

extended-range forecast skill of AR-related flooding in coastal Western U.S. watersheds 

could be improved. 
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Appendix A 

The Role of Hydrological Initial Conditions on Atmospheric River Floods in the 

Russian River Basin – Supplemental Material 

This appendix provides supporting information for Chapter 2, which has been published 

in its current form in the Journal of Hydrometeorology. © American Meteorological 

Society. Used with permission. 

Cao, Q., A. Mehran, F.M. Ralph, and D.P. Lettenmaier, 2019: The Role of Hydrological 

Initial Conditions on Atmospheric River Floods in the Russian River Basin. J. 

Hydrometeor., 20, 1667–1686, https://doi.org/10.1175/JHM-D-19-0030.1 

A.1 Tables 

Table A1. Statistics of AR-related and Non AR-related POT extreme precipitation and discharge 
events at six USGS stream gauges 

POT extreme 
precipitation 

events 

Thresh
old  

[N/yr.] 

USGS stream gauge 

11461500 11461000 11462500 11463000 11464000 11467000 
Max. daily 

precip. 
(AR/Non AR) 

[mm/day] 

3 171/62 161/60 174/61 172/63 164/78 156/81 

Median daily 
precip. 

(AR/Non AR) 
[mm/day] 

1 78/nan 85/nan 80/nan 82/nan 85/76 88/74 
2 64/53 69/56 68/55 67/58 71/64 71/61 
3 56/46 62/51 58/49 61/52 63/56 64/59 
5 47/39 51/42 49/39 52/41 53/43 53/41 
7 41/33 45/35 43/45 45/35 48/35 48/35 

POT extreme 
discharge events 

Thresh
old 

[N/yr.] 

USGS stream gauge 

11461500 11461000 11462500 11463000 11464000 11467000 
Max. daily 
streamflow 

(AR/Non AR) 
[cms] 

3 354/132 377/139 1318/319 1538/430 2197/640 3148/1719 

Median daily 
streamflow 

(AR/Non AR) 
[cms] 

1 121/106 138/125 410/317 564/415 919/637 1616/1354 
2 95/77 101/105 297/256 402/355 648/510 1115/935 
3 81/56 81/57 237/164 321/237 524/374 880/654 
5 57/39 61/35 182/101 259/129 402/198 621/336 
7 46/26 50/21 148/62 215/74 328/120 495/158 

Note: N is the number of events. 
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Table A2. Trend of precipitation, discharge, and antecedent soil moisture in POT events under 
different temperature scenarios 

POT 
Thre
shold 
[N/y
r.] 

USGS 
gauge 

Extreme 
precipita

tion 
events  

Extreme discharge events 

Daily 
precipita

tion 
SP2d 

Historical temperature T1950 T2017 

Obs. 
PF 

Sim. 
PF  ASM Sim. PF  ASM Sim. PF  ASM 

[mm/yr.] [mm/yr.] [mm/yr.] [×10-

2%/yr.] [mm/yr.] [×10-

2%/yr.] [mm/yr.] [×10-

2%/yr.] 

1 

11461500 0.00 -0.24† -0.03 0.01 -0.08 0.00 -0.23 0.00 -0.03 

11461000 0.04 -0.44* -0.12* -0.23† -0.98 -0.24† -1.02 -0.23† -0.88 

11462500 0.04 -0.27* -0.04 -0.00 0.96 -0.01 0.87 -0.01 0.93 

11463000 -0.08 -0.22† -0.06 -0.08 0.12 -0.09 0.03 -0.08 0.10 

11464000 -0.02 -0.27* -0.10 -0.11 0.92 -0.11 1.05 -0.11 0.95 

11467000 -0.01 -0.29* -0.02 -0.06 2.60 -0.05 2.65 -0.05 2.69 

           

2 

11461500 -0.07 -0.21** -0.12* -0.12† -0.36 -0.13† -0.47 -0.12† -0.38 
11461000 -0.10† -0.19† -0.11† -0.09 0.51 -0.09 0.46 -0.09 0.49 
11462500 -0.04 -0.21* -0.09* -0.12* -0.78 -0.13* -0.90 -0.12* -0.83 
11463000 -0.07 -0.20* -0.09* -0.13* -1.20 -0.13* -1.15 -0.13* -1.24 
11464000 -0.04 -0.25** -0.03 -0.10† 0.57 -0.09 0.66 -0.10† 0.72 
11467000 -0.03 -0.24** -0.06 -0.08 1.82 -0.07 1.88 -0.08 1.94 

           

3 

11461500 -0.01 -0.12* 0.00 -0.05 -0.06 -0.06 -0.12 -0.06 -0.08 
11461000 -0.06 -0.10 -0.02 -0.04 0.02 -0.05 -0.01 -0.05 -0.04 
11462500 -0.05 -0.14* -0.05 -0.11* -1.47† -0.11** -1.57† -0.11** -1.46† 
11463000 -0.03 -0.13† -0.01 -0.05 -0.34 -0.05 -0.38 -0.06 -0.33 
11464000 -0.03 -0.19** -0.05 -0.09* -0.18 -0.08† -0.12 -0.09† -0.09 
11467000 -0.01 -0.14† -0.02 -0.02 1.45 -0.02 1.58 -0.02 1.58 

Note: N is the number of events, SP2d is the first 2-day storm precipitation, PF is the peak daily flow, and 

ASM is antecedent soil moisture. The trend with p<=0.01 is marked with “**”; the trend with 

0.01<p<=0.05 is marked with “*”; the trend with 0.05<p<=0.1 is marked with “†”. Trends with p<0.1 are 

marked in bold font. 
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Table A3. Simulated ASM of AR Cat 5 events during Jan 1980-Apr 2017. The first 5 columns 
are from Table 5 in Ralph et al. (2019). 

AR Cat 
5 event 

No. 
Year Start time 

[UTC] 
Duration 

[h] 

Fllod stage 
(32 ft) at 

Guerneville? 

Simulated ASM 
[volumetric 

water content 
expressed as %] 

Simulated ASM 
percentile in historical 
POTN3 precipitation 
events during water 

years 1950-2017 [%] 
1 1980 01/11-06:00 78 Yes (37 ft) 35.5 92.8 
2 1983 11/09-06:00 48 - 28.1 30.3 
3 1986 02/14-00:00 144 Yes (49 ft) 34.9 89.7 
4 1991 03/02-12:00 60 Yes (33 ft) 34.7 87.7 
5 1995 12/10-15:00 57 Yes (32 ft) 22.2 11.8 
6 1996 11/16-18:00 78 No 16.7 5.1 
7 1996/97 12/28-18:00 132 Yes (45 ft) 35.2 92.3 
8 2010 10/23-09:00 51 No 12.2 3.6 
9 2015 02/05-09:00 51 No 20.1 8.7 

10 2017 01/07-06:00 48 Yes (40 ft) 32.3 62.6 
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A.2 Figures 

 

 

Figure A1. Seasonal trends in monthly average maximum temperature (Tmax) and minimum 
temperature (Tmin) for water years 1950-2017. 
 

 
Figure A2. Assessment of the accuracy of gridding method by systematically removing 
individual stations within the Russian River Basin one at a time and comparing the derived grid 
precipitation estimate with each station removed with its available observation during the period 
water years 1950-2017. 
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Figure A3. Comparison of observed and simulated hourly a) reservoir storage and b) lake 
elevation at the Coyote Reservoir (Lake Mendocino) during the period 1958 (the year when 
reservoir impoundment began) -2017. Same as c) and d) but for the Warm Springs Reservoir 
(Lake Sonoma) during the period 1983 (the year when reservoir impoundment began) -2017. 
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Figure A4. Comparison of observed and simulated hourly streamflow at six stream gauges during 
water years 1988-2017, the period when there were available observations for hourly streamflow. 
The simulations at gauges in c)-f) affected by reservoir regulations were from the model runs 
with the reservoir module activated. 
 

 
Figure A5. Comparison of observed, with reservoir effects removed in c)-f), and simulated storm 
total runoff volume calculated from hourly data at six stream gauges during water years 1988-
2017, the period when there were available observations for hourly streamflow. 
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Figure A6. Effects of temperature and antecedent precipitation conditions on changes of 
antecedent soil moisture (ΔSM). a) Correlation between ΔSM and accumulated precipitation (P) 
given accumulated evapotranspiration (ET) under different pre-event duration in fall and winter 
months in POTN1, POTN2 and POTN3 extreme discharge events. b) same as a) but for correlation 
between ΔSM and ET given P. c) correlation between ΔSM and P given ET in fall months under 
temperature scenarios T1950 and T2017. d) same as c) but for winter months. e) and f) are same 
as c) and d) but for correlation between ΔSM and ET given P. Correlations with p<=0.05 are 
marked with solid symbols. 
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Appendix B 

Floods due to atmospheric rivers along the U.S. West Coast: The role of 

hydrological initial conditions in a warming climate – Supplemental Material 

This appendix provides supporting information for Chapter 3, which has been submitted 

in its current form to the Journal of Hydrometeorology and now in revision. 

Cao, Q., A. Gershunov, T. Shulgina, F.M. Ralph, N. Sun, and D.P. Lettenmaier, 2020: 

Floods due to atmospheric rivers along the U.S. West Coast: The role of hydrological 

initial conditions in a warming climate, Journal of Hydrometeorology, (in revision). 

B.1 Changes in AMF based on the Real-5 GCMs (refers to main text Section 3.5) 

We examined the role of ARs in projected changing magnitudes of AMF events, by 

comparing the ensemble mean of AMF events based on the Real-5 GCMs, with those 

based on the other 5 GCMs (see Figure S8). There were only small differences in the 

AMF projections, as well as storm precipitation of AMF events, for the two groups of 

GCMs in the Chehalis basin. In contrast, there was a distinct difference in the AMF series 

(for upper three quartiles) in the Russian basin, with increases of 39% and 19% (on 

average) respectively as indicated by the Real-5 versus the other 5 GCMs. The former 

showed increases in both storm precipitation and ASM, by 36% and 2% respectively, 

while the latter showed that storm precipitation would increase by 15% but there would 

be essentially no change in ASM. In the Santa Margarita basin, storm precipitation of 

AMF events increased by 51% and 26% respectively for the Real-5 and the other 5 

GCMs, with most differences occurring in the upper quartile. However, changes in AMF 

were mostly different in the third quartile, increasing by 67% and 30% (on average) 
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respectively, possibly partly due to decreases in ASM, by 2% and 1% (on average) 

respectively for the Real-5 and the other 5 GCMs. 

The difference in projected changes in the AMF series as indicated by the Real-5 

and the other 5 GCMs was most distinct in the Russian basin (in terms of its overall 

increases despite that the percentage of changes was larger on average in the Santa 

Margarita basin). This is consistent with the precipitation analysis in Gershunov et al. 

(2019) who showed that the Real-5 GCMs had not only stronger increases in AR-related 

extreme precipitation but also weaker decreases in non-AR-related precipitation in 

comparison with other GCMs, particularly over Northern California. 

 

B.2 Tables 

Table B1. List of GCMs used in this study (refers to main text Section 3.3.2.2) 

Category CMIP5 GCM Latitude size Longitude size 

Real-5 GCMs 

ACCESS1.0 (CalWat) 1.25o 1.875o 
ACCESS1.3 1.25o 1.875o 

CanESM2 (CalWat) 2.7905o 2.8125o 
CNRM-CM5 (CalWat) 1.4007o 1.406o 
GFDL-CM3 (CalWat) 2o 2.5o 

    

Other 5 GCMs 

HadGEM2-CC (CalWat) 1.25o 1.875o 
Inmcm4 1.5o 2o 

IPSL-CM5A-MR 1.2676o 2.5o 
MIROC5 (CalWat) 1.4007o 1.40625o 

MRI-CGCM3 1.12149o 1.125o 

Note: For California water resources planning, 10 out of 32 CMIP5 GCMs were selected by the Climate 
Action Team Research Working Group of the Fourth California's Climate Change Assessment in 
consultation with different scientist and organizations (e.g., Department of Water Resources, the California 
Energy Commission, Scripps Institution of Oceanography; Climate Change Technical Advisory Group, 
2018; California Department of Water Resources, 2015), which are marked as “CalWat”. 
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Table B2. Streamflow calibration statistics (refers to main text Section 3.4.1) 

River 
basin 

USGS 
Gauge Location 

DA 
[square 
miles] 

Calibration period  
(1986-2000) 

Validation period  
(1971-1985) 

Daily Daily 

KGE NRMSE Relative 
bias [%] KGE NRMSE Relative 

bias [%] 

Chehalis 

12020000 Doty 113 0.69 0.49 -10 0.88 0.43 1 

12025000 Newaukum 155 0.76 0.43 -6 0.65 0.48 -15 

12037400 Wynoocheee 155 0.74 0.49 23 0.79 0.45 19 

12035000 Satsop 299 0.89 0.38 8 0.88 0.39 8 

12027500 Grand Mound 895 0.80 0.38 -7 0.78 0.36 -9 

12031000 Porter 1294 0.88 0.36 10 0.94 0.30 3 

          

Russian 

11461500 Calpella 92 0.68 0.46 28 0.73 0.50 23 

11461000 Ukiah  100 0.87 0.40 10 0.88 0.44 -2 

11462500 Hopland 362 0.83 0.40 -6 0.81 0.40 -17 

11463000 Cloverdale 503 0.88 0.35 -3 0.85 0.39 -12 

11464000 Healdsburg 793 0.92 0.28 -2 0.89 0.33 -9 

11467000 Guerneville 1338 0.93 0.24 2 0.93 0.30 -5 

          

Santa 
Margarita 

11042400 Aguanga 131 0.53 0.66 -32 0.44 1.05 -23 

11043000 Temecula 222 0.74 0.68 -13 0.65 0.79 11 

11046000 Ysidora 723 0.67 0.67 3 0.43 0.82 24 
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Table B3. Statistics of POT extreme precipitation events in three river basins (refers to main text 
Section 3.4.2.1 and Section 3.4.3.1; see Section 3.3.3 in text for definitions of POT events) 

River 
basin Period Model 

AR-related fraction [%] POT threshold [mm] 
POTN1P POTN2P POTN3P POTN1P POTN2P POTN3P 

Chehalis 

WY 1951-
2000 

All GCMs 60 55 51 58 48 41 
Real-5 GCMs 68 61 56 58 49 42 

SIO-R1 74 66 60 58 48 41 

WY 2050-
2099 

All GCMs 58 54 50 66 55 47 
Real-5 GCMs 66 60 57 67 55 47 

Change 
All GCMs -2 -1 -1 8 7 6 

Real-5 GCMs -2 -1 1 9 6 5 

Russian 

WY 1951-
2000 

All GCMs 75 70 65 65 49 41 
Real-5 GCMs 78 71 67 65 48 40 

SIO-R1 98 98 95 65 48 40 

WY 2050-
2099 

All GCMs 77 72 65 77 58 46 
Real-5 GCMs 80 76 68 80 60 47 

Change 
All GCMs 2 2 0 12 9 5 

Real-5 GCMs 2 5 1 15 12 7 

Santa 
Margarita 

WY 1951-
2000 

All GCMs 41 36 31 21 15 12 
Real-5 GCMs 38 33 27 21 14 12 

SIO-R1 78 65 60 20 15 11 

WY 2050-
2099 

All GCMs 46 41 38 24 16 12 
Real-5 GCMs 50 44 41 25 17 13 

Change 
All GCMs 5 5 7 3 1 0 

Real-5 GCMs 12 11 14 4 3 1 

Note: The AR catalog of Gershunov et al. (2017) is denoted as “SIO-R1”, which is based on the 
NCEP/NCAR reanalysis. 
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Table B4. Statistics of POT extreme discharge events and annual maximum flow (AMF) events 
in three river basins (refers to main text Section 3.4.2.1 and Section 3.4.3.1; see Section 3.3.3 in 
text for definitions of POT events) 

River 
basin Period Model 

AR-related fraction [%] POT threshold [cms] 
AMF POTN1D POTN2D POTN3D POTN1D POTN2D POTN3D 

Chehalis 

WY 
1951-
2000 

All GCMs 51 58 52 47 1624 1254 1011 
Real-5 GCMs 60 67 59 53 1601 1248 1015 

SIO-R1 70 80 70 66 1758 1313 1070 
WY 

2050-
2099 

All GCMs 51 58 50 45 1980 1511 1210 

Real-5 GCMs 57 66 57 52 2002 1486 1201 

Change 
All GCMs 0 0 -2 -2 356 257 199 

Real-5 GCMs -3 -1 -2 -1 401 238 186 

Russian 

WY 
1951-
2000 

All GCMs 59 67 56 48 1341 775 446 
Real-5 GCMs 64 70 60 51 1314 747 420 

SIO-R1 86 98 88 85 1203 688 358 
WY 

2050-
2099 

All GCMs 63 71 62 54 1820 1059 563 

Real-5 GCMs 67 72 63 56 1960 1115 604 

Change 
All GCMs 4 4 6 6 479 284 117 

Real-5 GCMs 3 2 3 5 646 368 184 

Santa 
Margarita 

WY 
1951-
2000 

All GCMs 30 34 29 25 38 8 3 
Real-5 GCMs 27 28 23 20 34 8 3 

SIO-R1 60 72 59 51 29 8 3 
WY 

2050-
2099 

All GCMs 38 43 37 33 54 11 3 

Real-5 GCMs 38 47 39 34 58 11 3 

Change 
All GCMs 8 9 8 8 16 3 0 

Real-5 GCMs 11 19 16 14 24 3 0 

Note: The AR catalog of Gershunov et al. (2017) is denoted as “SIO-R1”, which is based on the 
NCEP/NCAR reanalysis. 
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Table B5. Fraction [%] of AR-related POT extreme precipitation events, POT extreme discharge 
events, and annual maximum flow (AMF) events in three river basins based on the ensemble 
average of Real-5 GCMs (refers to main text Section 3.4.3.1; see Section 3.3.3 in text for 
definitions of POT events) 

River Basin Period 
Extreme precipitation events Extreme discharge events 
POTN1P POTN2P POTN3P POTN1D POTN2D POTN3D AMF 

Chehalis 
WY 1951-2000 68 61 56 67 59 53 60 
WY 2050-2099 66 60 57 66 57 52 57 

Change -2 -1 1 -1 -2 -1 -3 

Russian 
WY 1951-2000 78 71 67 70 60 51 64 
WY 2050-2099 80 76 68 72 63 56 67 

Change 2 5 1 2 3 5 3 

Santa Margarita 
WY 1951-2000 38 33 27 28 23 20 27 
WY 2050-2099 50 44 41 47 39 34 38 

Change 12 11 14 19 16 14 11 
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B.2 Figures 

 
Figure B1. Same as Figure 7 but sorted by the CDF of the POT extreme discharge threshold 
during extreme precipitation events (refers to main text Section 3.4.3.2b). 
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Figure B2. Same as Figure 3.7 but sorted by the CDF of the event occurrence dates (refers to 
main text Section 3.4.3.2b). 
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Figure B3. CDF of occurrence dates of POTN1P and POTN1D events (see Section 3.3.3 in text for 
definitions of POTN1P and POTN1D). The dark green line and orange line show the ensemble mean 
of seasonal cycle of the surface-layer soil moisture averaged over WY 1951-2000 and 2050-2099, 
respectively. The shadows of lines show the range of full GCM ensemble (refers to main text 
Section 3.4.3.2b). 
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Figure B4. Same as Figure 3.8 but for POTN1D events (refers to main text Section 3.4.3.3; see 
Section 3.3.3 in text for definitions of POTN1D). 
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Figure B5. Same as Figure 3.8 but sorted by the CDF of AMF (refers to main text Section 
3.4.3.3). 
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Figure B6. Correlation between accumulated storm precipitation (SP) and annual maximum flow 
(AMF) conditioned on antecedent soil moisture (ASM) (rSP&AMF-ASM), and correlation between 
ASM and AMF conditioned on accumulated storm precipitation (rASM&AMF-SP) during WY 1951-
2000 (left column) and WY 2050-2099 (right column). The correlations with p<=0.01 are shown 
as solid symbols (refers to main text Section 3.4.3.3). 

 

 



	 168 

 
Figure B7. Fits of Generalized Extreme Value (GEV) distribution to the AMF from each GCM 
(refers to main text Section 3.5). 
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Figure B8. Same as Figure 3.8 but showing ensemble mean based for Real-5 GCMs and other 5 
GCMs. 
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Appendix C 

Evaluation of the subseasonal forecast skill of atmospheric river floods in coastal 

Western U.S. watersheds – Supplemental Material 

This appendix provides supporting information for Chapter 4, which will be submitted to 

the Journal of Hydrometeorology as 

Cao, Q., Shraddhanand Shukla, Michael J. DeFlorio, F. Martin Ralph, and Dennis P. 

Lettenmaier, 2020: Evaluation of the subseasonal forecast skill of atmospheric river 

floods in coastal Western U.S. watersheds. Journal of Hydrometeorology, (in prep). 

C.1 Tables 

Table C1. Streamflow calibration statistics (refers to main text Section 4.4.2) 

River 
basin 

USGS 
Gauge Location 

DA 
[square 
miles] 

Calibration period  
(1999-2007) 

Validation period  
(2008-2016) 

Daily Daily 

KGE NRMSE Relative 
bias [%] KGE NRMSE Relative 

bias [%] 

Chehalis 

12020000 Doty 113 0.76 0.46 -3.2 0.79 0.48 16.6 

12025000 Newaukum 155 0.78 0.51 -7.4 0.80 0.49 -7.5 

12037400 Wynoocheee 155 0.87 0.45 7.3 0.73 0.46 -12.7 

12035000 Satsop 299 0.82 0.35 -11.9 0.74 0.42 -18.4 

12027500 Grand Mound 895 0.94 0.28 4.6 0.88 0.36 3.1 

12031000 Porter 1294 0.94 0.36 3.5 0.94 0.30 4.5 

          

Russian 

11461500 Calpella 92 0.61 0.65 -32.1 0.61 0.81 0.0 

11461000 Ukiah  100 0.75 0.47 20.2 0.65 0.62 27.7 

11462500 Hopland 362 0.79 0.46 4.6 0.45 0.72 34.9 

11463000 Cloverdale 503 0.73 0.47 8.0 0.54 0.63 30.2 

11464000 Healdsburg 793 0.90 0.36 0.4 0.68 0.48 22.0 

11467000 Guerneville 1338 0.89 0.27 9.2 0.61 0.43 31.1 

          
Santa 

Margarita 
11043000 Temecula 222 0.66 0.52 -30.7 0.55 0.61 -33.8 

11046000 Ysidora 723 0.56 0.57 27.4 0.79 0.46 17.9 
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C.2 Figures 

 
Figure C1. Schematic illustration of the pooling of days using 10/27/1999 as an example, 
including a) pooling of 1 day only, and b) pooling of the following 7 days. 
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Figure C2. Maximum daily temperature (Tmin) skill (in correlation) of SubX models averaged 
over each basin and each month before bias correction. 
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Figure C3. Spatial map of relative biases in precipitation of one SubX model, EMC-GEFS, a) 
before and after applying b) BCSD_7d and c) BCSD_1d in the Chehalis River basin. 

 

 
Figure C4. Spatial map of relative biases in precipitation of one SubX model, EMC-GEFS, a) 
before and after applying b) BCSD_7d and c) BCSD_1d in the Russian River basin. 
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Figure C5. Spatial map of relative biases in precipitation of one SubX model, EMC-GEFS, a) 
before and after applying b) BCSD_7d and c) BCSD_1d in the Santa Margarita River basin. 

 




