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Linear mixed models with endogenous covariates:

modeling sequential treatment effects with

application to a mobile health study

Tianchen Qian, Predrag Klasnja and Susan A. Murphy

Department of Statistics, Harvard University, Cambridge, MA 02138
e-mail: qiantianchen@fas.harvard.edu; samurphy@fas.harvard.edu.

School of Information, University of Michigan, Ann Arbor, MI 48109
e-mail: klasnja@umich.edu.

Abstract: Mobile health is a rapidly developing field in which behavioral treatments are
delivered to individuals via wearables or smartphones to facilitate health-related behavior
change. Micro-randomized trials (MRT) are an experimental design for developing mobile
health interventions. In an MRT the treatments are randomized numerous times for each
individual over course of the trial. Along with assessing treatment effects, behavioral scientists
aim to understand between-person heterogeneity in the treatment effect. A natural approach is
the familiar linear mixed model. However, directly applying linear mixed models is problematic
because potential moderators of the treatment effect are frequently endogenous—that is, may
depend on prior treatment. We discuss model interpretation and biases that arise in the
absence of additional assumptions when endogenous covariates are included in a linear mixed
model. In particular, when there are endogenous covariates, the coefficients no longer have
the customary marginal interpretation. However, these coefficients still have a conditional-on-
the-random-effect interpretation. We provide an additional assumption that, if true, allows
scientists to use standard software to fit linear mixed model with endogenous covariates, and
person-specific predictions of effects can be provided. As an illustration, we assess the effect of
activity suggestion in the HeartSteps MRT and analyze the between-person treatment effect
heterogeneity.

Keywords and phrases: linear mixed model, endogenous covariates, micro-randomized
trial, causal inference.

1. Introduction

Mobile health (mHealth) refers to the use of mobile phones and other wireless devices to improve
health outcomes, often by providing individuals with support for health-related behavior change.
One major category of time-varying treatments delivered through mobile devices, which is the
focus of this paper, are “push interventions”; in this setting, the mobile device determines when a
treatment will be provided, rather than the individual seeking the intervention of her own accord
(e.g., by opening the app). Push interventions are usually provided via some kind of a notification,
such as an audible ping, vibration, or the lock screen of a phone lightening up. For example, to
encourage physical activity in sedentary individuals, the HeartSteps intervention sends users push
notifications that contain contextually-tailored activity suggestions (Klasnja et al., 2018).

Micro-randomized trials (MRTs) provide an experimental design for developing mHealth inter-
ventions. These trials provide longitudinal data to assess whether there is an effect of a time-varying
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treatment, how this effect changes over time, and whether aspects of the current context impact
the effect (Liao et al., 2016; Dempsey et al., 2015). In an MRT, each individual is randomized re-
peatedly to different versions of a treatment (or no treatment) with a known probability over the
course of the trial (often hundreds or even thousands of times). Between randomizations, the trial
collects covariate data on the individual’s current/recent context via sensors and self-report, and
after each randomization it assesses a proximal outcome. The large number of randomization points
likely covers a wide range of contexts, and methods that exploit this for assessing effect moderation
of a time-varying treatment have been developed (Boruvka et al., 2018).

Random effects models (Laird and Ware, 1982; Raudenbush and Bryk, 2002), sometimes also
known as mixed effect models, hierarchical models, or multilevel models, have been used with great
success in the analysis of longitudinal studies. Behavioral scientists, and researchers from many
other scientific fields, have long used random effects model in research involving longitudinal data
(Agresti et al., 2000; Berger and Tan, 2004; Cheung, 2008; Luger, Suls and Vander Weg, 2014). A
particularly appealing feature of random effects models is the ability to predict person-specific
random effects, which enables quantitative characterization of between-person heterogeneity due
to unobserved factors (Schwartz and Stone, 2007; Bolger and Laurenceau, 2013). Understanding
such heterogeneity can bring forth new scientific hypotheses for further studies. In addition, the
random effects provide a model for the within-person dependence in the time-varying outcome,
which improves efficiency in parameter estimation. Because data from an MRT is longitudinal, it
is natural to consider a random effects model when making inference about treatment effects using
MRT data.

However, random effects models were designed for settings where the covariates are considered
fixed, and inferential challenges arise when one tries to apply the standard random effects model
if there are endogenous time-varying covariates. A time-varying covariate is endogenous if this co-
variate is not independent of previous treatment or outcomes; we give a more precise definition in
Section 1.2. As written above, MRTs are conducted to make inference about the effect of a time-
varying treatment, how this effect changes over time, and whether certain aspects of the current
context impact the effect. Covariates, often endogenous, describe the individual’s context, and it is
often of scientific interest to assess if the time-varying treatment is moderated by certain endoge-
nous covariates. Furthermore, to reduce variance in assessing treatment effects, it is very useful to
control for an endogenous covariate in the analysis (Boruvka et al., 2018). For example, consider
HeartSteps, an MRT of an intervention that aims to increase physical activity among sedentary
adults (Klasnja et al., 2018). In this study the treatments are contextually-tailored activity sug-
gestions. The steps taken by the individual during the 30 minutes prior to randomization is likely
highly correlated with the primary proximal outcome, the step count in the subsequent 30 min-
utes. Thus it is useful to control for this covariate in the analysis as well as to assess whether this
covariate moderates the effect of the activity suggestion on the subsequent 30-minute step count.
However, because the activity suggestions are randomized roughly every 2 hours, it is likely that
the 30-minute step count prior to randomization is related to past step counts (i.e., past outcomes)
as well as past treatment, which makes it an endogenous covariate. As we discuss below, including
endogenous covariates in random effects models can result in biased estimates.

A related but different concept to an endogenous covariate is a time-varying confounder. Recall
that a time-varying confounder, sometimes also called a time-dependent confounder, is a covariate
that is affected by previous treatment (hence is endogenous) and affects future treatment assign-
ment (Daniel et al., 2013; Hernán and Robins, 2019). To our surprise, even without time-varying
confounding (e.g., when the randomization probability is constant in an MRT), the inclusion of
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endogenous covariates in random effects models can cause bias in assessment of the treatment
effects.

Pepe and Anderson (1994) pointed out that when using generalized estimating equations (GEE)
with endogenous covariates, one should use working independence correlation structure to avoid
biased estimates. Diggle et al. (2002), in their classic monograph on longitudinal data analysis,
noted that:

“Although Pepe and Anderson (1994) focused on the use of GEE, the issue that they raise is impor-
tant for all longitudinal data analysis methods including likelihood-based methods such as linear and
generalized linear mixed models.”

In this paper, we focus on linear mixed models (LMM), a simple form of random effects models
where the outcome is continuous and the link function is identity. We review how problems arise
when endogenous covariates are included in LMM. Coefficients, and specifically treatment effects,
in a standard LMM with fixed covariates have both marginal and conditional-on-the-random-effect
interpretations. But the marginal interpretation is no longer valid with endogenous covariates.

Fortunately, despite losing the marginal interpretation, the conditional interpretation of the
parameters is consistent with scientific interest in the prediction of person-specific effects in MRTs.
Here we propose to interpret treatment effects as conditional on the random effect in LMM with
possibly endogenous covariates. We provide an additional assumption under which valid estimates
of the effect (conditional on the random effect) of the time-varying treatment, estimates of the
variance components, and person-specific predictions of these treatment effects can be obtained
through standard LMM software, even if some covariates are endogenous. Simulation studies are
conducted to support the main result.

Lastly, we discuss whether and when the aforementioned assumption makes sense in HeartSteps,
and analyze the data using the proposed method.

The paper is organized as follows. We provide an overview of the HeartSteps MRT in Section
1.1. We introduce notation and definition in Section 1.2. In Section 2 we give a detailed account
of the issue regarding endogenous covariates in a standard LMM, and review related literature in
causal inference (Section 2.3) and econometrics (Section 2.4). Next we provide an assumption under
which treatment effects can be estimated based on LMM with endogenous covariates in Section 3.
In Section 4 we present results from a simulation study. We apply the proposed model to analyzing
the HeartSteps data in Section 5. Section 6 concludes with discussion.

1.1. Motivating Example: HeartSteps

Our motivating example is from HeartSteps, a 6-week MRT of an mHealth intervention to en-
courage regular walking among sedentary adults (Klasnja et al., 2018). The intervention package
in HeartSteps includes multiple components; in this paper we focus on one push intervention com-
ponent as the treatment, which is the activity suggestions. Each individual is in the study for 42
days, and is randomized 5 times a day, each time with probability 0.6 to receive an activity sug-
gestion. The 5 randomization times are pre-specified and individual-specific, corresponding to each
individual’s morning commute, lunchtime, mid-afternoon, evening commute, and after-dinner. The
content of the suggestion was tailored to the current time of day, weekend vs weekday, weather,
and the individuals current location. The activity suggestions were designed to help individuals
get activity throughout the day. Due to the tailoring of the suggestions to the individuals current
context, the research team expected to see the greatest impact of the activity suggestions on near
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time, proximal activity, so the proximal outcome is defined as the individual’s step count during the
30 minutes following each randomization. In addition to the step counts, at each randomization the
individual’s context is also recorded, including current location, weather and 30-minute step count
prior to randomization. Note that the 30-minute step count prior to the time of randomization is
likely impacted by prior treatment and thus is an endogenous covariate. In addition to the measured
information, there are other unobserved variables that may impact the treatment effect, such as
each individual’s commitment to becoming more active, conscientiousness, degree of social support
and so on. Therefore, it is of interest to provide person-specific predictions of treatment effect. We
will apply methods developed in this paper to the HeartSteps data in Section 5.

1.2. Notation and definition

We will consider two settings in the paper. In the first setting we consider a longitudinal study
without treatment, and in the second one with a sequentially randomized treatment. The first
setting will be used to explain bias incurred by the inclusion of endogenous covariates in random
effects models, as this issue also occurs without treatment and is easier to explain there. The
second setting involves time-varying treatment that is sequentially randomized; thus it’s relevant to
data from MRTs. We will see that randomized treatment assignment in MRT does not necessarily
alleviate the biases resulting from the inclusion of endogenous time-varying covariates in LMMs.
We will consider assumptions that allow valid estimation under this second setting. The setting
under consideration will be clear from the context.

For the first setting without treatment, we denote data for individual i byXi1,Yi2,Xi2,Yi3,...,XiTi
,

YiTi+1, where Ti denotes the total number of observations for individual i. Xit is a vector of covari-
ates prior to the t-th time point and Yit+1 is the outcome subsequent to the t-th time point. Note
that the time index for the outcome Y is augmented by 1 to make it consistent with the second
setting. We use overbar to denote history; for example, X̄it =(Xi1,Xi2,...,Xit). The individual’s
history information up to the t-th time is denoted by Hit =(Xi1,Yi2,...,Xit−1,Yit,Xit)= (Ȳit,X̄it).

For the second setting with treatment, the data for individual i isXi1,Ai1,Yi2,Xi2,Ai2,Yi3,...,XiTi
,

AiTi
,YiTi+1, where Xit is the covariate vector prior to the t-th time, Ait is the randomized treat-

ment at the t-th time, and Yit+1 is the proximal outcome subsequent to the t-th time. To maintain
expositional clarity, throughout we assume there are only two types of treatment and Ait ∈{0,1}.
The history is defined as Hit =(Xi1,Ai1,Yi2,...,Xit−1,Ait−1,Yit,Xit)= (Ȳit,X̄it,Āit−1). We define
Xi0 = ∅, Ai0 = ∅, and Yi1 = ∅.

In both settings, we use bi to denote the random effect of individual i.
We use ⊥ to denote statistical independence; for example, A⊥B |C means that A is independent

of B conditional on C. In the first setting, a covariate process Xit is called exogenous (with respect
to the outcome process Yit) if Xit ⊥ Ȳit | X̄it−1; otherwise, Xit is endogenous. In the second setting,
Xit is called exogenous if Xit ⊥ (Ȳit,Āit−1) | X̄it−1; otherwise, Xit is endogenous. In a longitudinal
study, examples of exogenous covariates include baseline variables (age, gender, etc.), functions of
time, and time-varying variables that are not impacted by prior treatment or prior outcome, such
as weather.

2. Issue of linear mixed models with endogenous covariates

In this section, we start by considering the situation where no treatment is involved, as endogenous
covariates give rise to issues even without considering causal inference. We give a brief review
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of standard LMM in Section 2.1, and explain the issue of endogenous covariates in Section 2.2. In
Section 2.3, we briefly review causal inference literature on a related topic, time-varying confounding,
which is a more restrictive definition than endogeneity. In Section 2.4, we discuss connections to
the econometric literature. We comment on why the methods reviewed in Sections 2.3 and 2.4 do
not directly solve the issue of LMM with endogenous covariates in MRTs.

2.1. Brief overview of standard LMM with exogenous covariates

A standard linear mixed model (LMM) (Laird and Ware, 1982) assumes a relationship between the
covariate Xit and the outcome Yit+1 such as the following:

Yit+1 =XT
itβ+Z

T
itbi+ǫit+1. (1)

Here, bi∼N(0,G) denotes the vector of person-specific random effects, Zit ⊂Xit and ǫit+1 ∼N(0,σ2
ǫ )

is a random noise. It is typically assumed that ǫit+1’s are independent of each other and of bi, and we
will adopt this assumption throughout this paper. This model specifies the conditional distribution
of Yit+1 given Xit and bi; in particular, this is a Gaussian distribution with mean:

E(Yit+1 |Xit,bi)=XT
itβ+Z

T
itbi. (2)

Furthermore, use of the standard LMM assumes, though not always explicitly, that all covariates
are fixed, or at least exogenous and independent of bi. Thus, the marginal mean of Yit is

E(Yit+1 |Xit)=XT
itβ, (3)

because E(bi |Xit)= 0. Thus, when the covariates are exogenous and independent of bi, β has
both a conditional interpretation and a marginal interpretation1. This dual interpretation provides
the opportunity to estimate β with alternative approaches such as with generalized estimating
equations (GEE) (Zeger and Liang, 1986), depending on the desired robustness of the estimator of
β to deviations from the LMM assumptions.

Assuming the covariates are indeed exogenous and independent of bi, the maximum likelihood
score equation for β is:

1

n

n
∑

i=1

XiV
−1
i (Yi−X

T
i β)= 0, (4)

whereXi =(Xi1,...,XiTi
), Zi=(Zi1,...,ZiTi

) and Yi=(Yi2,...,YiTi+1)
T , Vi =ZT

i GZi+Ri is a Ti×Ti
covariance matrix, and Ri is a Ti×Ti diagonal matrix with all diagonal entries equal to σ2

ǫ .

2.2. Issue with endogenous covariates: marginal interpretation is no longer valid

Any LMM solves the same estimating equation as a GEE with a corresponding non-independence
working correlation structure (e.g., an LMM with a random intercept solves the same estimating
equation as a GEE with compound symmetric working correlation structure). In fact, (4) is the

1In this paper, we use the term “conditional (model/interpretation)” to denote a model that is conditional
on the random effect, and we use “marginal (model/interpretation)” to denote a model where the random effect is
marginalized over. This is consistent with the terminology in Zeger and Liang (1992) and Heagerty and Zeger (2000).
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estimating equation for GEE with marginal mean model (3) and working correlation matrix Vi. In
the GEE literature, estimation bias due to the inclusion of endogenous covariates has been discussed
repeatedly. We first review this briefly.

Pepe and Anderson (1994) first pointed out that when using GEE to estimate parameters in
E(Yit+1 |Xit), a sufficient condition for estimation consistency is either

E(Yit+1 |Xit)=E(Yit+1 |Xi1,...,XiT ) (5)

or the use of a working independence correlation structure. When (5) is violated and a correla-
tion structure other than working independence is used, they provided simulation results to show
that bias could occur. Diggle et al. (2002, Chapter 12) reiterated this point, and referred to (5) as
“full covariate conditional mean (FCCM)” assumption. Schildcrout and Heagerty (2005) analyzed
the bias-efficiency trade-off associated with working correlation choices of GEE for longitudinal
binary data, when FCCM is violated due to exogenous covariates being time-varying, through
simulation studies. This potential bias from the violation of FCCM have also been warned about
by Pan, Louis and Connett (2000) in the context of linear regression via analytic calculations.
Tchetgen et al. (2012) showed, in the context of marginal structural models (Robins, 1998), that
when GEE is combined with inverse probability weighting for handling dropout, parameter estima-
tion is generally biased in the presence of endogenous covariates unless either a condition similar
to (5) holds or a working independence correlation structure is used.

When there are endogenous covariates, the FCCM assumption (5) is unlikely to hold because
Yit+1 may impact future Xis for s≥ t+1. In this case, Pepe and Anderson (1994) suggested the use
of working independence GEE to guarantee consistent estimation of parameters in E(Yit+1 |Xit).
Because of the close tie between the estimating equations of LMM and GEE, Pepe and Anderson’s
point about GEE implies that estimators fitted using the standard LMM could be inconsistent when
there are endogenous covariates. Indeed, if one intends to estimate parameters in the marginal mean
E(Yit+1 |Xit), then using LMM as an estimation procedure can result in inconsistent estimators
because of the biased estimating equations. However, in our opinion, this is not the fundamental
issue of LMM under endogeneity, but rather a technical consequence.

More fundamentally, when there are endogenous covariates, LMM (1) as a model can imply
a marginal mean relationship different from (3). Xit being endogenous means it may depend on
previous outcomes, which in turn implies dependence on the random effect bi. Thus, E(bi |Xit) is
usually nonzero and the conditional model (2) may no longer imply the marginal model (3). The
marginal model implied by (2) becomes, instead,

E(Yit+1 |Xit)=XT
itβ+Z

T
itE(bi |Xit). (6)

As a concrete example, consider the case where each individual is observed for 2 time points (Ti =2),
and the covariate at the second time point is the lag-1 outcome: Xi2 = Yi2. Suppose the variables
are generated from the following LMM with a random intercept: bi∼N(0,σ2

u), Xi1 ∼N(0,σ2
X1

) in-
dependently of bi, Yi2 |Xi1,bi∼N(β0+β1Xi1+bi,σ

2
ǫ ), Xi2 = Yi2, and Yi3 |Xi1,Yi2,Xi2,bi∼N(β0+

β1Xi2+bi,σ
2
ǫ ). This implies a parsimonious conditional relationship: E(Yit+1 |Xit,bi)= β0+β1Xit+

bi, but the induced marginal relationship is rather complex:

E(Yi2 |Xi1)= β0+β1Xi1,

E(Yi3 |Xi2)= (1−ρζ−ρ)β0+{(1−ρζ)β1+ρ}Xi2,

with ρ= σ2
u/(σ

2
u+σ

2
ǫ ) and ζ = β1σ

2
X1
/(β1σ

2
X1

+σ2
u+σ

2
ǫ ).



T. Qian, P. Klasnja and S. Murphy/Linear mixed models under endogeneity 7

Therefore, when building LMM with endogenous covariates, one needs to be aware that the mod-
eling assumption is on the conditional relationship E(Yit+1|Xit,bi), not the marginal relationship
E(Yit+1|Xit). Although it is attractive to treat β in (1) with not only a conditional interpretation
but also a marginal interpretation, which is true with exogenous covariates, the latter interpretation
can be invalid with endogenous covariates. In addition to this model interpretation issue, endoge-
nous covariates also give rise to additional concerns in model fitting, which will be discussed in
Section 3.

As a side note, for generalized linear mixed models, it is well known that even when all covari-
ates are exogenous, the conditional parameter and the marginal parameter are different due to the
nonlinear link function, and there has been work in the literature on connecting the two interpre-
tations (Zeger, Liang and Albert, 1988; Heagerty, 1999; Wang and Louis, 2004). For LMMs, the
discrepancy in the two interpretations only occurs when there are endogenous covariates.

2.3. Connection to time-varying confounding in causal inference literature

In the setting with treatment, a related issue, often called “time-varying confounding” or “time-
dependent confounding”, has been well studied in the causal inference literature. A time-varying
covariate is a time-varying confounder if it is affected by previous treatment (hence is endogenous)
and it affects future treatment assignment (Daniel et al., 2013; Hernán and Robins, 2019). Time-
varying confounders are usually intermediate variables (that lie in the causal pathway between the
treatment and the outcome), and this gives rise to inferential challenges for conventional regression-
based methods due to the following dilemma: confounders should be adjusted for in the analysis,
but intermediate variables should not (Diggle et al., 2002).

Causal inference methods have been developed to estimate treatment effects in the presence of
time-varying confounding. These methods include g-computation (Robins, 1986), structural nested
models (Robins, 1994, 1997), inverse probability weighting in marginal structural models (Robins,
1998, 2000), history-restricted marginal structural models (Neugebauer et al., 2007), sequential con-
ditional mean models (Vansteelandt, 2007; Keogh et al., 2017), and weighted and centered least-
squares for MRTs (Boruvka et al., 2018). These methods cover a variety of estimands that charac-
terize the effect of a time-varying treatment from various aspects, but all the treatment effects are
marginal in the sense that no random effect is considered.

Estimators of conditional-on-the-random-effect versions of the above estimands will be poten-
tially biased as discussed in Section 2.2. Furthermore, the issue with bias persists even when Ait is
not confounded by observed or unobserved variables (e.g., when the randomization probability is
constant). Take, for example, the sequential conditional mean models in Vansteelandt (2007), which
considers the marginal expected mean E(Yit+1 | Āit,X̄it). When random effect is incorporated, the
model becomes the conditional expected mean E(Yit+1 | Āit,X̄it,bi). When Xit is endogenous, even
if Xit does not confound Ait, the same argument in Section 2.2 applies, and the parameter in the
conditional model E(Yit+1 | Āit,X̄it,bi) generally does not have the marginal interpretation. This
means the methods for estimating marginal treatment effect cannot be used to estimate parameters
in the conditional model, let alone used to predict the random effects in the conditional model.

2.4. Connection to level-2 endogeneity in econometric literature

Violation of the assumption that the random effect being independent of the covariates, bi⊥
Xit, is sometimes called “level-2 endogeneity” in the econometric literature (Wooldridge, 2002;
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Grilli and Rampichini, 2011). It is well known that level-2 endogeneity can lead to biased param-
eter estimates (Ebbes, Böckenholt and Wedel, 2004); in particular, Kim and Frees (2007) gave a
display similar to (6), and warned about the bias that could occur when one uses an estimator in-
tended for the marginal parameter (such as the ordinary least-squares) to estimate the conditional
parameter—this is the counterpart of our discussion in Section 2.2, that using LMM to estimate
the marginal parameter will incur bias with endogenous covariates.

Various estimators have been proposed in the econometric literature for the conditional parameter
under level-2 endogeneity, many of which are based on explicitly modeling the conditional distri-
bution of the random effects given the endogenous covariates (Mundlak, 1978), centering the time-
varying covariate and the time-varying outcome by their average over time (Hausman and Taylor,
1981; Arellano and Bover, 1995; Neuhaus and McCulloch, 2006; Kim and Frees, 2006; Hanchane and Mostafa,
2012), constructing internal instrumental variables (Amemiya and MaCurdy, 1986; Arellano and Bond,
1991; Semykina and Wooldridge, 2010), or using semiparametric efficiency theory by not specifying
the distribution of the random effects (Liu and Xiang, 2014; Garcia and Ma, 2016).

In those works, it is usually assumed that the error term ǫit is independent of the history of the
time-varying covariate, X̄iTi

; thus these methods are not directly applicable to the MRT setting
where future covariates can depend on previous outcomes (hence previous error terms). In addition,
many of these methods focus on estimating the conditional parameter while treating the random
effect as a nuisance parameter. We argue that in MRTs, prediction of the random effects are of
equal importance to estimation of the conditional parameter; otherwise, one could have used the
causal inference methods mentioned in Section 2.3 to estimate the marginal treatment effect. It
is an open question whether the ideas behind the above methods can be adapted for LMM-based
inference in MRTs.

3. A conditional independence assumption

In an MRT, the observed history up to time t is defined asHit =(Xi1,Ai1,Yi2,...,Xit−1,Ait−1,Yit,Xit).
We consider the following LMM:

Yit+1 = f0(Hit)
Tβ0+Aitf1(Hit)

Tβ1+g0(Hit)
T b0i+Aitg1(Hit)

T b1i+ǫit+1 (7)

for t=1,...,T , where f0(Hit),f1(Hit),g0(Hit),g1(Hit) are known functions of Hit. For example, if
we believe that the outcome depends linearly on time, current covariate and previous outcome,
that the treatment also interacts with these three variables, and that the outcome has no residual
association with other information in Hit, we may set each of f0(Hit),f1(Hit),g0(Hit),g1(Hit) to
be (1,t,Xit,Yit). Recall that for simplicity we consider only binary treatment. In this section, we
provide an additional assumption that, if true, ensures valid treatment inference and person-specific
predictions via standard software even when there are endogenous covariates.

We make the standard LMM assumptions. The random effects (bT0i,b
T
1i) are assumed to marginally

follow a multivariate Gaussian distribution with mean 0 and variance-covariance matrix G. Ait is
assumed to be randomized with randomization probability depending only on Hit, not bi0 or bi1;
this is ensured by the MRT design. The random noise ǫit+1 is assumed to be independent of
(Hit,Ait,b0i,b1i) and follows N(0,σ2

ǫ ). f0(Hit) and f1(Hit) can include possibly endogenous covari-
ates Xit and lagged outcomes such as Yit.

Equation (7) along with the above assumptions completely specifies the conditional distribution
of the outcome Yit+1 conditional on b0i,b1i,Hit,Ait. It implies the following treatment effect that is
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conditional on the random effects

E(Yit+1 | b0i,b1i,Hit,Ait =1)−E(Yit+1 | b0i,b1i,Hit,Ait =0)= f1(Hit)
Tβ1+g1(Hit)

T b1i. (8)

Furthermore due to endogeneity, it is likely that

E(Yit+1 |Hit,Ait =1)−E(Yit+1 |Hit,Ait =0) 6= f1(Hit)
Tβ1. (9)

In other words, the treatment effect (8) implied by model (7) is interpreted as conditional-on-the-
random-effect ; β=(βT

0 ,β
T
1 )

T does not have a marginal interpretation. A similar point for when
there is no treatment has been extensively discussed in Section 2.

The above model provides the distribution of Yit+1 conditional on (b0i,b1i,Hit,Ait) as opposed to
conditional on (b0i,b1i,Xit,Ait). Thus β1 in (8) has a causal interpretation even when the random-
ization probability for Ait depends on Hit in an MRT. Likelihood-based inference and model fitting
through standard LMM software can be conducted as described below. Note that since f0(Hit)
and f1(Hit) can include lagged outcomes, the dependence between outcomes is explicitly modeled
in (7). The purpose of introducing random effects here is mainly to model the between-person
heterogeneity.

To estimate the conditional-on-the-random-effect β, we make an additional conditional indepen-
dence assumption. The conditional independence assumption is

Xit ⊥ (b0i,b1i) |Hit−1,Ait−1,Yit. (10)

This does allow Xit to be endogenous, but the endogenous covariate Xit can only depend on
the random effects through the variables observed prior to Xit: Hit−1,Ait−1, and Yit. If the only
endogenous covariates are functions of prior treatments and prior outcomes, then assumption (10)
automatically holds. In general, assumption (10) needs to be verified from the domain science
perspective. We discuss this assumption in the context of HeartSteps in Section 5.

Assumption (10) allows us to decompose the likelihood. This likelihood decomposition will pro-
vide a justification for the use of estimators from standard LMM software. Denote by Xi, Ai and
Yi the vectors of observations for individual i, and X , A and Y the collection of observations for
all individuals. Denote by bi=(b0i,b1i). Suppose G, the covariance matrix of the random effects, is
parametrized by θ. The joint likelihood of the observed data, L(α,β,θ,σǫ |X,A,Y ), can be written
as

∏

i

p(Xi,Ai,Yi |α,β,θ,σǫ)=
∏

i

∫

p(Xi,Ai,Yi | bi;α,β,θ,σǫ)dF (bi)

=
∏

i

{

∫

∏

t

p(Xit |Hit−1,Ait−1,Yit,bi)p(Ait |Hit,bi)

×p(Yit+1 |Hit,Ait,bi;α,β,θ,σǫ)dF (bi)
}

. (11)

By the conditional independence assumption (10) and given that Ait is randomized conditional on
Hit, the joint likelihood in (11) becomes

L(α,β,θ,σǫ |X,A,Y )=
{

∏

i

∏

t

p(Xit |Hit−1,Ait−1,Yit)p(Ait |Hit)
}

L1(α,β,θ,σǫ |X,A,Y ), (12)
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where

L1(α,β,θ,σǫ |X,A,Y )=
∏

i

{

∫

∏

t

p(Yit+1 |Hit,Ait,bi;α,β,θ,σǫ)dF (bi)
}

. (13)

Because the first factor on the right hand side of (12) does not involve (α,β,θ,σǫ), any inference
for (α,β,θ,σǫ) that is based on the joint likelihood L(α,β,θ,σǫ |X,A,Y ) can be equivalently based
on the partial likelihood L1(α,β,θ,σǫ |X,A,Y ). Observe that L1(α,β,θ,σǫ |X,A,Y ) is actually the
likelihood function for a standard LMM where Xit and Ait are treated as fixed covariates. Thus,
the maximum likelihood estimators that are obtained through standard LMM software are valid
maximum likelihood estimators for the joint likelihood L(α,β,θ,σǫ |X,A,Y ) under the conditional
independence assumption, and (4) withX redefined to include the treatment indicator is a likelihood
score equation for β in the conditional-on-the-random-effect model. Note that even though the
form of (4) appears to indicate estimation of a regression coefficient in a marginal model, this is a
false impression in the case of endogenous covariates. Furthermore, recall that restricted maximum
likelihood (REML) estimation can be viewed as maximum a posteriori in a Bayesian hierarchical
model (Laird and Ware, 1982). This latter interpretation continues to hold for the REML estimators
obtained through standard LMM software when there are endogenous covariates. In addition, it can
be shown that the empirical Bayes predictor of the random effects b̂i obtained through standard
LMM software is valid empirical Bayes predictor for model (7) with endogenous covariates. We
include proofs of these claims in the Appendix.

The conditional independence assumption (10) is similar to an assumption used by Sitlani et al.
(2012). Sitlani et al. (2012) aimed to use an LMM to assess causal effects in the context of noncom-
pliance in surgical trials. They assumed conditional independence between the treatment assignment
and the random effect given the observed history. This assumption allowed them to decompose the
likelihood as is done above and thus use standard LMM estimators.

It is worth noting, as pointed out by a reviewer, that if the analyst poses a model as (7) but
without the Aitg1(Hit)

T b1i term (i.e., the random effect in the model does not interact with Ait),
then (9) becomes an equality. In other words, in this case β1 recovers its marginal interpretation

E(Yit+1 |Hit,Ait =1)−E(Yit+1 |Hit,Ait =0)= f1(Hit)
Tβ1,

and furthermore it can be interpreted marginally over Hit \f1(Hit):

E
{

E(Yit+1 |Hit,Ait =1)−E(Yit+1 |Hit,Ait =0) | f1(Hit)
}

= f1(Hit)
Tβ1. (14)

Note that β0 still has only the conditional-on-the-random-effect interpretation. In absence of b1i,
the conditional independence assumption (10) becomes

Xit ⊥ b0i |Hit−1,Ait−1,Yit;

this assumption justifies the use of over-the-counter LMM software’s via the likelihood factorization
(12).

4. Simulation

In the simulation, we considered three generative models (GMs), in all of which the covariate is
endogenous. In the first two GMs, the endogenous covariate Xit equals the previous outcome Yit
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plus some random noise, so the conditional independence assumption (10) is valid. In GM 3, the
endogenous covariate depends directly on bi, so the assumption (10) is violated. Details of the
generative models are described in the following.

In GM 1, we considered a simple case with only a random intercept and a random slope for

Ait, so that Z
(0)
it =Z

(2)
it =1 in model (7). The outcome is generated as Yit+1 =α0+α1Xit+bi0+

Ait(β0+β1Xit+bi2)+ǫit+1. The random effects bi0 ∼N(0,σ2
b0) and bi2 ∼N(0,σ2

b2) are independent
of each other. We generated the covariate to be Xi1 ∼N(0,1), Xit = Yit+N(0,1) for t≥ 2. The
randomization probability pt is constant 1/2. The exogenous noise ǫit+1 ∼N(0,σ2

ǫ ).

In GM 2, we considered the case where Z
(0)
it =Z

(2)
it =(1,Xit), and the randomization probability

is time-varying. The outcome is generated as Yit+1 =α0+α1Xit+bi0+bi1Xit+Ait(β0+β1Xit+
bi2+bi3Xit)+ǫit+1. The random effects bij ∼N(0,σ2

bj), 0≤ j≤ 3, are independent of each other.
We generated the covariate to be Xi1 ∼N(0,1), Xit = Yit+N(0,1) for t≥ 2. The randomization
probability depends on Xit: pt =0.7 ·1(Xit>−1.27)+0.3 ·1(Xit≤−1.27). Here 1(·) represents the
indicator function, and the cutoff −1.27 was chosen so that pt equals 0.7 or 0.3 each for about half
of the time. The exogenous noise ǫit+1 ∼N(0,σ2

ǫ ).
GM 3 is the same as GM 1, except that the covariate Xit depends directly on bi: Xi1 ∼N(bi0,1),

Xit = Yit+N(bi0,1) for t≥ 2.
We chose the parameter values as follows: α0 =−2, α1 =−0.3, β0 =1, β1 =0.3, σ2

b0 =4, σ2
b1 =1/4,

σ2
b2 =1, σ2

b3 =1/4, σ2
ǫ =1.

For each of the three GMs, we simulated for sample size n=30,100,200 and the number of
observations per individual Ti=T =10,30. Each setting was replicated 1,000 times. The estima-
tion was done using the R package lmer (Bates et al., 2015) for standard LMM, and 95% confi-
dence interval was computed based on the t distribution with degrees of freedom obtained by Sat-
terthwaite approximation (Satterthwaite, 1941), which is implemented in the R package lmerTest

(Kuznetsova, Brockhoff and Christensen, 2017). Bias, standard deviation (sd) and coverage proba-
bility (cp) of 95% nominal confidence interval for the estimated β0 and β1 are presented in Table 1.
As expected, the estimators are consistent for GM 1 and GM 2, and they are inconsistent for GM
3 because of the violation of the conditional independence assumption (10). For GM 1 and GM 2,
the confidence interval coverage probability can be slightly lower than the nominal level for some
of the parameters for small n or small T , but it gets back to the nominal level as the sample size
or total number of time points gets larger. Additional simulation results for more choices of n and
T , the performance of estimated α0, α1, and variance components σ2

bj ,0≤ j≤ 3 and σ2
ǫ are in the

Appendix, and the conclusion is similar to the results for the β’s as shown here.

5. Illustrative data analysis of HeartSteps

5.1. Data and model assumptions

As described in Section 1.1, HeartSteps (Klasnja et al., 2018) is a 6-week micro-randomized trial
of an mHealth intervention to encourage activity among sedentary adults. The following analysis
focuses on the time-varying treatment consisting of contextually-tailored activity suggestions.

Prior to the randomization at each time point, software on the smartphone determined whether
an individual is available for treatment at the time. If the activity recognition on the phone de-
termined that an individual was operating a vehicle, the individual was considered unavailable for
safety reasons. If an individual had just finished an activity bout in the prior 90 seconds, they were
considered unavailable for treatment in order to minimize user burden and aggravation. Lastly,
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β0 β1

GM T n bias sd cp bias sd cp
30 -0.001 0.249 0.943 0.002 0.091 0.897

100 -0.003 0.135 0.941 -0.001 0.049 0.8981 10
200 -0.001 0.096 0.926 -0.001 0.034 0.899
30 -0.002 0.206 0.946 0.001 0.053 0.913

100 -0.005 0.112 0.949 -0.001 0.028 0.9351 30
200 0.000 0.081 0.944 -0.001 0.022 0.902
30 -0.010 0.269 0.939 -0.004 0.105 0.903

100 0.009 0.145 0.933 -0.001 0.056 0.9152 10
200 -0.008 0.105 0.931 -0.002 0.038 0.934
30 -0.006 0.216 0.943 -0.001 0.070 0.939

100 0.006 0.115 0.947 -0.001 0.039 0.9482 30
200 -0.004 0.084 0.935 -0.000 0.027 0.940
30 -0.048 0.245 0.949 -0.043 0.075 0.725

100 -0.060 0.134 0.927 -0.047 0.041 0.5483 10
200 -0.052 0.095 0.907 -0.046 0.029 0.355
30 -0.023 0.207 0.946 -0.017 0.041 0.847

100 -0.028 0.112 0.942 -0.019 0.022 0.7623 30
200 -0.024 0.079 0.941 -0.019 0.015 0.628

Table 1

Bias, standard deviation (sd) and coverage probability (cp) of 95% nominal confidence interval for estimated β0
and β1 in the simulation study. n denotes sample size; T denotes total number of observations for each individual;

GM denotes generative model. The result is based on 1,000 replicates for each setting.

because the software on the server and smartphone required an internet connection to send a sug-
gestion, if the smartphone did not have wireless connectivity the individual was deemed unavailable.
At each of the five points each day for each individual, availability was assessed, the context was
recorded, and if the individual was available then HeartSteps randomized to deliver an activity sug-
gestion to the individual with probability 3/5. The sample for this analysis consisted of 7,540 time
points from 37 individuals. The individuals were available for 6,061 (80.4%) time points, unavailable
due to no internet connection for 602 (8.0%) time points, unavailable due to being detected as in
transit for 841 (11.1%) time points, and unavailable due to being detected to have just finished an
activity bout in the prior 90 seconds for 36 (0.5%) time points.

Let Ait =1 if an activity suggestion is delivered at time t for individual i and equal to 0 otherwise.
The proximal outcome Yit+1 is the (log-transformed) 30-minute step count following time point t.
We used three covariates in the model:

• Xit,1: day in the study for the time point t, coded as 0,1,...,41.
• Xit,2: whether the individual was at home or work at time point t; Xit,2 =1 if at home or
work, 0 if at some other location.

• Xit,3: (log-transformed) 30-minute step count preceding time point t.

We specify model (7) in the HeartSteps context as follows: f0(Hit)= (Xit,1,Xit,2,Xit,3); f1(Hit)=
(Xit,1, Xit,2); the model contains a random intercept, g0(Hit)= 1, and a random slope for Ait,
g1(Hit)= 1. We denote the availability status of individual i at time t by Iit (Iit =1 if available; 0
otherwise). In the model, we multiply Ait with Iit to operationalize the notion that the treatment
may only be delivered when the individual is available. Because the relationship between Yit+1

and the f0(Hit) can depend on the availability status, we included an interaction between Iit and
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f0(Hit). Thus, the LMM is given by

Yit+1 =α0+α1Xit,1+α2Xit,2+α3Xit,3+Iit(α̃0+ α̃1Xit,1+ α̃2Xit,2+ α̃3Xit,3)+b0i

+AitIit(β0+β1Xit,1+β2Xit,2+b1i)+ǫit+1 (15)

where ǫit+1 ∼N(0,σ2
ǫ ), and the random effects (b0i,b1i)∼N(0,G) with G being a 2×2 variance-

covariance matrix. b0i accounts for the between-individual variation in the 30-minute step count
under no treatment, and b1i accounts for the between-individual variation in the treatment effect
on the 30-minute step count.

In model (15), Xit,2, Xit,3 and Iit are possibly endogenous. Location, Xit,2, is most likely exoge-
nous but might be endogenous because the number of steps an individual took following a prior time
point, combined with the location s/he was at then, might be predictive of whether s/he would be at
home/work or other places at the subsequent time point. Prior time t 30-minute step count, Xit,3,
might be correlated with 30-minute step count after time t−1, Yit, because an individual might
walk less if s/he had already walked earlier in the day. For the availability status Iit, unavailability
due to being in transit is likely exogenous but may be endogenous for a reason similar to that of
location, Xit,2. Unavailability due to having just finished an activity bout may be endogenous for
a reason similar to that of prior time t 30-minute step count, Xit,3. We argue that the conditional
independence assumption (10) is plausible for all three variables. For location, Xit,2, because the
enrollment criterion required each individual to either have a full-time daytime job or be a stu-
dent, the time-varying location of such individuals with regular schedule is unlikely to depend on
some unmeasured baseline factors (i.e., the random effects) that impact step count. For prior time
t 30-minute step count, Xit,3, the impact of random effects should be largely explainable through
earlier outcomes and covariates, as those are also step counts but just for other time windows. For
Iit, most of the unavailability (1443/1479) instances are due to being in transit or loss of internet
connection; the conditional independence is likely to approximately hold for Iit for a similar reason
to that of Xit,2.

5.2. Results

We fitted model (15) using the R package lmer (Bates et al., 2015) for standard LMM, because
standard LMM yields valid estimators under the conditional independence assumption (10).

The first three columns in Table 2 show the estimated fixed effects with 95% confidence interval
and the estimated variance components. The estimated variance for b1i is extremely small and the
estimated correlation between b0i and b1i is 1.000, suggesting that we might not have enough data
to fit two separate random effects so the fitting collapsed onto a linear combination of the two. We
conducted the likelihood ratio test for nonzero variance of b1i, and the p-value was 0.72. Note that
likelihood ratio tests for nonzero variance components can be conservative because the null value
(Var(b1i)= 0) is on the boundary of the parameter space (Self and Liang, 1987; Stram and Lee,
1994; Crainiceanu and Ruppert, 2004), and we are just using this test and the critical value as a
guideline. The result suggests that the potential heterogeneity in the treatment effect may not be
large enough to be detected from the data. Model fit of (15) with b1i removed is presented in the
last two columns in Table 2.

The estimated treatment effects, which are conditional on the observed history and the un-
observed random effects, are similar from both model fits in the point estimates as well as the
confidence intervals. The data indicates that, for an individual, the treatment has a positive effect
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at the beginning of the study (β̂0> 0), and the effect decreased over time (β̂1< 0). This is likely
due to the individual’s habituation to the activity suggestions, which is consistent with the exit
interviews reported by Klasnja et al. (2018) in which individuals reported that “the suggestions
became boring after 2–4 weeks”. On the other hand, the data indicates no moderating influence of
location (whether an individual was at home/work or some other place) on the treatment effect for
an individual.

Model with b1i Model without b1i

coefficient estimate 95% CI estimate 95% CI
α0 1.990 ( 1.643, 2.338) 1.997 ( 1.646, 2.348)
α1 -0.009 (-0.021, 0.002) -0.009 (-0.021, 0.002)
α2 0.851 ( 0.238, 1.465) 0.840 ( 0.226, 1.453)
α3 0.539 ( 0.495, 0.583) 0.537 ( 0.493, 0.582)
α̃0 -0.177 (-0.586, 0.232) -0.182 (-0.591, 0.228)
α̃1 0.008 (-0.006, 0.023) 0.008 (-0.007, 0.023)
α̃2 -0.871 (-1.522, -0.221) -0.863 (-1.514, -0.212)
α̃3 -0.156 (-0.206, -0.107) -0.154 (-0.204, -0.104)
β0 0.415 ( 0.105, 0.724) 0.410 ( 0.100, 0.719)
β1 -0.017 (-0.028, -0.005) -0.017 (-0.028, -0.005)
β2 0.122 (-0.156, 0.400) 0.130 (-0.148, 0.408)

Var(b0i) 0.160 0.182
Var(b1i) 0.003 -

Corr(b0i,b1i) 1.000 -
Var(ǫit+1) 7.138 7.139

Table 2

Estimated coefficients and 95% confidence interval for model (15) of HeartSteps data. Estimators are obtained
using R package lmer, and the 95% confidence interval are based on t distribution with Satterthwaite

approximation implemented in R package lmerTest.

As a point of contrast, we also analyzed the data using the weighted and centered least-squares
(WCLS) estimator in Boruvka et al. (2018) for a related but different model. We used WCLS to
estimate ψ=(ψ0,ψ1,ψ2) in the following model:

E
{

E(Yit+1 |Hit,Ait =1)−E(Yit+1 |Hit,Ait =0) |Xit,1,Xit,2,Iit =1
}

=ψ0+ψ1Xit,1+ψ2Xit,2.
(16)

Boruvka et al. (2018) called (16) the causal excursion effect; ψ is marginal over both the random
effects and Hit \{Xit,1,Xit,2}, which is different from β in (15). We used γ0+γ1Xit,1+γ2Xit,2+
γ3Xit,3 as the working model for E(Yit+1 |Hit,Ait =0,Iit =0) in WCLS; this working model does
not need to be correctly specified to guarantee the consistent of the estimator for ψ. The estimated
ψ and the 95% confidence interval are listed in Table 3. Although β and ψ are different estimands
with different interpretation, their estimated value and confidence interval are qualitatively similar.
These results are consistent with the comments made in the last paragraph regarding the direction
of how different variables moderate the treatment effect.

coefficient estimate 95% CI
ψ0 0.454 ( 0.156, 0.753)
ψ1 -0.018 (-0.029, -0.006)
ψ2 0.096 (-0.219, 0.410)

Table 3

Estimated coefficients and 95% confidence interval for model (16) using WCLS estimator in Boruvka et al. (2018).
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6. Discussion

Linear mixed models (LMM) were originally developed for settings with fixed covariates, and it
has been natural for researchers to think about the induced marginal model when building and
interpreting the fixed effects in LMM. In this paper, we review related literature on the potential bias
that would arise when including endogenous covariates into LMM. We argued that the fundamental
issue in LMM with endogenous covariates is that the fixed effects, including the treatment effect,
will only have a conditional-on-the-random-effect interpretation, and the marginal interpretation
is no longer valid. In terms of estimation for LMM with endogenous covariates, we introduced
a conditional independence assumption, and showed that under this assumption standard LMM
software can still be used to obtain valid estimator of the fixed effects and the variance components,
as well as valid prediction of the random effects. We used an LMM to model the effect of sequentially
assigned treatment in HeartSteps MRT in which the covariates are likely endogenous, and we
discussed the plausibility of the conditional independence assumption for these covariates.

The potential bias resulting from endogenous covariates in the without-treatment longitudinal
setting has been known for decades since Pepe and Anderson (1994). However, it was quite surpris-
ing to us that in the MRT setting, this issue occurs even with randomized treatment with constant
randomization probability (no confounding). The method in this paper utilizes the randomization
to the extent that the treatment indicator Ait automatically satisfies a conditional independence
assumption similar to (10). Furthermore, (7) is a mechanistic model for the outcome, which implies
that how well the estimated β approximates the true treatment effect is contingent on how well the
mechanistic model approximates the true data generating distribution. When the marginal treat-
ment effect is of interest, there are many tools in causal inference that consistently estimate the effect
with a possibly misspecified nuisance model (Robins, 1994, 2000; Hernán, Brumback and Robins,
2001; Brumback et al., 2003; Goetgeluk and Vansteelandt, 2008; Boruvka et al., 2018). It is an open
question whether the randomization can be further leveraged in LMM to increase robustness to mis-
specified nuisance models.

The inclusion of endogenous covariates to an LMM implies that the fixed effects should only be
interpreted as conditional on an individual. Thus, a future research question is to develop estima-
tion methods for the parameters in the marginal mean model that are coherent with fixed effect
parameters in an LMM where there are endogenous covariates. Related work in generalized linear
mixed models but with exogenous covariates includes Heagerty (1999), Heagerty and Zeger (2000),
and Larsen et al. (2000).

In a standard LMM with exogenous covariates, the empirical best linear unbiased predictor
(eBLUP) equals the empirical Bayes estimator where a noninformative prior is imposed on the
fixed effect and the variance components are estimated through REML (Lindley and Smith, 1972;
Dempfle, 1977). In Section 3 we showed through partial likelihood argument that the empirical
Bayes estimator of random effects from standard LMM is still a valid empirical Bayes estimator in
the case of endogenous covariates. However, it is unknown whether it is still eBLUP absent further
assumptions.

Along the same lines, in a standard LMM the restricted maximum likelihood (REML) estimator
of the variance components can be viewed as the maximum a posteriori estimator in a Bayesian
hierarchical model (Laird and Ware, 1982), and in Section 3 we showed that this latter interpreta-
tion is valid for the REML estimators obtained through standard LMM software when there are
endogenous covariates. Another interpretation of the REML estimator in a standard LMM is the
maximizer for the likelihood of linear combinations of the outcome that is orthogonal to the fixed
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effects. It is unknown whether this interpretation continues to hold for the endogenous covariate
case.

In the literature, there has been work on handling endogenous covariates in longitudinal data
via jointly modeling of the covariate process and the outcome process, which could be alternative
approaches to the method proposed in this paper for situations where the conditional indepen-
dence assumption is questionable. Note that each of these alternative approaches require certain
assumptions on the covariate process, and these assumptions themselves need to be verified in the
context of each application. For example, Miglioretti and Heagerty (2004) modeled the covariate
process, and assumed that Xit ⊥ bi |Xi1,Xi2,...,Xit−1. Roy et al. (2006) proposed to model the dis-
tribution of covariates given the history to infer the dependence of a Poisson process outcome on
the endogenous covariates. Sitlani et al. (2012) proposed to use joint modeling for analyzing the
effect of a surgical trial (where the time-varying treatment is a jump process) under noncompli-
ance. Shardell and Ferrucci (2018) proposed to use a joint model approach, by assuming either that
the distribution of Xit can be correctly modeled, or that the endogenous covariate is the lagged
outcome.

Appendix A: Estimation and prediction through standard LMM software

In this Appendix, we provide a proof for the claims in Section 3 that maximum likelihood estimators,
maximum a posterior estimators, and the empirical Bayes prediction of the random effects can be
obtained through standard LMM software.

A.1. Estimation of fixed effects and variance components

This subsection focuses on estimation of the fixed effects α and β and the variance components θ
and σ2

ǫ in model (7).
That the maximum likelihood estimator for the fixed effects and the variance component can be

obtained through standard LMM software is immediate from the likelihood factorization (12).
The restricted maximum likelihood (REML) estimator of the variance components θ and σǫ in

a standard LMM can be obtained through Bayesian maximum a posteriori (MAP) estimation with a
non-informative prior on the fixed effects α,β (Laird and Ware, 1982; Searle, Casella and McCulloch,
1992). For our case, the marginal likelihood for θ,σǫ, where α and β are integrated over with respect
to non-informative priors p(α) and p(β), is

L(θ,σǫ |Xi,Ai,Yi,1≤ i≤n)=

∫

p(α)p(β)
∏

i

p(Xi,Ai,Yi |α,β,θ,σǫ)dαdβ,

which by (12) equals

∏

i

{

∏

t

p(Xit |Hit−1,Ait−1,Yit)p(Ait |Hit)
}

×

∫

p(α)p(β)
∏

i

{

∫

∏

t

p(Yit+1 |Hit,Ait,bi;α,β,θ,σǫ)dF (bi)
}

dαdβ

∝

∫

p(α)p(β)
∏

i

{

∫

∏

t

p(Yit+1 |Hit,Ait,bi;α,β,θ,σǫ)dF (bi)
}

dαdβ. (17)
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Expression (17) is the marginal likelihood for θ,σǫ in a standard LMM; hence, the MAP estimator
of the variance components can be obtained through standard LMM fitting procedure with the
REML option.

A.2. Prediction of random effects

Prediction of random effects in a standard LMM is through best linear unbiased predictors (BLUPs,
Henderson (1975)), which can be alternatively derived as empirical Bayes estimates using REML
estimator of the variance components and fixed effects (Lindley and Smith, 1972; Dempfle, 1977).

Denote by b=(b1,...,bn), X =(X1,...,Xn), A=(A1,...,An), and Y =(Y1,...,Yn). In our proposed
model, the posterior distribution of b is

p(b |X,A,Y ;θ,σǫ)=
p(b,X,A,Y | θ,σǫ)

p(X,A,Y | θ,σǫ)
. (18)

We omit the notational dependence on θ,σǫ hereafter. Let p(α) and p(β) denote the prior distribution
of α and β. The numerator of the right hand side of (18) equals

∫

p(b,X,A,Y,α,β)dαdβ=

∫

p(α)p(β)
∏

i

p(bi)
∏

t

p(Xit |Hit−1,Ait−1,Yit,bi,α,β)

×p(Ait |Hit,bi,α,β)p(Yit+1 |Hit,Ait,bi;α,β)dαdβ

=
{

∏

i

∏

t

p(Xit |Hit−1,Ait−1,Yit)p(Ait |Hit)
}

×

∫

p(α)p(β)
∏

i

p(bi)
∏

t

p(Yit+1 |Hit,Ait,bi;α,β)dαdβ, (19)

where the last equality follows from the conditional independence assumption and the randomization
of Ait. The denominator of the right hand side of (18) is

∫ ∫

p(b,X,A,Y,α,β)dαdβdb. Thus, the
posterior distribution (18) equals

∫

p(α)p(β)
∏

ip(bi)
∏

tp(Yit+1 |Hit,Ait,bi;α,β)dαdβ
∫

p(α)p(β)
∏

ip(bi)
∏

tp(Yit+1 |Hit,Ait,bi;α,β)dαdβdb
, (20)

which is the posterior distribution of b in a standard LMM when X and A are treated as fixed or
exogenous.

Therefore, the Bayesian MAP estimator of b can be obtained through standard LMM fitting
procedure. Along the same line, the empirical Bayes estimator of b with plug-in variance component
estimates can also be obtained through standard LMM.

Appendix B: Additional simulation results

In the additional simulation results, we included simulations for sample size n=30,50,100,200 and
the number of observations per individual Ti=T =10,20,30. Each setting was replicated 1,000 times.
Bias, standard deviation (sd) and coverage probability (cp) of 95% nominal confidence interval for
the estimated fixed effects (β’s and α’s) are presented in Table 4. Table 5 presents the bias and
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standard deviation for the estimated variance components σ2
bj ,0≤ j≤ 3 and σ2

ǫ . For GM 1 and GM

3, the model doesn’t include bi1 and bi3, so the variance components only include σ2
b0,σ

2
b2 and σ2

ǫ .
Conclusion to Section 4 can be made: for GM 1 and GM 2, the variance components are consistently
estimated, whereas for GM 3 the estimators are inconsistent. Again, this is due to violation of the
conditional independence assumption (10) in GM 3.
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β0 β1 α0 α1

GM T n bias sd cp bias sd cp bias sd cp bias sd cp
30 -0.001 0.249 0.943 0.002 0.091 0.897 -0.021 0.377 0.951 -0.002 0.065 0.915
50 -0.002 0.187 0.953 -0.001 0.068 0.897 -0.019 0.295 0.947 -0.001 0.048 0.930

100 -0.003 0.135 0.941 -0.001 0.049 0.898 -0.011 0.210 0.949 -0.001 0.033 0.9201 10
200 -0.001 0.096 0.926 -0.001 0.034 0.899 -0.009 0.150 0.941 0.000 0.025 0.909
30 -0.001 0.217 0.943 0.001 0.063 0.919 -0.020 0.372 0.950 -0.002 0.046 0.928
50 0.001 0.168 0.947 -0.000 0.048 0.916 -0.018 0.288 0.945 -0.002 0.034 0.935

100 -0.002 0.117 0.950 -0.000 0.035 0.906 -0.010 0.207 0.946 -0.000 0.025 0.9301 20
200 -0.001 0.085 0.943 -0.001 0.026 0.892 -0.008 0.147 0.944 0.000 0.018 0.921
30 -0.002 0.206 0.946 0.001 0.053 0.913 -0.020 0.367 0.952 -0.001 0.038 0.924
50 -0.000 0.160 0.949 0.001 0.040 0.930 -0.017 0.288 0.945 -0.001 0.028 0.940

100 -0.005 0.112 0.949 -0.001 0.028 0.935 -0.009 0.205 0.944 0.000 0.020 0.9381 30
200 0.000 0.081 0.944 -0.001 0.022 0.902 -0.009 0.146 0.946 0.000 0.015 0.923
30 -0.010 0.269 0.939 -0.004 0.105 0.903 -0.015 0.391 0.950 -0.003 0.079 0.933
50 -0.011 0.209 0.932 -0.000 0.078 0.909 -0.010 0.302 0.941 0.001 0.062 0.931

100 0.009 0.145 0.933 -0.001 0.056 0.915 -0.012 0.222 0.934 -0.002 0.045 0.9292 10
200 -0.008 0.105 0.931 -0.002 0.038 0.934 -0.007 0.150 0.960 0.001 0.031 0.935
30 -0.005 0.229 0.943 -0.001 0.079 0.930 -0.014 0.377 0.951 -0.002 0.067 0.940
50 -0.008 0.180 0.944 0.001 0.061 0.929 -0.014 0.292 0.951 -0.001 0.053 0.931

100 0.007 0.123 0.942 0.001 0.044 0.931 -0.012 0.213 0.945 -0.003 0.038 0.9402 20
200 -0.007 0.090 0.933 -0.001 0.030 0.939 -0.006 0.147 0.957 0.001 0.026 0.945
30 -0.006 0.216 0.943 -0.001 0.070 0.939 -0.014 0.374 0.951 -0.002 0.062 0.946
50 -0.008 0.168 0.957 0.001 0.055 0.945 -0.016 0.289 0.951 -0.002 0.049 0.942

100 0.006 0.115 0.947 -0.001 0.039 0.948 -0.010 0.210 0.943 -0.002 0.035 0.9342 30
200 -0.004 0.084 0.935 -0.000 0.027 0.940 -0.008 0.145 0.950 0.000 0.025 0.942
30 -0.048 0.245 0.949 -0.043 0.075 0.725 0.048 0.341 0.951 0.057 0.060 0.629
50 -0.049 0.189 0.940 -0.045 0.055 0.674 0.053 0.265 0.949 0.059 0.044 0.519

100 -0.060 0.134 0.927 -0.047 0.041 0.548 0.063 0.190 0.931 0.061 0.031 0.2833 10
200 -0.052 0.095 0.907 -0.046 0.029 0.355 0.064 0.135 0.924 0.061 0.022 0.079
30 -0.029 0.216 0.945 -0.024 0.051 0.798 0.016 0.351 0.955 0.028 0.038 0.766
50 -0.035 0.168 0.950 -0.027 0.039 0.762 0.022 0.273 0.949 0.030 0.028 0.714

100 -0.038 0.119 0.931 -0.027 0.028 0.666 0.029 0.194 0.948 0.030 0.021 0.5483 20
200 -0.034 0.083 0.935 -0.027 0.019 0.514 0.031 0.137 0.953 0.031 0.014 0.272
30 -0.023 0.207 0.946 -0.017 0.041 0.847 0.005 0.354 0.954 0.018 0.031 0.832
50 -0.026 0.159 0.946 -0.018 0.031 0.822 0.010 0.275 0.948 0.019 0.022 0.794

100 -0.028 0.112 0.942 -0.019 0.022 0.762 0.016 0.197 0.950 0.020 0.016 0.6583 30
200 -0.024 0.079 0.941 -0.019 0.015 0.628 0.018 0.139 0.950 0.021 0.011 0.438

Table 4

Bias, standard deviation (sd) and coverage probability (cp) of 95% nominal confidence interval for the fixed effect parameters in the simulation
study. n denotes sample size; T denotes total number of observations for each individual; GM denotes generative model. The result is based on 1,000

replicates for each setting.
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σ2
b2

σ2
b3

σ2
b0

σ2
b1

σ2ǫ

n T GM bias sd bias sd bias sd bias sd bias sd
30 0.024 0.400 - - -0.008 1.137 - - -0.003 0.049
50 0.013 0.300 - - -0.020 0.868 - - -0.002 0.035

100 0.017 0.210 - - -0.031 0.614 - - -0.001 0.0241 10
200 0.004 0.151 - - -0.021 0.431 - - -0.000 0.017
30 0.012 0.319 - - -0.025 1.067 - - -0.003 0.032
50 0.010 0.246 - - -0.026 0.822 - - -0.001 0.023

100 0.008 0.174 - - -0.041 0.579 - - -0.001 0.0161 20
200 0.004 0.126 - - -0.021 0.403 - - -0.000 0.011
30 0.003 0.293 - - -0.036 1.036 - - -0.002 0.025
50 0.001 0.232 - - -0.037 0.809 - - -0.001 0.018

100 0.008 0.163 - - -0.040 0.569 - - -0.001 0.0131 30
200 0.000 0.116 - - -0.023 0.399 - - -0.000 0.009
30 0.047 0.498 -0.001 0.058 -0.003 1.238 -0.003 0.040 -0.003 0.048
50 0.048 0.392 -0.005 0.046 -0.057 0.935 -0.004 0.033 -0.001 0.038

100 0.000 0.260 -0.003 0.033 -0.019 0.646 -0.001 0.022 0.000 0.0272 10
200 0.005 0.184 -0.003 0.021 -0.043 0.451 -0.001 0.015 -0.001 0.019
30 0.009 0.367 -0.003 0.043 -0.029 1.094 -0.003 0.032 -0.000 0.031
50 0.022 0.302 -0.003 0.033 -0.045 0.854 -0.002 0.025 0.000 0.025

100 0.002 0.200 -0.002 0.021 -0.016 0.597 -0.000 0.017 0.001 0.0172 20
200 -0.001 0.142 -0.001 0.015 -0.029 0.418 -0.001 0.012 -0.001 0.012
30 0.001 0.334 -0.002 0.036 -0.045 1.065 -0.003 0.029 0.000 0.025
50 0.012 0.268 -0.003 0.027 -0.049 0.826 -0.002 0.022 0.000 0.019

100 0.002 0.183 -0.001 0.019 -0.028 0.584 0.000 0.016 0.000 0.0132 30
200 -0.003 0.127 -0.001 0.013 -0.029 0.409 -0.001 0.011 -0.000 0.009
30 0.126 0.434 - - -0.710 1.159 - - 0.004 0.046
50 0.105 0.329 - - -0.771 0.860 - - 0.005 0.034

100 0.094 0.228 - - -0.810 0.604 - - 0.005 0.0253 10
200 0.080 0.159 - - -0.796 0.429 - - 0.006 0.018
30 0.059 0.329 - - -0.380 1.056 - - 0.000 0.029
50 0.053 0.262 - - -0.428 0.800 - - 0.001 0.023

100 0.040 0.174 - - -0.429 0.575 - - 0.001 0.0173 20
200 0.038 0.125 - - -0.430 0.406 - - 0.002 0.011
30 0.040 0.304 - - -0.268 1.029 - - -0.000 0.024
50 0.030 0.237 - - -0.296 0.782 - - -0.001 0.018

100 0.027 0.162 - - -0.306 0.569 - - 0.000 0.0133 30
200 0.023 0.115 - - -0.299 0.395 - - 0.001 0.009

Table 5

Bias and standard deviation (sd) for the estimated variance components σ2
bj
,0≤ j≤ 3 and σ2ǫ in the simulation study. n denotes sample size; T

denotes total number of observations for each individual; GM denotes generative model. For GM 1 and GM 3, the model doesn’t include bi1 and bi3,
so the corresponding entries in the table are left blank. The result is based on 1,000 replicates for each setting.
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