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The Dynamic Annihilation of a Rational Competitive Fringe
by a Low-Cost Dominant Firm

PETER BERCK AND JEFFREY M. PERLOFF

University of California t Berkeley

ABSTRACT

A low-cost dominant firm will drive all competitive fringe firms out of

the market if all firms have rational expectations; however t the dominant firm

will not predate (price below marginal cost). Since a dominant firm will not

drive out fringe firms if they have myopic expectations t it may be in the

dominant firm's best interests to inform the fringe. The effects of ~overn-

mental intervention on the optimal path and welfare are presented.

'lame and address of author to whom communications should be sent:

Peter Berek, Department of Agricultural and Resource Economics
University of California, Berkeley, California t 94720
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The Dynamic Annihilation of a Rational Competitive Fringe
by a Low-Cost Dominant Firm*

1. Introduction

A low-cost dominant firm with no capacity constraint that can precommit to

a price path is in an excellent position to drive constant average cost fringe

firms from the market. SurprisinglYt much of the existing literature on dy­

namic models [e.g. t Gaskins (1970 t 1971)J concludes that the dominant firm

eventually limit prices with a positive number of fringe firms left in the

market. This result in a dynamic model is especially disturbing since in a

static model (the extreme case of a dynamic model where adjustment is instan­

taneous) all fringe firms will be driven from the market. We show that these

earilier results are due to an unreasonable assumption about expectation

formations.

Gaskins and others have assumed that fringe firms use myopic (adaptive)

expectations when determining whether to enter or exit. We show that t when

all of Gaskins' other assumptions are maintained t but firms use rational ex-

pectations t the dynamic model's steady state resembles that of the static

model: All fringe firms are driven out by the time the dominant firm limit

prices.

There are two basic strands of the literature on rtynamic models of domi-

nant firms. In one strand t the rate of entry of fringe firms depends on the

current price.

Examples of this literature include Gaskins (1970, 1971) and Baron (1973).

In Gaskins' model, if there are initially few fringe firms t a low-cost dominant

firm without a capacity constraint initially sets a high price which the domi-

nant firm gradually lowers until it reaches the limit price so that a constan:,
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positive number of fringe firms persist forever. Since price never falls below

the limit price, at no time does exit occur. This result is startling when one

realizes that, in a static model (where entry is instantaneous), such a domi-

nant firm would drive out the fringe and be a monopolist. Gaskins' (1970,

1971) results stem from his assumption that, while the dominant firm has

rational expectations, the fringe firms use myopic expectations in their entry

decisions: They only look at instantaneous profits.

Another strand of the literature uses a two-period and/or two-firm model.

Examples of this type of model include Kamien and Schwartz (1971) and De Bondt

(1976). In these models, period one is the interval until the arrival of one

or more entrants (which is typically uncertain); period two is the remainder

of time. These two-period models by their very nature cannot be used to study

the complex pattern of entry and exit by fringe firms which we investigate

here. Indeed, in Kamien and Schwartz (1971), the price in the preentry period

is a constant.

The reason that the dynamic models of Gaskins and his followers come to a

counterintuitive result is that they assume that fringe firms form expecta-

tions that are not rational. Three papers consider similar problems with

rational expectations. Flaherty (1980) assumes that firms are rational, but

there is a single entrant with a cost functional identical to that of the

existing firm. Judd and Petersen (1986) assume that fringe firms retain

earnings in order to invest, and the dominant firm and the fringe play a ~ash

open-loop game. The fringe firms are rational and take the dominant firm's

price as given, while the dominant firm takes the fringe firms' percent of

retained earnings as given. Karp (1987) also has fringe firms determine

optimal investment, hut uses a feedback model. Thus, these three papers
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change a number of assumptions in addition to that of rationality. To isolate

the effects of expectations alone, we maintain Gaskins' other assumptions

including the fringe's linear entry equation and the ability of the dominant

firm to commit to a price path.

This new assumption leads to qualitatively and quantitatively different

results from those of previous papers. We begin by presenting a general

dynamic model of a dominant firm with competitive fringe firms entering as a

function of expected profits. Next, we present our rational expectations

(perfect foresight) model.

The dominant firm uses a dynamic, open-loop strategy to maximize its

present value of profits, where it chooses its price path at time zero. That

is, the dominant firm cannot change its plans after they have been made,

although fringe firms may enter or exit the industry at any time. l

Next, Gaskins' (1970, 1971) model is shown to be a special case of the

general model where expectations are adaptive, and we compare his results to

ours. We show that, even if fringe firms used adaptive expectations ini-

tial1y, it may be in the dominant firm's best interest to announce its long­

run policy so that the fringe firms' expectations become rational. That is,

if the fringe's expectation formation is endogenously determined, nonrational

behavior may not persist.

We next consider a more realistic policy where the government restricts

the dominant firm's market share. We conclude the paper with a summary and a

discussion of the policy implications.

2. A general dynamic model

The dominant firm chose a price path over time, pet), to maximize the

f'fictional
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-rt
V = J; [p( t) - c] [f(p) - xC t) ]e dt, (1)

where V is the present value of the dominant firm's profit stream, c is the

average cost of production for the dominant firm (constant over time), f(p) is

the market demand curve, xCt) is the level of sales by the competitive fringe

(where each fringe firm produces one unit of output), r is all firms' discount

rate, and (f(p) - x(t)] is the residual demand facing the dominant firm.

This functional is maximized subject to the evolution of the fringe, xCt).

The initial number of fringe firms is given:

x(O) = xO' (2 )

Fringe firms then enter or exit the industry based on their expectations about

the present discounted value of their future profits, yet). Because the cost

of entry depends upon the speed of entry, frin~e firms do not enter instanta­

neously. The rate of entry is proportional to the expected present value of

profits:

constant response coefficient ~ O. and y is the expected present value of a

fringe firm's profits. We follow the common convention used by Gaskins (1970,
21971) and others that k is a constant. Because the number of fringe firms

x(t) = kyCt)

where ne(t) are expected profits by a fringe firm at time t. k is a

cannot be negative, the dominant firm also faces a state constraint,

x(t) > n.

(3)

(4)

(5)
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3. Rational fringe firms

At least where the demand curve is linear, the solution to the dominant

firm's profit maximization problem is to choose a price path that drives out

all rival firms in finite time and then keeps them out by limit pricing

thereafter. If fringe firms use rational expectations (nerfect foresight),

then expected profits, ne(t), equal actual profits, net) = [pCt) - pJ for

all t, where pCt) is the actual path of prices and Ol> c) is the limit price

(the average cost of a fringe firm). As a result, we can rewrite (4) as

yet) = f; [pCs) - p] e-r(s-t) ds. (6)

Before we can state the dominant firm's problem as one solvable by the

maximum principle, we must reduce equation (6) to a form that does not include

an integral by differentiating it with respect to tinle:

•
y = ry + p - p.

The dominant firm which faces rational fringe firms chooses a price path at

time t = 0 so as to maximize (1) subject to (2), (3), (5), and (7). The

(7)

necessary conditions for a solution to the problem of maximizing subject to a

state constraint, (5), are given by Jacobson, tele, and Speyer (1971).

The method of solution begins by forming the usual Hamiltonian,

H = (p - c) (f - x) e- rt + zky + very + p n), (8)

where z and v are the costate variables corresponding to the state variables x

and y and adjoining a multiplier, (w), and the state constraint [x(t) > 0],
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L =H + wx. (9 )

'j';

As with the usual Lagrangian methods. wx = 0 is necessary for optimality.

The rest of the necessary conditions are (a) the equations of motion, (2), (3),

and (7); (b) the adjoint equations, ~ = -L and ~ = -L ; (c) the transvers-x y

ality conditions, lim zx = lim zx = lim vy = lim vy = 0; (d) the maximum
t=oo t=O t=oo t=O

principle; and (e) the necessary conditions at the "jump time," T (which, as

shown below, is finite), at which x becomes zero. For our problem, there are

three jump-time conditions, which we state here. but discuss in more detail

below.

First, because y is not constrained, v is continuous

.'

,",
~:

- ( +V(T) = VT ),

where v(t-) is shorthand for limt~l vet).

t<T

Second, because x is constrained, its multiplier jumps:

where <jl > o.

Lastly, the. Hamiltonian is continuous at (T):

Our construction of an optimal solution proceeds ~y (1) describing the

solution when there are competitive firms (the "interior" solution);

(2) describin~ the solution 3fter these fringe firms are rlriven from the

market (the "corner" solution); and, finallY, (3) piecing together the two

types of solutions.

(0)

(ll)

(12 )
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3.1 Interior solution

Since Hand L are identical when x > 0, the usual Hamiltonian methods

suffice to construct an interior solution. The necessary conditions include

(2), (3), (7), the adjoint equations,

z= (p - c) e- rt

v = -zk - vr,

and the maximum principle which implies

H
p

= [( f - x) + (p - c) f t] e - rt - v = O.

(13)

(14 )

05 )

By appropriate substitutions, the necessary conditions can be reduced to a

single second-order differential equation. First, we solve (15) for v and

differentiate with respect to time to obtain

,
.;

v

:~
,'.

v= -rv + e- rt [2 Elp + (p c) flIp - ky].

We then equate equations (14) and (16) to eliminate v,

rt
= ky - zke

p [ 2f ' + ( p - cJ f"]'

and differentiate with respect to time to obtain

(16)

(17)

-rt
z = -rz -~ {(3f" + [p - cJ fIt') (p)2 + (2 £' + [p - cJ fIt) P - kY}. (18)

Substituting into (18) for z from (13), for z from (17), and for y from (7),

we find that
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f [2f' + (p - c) fit} P + k [3£1t + (p - c) f"'] (p)2

(19)

.<
- f [2 f' + (p - c) f"] p + 2p - c - p = O•

Where demand is linear, f(p) = a - bp, equation (18) is a second-order,

where

(20)

(Zl )

= 0,

p + c
+ ' 2 '

P
_ r p k k(p + c)

- 0 p + zb

whose general solution is

ordinary differential equation,

~.

','

,'.

.,'

_.
.:;,

Equation (21) gives the solution to the dynamic limit-price problem when then~

are fringe fims in the market. It depends upon two unknown parameters,

a 1 and a Z' These parameters are determined from the conditions joining

interior and corner solutions, where x(t) = o.

We can show that the corner is reached in finite time since internal solu-

tions that last forever and meet the transversality conditions eventually have

strictly negative values of x. Not all values of a 1 and a Z are compatible with

the transversality conditions. If a Z (the constant associated with the positive
• -rtroot) is positive, price will grow without bOlmd. Since z = (p - c) e ,

z will also grow without bound. Equations (3) and (6) guarantee that x will

gro~ without bound, but this violates the transversality condition that
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By substituting for p from (21) in (6), integrating to obtain y, substi­

tuting for y in (3), and then integrating again with respect to t, one can

Therefore, interiorA similar argument can be made for ~2 < o.

calculate x:

lim zx = O.
t~

trajectories that last forever must have ~2 = O.

','

~~
','

x(t) k(c - p)
2r t. (22 )

Because Yl < 0, eventually the last term on the right-hand side dominates;

and, since c - p < 0, lim x < O. Thus, an optimal policy starting with x > 0
t~

will eventually drive x to zero at some time, T. As a result, interior tra-
,',
r,

jectories that last forever are impossible. Hence, a Z may be nonzero. Since

the constraint is eventually reached, we now consider corner solutions.

3.2 Corner solution

When x is zero and remains zero for an open time interval, y will equal 0

and p will equal p. As a result, once x becomes zero on an open interval, it
r,.'. will remain zero forever •

The proof of the proposition that, if x = 0 on an open interval, p = p,

follows from continuity. Let x be zero from Tl to T 2 (since x is continuous,

it is zero at Tl and T2 as well). Since for T1 ~ t ~ T2,

~..
t

x(t) = x(T l ) + J ky ds,
T1

(23 )

y is certainly zero. Similarly,

t
yet) = Y(TI) + J e-rs(p - p) ds,

1'1

(24 )

so yet) = 0 implies that pet) = p, T1 ~ t ~ 1'2.
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The final claim that once a corner solution is reached it will continue

indefinitely follows from the principle of optimality. If it is optimal to

set pCt) = p when x(t) = yet) = 0 at t = Tl , it will be optimal to set p = p

at any other time when xCt) = yet) = 0. Since x(t) = yet) = 0 for a corner

solution and that implies pCt) = p, it follows that x(t + €) = yet + €) = 0

for small €, so the corner solution will last indefinitely. Thus, an optimal

program that begins with competitive fringe firms will consist of one interior

segment of finite length followed by a corner segment of infinite length, where

pCt) = p and x(t) =0.

3.3 Linking the interior and corner solutions

Matching the interior to the corner solution determines aI' a Z' and T.

The definition of x, the continuity of the Hamiltonian, and the transversality

condition at time zero give three equations to determine aI' a Z' and t. This

section derives each in turn.

Substituting for p from equation (21) in the definition of ~ in (2) and

integrating between 0 and T gives our first condition:

(25 )

+ k(p 2 c) (1 - e- n - n) = 0,
2r

where the second equality follows hecause X(T) = 0 by the definition of 1.

The continuity of the Hami Honlan implies that pCT) = p. Since f-f for

given x, y, z, and v has a unique maximum in ry, H is said to be regular.



-11-

Therefore, p is continuous at T and peT) = i>[Jacobson, Le1e, and Speyer

(1971), p. 272]. This result also can he shown directly using (12). This

second condition, p(T) = p, may be written as

YZL C + P
+ a Z e + 2· = p. (26 )

The last condition comes from noting that v(O) = 0 because yeO) is free and

v(O) yCO) must equal zero by a transversality condition. Since H = 0 by the
p

maximum principle, a - bpCO) - xo - bp(O) + bc = O. (Notice that prO) is the

short-run profit maximization price.) Substituting for prO) from (21) and

rearranging gives

a - X o - b p

a l + a Z = 2b

Equations (25), (Z6), and (27) determine aI' u2' and T.

(27 )

3.4 The price path

The price path depends on the parameters of the system. Heuristically, i~

Xo is relatively small (given the other parameters), the price starts high,

falls below P, and then rises to p. Alternatively, if Xo is relatively

large, the price starts below pand then rises to p-.

In either case, as t ~ T, net) approaches p from below. The price must

be below p for the dominant firm to drive the fringe firms out of the market.

After all fringe firms are driven out, price must remain at p or new entry

would occur.

In the interior, the price path is described by equation (Zl). The path

depends on a l and uz. From equation (Z7) and the associated argument,
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a 1 + a Z > O. Since price must approach pfrom below at t near T, pet) :
Yl t Y2 t

a 1 Y1 e + a Z YZ e > O. It follows that a Z ~ 0 is impossible. Since

a l and a Z cannot be negative, were a Z ~ 0, a 1 would have to be positive;

but that would imply that a 1 Y1 and a Z YZ would both be negative which vio­

lates p ~ O.

<
Thus, aZ > 0, 01 + aZ > 0, and a1> O. There are two possible price paths

as shown in fig. 1. As the figure shows, the dominant firm never predates in

the sense that its price is always greater than c--its marginal and

average cost. As the figure shows, in all cases price is above (P + c)/2.

Since p> c, (p + C)/2 >c.

4. A comparison of our model and Gaskins' model

In contrast to our model where fringe firms have rational expectations,

Gaskins (1970, 1971) implicitly assumes that firms form their expectations

myopically: Profits tomorrow will be the same as today. His entry condition

is given as:

x(t) = K[p(t) - p]. (Z8)

Equation (28) says that the rate of entry of fringe firms is a constant, K,

times a fringe firm's instantaneous orofits.

Equation (28) can be derived from (3) and (4) if we assume that the

potential entrants form their expectations mvopica1ly: ~e(s) = [pet) - 0],

s ~ t, so

y( t) = [pet) - p]
r
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FIGURE I. Properties of the Price Path
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Using the maximum principle, Gaskins (1970, 1971) derives the solution.
consisting of the differential equations in x(t), as given by (28) above, and

Substituting for y from (29) into (3), we obtain Gaskins' (1970, 1971) equation

( 28), where K = k/r.

(30)P
• (t) = k (p - c) + r[ x - f(p) - (p - c) f I (p) ]

-2fr(p) - (p - cJ fll(pJ

Equations (28) and (30) generate a family of trajectories in the (p, x) plane.. .
The intersection of the p = 0 and x = 0 equations in the (p, x) plane

determines the saddlepoint. Gaskins (1970, 1971) describes how to derive the

unique trajectory meeting all of the necessary conditions.

The optimal paths of our model in (p, x) space and the path in Gaskins'

(1970, 1971) model are shown in fig. 2 for a case in which xo is relatively

smal1.3 Notice that the path in Gaskins' (1970, 1971) model starts at a high

price and falls to p where it remains, so a large finite number of frin~e

firms (SO) produce in the limit. By contrast, the path in our model shows the

price starting at a high price, falling below n, and then rising to p where it

remains and x( t) = 0, t ~ T. Indeed, in this example, our model implies

there are always fewer than 21 fringe firms. The myopic path approaches

within 2 percent of the steady-state number of fringe firms (49 firms) in 106

time periods. At 112 time periods, the rational path reaches the maximum

number of firms. The rational path hits the corner in 298 time periods.

5. Endogenously determined expectations

In many cases, even if the fringe firms have myopic expectations, it is

in the dominant firm's best interests to announce its price path so that :he

fringe firms' exPectations become rational. For example, given the parameters
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used in fig. It when the fringe has myopic expectations t the present value of

its profits is $141 and the present value of the dominant firm's profits is

$7 t 354. In contrast, if the fringe's expectations are rational, the corre-

sponding present values are $212 and $9,472. In other words it is in all

firms' collective best interest for the fringe to use rational expectations.

In this example if the fringe becomes rational, consumer surplus would fall

from $8,870 to $5,715. Thus, total welfare (here defined as consumer surplus

plus combined profits) falls from $16,366 to $15,398. That is, the firms'

gain does not offset consumers' losses.

The models are too complex for us to derive general conditions when it is

in the dominant firm's best interest to correct fringe firm's myopic beliefs.

We have found it difficult to find examples where it is not in the dominant

firm's best interest to reveal its price path to the fringe; however, the

welfare effect can go in either direction. 4

6. Market share constraint

The possibility of antitrust action may partially explain why one does not

observe dominant firms driving their competition completely out of business.

Although neither statute nor case law sets absolute market shares that will

support an antitrust conviction--a survey of recent cases shows findings of

monopoly prnver were common above a 70 percent share and uncommon below a

50 percent share [Flynn (1981, p. 5l)]--a dominant firm may form strongly held

views as to the crucial share at which they would face prosecution. For

example, some years ago, General Motors apparently felt that 60 percent was

the relevant number. In this section we examine the optimal actions of a
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of the earlier sections. Four theorems and three lemmas, all of which are

problem, which is fundamentally different from the state constrained problem

a - bp - x
a - bpo -

technical in nature, narrow the set of possible optimal paths. Fig. 3 and the

last paragraph of this section summarize these results.

The dominant firm's market share is defined as its sales divided by total

sales:

dominant firm subject to a constraint on its market share. The section begins

with a formal statement of the problem as a control constrained optimization

Given the market share and the number of competitors, one can invert the

share formula to express price as a function of x and 6:

p(x, 6) aO - <5) - x
= --'b--'{--:;"l~-"""0""')- (32 )

x
'.'

Letting 6* > 0 be the maximum share that the dominant firm can attain

without facing an antitrust suit, the control problem for that firm is to

maximize the present discounted value of net revenues (profits):

max J R dt (33)
0<6*

."
subject to

x = ky, y = ry + p - p( x, 6), x( 0) = Xo,

where

R = ([ a - bp( x, 0) - x] [ph:, is) - c]} e - rt.

Since x is certainly bOlmded away from zero hy 6 being hounded away from ne,

this problem is unlike the original problem. It involves only a constraint on

the control, 5, and not a constraint on the state variable, x.
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The Hamiltonian for this problem is:

H = R + zky + v(ry + p - p). (34 )

The maximum principle yields (where subscripts denote partial derivatives):

= 0 and <5 < 6*

or (35)

Since Pd I: 0 [see equation (32) L in the interior the maximum principle gives

the same expression as before. The costate equations are

'.
.
z = -R P - R + v PP x x x

v = -zk - rv.

These equations hold for all time. During those times for which 5 is less

than 5* [R = v from equation (25)), the equation for ~, (36), simplifiesp

to give

(36)

(37)

(36' )

'I

which is the same equation as for an interior solution in the original problem

which does not have a share constraint.

The solution to this problem consists of two parts. First, in the interior

solution, 6 < 6*, the maximum principle and costate equations are exactly

those of an unconstrained interval for the original problem. Thus, the

equations determining the price path in the interior solution are the sam'. as

in the original problem.
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Second, when the share constraint binds (6 = 8*), we rewrite the con-

straint as

x = (1 - 8*) (a - bp)

and take its time derivative and set it equal to ky [using (3)]:

x = (6* - 1) bp = kyo

(38)

(39)

Differentiating (39) with respect to time and substituting ry + p - p for y.
using (7) and [(6* - 1) bp]/k for y using (39), we obtain the second-order,

ordinary differential equation

• k(p - p)
p - rp + (0* _ 1) b = O.

The solution to this differential equation is

(40)

\.mere

pet) (41)

~l =}( r - ;i.2 -4k/(6* b - b) )

1 ( / 2 )~2 = 1 \. r + .t r - 4k/ (0 * b - b) •

There are many possibilities for an optimal path. Where 6 < 0*, optimal

Paths begin on the R ert = 0 line (the short-run, nrofit-maximizingP ~

condi tion) as interior segments. Eventually they reach the share constra int

and equilibrium at p, but there are many possible routes. We use a set Co ~

lemmas to restrict the set of possibilities.
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Fig. 3 shows the relation of p, Rp = 0, and the share constraint in

x - p space so that paths may be drawn in it as projections from ex, p, y)

space into ex, p) space. The figure includes four lines--(A) the constraint

(38); (B) a fringe firm's costs, p; (e) Rp = 0 which is x = a - 2pb + bc;

and (D) the dominant firm's cost, c. The intersection of the constraint and

R = 0 is labeled (x, pl. Let ex, p)* denote the projection of an optimalp

path .

For small enough x, the optimal path follows the constraint:

Lemma 1: If a path is optimal and xCt) < i, then (x(t), p(t))*

lies on the share constraint.

Proof: Those points below the share constraint (see fig. 3) are not

feasible. Thus, the optimal path must lie on or above the constraint. For

x(t) < x, points above the share constraint are also above the Rp ert = 0

line. Above the R ert = 0 line, increases in price decrease instantaneous
p

profit. Since increases in price also encourage entry which decreases future

profits, prices above the share constraint lead to less instantaneous and

future revenues and cannot be optimal.

By the same reasoning:

Lemma 2: The interior portion of an optimal path does not lie above

the R ert = 0 line at even a single point.
p

The next two lemmas and the theorem describe the ~eneral direction that

interior optimal paths may follow. They show that the direction of travel is

away from the Rp ert = 0 line.

Lemma 3: If, along an optimal interior arc above c, there is a time

t for which

negative so

dldt (R ert ) is negative, then dldt (R ert ) remainsp p

long as (x, p)* remains interior and above c.
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Proof: Since (x, p)* lies in the interior, from the maximum principle,

'."
".

\ = v. (35')

MUltiplying both sides of equation (35') by ert and differentiating with

Since z is positive and

d (R rt) (v· + rv) ert
at p e =

respect to time gives

last two equations show that z is positive.
• -rtz = Cp - c) e ,so z is increasing along ex, p)*.

Given the hypothesis of the lemma that dldt (R ert ) is negative, thesep

The costate equation for z is

The costate equation (37) requires

(~ + rv) = -zk •

increasing, it must be that dldt (Rp ert ) is negative and decreasing which

establishes the lemma.

"',""

A geometric interpretation of Lemma 3 uses a vector normal to ~ = 0:

N = (1, 2b) is the normal pointing in direction of decreasing Rp' The

tangent vector to (x, p)*, (~, p)* points in the same half space as N--or
• • rt

I(x, p)*, NI > O--when dldt (R e ) is negative.. p

A final lemma tells us the direction of motion in the x plane:

Lemma 4: When p > p and ~ < 0, then ~ remains negative as long

as (x, p)* remains above p. When p < p and ~ > (), then ~ remains

positive as long as ex, p)* remains below p.
Proof: Since ~ = ky, if ~ < (), then y < O. Further, since y = ry +

•
p - p if p is also greater than 0, y is negative. Thus, above~, ; must

become more negative \ihich establishes the first half of the lemma. The

second assertion is established by the same steps with the signs reversed.
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Corollary: An optimal path that begins with x < x travels along

the share constraint toward (x. pl.
Proof: Lemma 1 shows that the path travels along the share

constraint. Lemma 4 shows that, if the optimal path starts moving away
~ .

from x toward lower x, x must remain negative forever and p must remain

above p forever. Such a path is impossible since, if p is always above

p, then y must be positive and hence xmust be positive.

Theorem 1: Let (x, p)* be an optimal path, and let (x, p)* be its

tangent. When p is above p, I(x, p)*, N I < O.

Proof: The proof proceeds by contradiction: Assume that at some time

t > 0, P > p, and I(~, p)*, NI > o. Three steps are needed to establish

the contradiction. First, the optimal path may not remain above p. Second,

if the optimal path passes below p, it will recross the p line; when it re­

crosses, the optimal path will be closer to the R ert = 0 line than whenp

it first crossed. Third, since there is no limit point on the R ert = 0
p

rtline and optimal paths cannot cross Rp e = O. an optimal path cannot

become ever closer to R ert = 0 which is the contradiction that estab­
p

lishes the theorem.

It is impossible for an optimal interior path to remain within the tri­

angle formed by the R ert = 0 line, the p = p line, and the constraint.p

Lemma 3 shows that once ex, 0)* moves in the same half space as N it must move

in the same half space as N as long as it remains in the interior. Therefore,

it must eventually come to the boundary of the triangle. Lemma 2 establishes

that an optimal path does not lie above the Rp ert = 0 line, so the opti-

mal path must eventually hi t one of the other two boundaries.

The optimal path, ex. p)*, could join the constraint, but it would still

have to move in the same direction as ~ which \vould mean that it either
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becomes interior again in the same direction as N or crosses Rp ert = 0

which is impossible. Fig. 4 shows (x, 0)* joining the constraint while moving

in the same half space as N. The vector N is the outward normal to R ert =0,p

and it is drawn beginning at the point B, the point where the path (x, p)* be-

gins traveling along the constraint. The diagram also shows a line through B

Parallel to R ert = 0 that is orthogonal to N. By hypothesis, the tangent top -

(x, p)* has positive inner product with N so it must lie between N and the line

parallel to R ert = 0, and it cannot cross the constraint. If the optimalp
•

path travels along the constraint, x < o.

Using Lemma 4, when x< 0 for p above p, xcannot hecome positive. Since

~ cannot change signs, the direction of travel while on the constraint cannot

reserve. l1hen ~ < 0 and ex, p)* is on the constraint, then I(x, p)*, NI > o.

By continuity, if (x, p)* again becomes interior, I(x, p)*, NI will still be

positive. Thus, paths that move in the same direction as N and are above p

must move in that half space and may not exit the triangle through either the

constraint or the R ert = 0 line.
p

The only remaining possibility is that such a path eventually has p < p.

Again looking at fig. 4, the only way for a path to have I(x, p), NI > 0

and I(~, p), (0, -1)1 > 0 (so the path crosses the p = p line) is for x > o.

Since ex, p)* must drop below p with ~ > 0, all that remains is to

describe the behavior of the path below D. Lemma 4 shows that xcannot change

signs while the path remains below p. Since ~ > 0 and firms only enter when

present value of profits are positive (y > 0), there must be some time whep

instantaneous profits are again positive so that (x, p)* must again cross p.

The value of p is the same (~) at hoth points where the optimal path

crosses the p line, while the value of x is larqer at the second point (since



FIGURE 4. An Optima I Path Joining the Constraint
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Line parallel to

Rpe rt =0

(1-8*)0 x o+bc
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~ was positive at all times in between} so, at the second point, R ert mustp

be smaller. Thus, R ert must decrease regardless of whether or not the path is
p

above or below p. Since an optimal path cannot cross the R ert = 0 line, andp

there is no limit point on that line t it is not possible for (x t p)* to be

constantly moving in the same half space as N, which establishes the theorem..
Corollary: When (x, p)* is optimal and p < 0, then x < o.

•
Proof: By contradiction, assume x > O. By the argument of the orevious.

theorem, p must eventually exceed p; and at that instant p > O. Since the

direction of increasing x is the direction of decreasing p along the con­

straint--when p crosses p--(x, p}* must be interior. An interior path that

has increasing p and increasing x must have '(~t p}*t NI > 0 which is im­

possible by the theorem.

Theorem 2: An optimal path does not cross p from below.

Proof: The proof proceeds by contradiction: Assume that (x, p)* is opti­

mal and crosses the p = p line from below. Lemma 4 and the corrollary show

that along a path crossing p from below t ~ < O. Since ~ < 0 at the time

of crossing, there is some later time during which the fringe firms suffer

losses. This implies that (x, p)* must recross p. Since the optimal p is the

sum of two real exponential functions with real coefficients, ~ can change

signs, at most, once. Recrossing p requires a change of sign so, after the

recrossing, p < O. Given decreasing p and x, (x t p)* must intersect the

constraint. The direction of decreasing p on the constraint t however, is the. .
direction of increasing x, so (x, p)* could not be continuous at the point it

meets the constraint which is a contradiction.

Theorem 3: ~lce ex, p)* lies on the constraint belown t it will con-

tinue on the constraint until it reaches p where it will stop.
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Proof: The proof proceeds by showing that the a1ternative--exiting to an

interior arc--requires the tangent to the interior arc to point in a direction

that is not "high" enough to leave the constraint. A.long an interior are, since

v = ~,

vert = (a - 2bp + be - x).

Differentiating (42) with respect to time gives

(v + rv) ert = -2bp - X,
which can be solved for pIx:

-(v + rv) ert
------- 1

~I _E ~X~--_
ax interior - x- 2b

Along the constraint,

dP! -1ax constraint = bO - 6J •

For an optimal path to leave the constraint, it must climb above it:

~Iinterior < ~ constraint

or

v + rv 1 + 0
-rt· > G"6 .

e x

(42)

(43 )

Since leaving the constraint with x < 0 means moving in the same direction IS.
:-.1, (v + rv) must be negative. Thus, the inequality asserts one positive rumber

is greater than another. Returning to the constraint, however, requires ~he

.
inequality to be reversed, which cannot happen. Since (v + rv) = -zk and z is
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growing along the path, the left-hand side numerator of equation (43) is grow­

ing in absolute value. The corresponding denominator, e- rt i, is shrinking

in absolute value because

d -rt • d ~ SCO -rs l -rt (-at (e x) =at ( t e (p - P1 dS
J

= Ke p - p) > O•

•
and x was initially negative. Since the numerator grows and the denominator

shrinks (in absolute value) and neither of the parts changes sign, the in­

equality in equation (43) can never be reversed, so an interior path begin-

ning on the constraint below pcan never return to the constraint. Thus, as

with all other interior paths traveling in the same half space as N, this path

cannot exist. The conclusion is that, once an optimal path joins the con­

straint below p, it continues along the constraint.

We are now in a position to describe the optimal path that begins in the

interior (not on the constraint). Fig. 3 shows the phase space for this

problem. The arrows indicate what is known about the directions of travel.

The path begins on the R ert = 0 line. By theorem (1), it travels in the
p

same direction as -N, as indicated in fig. 3 by the arrow labelled -N. It

could intersect the share constraint ann travel down it and go from interior

to corner solution any number of times; Sooner or later, it comes to rest at

the intersection of the share constraint and p or it passes belowp. Once

belowp, the corollary to theorem (1) shows that x must be decreasing, though

the direction for p is unknrn~, as sholVTI in fig. 3 by the arrow below p. By

theorem (2), the path cannot cross the p line from below. Thus, the only

remaining posssibility is that of theorem (3): The path will join the

constraint and move up it till it stops at the equilibrium.
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Conclusions

When the fringe's expectations are rational and Gaskins' other assumptions

are maintained, a low-cost dominant firm will eventually drive the fringe out

of the industry. In doing so, the dominant firm will not predate (price below

marginal cost).

In most, if not all, cases, it is in the dominant firm's best interest to

reveal its intentions to the fringe--that is, the dominant firm makes it ex-

pectations rational.

It is generally not socially optimal nor in consumers' best interests for

the government to set a minimum number of fringe firms. An antitrust policy

which constrains the dominant firm's market share leads to a price Dath which

is often qualitatively similar to the unconstrained path: falling and then

rising. In both the constrained and unconstrained cases, the dominant firm

limits prices and drives the fringe out or to the lowest market share

allowable.
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FOOTNOTES

*We thank L. Karp and the participants at workshops at Rice University;

University of California, Berkeley; Hebrew University; Ben Gurion University;

and North Carolina State University for valuable comments. Giannini Founda-

tion Paper No. 8SS (for identification purposes only).

lSee Flaherty (1980) for a defense of open-loop rather than closed-loop

models in which firms incur adjustment costs and choose output rates.

2This Gaskins' (1970, 1971) assumption, which we maintain, is not

innocuous. The entry condition makes sense where the cost of producing the

necessary capital is quadratic in the rate of capital production (for now, the

marginal cost of making capital is set equal to the present value of the

profits that capital produces); but this equation also makes the decision to

scrap capital stock a, the mirror image of the investment process. The model

also does not allow temporary shutdowns.

3In this example, XU = 1, 9 = 10, c = 5, k = 0.01, r = 0.1, a = 10,

b = 250. As a result, in the rational expectations model, ~1 = 7.45,

a Z = 1.46873 x 10-14 , T = 298.2061, p(O) = 14.95, and yeO) = 43.2479.

Gaskins' (1970) myopic expectations model coefficients (see his papers) are

e = 50 and A= ~0.036602S.

4For example, if XU = 1, P = 10, c = 3, k = 0.01, r = 0.1, a = 250,

and b = 10, then switching to rational expectations raises the dominant firm's

profits by $3,806, raises the fringe's orofits by $119, and lowers consumer

surplus by $1,335 so total welfare rises by $2,589.
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