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Abstract
Similarities between human languages are often taken as ev-
idence of constraints on language learning. However, such
similarities could also be the result of descent from a com-
mon ancestor. In the framework of iterated learning, language
evolution converges to an equilibrium that is independent of its
starting point, with the effect of shared ancestry decaying over
time. Therefore, the central question is the rate of this conver-
gence, which we formally analyze here. We show that conver-
gence occurs in a number of generations that is O(n logn) for
Bayesian learning of the ranking of n constraints or the values
of n binary parameters. We also present simulations confirm-
ing this result and indicating how convergence is affected by
the entropy of the prior distribution over languages.

Introduction
Human languages share a surprising number of properties,
ranging from high level characteristics like compositional
mapping between sound and meaning to relatively low-
level syntactic regularities (Comrie, 1981; Greenberg, 1963;
Hawkins, 1988). One explanation for these universal proper-
ties is that they reflect constraints on human language learn-
ing, with the mechanisms by which we acquire language be-
ing restricted to languages with these properties (e.g., Chom-
sky, 1965). However, if all modern languages are descended
from a common ancestor, these similarities could just reflect
the properties of that ancestor. Evaluating these different pos-
sibilities requires establishing how constraints on learning in-
fluence the properties of languages, and how long it takes for
this process to remove the influence of a common ancestor. In
this paper, we explore these questions using a simple model
of language evolution.

We model language evolution as a process of iterated
learning (Kirby, 2001). This model assumes that each gen-
eration of people learns language from utterances generated
by the previous generation. While this model makes certain
simplifying assumptions, such as a lack of interaction be-
tween learners in the same generation, it has the advantage
that it can be analyzed mathematically. Previous research has
shown that after some number of generations, the distribution
over languages produced by learners converges to an equilib-
rium that reflects the constraints that guide learning (Griffiths
& Kalish, 2007). After convergence, the behavior of learners
is independent of the language spoken by the first generation.

These results provide a way to relate constraints on learn-
ing to linguistic universals. However, convergence to the
equilibrium has to occur in order for these constraints to be

the sole factor influencing the languages learners acquire.
Our key contribution is providing bounds on the number of
generations required for convergence, known as the conver-
gence time, which we obtain by analyzing Markov chains as-
sociated with iterated learning. Bounding the convergence
time is a step towards understanding the source of linguistic
universals: If convergence occurs in relatively few genera-
tions, it suggests constraints on learning are more likely than
common descent to be responsible for linguistic universals.

To bound the number of generations required for iterated
learning to converge, we need to make some assumptions
about the algorithms and representations used by learners.
Following previous analyses (Griffiths & Kalish, 2007), we
assume that learners update their beliefs about the plausibil-
ity of a set of linguistic hypotheses using Bayesian inference.
We outline how this approach can be applied using two kinds
of hypothesis spaces that appear in prominent formal linguis-
tic theories: constraint rankings, as used in Optimality Theory
(Prince & Smolensky, 2004), and vectors of binary parame-
ter values, consistent with a simple Principles and Parameters
model (Chomsky & Lasnik, 1993). In each case, we show
that iterated learning with a uniform prior reaches equilib-
rium after O(n logn) generations, where n is the number of
constraints or parameters.

Analyzing Iterated Learning
Iterated learning has been used to model a variety of aspects
of language evolution, providing a simple way to explore the
effects of cultural transmission on the structure of languages
(Kirby, 2001; Smith, Kirby, & Brighton, 2003). The basic
assumption behind the model – that each learner learns from
somebody who was themselves a learner – captures a phe-
nomenon we see in nature: Parents pass on language to their
children, and these children in turn pass on language to their
own children. The sounds that the children hear are the in-
put, and the child produces language (creates output) based
on this input, as well as prior constraints on the form of the
language.

Formally, we conceptualize iterated learning as follows
(see Figure 1). A first learner receives data, forms a hypothe-
sis about the process that generated these data, and then pro-
duces output based on this hypothesis. A second learner re-
ceives the output of the first learner as data and produces a
new output that is in turn provided as data to a third learner.
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This process may continue indefinitely, with the tth learner re-
ceiving the output of the (t−1)th learner. The iterated learn-
ing models we analyze make the simplifying assumptions
that language evolution occurs in only one direction (previ-
ous generations do not change their hypotheses based on the
data produced by future generations) and that each learner re-
ceives input from only one previous learner. We first charac-
terize how learning occurs, independent of specific represen-
tation, and then give a more detailed description of the form
of these hypotheses and data.

Our models assume that learners represent (or act as if they
represent) the degree to which constraints predispose them to
certain hypotheses about language through a probability dis-
tribution over hypotheses, and that they combine these pre-
dispositions with information from the data using Bayesian
inference. Starting with a prior distribution over hypotheses
p(h) for all hypotheses h in a hypothesis space H, the pos-
terior distribution over hypotheses given data d is given by
Bayes’ rule,

p(h|d) =
p(d|h)p(h)

∑h′∈H p(d|h′)p(h′)
(1)

where the likelihood p(d|h) indicates the probability of see-
ing d under hypothesis h. The learners thus shape the lan-
guage they are learning through their own biases in the form
of the prior probabilities: the prior p(h) incorporates the hu-
man learning constraints. These probabilities might, for ex-
ample, tend to favor lword forms with alternating consonant-
vowel phonemes. We assume that learners’ expectations
about the distribution of the data given the hypothesis are
consistent with the actual distribution (i.e. that the probabil-
ity of the previous learner generating data d from hypothesis
h matches the likelihood function p(d|h)). Finally, we as-
sume that learners choose a hypothesis by sampling from the
posterior distribution (although we consider other ways of se-
lecting hypotheses in the Discussion section).1

The analyses we present in this paper are based on the ob-
servation that iterated learning defines a Markov chain. A
Markov chain is a sequence of random variables Xt such that
each Xt is independent of all preceding variables when condi-
tioned on the immediately preceding variable, Xt−1. Thus,
p(xt |x1, . . . ,xt−1) = p(xt |xt−1). There are several ways of
reducing iterated learning to a Markov chain (Griffiths &
Kalish, 2007). We will focus on the Markov chain on hy-
potheses, where transitions from one state to another occur
each generation: the tth learner assumes the data were gen-
erated by ht , where these data are dependent only on the
hypothesis ht−1 chosen by the previous learner. The transi-
tion probabilities for this Markov chain are obtained by sum-
ming over the data from the previous time step di−1, with
p(ht |ht−1) = ∑di−1 p(ht |di−1)p(di−1|ht−1) (see Figure 1).

Identifying iterated learning as a Markov chain allows us to
draw on mathematical results concerning the convergence of

1Note that these various probabilities form our model of the
learners. Learners need not actually hold them explicitly, nor per-
form the exact computations, provided that they act as if they do.

data ...
(a)

(c)

...(b)

...

data

hypothesis hypothesis

data

∑d p(h|d)p(d|h)

d0 h2d1h1
p(h|d) p(d|h) p(h|d) p(d|h)

d2

h2h1
∑d p(h|d)p(d|h)

Figure 1: Language evolution by iterated learning. (a) Each
learner sees data, forms a hypothesis, and generates the data
provided to the next learner. (b) The underlying stochastic
process, with dt and ht being the data generated by the tth
learner and the hypothesis selected by that learner respec-
tively. (c) We consider the Markov chain over hypotheses
formed by summing over the data variables. All learners
share the same prior p(h), and each learner assumes the input
data were created using the same p(d|h).

Markov chains. In particular, Markov chains can converge to
a stationary distribution, meaning that after some number of
generations t, the marginal probability that a variable Xt takes
value xt becomes fixed and independent of the value of the
first variable in the chain (Norris, 1997). Intuitively, the sta-
tionary distribution is a distribution over states in which the
probability of each state is not affected by further iterations
of the Markov chain; in our case, the probability that a learner
learns a specific grammar at time t is equal to the probability
of any future learner learning that grammar. The stationary
distribution is thus an equilibrium state that iterated learn-
ing will eventually reach, regardless of the hypothesis of the
first ancestral learner, provided simple technical conditions
are satisfied (see Griffiths & Kalish, 2007, for details).

Previous work has shown that the stationary distribution
of the Markov chain defined by Bayesian learners sampling
from the posterior is the learners’ prior distribution over hy-
potheses, p(h) (Griffiths & Kalish, 2007). These results illus-
trate how constraints on learning can influence the languages
that people come to speak, indicating that it is possible for
iterated learning to converge to an equilibrium that is deter-
mined by these constraints and independent of the language
spoken by the first learner in the chain.

However, characterizing the stationary distribution of iter-
ated learning still leaves open the question of whether enough
generations of learning have occurred for convergence to this
distribution to have taken place in human languages. To un-
derstand the degree to which linguistic universals reflect con-
straints on learning rather than descent from a common ances-
tor, it is necessary to establish bounds on convergence time.
Previous work has identified factors influencing the rate of
convergence in very simple settings (e.g., Griffiths & Kalish,
2007). Our contribution is to provide analytic upper bounds
on the convergence time of iterated learning with relatively
complex representations of the structure of a language that
are consistent with linguistic theories.
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Bayesian Language Learning
Defining a Bayesian model of language learning requires
choosing a representation of the structure of a language. In
this section, we outline Bayesian models of language learning
compatible with two formal theories of linguistic representa-
tion: Principles and Parameters (Chomsky & Lasnik, 1993),
and Optimality Theory (Prince & Smolensky, 2004).

Principles and Parameters
The Principles and Parameters framework postulates that all
languages obey a finite set of principles, with specific lan-
guages defined by setting the values of a finite set of parame-
ters (Chomsky & Lasnik, 1993). For example, one parameter
might encode the head directionality of the language (with
the values indicating left- or right-headedness), while another
might encode whether covert subjects are permitted. For sim-
plicity, we will assume that parameters are binary. Learning
a language is learning the settings for these parameters. In
reality, learning is not an instantaneous process. Learners are
presented with a series of examples from the target language
and may change their parameters after each example. The ex-
act model of learning varies based on assumptions about the
learners’ behavior (e.g., Gibson & Wexler, 1994). However,
in this work, we do not model this fine-grained process, but
rather lump acquisition into a single computation, wherein a
single hypothesis h is selected on the basis of a single data
representation d.

To specify a Bayesian learner for this setting, we define a
hypothesis space H, a data representation space D, a prior dis-
tribution p(h), and a likelihood p(d|h). Our hypothesis space
is composed of all binary vectors of length n: H = {0,1}n.
We represent the data space as strings in {0,1,?}n in which
0 and 1 indicate the values of parameters that are fully deter-
mined by the evidence and question marks indicate underde-
termined parameters. For now, we assume a uniform prior,
with p(h) = 1/2n for all h ∈ H. To define the likelihood, we
assume the data given to each generation fully specify all but
m of the n parameters, with the m unknown parameters cho-
sen uniformly at random without replacement. Then, p(d|h)
is zero for all strings d with a 0 or 1 not matching the binary
vector h or that do not have exactly m question marks (i.e.
those consistent with h). Moreover, we assume that p(d|h) is

equal for all strings consistent with h. There are
(

n
m

)
strings

consistent with any hypothesis, so p(d|h) = m!(n−m)!
n! for all d

consistent with h (see Figure 2).
Applying Bayes’ rule (Equation 1) with this hypothesis

space and likelihood, the posterior distribution is

p(h|d) =

{
p(h)

∑h′:h′`d p(h′) h ` d
0 otherwise

(2)

where h ` d indicates that h is consistent with d. This follows
from the fact that p(d|h) is constant for all h such that h `
d, meaning that the likelihood cancels from the numerator

0

0

0

0

0

?

0

0

0

0

0

1

(a)

A

B

C

A

C

A

B

CB

A

C A

C
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(b)
h
t-1

d
t-1

h
t

h
t-1

d
t-1

h
t

Figure 2: Bayesian language learning. (a) Representation of
a hypothesis and data item for Principles and Parameters. On
the left is a possible hypothesis for n = 3; the center shows
a possible data output derived from this hypothesis (with
m = 1), and the right shows all hypotheses consistent with
this data output. (b) A similar representation for OT. The rel-
ative ordering of A and C is preserved in the data, but not the
ordering of B.

and denominator and the posterior is the prior renormalized
over the set of consistent hypotheses. For a uniform prior,
the posterior probability of a consistent hypothesis is simply
the reciprocal of the number of consistent hypotheses. In the
uniform case, 2m of our hypotheses are valid, so p(h|d) = 1

2m .

Optimality Theory
In Optimality Theory (OT), learning a language is learn-
ing the rankings of various constraints (Prince & Smolen-
sky, 2004; McCarthy, 2004). These constraints are univer-
sal across languages and encode linguistic properties. For
example, one constraint might encode that high vowels fol-
low high vowels. Whether a construction is well-formed in
a language is based on the ranking of the constraints that the
construction violates. Specifically, well-formed constructions
are those that violate the lowest-ranked constraints. Produc-
ing well-formed constructions thus requires determining how
constraints are ranked in the target language.

To specify a Bayesian learner, we again need to identify the
hypothesis space H, data space D, prior p(h), and likelihood
p(d|h). In the OT case, each hypothesis is an ordered list of
n constraints, with the order of constraints representing rank.
The hypothesis space H is thus the symmetric group of per-
mutations of rank n, Sn, and is of size n!. We assume learners
see sufficient data to specify the relative ordering of all but m
constraints. The data space is then strings over {1,2, . . .n} of
length n−m, with no repeated elements, ordered from left-
to-right in order of precedence (see Figure 2). The relative
ordering of the n−m specified constraints is maintained ex-
actly from the generating hypothesis. We again see that the
likelihood, p(d|h), is 0 for all orderings not consistent with
our hypothesis and equal for all consistent orderings. Analo-
gously to the previous case, we select m constraints to remove

from the ranking randomly, giving
(

n
m

)
possible data strings

for each hypothesis. This gives p(d|h) = m!(n−m)!
n! . Thus, the

posterior is the same as that in Equation 2. Since we can
freely permute m of our parameters, we have n!

(n−m)! consis-
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Figure 3: (a) The Principles and Parameters case is analogous
to a walk on the hypercube when m = 1. Above, the corners
(hypotheses) that could be reached after one step (iteration)
beginning at 000 are shown. (b) The OT case is analogous to
a shuffle in which a random card (in this case, the grey card)
is removed and reinserted into a random spot.

tent hypotheses for any data string d. If our prior is uniform,
then p(h|d) = (n−m)!

n! for all consistent h and 0 otherwise.

Convergence of Iterated Learning
We now seek to bound the time to convergence of the Markov
chain formed by IL. Bounds on the time to convergence are
often expressed based on total variation distance. This is a
distance measure between two probability distributions µ and
ν on some space Ω that is defined as ‖µ−ν‖ ≡ 1

2 ∑
x∈Ω

|µ(x)−

ν(x)| = max
A⊆Ω

|µ(A)− ν(A)| (Diaconis & Saloff-Coste, 1996).

We seek to bound the rate of convergence of the marginal
distributions of the hi to the stationary distribution, expressed
via the number of iterations for the total variation distance to
fall below a small number ε. This allows us to analytically
determine how many iterations the Markov chain must be run
to conclude that the current distribution is within ε of the sta-
tionary distribution.

To establish these bounds on the convergence rate, we
show that the Markov chains associated with iterated learning
are analogous to Markov chains for which there are known
bounds. First, we consider the Principles and Parameters ap-
proach. As described above, we assume each learner has re-
ceived sufficient data to set all but m of the n parameters in the
hypothesis. We first consider the case where there is only one
unknown parameter (m = 1). Then at each generation of iter-
ated learning, one parameter may be changed at a time. This
is equivalent to a random walk on a hypercube, where the hy-
percube has vertices with binary labels and each vertex is con-
nected by an edge to only those vertices that differ in exactly
one digit (see Figure 3). In this Markov chain, vertices are
states and edges indicate the possible transitions out of each
state. We also assume that there is a transition from each state
to itself; this accounts for the case where a learner chooses the
same parameter values as the previous generation. Previous
analyses show that this Markov chain converges at the rate
of O(n logn) (i.e. at a rate upper-bounded by some constant
multiplied by n logn) (Diaconis & Saloff-Coste, 1996). The
multiplicative constant absorbs the value of ε indicating the
desired distance to convergence.

An intuition for this result comes from the following argu-

ment. A sufficient condition for convergence using the previ-
ously defined prior is that all parameters have been sampled
at least once. This is true because each sample changes the
value of the parameter in a way that is insensitive to its cur-
rent value, making the result equivalent to drawing a vector of
values uniformly at random. The time to convergence is thus
upper-bounded by the time required to sample all parameters
at least once. This is a version of the coupon-collector prob-
lem, being equivalent to asking how many boxes of cereal
one must purchase to collect n distinct coupons, assuming
coupons are distributed uniformly over boxes. The first box
provides one coupon, but then the chance of getting a new
coupon in the next box is (n−1)/n. In general, the chance of
getting a new coupon in the next box after obtaining i coupons
is (n− i)/n. The expected time to find the next coupon is
thus n/(n− i), and the expected time to find all coupons is
n∑

n
i=1

1
i , or n times the nth harmonic number. The bound of

n logn results from an asymptotic analysis of the harmonic
numbers, showing that the largest term in the asymptotic ap-
proximation grows as n logn as n becomes large.

Now, we incorporate the fact that each learner does not
know m parameters, and can thus change up to m parameters
at each iteration. We assume this constant m is fixed and con-
stant across learners. Changing m parameters at each step is
equivalent to redefining an iteration as a collection of m suc-
cessive steps, each of which changes one parameter. Consider
choosing which parameter to change at each step indepen-
dently; this means that we might change a single parameter
multiple times in one iteration. This process must converge
in O( n

m logn) iterations, since each iteration in which we can
change up to m parameters is equivalent to m steps in our orig-
inal Markov chain. In our situation, however, we choose the
m parameters without replacement, so no parameter changes
more than once per iteration. Since the net effect of chang-
ing the same parameter twice in one iteration is equivalent to
changing it once (from the original value to the final value),
changing m different parameters brings us at least as close
to convergence as changing fewer than m different parame-
ters. Thus, the Markov chain corresponding to the Principles
and Parameters approach to grammar learning is O( n

m logn)
in time to convergence.

We next consider bounding the convergence rate under the
assumption that learners learn a ranking over constraints as in
OT. We now assume that, at each generation, the learner has
sufficient data to rank all but m of n constraints. Again, we
first consider the case where m = 1. The process of changing
the ordering of one item in a permutation while leaving the
relative ordering of the other items unchanged has been stud-
ied previously in the context of a random-to-random shuffle
(see Figure 3). The best bound for the random-to-random
shuffle is O(n logn) (Diaconis & Saloff-Coste, 1993), with
the intuitive argument being similar to that given above. As
before, we view each iteration as m successive steps, making
time to convergence O( n

m logn).
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Figure 4: Rate of convergence using a uniform prior with
the Principles and Parameters model (left) and the OT model
(right). In both cases, time to convergence is proportional to
n
m logn.

Empirical Simulations
The preceding sections provide a mathematical analysis of
convergence rates for iterated learning; we now turn to sev-
eral simulations to show convergence behavior and to confirm
and extend our mathematical results. We first demonstrate
convergence time for various choices of the size of the hy-
pothesis space and the amount of information contained in
the data, fixing a uniform prior, and then examine whether
the entropy of the prior has an effect on convergence time.

To demonstrate the dependence of convergence time on
n and m, we show in Figure 4 the effect of varying these
quantities for the uniform prior. For all simulations, we
show expected iterations to convergence (number of iterations
for ‖p(ht)− p(h)‖ < 0.0001) given that the observed start-
ing point is distributed according to the stationary distribu-
tion. As expected, as n increases, convergence time increases
slightly more than linearly, and as m increases, convergence
time decreases proportionally.

One variable that could affect convergence time that was
not previously considered is the entropy of the prior distri-
bution: i.e., whether the prior made all hypotheses equally
likely or put almost all weight on only a few hypotheses. Our
previous analyses show how convergence time varies with the
size of the hypothesis space, but non-uniform priors provide
another way to model constraints on learning that might in-
fluence convergence. The uniform prior is the unique maxi-
mum entropy distribution for any hypothesis space. However,
there is no unique solution for achieving a given entropy for
a distribution with k values. Thus, we altered entropy in the
following, non-unique way. We define one hypothesis hp as
the prototypical hypothesis. Then, we calculate the distance
between hp and h for each hypothesis h using an appropri-
ate distance measure ∆. For Principles and Parameters, we
used the Hamming distance. For OT, we used Kendall’s tau,
a distance measure for permutations (Diaconis, 1998). Then,
for all h, p(h) ∝ exp(−β∆(h,hp)). Changing β changes the
entropy of the distribution. Changing entropy in this man-
ner gives our priors a characteristic shape: hp has maximum
probability, and the probability of other hypotheses decreases
with distance from hp.

In the simulations involving variable entropy, we fixed n
and m for the two linguistic representations (n = 7,m = 2
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Figure 5: Relationship of the entropy of the prior and conver-
gence behavior. For both Principles and Parameters (top) and
OT (bottom), entropy and time to convergence are positively
correlated.

for Principles and Parameters; n = 5,m = 2 for OT) and var-
ied β to adjust entropy. Our results showed that entropy and
expected time to convergence were positively correlated for
both representations: as entropy increased, expected time to
convergence also increased (Figure 5). This suggests that the
constraints on learning provided by a non-uniform prior be-
have similarly to a reduction in the size of the hypothesis
space in their effects on convergence time.

Discussion
We began with the question of whether sufficiently many gen-
erations of language learning have occurred for similarities
across languages to be the result of biases in human learn-
ing rather than a common origin. Using iterated learning to
explore this question, we showed that the convergence time
of Markov chains associated with iterated learning can be
bounded, and our simulations confirm the relationship be-
tween the complexity of the hypothesis space (n), the degree
to which incoming data (language) limits the choice of lan-
guage (m), and number of generations to convergence. The
key result is that the time to convergence for two plausible
linguistic representations is O( n

m logn).
This result has two interesting implications. First, the fi-

delity with which languages are transmitted between gener-
ations – reflected in the value of m – has a direct effect on
the rate of convergence. While we have only considered in-
teger values of m, our results also apply to fractional values.
For example, if a parameter changes value on average every
ten generations, then the convergence time is bounded by tak-
ing m to be 0.1; m is thus the expected number of parameters
changed per generation. Consequently, it may be possible
to estimate m from historical records for different languages.
Second, when we vary n, the time to convergence increases a
little more than linearly but the size of the hypothesis space
increases exponentially. Thus, relatively rapid convergence
should occur even with very large hypothesis spaces.

These results provide constraints on the size of the hypoth-
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esis space and the fidelity of learning necessary for the dis-
tribution of human languages to have reached an equilibrium.
In the case of the Principles and Parameters model, the exact
(rather than asymptotic) bound is known, and the bound it-
self very tightly tracks the point at which convergence occurs.
Consequently, we can identify exactly which values of m and
n would make convergence plausible, given some assump-
tions about the number of generations over which languages
have been evolving. Figure 6 shows the plausible values of
m and n given the approximately 100,000 years that anatomi-
cally modern humans have existed and assuming 25 years per
generation. Several authors have estimated the number of pa-
rameters that might be required for a Principles and Parame-
ters model; these estimates range from as low as 20 to 50-100
parameters (Kayne, 2000; Lightfoot, 1999). Thus, given this
range of values for n, we can see that convergence is plausible
for a variety of values of m. While this graph is only a rough
guide given the strong simplifying assumptions of our model,
it allows some understanding of how our analysis applies to
actual human language.

In conducting our analyses, we assumed that learners sam-
ple from the posterior distribution over hypotheses. Alterna-
tive methods of selecting a hypothesis, such as selecting the
hypothesis with the maximum posterior probability (MAP)
and exponentiated sampling, have been considered in previ-
ous work (Griffiths & Kalish, 2007; Kirby, Dowman, & Grif-
fiths, 2007). In the case of a uniform prior, both methods are
equivalent to the sampling method we considered since all
hypotheses with non-zero probability have the same proba-
bility in the uniform case; thus, our analyses of convergence
time hold. In the non-uniform case, raising the posterior to
the power of γ before sampling is equivalent to multiplying
the β parameter in the model we used to construct our non-
uniform priors by γ. Thus, predictions concerning conver-
gence time can also be made for exponentiated sampling in
the non-uniform case. For MAP in the non-uniform case,
convergence to the prototype hypothesis (that with the highest
probability in the non-uniform prior) will occur. The time in
which this occurs is still O( n

m logn): at every step, the learner
changes unknown parameters to match the prototype, produc-
ing another coupon collector problem with the worst case be-

ing that where all n parameters differ from the prototype.
Our key result is thus that language evolution by iterated

learning can converge remarkably quickly to the prior – in
time that increases linearly as the hypothesis space increases
exponentially in size. This result is suggestive about the na-
ture of linguistic universals, although we are hesitant to draw
strong conclusions yet. Several restrictive assumptions went
into our analysis that could affect convergence time. For ex-
ample, the lack of interaction between learners means that
there is no pressure to adopt a shared communication scheme,
and learning from just one other learner removes the opportu-
nity for errors in transmission to be corrected. We also make
no assertions about the source or nature of the constraints that
limit the size or entropy of the prior over hypotheses. How-
ever, our analyses are a step towards a more complete un-
derstanding of the origin of universals, with future models
exploring the impact of these assumptions and developing a
more complete account of how languages change over time.
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