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Stochastic Hydrology 
and Hydraulics 
�9 Springer-Verlag 1987 

The inverse problem and ground water management 

H. A. Loaiciga 

Dept. of Geological Sciences, Wright State University, Dayton, OH 45435, USA 

M. A. Marino 

Dept. of Land, Air and Water Resources, University of California at Davis, CA 95616, USA 

Abstract: The response of groundwater basins to natural and anthropogenic inputs depends on many 
interrelated factors such as the values of groundwater flow and mass transport parameters. This 
work presents a theoretical analysis of the impact of parameter uncertainty on groundwater manage- 
ment decisions. It is shown that under classical, Bayesian, and deterministic assumptions about the 
parameter structure, the resulting management decisions could be very different. This underscores 
the importance of adopting the proper parameter structure and the need for using consistent 
methods to solve the inverse problem. 

Key words: Inverse problem, groundwater management, groundwater response function, stochastic 
control, consistent parameter estimation. 

1 Introduction 

The implemetat ion of groundwater  hydraul ic /a l locat ion and quality models 
requires specifying various parameters ,  e.g., hydraulic conductivities and hydro- 
dynamic  dispersion coefficients. Frequently,  such parameters  must be est imated 
from field data  and subsequently used in the management  model. The purpose of 
this research is to derive analytical  expressions relating the decision variables (e.g. 
pumping rates) and the uncertainty of parameters  (measured by the covariance of 
parameter  estimators).  Such analytical  expressions show in closed-form the effect 
of parameter  variabi l i ty  on groundwater  management  policies. In addition, this 
s tudy also determines the impact  of the assumptions concerning the structure of 
parameters  upon management  decisions. Three different parameter  structures are 
considered: classical (the parameters  are fixed and unknown); Bayesian (the param- 
eters are random with some probabil i ty  distribution); and determinist ic  (the param- 
eters are fixed and known). The developments presented include the control of 
hydraulic  (e.g., piezometric heads) and water quality (e.g., solute concentrations) 
variables by means of external inputs such as pumping or influx recharge rates. 

2 The model equation 

Consider the equation of flow in a heterogeneous and isotropic (the approach is 
appl icable  to the anisotropic case as well) porous medium: 
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M 
V'(K*V~J)  -- E QiS( x - xi) : S 0-0"-~- (1) 

i =  1 Ot 

in which ~ = piezometric head; K* = K*(x , y , z )  represents hydraulic conduc- 
tivity; Qi = sink term; S = S ( x , y , z )  denotes specific storativity; and 5(') = Dirac 
delta function. Initial  and boundary value problems define the time and space dis- 
tr ibution of the field variable,  r over the entire domain. A time-space discretiza- 
tion of Eq. (1) by the finite element method (Loaiciga and Marifio 1986) gives 

dpt = [I0d/lt_ 1 + 1-[lX t + I-'I2z / + V t (2) 

in which ~ = N X  1 vector of piezometric heads at t ime t; x t = K X  1 vector of 
controllable or decision variables (e.g. pumping or recharge rates); z t = M X 1 vec- 
tor of uncontrollable variables involving boundary conditions; v t = N X 1 vector 
accounting for modeling and measurement  errors with zero expected value, which 
can be assumed autocorrelated over time; and the matrices FI 0, FI 1, and l"I 2 have 
elements that  are functions of the distr ibuted parameters  (i.e. hydraulic conductivi- 
ties and storativities). Rewriting Eq. (2) in terms of initial conditions: 

t--1 t--1 t--1 
r  = I-I6r + Z rIgIllx,-m + Z YlgYl2zt-m + Z 1-IgVt-m (3) 

m = 0  m=0  m = 0  

which is valid for t = 1,2 ...... T. Expressing Eq. (3) for all t ime periods at once 
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or, with obvious redefinition, 

= g l X ~ o  + ~ X x  + A X z  + v (5) 

(TNX1) ( T N X N ) X ( N X 1 )  (TNXTK)X(TKX1)  (TNXTM)X(TMX1)  (TNX1) 

The importance of Eq. (5) cannot be overemphasized. It provides an explicit  
dependence of the field variables on the decision variables x. It is worth relating 
Eq. (5) to the discrete convolution or response equation (Maddock 1972) 

t K 
s ( k , t )  = IF, ~-~ ~ ( k , j , t - i + l ) Q ( j , i )  (6) 

i = l j = l  

in which s (k ,  t) = the drawdown at point k at the end of the t th  t ime period; 
Q ( j ,  i)  = pumping rate at the j t h  well ( j  may equal k)  during the i th  time 
period; [3(k, j ,  t - - i +  1) = the change in drawdown at the k th  point at the end of 
t th  t ime period due to a unit quantity of water pumped from the j t h  well during 
the i th  t ime period. Equation (6) is applicable to linear groundwater processes 
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with homogeneous boundary and initial conditions. Let t = 1,2 ...... T, and define 

St / = (S1, $2 ...... SN) 

x t '  = (Ql t ,  Q2t ...... Qlct) 

Bt  = [~kj]t, k = 1,2 ..... N;  j = 1,2 ...... K. 

Note that the matrices B t (t = 1,2,....,T) are of size N X K  each. By using Eqs. 
(7)-(9), Eq. (6) can be rewritten in matrix form as 

s 1 B 1 x1 

s2 B1 B2 x2 

�9 = �9 . ( l O )  

IN s 'B 1 B 2 " ' B  T ,XT] 

( T N X  1) ( T N > < T K )  (TK)< 1) 

or, in shorthand notation, 

s = Vx  (11) 

Equation (11) is a subcase of Eq. (5). Boundary and initial conditions (z t and COo, 
respectively) vanish in Eq. (11) due to the homogeneity assumptions. The error 
term (v in Eq. (5)) does not appear in Eq. (11) because of the deterministic formu- 
lation of drawdowns, although it could be introduced if desired�9 Thus, it has been 
shown that the response model (see Eq. (5)) that describes the time evolution of 
piezometric heads is readily derived by forming the finite element matrices and is 
applicable to irregular finite domains with arbitrary initial and boundary condi- 
tions, provided that the underlying process is linear. 

It is common in groundwater quality models to use linear advective-dispersive 
equations to model miscible displacement of ideal tracers (see, e.g. Willis 1979) 

OuC 
I] Ot = V ' ( r l D h ' V C )  -- q ' ~ C  -- f (12) 

in which C = the solute concentration; q = the specific discharge; D h = the 
hydrodynamic dispersion tensor; r 1 = the medium porosity; and f = the flux of 
solute across the boundaries of the liquid phase. Assuming a steady-state velocity 
field to ensure time independence of Dh,  and after discretizing Eq. (12) by the fin- 
ite element method (finite differences could be used too), gives the model system 
equation for all time steps 

C = ~ C  o + Ww + Ay + u (13) 

in which C = T N  X 1 vector of concentrations; C O = N X 1 vector of initial condi- 
tions; w, y, and u = T K  X 1, T M  X 1, and T N X  1 vectors of decision (i.e. fluxes 
f ) ,  uncontrollable (boundary conditions), and error variables, respectively. The 
suitably dimensioned matrices f~, ~ ,  and A have elements that are functions of the 
dispersion tensor. The developments that follow are illustrated with piezometric 
head as the field variable (see Eq. (5)) but one can proceed in a similar manner 
when the concentration of solute in the aquifer is the field variable (Eq. (13)). 
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3 Choice of management criterion 

The objective is to minimize a quadratic loss function that represents the decision 
maker's preferences 

L -~ E(~'QCJ) (14) 

in which Q = T N X  T N  matrix that typically includes a discount factor in addi- 
tion to relative target weights on the dependent variables ~. Costs on decision vari- 
ables can be imposed by augmenting the model Eq. (5) with x = I x  and including 
their penalties in a suitably enlarged matrix Q, and desired paths of variables can 
be incorporated by subtracting them from both sides of Eq. (5). It is assumed that 
estimation of parameters is based on �9 observations prior to the control horizon. 
Furthermore, inequality constraints (e.g. nonnegative decision vectors) are assumed 
nonbinding so that the convex minimization problem at hand is fully characterized 
by Eq. (14) subject to Eq. (5). Quadratic loss functions arise quite often in 
groundwater management models (see, e.g. Casola et al. 1986). 

4 Classical and Bayesian decision policies 

In order to derive an open-loop solution to the management problem, the following 
matrix-vector identities are useful (Neudecker 1969)-(primed notation denotes the 
transpose): 

I a 1)B .... a 1NB 

= fill ( l S )  
LaM1B .... aMU B 

vec(ABC) = ( C ' |  (16) 

t r (ABCDF) = vec(B') '[A 'F ' |  ) (17) 

tr(a'A b) = tr(ba'A) (18) 

vec (a ' |  = Taa (19) 

in which A, B, C, D, and F = suitably dimensioned matrices; a and b = suitably 
dimensioned vectors; vec()  = operator that stacks consecutive columns of a matrix 
below one another; t r ( )  = trace of a square matrix; I = identity matrix; 
T a = aggregator matrix with elements equal to either zero or one, and they are 
arranged through rows and columns to make Eq. (19) valid. Notice that if a and I 
in Eq. (19) are of dimensions N X 1  and M X M ,  respectively, the aggregator T a 
will be of dimension M N M  • N.  

Applying Eq. (16) to Eq. (5) gives 

d~ : (#pO'| + (z ' |  + (X'~ITN)VeC(W) + V (20) 

Substituting Eq. (20) into Eq. (14) and expanding yields (IrN denotes a T N X T N  
identity matrix) 

L = E{vec(~) ' (d&'|174 

+ vec (A) ' ( z ' | 174  

+ v e c ( ~ y ( x 1 | 1 7 4  

+ 2vec(~)y(~o~|174 
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+ 2vec(~)'(Oo'|174 

+ 2vec(f~)'(qb0'| + 2vec(A)'(z'|174 

+ 2vec(A)'(z'| + vec(qJ)'(X'| + v'Qv} . (21) 

In Eq. (21), all the terms with a single error term v vanish since v has a zero 
expected value. In addition, those terms not involving x are irrelevant to the 
optimization and are collected in a single term L*, simplifying Eq. (21) to 

L = L* + E[vec(~)'(x'|174 

+ 2E [vec(~))'(dpO'| 

+ 2E[vec(A)'(z'|174 . (22) 

Next, Eqs. (18), (17), and (19) (in this sequence) are applied to Eq. (22) to yield 

L = L* + x'T~I{E [vec(W)vec(W)/]| Q } TxX 

+ 2Op0'T,'{E [vec(f~)vec(W)']| } TxX 

+ 2z'Tz'{E [vec(A)vec(W)'] |  } TxX. (23) 

Define 

Lxx = T~'{E [vec(qJ)vec(W)']| } TxX (24) 

L x = Tx'{E [vec(qJ)vec(~)']| } TOdPo + Tx'{E [vec(W)vec(A)l]| } Tzz.  (25) 

Differentiating Eq. (23) with respect to x, equating the resulting expression to zero, 
and solving for x gives 

x* = -- Lx~IL~ . (26) 

5 The classical solution 

Equation (26) represents the optimal solution. However, the matrices fL ~P and A 
are unknown, and to make the optimal solution computationally feasible, Eq. (26) 
must be expressed in terms of observable quantities. At this point, we introduce 
the classical and Bayesian assumptions on the parameters. Under the classical 
assumption, matrices A, f~, a n d ~  are assumed fixed .(i.e. nonrandom) and unk: 
nown. Their estimators_i.e. A, f2, and ~P, are statistical entities, and their seconO 
moments are expressed by 

~ t ' n  = E [vec(t[J)vec(~) '] -- E [vec(q0vec(f~)'] (27) 

in which ]~,en = covariance of vec(~) with vec(~). Analogous definitions hold 
for ~ t ' ,  ~]~t'A, etc. Notice that the second term on the right-hand side of Eq. 
(27) is equal to vec(W)vec(~)' under the classical assumption, since �9 and f~ are 
considered fixed and known. In addition, it is implicit in Eq.  ( 2 7 ) t h a t  
E [vec(qJ)] = vec(W), i.e., ~ is an unbiased estimator of ~.  Matrices A and ~ are 
unbiased as well. From Eq. (27), it follows that 

E [vec(q~vec(~2)'] = E [vec(~l)vec(fi) '] -- Z~e~. (28) 

The population second moments in the right-hand side of Eq. (28) are replaced by 
their sample estimates, leading to a redefinition of the Hessian (Eq. (24)) and gra- 
dient (Eq. (25)) under the classical assumption 
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Ifxx = Tx'{ [vec(ff?)vec(~[J) ' -- ~]~.I,I |  x (29) 

Lx ~- Tx'{  [vec(~)vec(s ' -- ~]~'al |  T,r  

+ Tx '  {[vec(q ' )vec(A) '  -- ZeAl  |  T~z. (30) 

The optimal management policy in terms of estimated quantities is given by 
x = -- /]211,x �9 (31) 

Equation (31) represents the solution to the groundwater management problem 
unaer the classical assumption lor me parameters. Lne parameters and their 
covariances in Eqs. (28) and (29) are computed from the solution of the inverse 
problem, prior to the control horizon (Loaiciga and Marifio, 1986). 

6 The Bayesian solution 
The Bayesian assumption, in which the parameters are random variables, leads to a 
modification in Eq. (27) 

~ ] 'm  = E [vec(~)vec(g~)'] -- vec(ttgvec(f~) ' (32) 

in which E(tt0 = ~ and E ( ~ )  = f~. The outer product in the second term of the 
right-hand side of Eq. (32) as well as ~]~t'a are replaced with their sample esti- 
mates, so that Eq. (32) can be rewritten as: 

E[vec(~)vec(a) ' ]  = vec(tP)vec(fi) ' + ~,t~f~ �9 (33) 

Equation (33) corresponds to the Bayesian assumption and differs from Eq. (28) 
(applicable under the classical viewpoint) by an important sign inversion on its 
right-hand side. Notice that in Eq. (28) a minus sign appears on its right-hand 
side, whereas the sign is positive on the right-hand sii]e of'Eq. (33). The Hessian 
matrix (see Eq. (24)) and gradient vector (see Eq. (25)) are redefined appropriately 
in view of Eq. (33) to yield their Bayesian version, 

Ifxx = Tx '  { [vec(W)vec(~)' + ~ I ~ ] |  } r x (34) 

Lx = Tx'{  [vee( t~vec( f i ) '  + ~2't'~] |  } Tr 

+ Tx'{[vec(~)vec(fiQ + ZVA]| (35) 

The optimal Bayesian management decision is 

= - -  / ~ x ~ l L x  . (36) 

The deterministic approach consists of using the parameter estimates in the 
management model but disregarding their statistical variability. Thee deterministic 
solution can be obtained by setting to zero the covariances ~2~t', ~l'f~, and ~ I 'A  
in Eqs. (29) and (30), or in Eqs. (34) and (35), and then usYfig either Eq. (31) or 
Eq. (36) to compute the deterministic management policies. 

7 Discussion and conclusions 
The analytical solutions provided for the classical and Bayesian cases make clear 
that the statistical variability of parameter estimators affects both the Hessian and 
the gradient of  th, e opt im~ solution.. In the classical case, groundwater parameters 
are fixeu ana unknown, t~asea on Belo data, those parameters are estimated and 
used in the management model. The covariances of those estimators are also avail- 
able from the solution to the inverse problem. It has been shown that those covari- 
ances appear as negative terms in the factors involving sample second moments in 
the Hessian and gradient expressions. If the estimation method used in the inverse 
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approach is consistent (so that parameter covariances tend to zero as the sample 
size increases), then for large samples, the effect of the statistical variability of 
parameter estimators on management policies should be negligible. It is usually 
the case in hydrogeologic modeling that data are scarce and the large sample pro- 
perties of consistent parameter estimators are of little practical significance for 
small sample estimation. For most applications, the small sample properties will 
govern the behavior of parameter estimators, and, in particular, their variability as 
measured by the covariance matrix. 

The covariances of parameter estimators also affect groundwater management 
solutions under the Bayesian assumption. The Bayesian approach stipulates 
groundwater parameters as random entities. A typical example is the logarithm of 
transmissivity that is known to follow approximately a normal distribution. The 
Bayesian solution to groundwater management problems differs from the classical 
solution by an important sign inversion in the factors involving sample second 
moments in the Hessian and gradient equations. Somewhere in between the classi- 
cal and Bayesian solutions, the deterministic approach disregards the statistical 
variability of parameter estimators. In the deterministic case, parameter covari- 
ances are set equal to zero. 

Groundwater management studies typically report deterministic results, even 
though the solution to the inverse problem is approached from either a classical or 
Bayesian standpoint. Once the estimates of parameters are obtained, they are used 
in the management models as if they were deterministic quantities. The analytical 
results provided above clearly indicate that mixing the two worlds, i.e., taking a 
classical or Bayesian viewpoint when solving the inverse problem but adopting a 
deterministic stance in the management model, may lead to gross numerical bias. 
The magnitudes of the resulting errors are determined by the covariance matrices 
of parameter estimators. From a practical standpoint, our findings-indicate the 
need to maintain the same assumptions on the parameters'  structure throughout the 
solution of the inverse and management problems. It is usually the case that 
mathematical  complexities compel the analyst to adopt a deterministic stance in 
the management model even though a classical viewpoint is taken in the inverse 
problem. In this case, we have shown that it is necessary to select adequate sample 
sizes in the solution of the inverse problem. Large sample sizes will minimize the 
impact of parameter variability in the management policies, provided that a con- 
sistent method is used to solve the inverse problem. 
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Appendix A Notation 
B t : N ) < K  response matrices, 
C = T N  )< 1 vector of concentrations, 
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= N X 1  vector of initial concentrations, 

= dimension of the decision variable vector, 

= hydraulic conductivity, 

= objective function of the management  problem, 

= term in the objective function independent of decision variables, 

= T K  X T K  Hessian matrix of the objective function, 

= T K X  1 gradient vector of the objective function, 

= dimension of the field variable vector, 

= T N X  T N  matrix of weights in the objective function, 

= sink term at the i th  point, 
= pumping rate at the j t h  well during the i th  time period, 

= specific storativity, 
= drawdown at k t h  point at the end of the t th  period, 

= T N  X 1 vector of drawdowns, 

= length of t ime horizon, 

= T N  X 1 vector of disturbances or errors, 

= N X 1 vector of disturbances at time t, 

= T K  X 1 vector of decision variables, 

= K X 1 vector of decision variables at time t, 

= T K  X 1 classical management  solution vector, 

= T K  X 1 Bayesian management  solution vector, 

= T M  X 1 vector of uncontrollable variables, 

= M X 1 vector of uncontrollable variables at time t, 

= change of drawdown due to pumping, 
= T N  X T M  matrix in the model equation, 
= N X N  matrix in the model equation, 

= N X K  matrix in the model equation, 
= N X M  matrix in the model equation, 

= T N T K  X T N T K  covariance matrix of vec(~),  
= T N T K  • T N N  covariance matrix of vec(~)  with vec(~),  

= T N T K  • T N T M  covariance matrix of vec(q j) with vec(~,), 

= T N T K T N  X T K  matrix aggregator for x, 

= T N T M T N X  T M  matrix aggregator for z, 

= T N N T N X N  matrix aggregator for Op0, 

= T N X  T K  drawdown response matrix, 

= N X 1 vector of initial conditions, 

= N X 1 field variable vector at time t, 

= T N  X 1 field variable vector, 

= T N  X T K  matrix in the model equation, and 

= T N X N  matrix in the model equation. 
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