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Abstract

We report the largest and most diverse genetic study of type 1 diabetes (T1D) to date (61,427 

participants), yielding 78 genome-wide significant (P < 5 × 10-8) regions, including 36 novel. We 

define credible sets of T1D-associated variants and show they are enriched in immune cell-

accessible chromatin, particularly CD4+ effector T cells. Using chromatin accessibility profiling of 

CD4+ T cells from 115 individuals, we map chromatin accessibility quantitative trait loci 

(caQTLs) and identify five regions where T1D risk variants colocalize with caQTLs. We highlight 

rs72928038 in BACH2 as a candidate causal T1D variant leading to decreased enhancer 

accessibility and BACH2 expression in T cells. Finally, we prioritize potential drug targets by 

integrating genetic evidence, functional genomic maps, and immune protein-protein interactions, 

identifying 12 genes implicated in T1D that have been targeted in clinical trials for autoimmune 

diseases. These findings provide an expanded genomic landscape for T1D.

Type 1 diabetes (T1D) is characterized by an autoimmune attack on insulin-producing β 
cells in the pancreatic islets, driven by diverse genetic1–6 and environmental7 factors. 

Genetic screening and autoantibody surveillance can detect islet autoimmunity before overt 

progression to T1D8–10, providing an opportunity for prevention. Multiple immune therapies 

have been explored in clinical trials11. Recently, a 14-day course of teplizumab, an anti-CD3 

monoclonal antibody, delayed T1D in high genetic-risk individuals by a median of two 

years12. This success shows that appropriately timed immune-modulating therapy can alter 

the autoimmune process preceding disease onset. Defining the genetic variants contributing 

to T1D risk and how they disrupt immune pathways may lead to more precise therapeutic 

targets, better characterization of their role in disease initiation and progression, and 

improved opportunities for safe and effective intervention and, ultimately, prevention of 

T1D13,14.

Approximately 60 genomic regions have been associated with T1D risk in individuals of 

European ancestry1–3,15–21. However, less is known in non-European ancestry groups, 

despite recent increases in T1D diagnoses in these understudied populations22. Additionally, 

the mechanisms underlying most T1D associations are unknown. We showed previously that 

T1D credible variants are most strongly enriched in lymphocyte and thymic enhancers3. Yet, 

resolving causal variants, mapping them to genes, and determining causal mechanisms 

remains a challenge.

Here, we double the sample size from the previous largest T1D study, genotype ancestrally 

diverse T1D cases, controls, and affected families, and impute additional variants23. Using 

this expanded data set, we perform discovery and fine-mapping analyses. In T1D-associated 

regions, we use chromatin accessibility quantitative trait loci (caQTL) to prioritize credible 
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variants for interrogation of molecular mechanisms underlying T1D association. We present 

a compelling hypothesis of genetic regulatory mechanism in the T1D locus encoding the 

transcription factor BACH2. Finally, by integrating implicated genes with immune protein 

networks, we identify drugs that target T1D candidate genes and networks.

Results

Thirty-six new genome-wide significant regions

After quality filtering, 61,427 participants (Supplementary Table 1 and Supplementary Fig. 

1) and 140,333 genotyped ImmunoChip variants (Online Methods) were included in 

analyses, providing dense coverage in 188 autosomal regions (“ImmunoChip regions”)24 

and sparse genotyping in other regions (Supplementary Tables 2 and 3). Each participant 

was assigned to one of five ancestry groups using principal component analysis (Online 

Methods, Supplementary Fig. 2): European (EUR, n = 47,319), African Admixed (AFR, n = 

4,290), Finnish (FIN, n = 6,991), East Asian (EAS, n = 588) and Other Admixed (AMR, n = 

2,239). Association analyses included 16,159 T1D cases, 25,386 controls and 6,143 trio 

families (i.e., an affected child and both parents) (Supplementary Tables 4 and 5 and 

Supplementary Fig. 3). Genotypes at additional variants were imputed using the Trans-

Omics for Precision Medicine (TOPMed)23 multi-ethnic reference panel to improve 

discovery and fine-mapping resolution (Online Methods). After imputation, the number of 

variants in ImmunoChip regions with imputation R-squared > 0.8 and minor allele frequency 

(MAF) > 0.005 in each ancestry group was 166,274 (EUR), 322,084 (AFR), 163,612 (FIN), 

137,730 (EAS), and 188,550 (AMR). We compared imputed genotypes to whole genome 

sequencing data from a subset of individuals and observed high concordance (Online 

Methods, Supplementary Note, Supplementary Figs. 4 and 5).

Initially, we analyzed unrelated cases and controls (n = 41,545), assuming an additive 

inheritance model. With minimal evidence of artificial inflation of association statistics due 

to population structure (Supplementary Note, Supplementary Fig. 6, and Supplementary 

Table 6), we identified 64 T1D-associated regions outside the major histocompatibility 

complex (MHC, including the HLA loci), including 24 regions associated with T1D at 

genome-wide significance (P < 5 × 10-8) for the first time. Following conditional analysis, 

78 independent associations were identified (P < 5 × 10-8; Supplementary Table 7). On the X 

chromosome, the most T1D-associated variant was rs4326559 (A>C, C allele OR = 1.09, P 
= 4.5 × 10-7).

We extended the discovery analysis to incorporate T1D trio families (n = 6,143 trios, some 

trio families were multiplex and analyzed as multiple trios; Online Methods). Meta-analysis 

of case-control and trio results identified 78 chromosome regions associated with T1D (P < 

5 × 10-8), including 42/43 chromosome regions previously identified in an ImmunoChip-

based study3 (rs4849135 (G>T) was P = 2.93 × 10-7). When comparing these 78 regions to 

previous T1D studies1–3,15–21, 36 novel regions associated with T1D at genome-wide 

significance for the first time (Table 1). In the remaining 42 regions, the lead variant was 

within 250 kb of the lead variant in a previous T1D study. The 1q21.3 region, which 

contains the gene encoding the interleukin-6 receptor (IL-6R), was among the regions 

associated with T1D at genome-wide significance for the first time. Interestingly, the lead 
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variant in this region was rs2229238 (NC_000001.11:g.154465420T>C, P = 3.02 × 10-9), 

not the nonsynonymous variant rs2228145 (NC_000001.11:g.154454494A>C; 

NP_000556.1:p.Asp358Ala; P = 2.20 × 10-4), which was previously suggested to be causal 

for T1D in targeted analysis25 and remains a candidate causal variant for rheumatoid 

arthritis26.

Additional regions identified using alternative inheritance models and metric of statistical 
significance

Applying the Benjamini-Yekutieli false discovery rate (FDR) < 0.0127 to assess statistical 

significance, 143 regions were associated with T1D (Supplementary Table 8). Their lead 

variants overlapped substantially with lead variants for 14 immune-mediated diseases from 

published studies, but the direction of effects frequently differed between traits 

(Supplementary Fig. 7). Associated variants with FDR < 0.01 but not meeting genome-wide 

significance (P < 5 × 10-8) had smaller absolute effect sizes but similar MAFs to those 

satisfying genome-wide significance (median (IQR) OR = 1.07 (1.06, 1.09) vs. 1.11 (1.09, 

1.13); median (IQR) MAF = 0.301 (0.152, 0.397) vs. 0.306 (0.184, 0.374)). These results 

indicate that remaining regions associated with T1D may have increasingly smaller effect 

sizes (Supplementary Fig. 8), requiring genome-wide coverage and larger sample sizes for 

detection.

One exception underscores the need for inclusion of understudied populations to enhance 

biological insight, even with limited sample sizes, and suggests the potential value of 

considering alternative metrics for defining statistical significance in genetic studies28. On 

chromosome 1p22.1 near the Metal Response Element Binding Transcription Factor 2 

(MTF2) gene, rs190514104 (NC_000001.11:g.93145882G>A) had a large effect on T1D 

risk (OR (95% CI) = 2.9 (1.9-4.5); P = 6.6 × 10-7) in the AFR ancestry group. The minor 

allele (A) at rs190514104:G>A was common in the AFR ancestry group (> 1%) but rare in 

the others (< 0.1%). Considering the limited sample size, potential heterogeneity of the AFR 

cohort, and possible over-estimation of effect sizes due to “the winner’s curse”, this 

association requires replication in an independent cohort.

Use of recessive and dominant models of inheritance identified 35 regions (25 dominant, 10 

recessive) with a better fit than the additive model (lower Akaike Information Criterion 

(AIC) in Europeans) at FDR < 0.01, including nine regions that did not reach FDR < 0.01 

under the additive model (Supplementary Table 9). Thus, a total of 152 regions were 

associated with T1D at FDR < 0.01, 143 under an additive model and nine under recessive 

or dominant models.

Fine mapping reveals over a third of T1D loci contain more than one independent 
association

To define the local architecture of T1D regions, we applied a Bayesian stochastic search 

method (GUESSFM29) to the European ancestry case-control data (Online Methods, 

Statistical fine mapping). Of 52 ImmunoChip regions (Supplementary Table 2) associated 

with T1D, GUESSFM predicted 21 (40%) to contain more than one causal variant (Fig. 1a), 

compared to nine regions using stepwise conditional regression. In four regions, the lead 
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variant in the discovery analysis was not prioritized by fine mapping (posterior probability < 

0.5): 2q33.2 (CTLA4), 4q27 (IL2), 14q32.2 (MEG3) and 21q22.3 (UBASH3A). In these 

regions, the lead variant likely tags two or more T1D-associated haplotypes that can be 

identified using GUESSFM but not stepwise logistic regression, a phenomenon observed 

previously29,30. For example, although stepwise regression analysis in the UBASH3A locus 

supported a single causal variant (Supplementary Table 7), GUESSFM fine mapping and 

haplotype analyses indicated that the lead variant in this region, rs11203203 

(NC_000021.9:g.42416077G>A), is unlikely to be causal. GUESSFM fine mapping 

supported a three-variant model (rs9984852 (NC_000021.9:g.42408836T>C), rs13048049 

(NC_000021.9:g.42418534G>A) and rs7276555 (NC_000021.9:g.42419803T>C)) (Fig. 

1b), which had a better fit than the single variant model (AIC 45073 vs. 45138, Fig. 1c). 

Haplotype analysis (Online Methods) demonstrated that when rs11203203:G>A is present 

without the GUESSFM-prioritized variants, there is no effect of rs11203203:G>A on T1D 

risk (Fig. 1d). Resampling experiments consistently supported two or more causal variants in 

the region, with at least one of the three GUESSFM-prioritized variants more likely to be 

causal than rs11203203:G>A (Supplementary Table 10). Given the complexity of 

association in the UBASH3A region, and likely at many loci, statistical methods designed to 

use univariable summary statistics alone are not sufficient to explore the genetic architecture 

of T1D. We provide the comprehensive list of T1D credible variants and haplotype analyses 

for all 52 fine-mapped regions (Supplementary Table 11, https://github.com/ccrobertson/t1d-

immunochip-2020).

Differences in linkage disequilibrium (LD) between ancestry groups can be advantageous in 

prioritizing causal variants31. In the 30 regions where analysis suggested a single causal 

variant, we performed multi-ethnic fine-mapping using PAINTOR32. Eight regions identified 

an associated variant (P < 5 × 10-4) in more than one ancestry group: five with associations 

in EUR and FIN, and three with associations in EUR and AFR. In three regions, the number 

of variants prioritized was markedly reduced by including multiple ancestry groups: 4p15.2 

(RBPJ), 6q22.32 (CENPW) and 18q22.2 (CD226) (Fig. 2a, Extended Data Figs. 1 and 2, 

and Supplementary Table 12). In the chromosome 4p15.2 (RBPJ) region, the credible set 

from EUR ancestry contained 24 variants. In contrast, using PAINTOR with EUR and AFR 

summary statistics, only five variants were prioritized with a posterior probability > 0.1 (Fig. 

2a). Among these prioritized variants, rs34185821 (NC_000004.12:g.26083858A>G) and 

rs35944082 (NC_000004.12:g.26093692A>G), both located in the non-coding transcript 

LINC02357, have the potential to disrupt multiple transcription factor binding motifs33. 

rs35944082:A>G also overlaps open chromatin in multiple adaptive immune cell types (Fig. 

2b) and resides in a FANTOM enhancer site34. Further, rs34185821:A>G is one of three 

prioritized variants flanking an activation-dependent Assay for Transposase-Accessible 

Chromatin using sequencing (ATAC-seq) peak in lymphocytes and a stable response element 

in human islets35, with potential to perturb an extended TATA box motif36.

T1D-associated protein-altering variants

Only 34/2,732 (1.2%) credible variants (group posterior probability > 0.5) were protein-

altering (nonsynonymous, frameshift, stop-gain, or splice-altering) with 12 having support 

for a role in T1D (Online Methods, Supplementary Table 13). We identified several 
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previously unreported protein-altering variants as highly prioritized in T1D credible sets 

(posterior probability > 0.1): a protective missense variant in UBASH3A, rs13048049:G>A 

(NP_061834.1:p.Arg324Gln; OR = 0.84; AFEUR = 0.051); two low-frequency splice donor 

variants in IFIH1, rs35732034 (NC_000002.12:g.162268086C>T; OR = 0.63; AFEUR = 

0.0089) and rs35337543 (NC_000002.12:g.162279995C>G; OR = 0.61; AFEUR = 0.0099); 

and a missense variant in CTLA4, rs231775 (NC_000002.12:g.203867991A>G; 

NP_001032720.1:p.Thr17Ala; OR = 1.20; AFEUR = 0.36).

T1D credible variants are over-represented in accessible chromatin in T and B cells

ATAC-seq offers a high-resolution map of accessible chromatin with potential regulatory 

function37. Using publicly available38–40 and newly generated ATAC-seq data from healthy 

donors, we assessed enrichment (Online Methods) of 2,431 T1D credible variants (group 

posterior probability > 0.8) in accessible chromatin across diverse immune and non-immune 

cell types (including 25 primary immune cell types, pancreatic islets, and, as control cell 

types unlikely to be central to T1D etiology, fetal and adult cardiac fibroblasts). T1D 

credible variants were enriched in open chromatin in multiple primary immune cell types 

based on two complementary enrichment analysis approaches (Online Methods, 

Supplementary Fig. 9), with strong enrichment observed in stimulated CD4+ effector T cells 

(Supplementary Fig. 9b). There was no enrichment in pancreatic islets (P = 0.14), the 

primary target of autoimmunity in T1D, even after exposure to proinflammatory cytokines 

(P = 0.05) or in cardiac fibroblasts (P > 0.60) (Supplementary Fig. 9). We also examined 

enrichment for T1D credible variants in condition-specific accessible chromatin and 

observed the largest enrichment in stimulation-specific peaks from effector CD4+ T cells 

(Supplementary Note, Supplementary Table 14, and Supplementary Fig. 10).

Colocalization of T1D association with QTLs in immune cells

Chromatin accessibility profiles were generated across 115 participants (n EUR = 48, n AFR = 

67) in primary CD4+ T cells, the cell type in which accessible chromatin is most strongly 

enriched for T1D credible variants (Supplementary Figs. 9 and 10). We examined additive 

effects of genotype on local chromatin accessibility (cis window < 1 Mb), identifying 11 

“peaks” of chromatin accessibility significantly (P < 5 × 10-5) associated with T1D credible 

variants. Colocalization analysis of T1D association and caQTLs (R package coloc41, Online 

Methods) identified five regions supporting a common causal variant underlying association 

with T1D and chromatin accessibility (PP.H4.abf > 0.8; Table 2). In all five regions, at least 

one T1D credible variant overlapped the caQTL-associated peak. Six of these “within-peak” 

credible variants were directly genotyped on the ImmunoChip, allowing us to examine 

allele-specific accessibility in heterozygous participants (Online Methods). At all six 

variants, the proportion of ATAC-seq reads from heterozygotes containing the alternative 

allele was consistent with the direction of the caQTL effect (Supplementary Table 15). 

When integrated with whole blood cis-eQTLs41,42, colocalization identified T1D candidate 

genes in four of five T1D-caQTL regions (PP.H4.abf > 0.8; Table 2).

Functional annotation of T1D-associated variants in the BACH2 region

Fine mapping of the BACH2 locus refined the T1D association to two intronic variants, 

rs72928038 (NC_000006.12:g.90267049G>A) and rs6908626 
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(NC_000006.12:g.90296024G>T) (Fig. 3a). The EUR minor alleles of rs72928038:G>A 

and rs6908626:G>T are associated with increased T1D risk (OR = 1.18; P < 1 × 10-20, 

MAFEUR = 0.18). Chromatin-state annotations across cell types from the BLUEPRINT 

Consortium and NIH Roadmap Epigenomics Project annotate rs72928038:G>A as 

overlapping a T cell-specific active enhancer and rs6908626:G>T as lying in the ubiquitous 

BACH2 promoter (Fig. 3b). Promoter-capture Hi-C data from diverse immune cell types43 

indicates that the enhancer region containing rs72928038:G>A contacts the BACH2 
promoter in T cells (Fig. 3c). Although weak interactions were observed in multiple T cell 

subtypes, only naïve CD4+ T cells had a significant interaction score.

In caQTL analysis, rs72928038:G>A is associated with decreased accessibility of the 

enhancer it overlaps (chr6:90266766-90267715) (Fig. 3d, left), while rs6908626:G>T does 

not affect accessibility at the BACH2 promoter (chr6:90294665-90297341) (Fig. 3d, right). 

Similarly, among 14 subjects heterozygous for rs72928038:G>A, only 4% (5/121) of ATAC-

seq reads overlapping that site contain the T1D risk allele (A) (Fig. 3e, left, and 

Supplementary Table 15), suggesting it leads to restricted accessibility. In contrast, 

chromatin accessibility at rs6908626:G>T does not exhibit allelic bias in heterozygotes (Fig. 

3e, right). These data help to prioritize rs72928038:G>A, rather than rs6908626:G>T, as 

functionally relevant in CD4+ T cells.

In eQTL studies, rs72928038:G>A is associated with decreased expression of BACH2 in 

whole blood42 and purified immune cell types44. In the DICE consortium44, 

rs72928038:G>A is associated with decreased expression of BACH2 in multiple cell types, 

with the strongest effects in naïve CD4+ and CD8+ T cells. This result is consistent with the 

observation that the enhancer region overlapping rs72928038:G>A is accessible specifically 

in unstimulated bulk CD4+, unstimulated bulk CD8+, and naïve CD4+ T effector cells (Fig. 

3f). Both the enhancer caQTL and BACH2 eQTL colocalize with T1D association (Fig. 3g 

and Table 2).

The BACH2 rs72928038:G>A variant overlaps binding sites for STAT1 and the ETS family 

of transcription factors, based on canonical transcription factor binding motifs33. We 

performed super-shift electrophoretic mobility shift assay (EMSA) experiments of the DNA 

sequence flanking rs72928038:G>A that demonstrated allele-specific ETS1 binding, but no 

STAT1 binding (Supplementary Fig. 11). This result builds on experiments demonstrating 

allele-specific nuclear protein binding of rs72928038:G>A in Jurkat cells45. These data 

prioritize rs72928038:G>A as a likely functional variant in T cells and provide preliminary 

support for a candidate regulatory mechanism underlying the 6q15 region association with 

T1D. Specifically, we hypothesize that the rs72928038:G>A minor allele (A) disrupts ETS1 

binding, which leads to decreased enhancer activity and BACH2 expression in naïve CD4+ T 

cells.

T1D drug target identification

To identify potential T1D therapeutic targets with human genetic support, we used the 

Priority Index (Pi) algorithm46, which integrates genetic association results with genome 

annotations, regulatory maps, and protein-protein networks (Online Methods). Using 

improved T1D association statistics and additional eQTL resources from whole blood42, we 
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identified 50 highly-ranked gene targets (Supplementary Table 16). These targets include 26 

“seed genes” (implicated by T1D-associated loci through proximity, eQTL effects, or 

chromatin looping) and 24 non-seed genes (not in T1D regions but highly connected to T1D 

seed genes in immune protein networks). Although we excluded variants in the MHC region 

from algorithm input, the networks implicated by non-MHC seed genes led to prioritization 

of HLA-DRB1, an established T1D risk factor. Among the top 50 gene targets, 13 were not 

previously implicated by Pi analyses (STAT4, RGS1, CXCR6, IL23A, PTPN22, NFKB1, 

MAPK3, EPOR, DGKQ, GALT, IL12RB1, IL12RB2, IL6R)46, while 12 have been targeted 

in clinical trials for autoimmune diseases (IL2RA, IL6ST, IL6R, TYK2, IFNAR2, JAK2, 

IL12B, IL23A, IL2RG, JAK3, JAK1 and IL2RB). T1D susceptibility alleles may alter 

expression of gene targets in either direction, and gene regulatory effects may be seen across 

multiple major immune cell populations or be restricted to a single cell type (Supplementary 

Fig. 12). For example, T1D risk alleles are associated with increased expression of MAPK3 
and DGKQ but decreased expression of TYK2 across multiple major immune cell 

populations. In contrast, risk alleles decrease expression of RGS1 across most immune cell 

types but increase expression specifically in CD8+ T cells. The directionality and cell type-

specificity of gene regulatory effects associated with T1D risk alleles may inform 

therapeutic target considerations.

Discussion

In the largest genetic analysis of T1D to date, we identified 36 novel regions at genome-wide 

significance and implicated a total of 152 regions outside the MHC in T1D susceptibility at 

FDR < 0.01. We refined the set of putative causal variants and number of independent 

associations in many T1D regions through increased sample size, dense genotyping and 

imputation, inclusion of diverse ancestry groups, and optimized analytical approaches to fine 

mapping. We assessed the intersection of T1D-associated variants with regions of putative 

regulatory function with public and newly generated ATAC-seq data from diverse cell types 

and states, demonstrating that T1D credible variants were enriched in stimulation-responsive 

open chromatin peaks in CD4+ T cells. We assessed colocalization of T1D associations with 

CD4+ T cell caQTLs to generate mechanistic hypotheses centered on this highly relevant 

cell type. Finally, we identified potential T1D drug targets for use in prevention trials. 

Experimental follow-up studies are required to test these hypotheses and further dissect the 

mechanisms altering T1D risk in each region.

Despite enrichment of credible variants in CD4+ T cell open chromatin, only five of 52 fine-

mapped T1D associations could be explained by a colocalized caQTL. This result is 

consistent with work exploring functional effects of variants associated with immune 

traits47. One explanation is limited power in QTL discovery due to small sample sizes or 

imprecise cell types47,48. Analysis of more refined cell types, for example using single cell 

approaches, for both enrichment analyses and QTL discovery may lead to additional 

discoveries49,50. Nevertheless, while this approach may lack sensitivity, the five regions 

showing colocalization between caQTL and T1D associations prioritize variants with 

regulatory effects that represent realistic targets for experimental follow-up. In particular, 

within-peak credible variants with consistent caQTL effects and allele-specific accessibility, 

while not definitively causal, provide high priority candidate variants for functional follow-
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up. As four of the five T1D associations that colocalize with caQTLs also colocalize with 

whole-blood eQTLs, these regions offer hypotheses for how causal variants influence 

disease risk through their effects on regulatory element activity and gene expression in T1D-

relevent cell types.

In the 5q11.2 region, fine mapping and caQTL colocalization point to the within-peak 

variant, rs7731626 (NC_000005.10:g.56148856G>A), as a potential causal variant for T1D. 

This result complements a recent regulatory QTL fine-mapping study that highlighted the 

same variant as likely functional in T cells51. Additionally, the T1D association colocalizes 

with eQTLs for both ANKRD55 and IL6ST, mirroring results in multiple sclerosis, Crohn’s 

disease, and rheumatoid arthritis47. The region overlapping rs7731626:G>A loops to the 

IL6ST promoter in CD4+ T cells, according to promoter capture Hi-C data43. Although we 

did not find evidence that rs7731626:G>A loops to the canonical transcription start site for 

ANKRD55, nascent RNA-sequencing data suggest it overlaps the 5’ end of the 

transcriptionally active region of ANKRD55 in human T cells52, consistent with a potential 

regulatory role.

We highlight the BACH2 region on chromosome 6q15 as an example of unbiased QTL 

colocalization that leads to hypotheses for functional mechanisms driving variant-T1D 

association. We hypothesize that rs72928038:G>A, the T1D-associated allele, abolishes 

ETS1 binding at an enhancer that promotes BACH2 expression in naïve CD4+ T cells. 

BACH2 encodes the transcription factor from the BTB-basic leucine zipper family, BACH2, 

which has established roles in B and T cell biology, including maintaining the naïve T cell 

state53,54. BACH2 haploinsufficiency has been shown to cause congenital autoimmunity and 

immunodeficiency55, demonstrating that a functioning human immune system depends on 

BACH2 expression in a dose-dependent manner. In addition to cis-effects on BACH2 
expression, rs72928038:G>A is associated with altered expression of 39 distal genes42 in 

whole blood, including seven genes in autoimmune disease-associated regions. These 

observations raise the hypothesis that the minor A allele at rs72928038:G>A increases T1D 

risk by reducing BACH2 expression in a precise cellular context (e.g., the naïve T cell state). 

This effect may lead to shifts in BACH2-regulated transcriptional programs, thereby altering 

T cell lineage differentiation in response to antigen exposure.

Previous studies demonstrated shared genetic risk across autoimmune diseases3,56 and 

suggest potential for repurposing drugs to treat or prevent T1D. Our Pi analysis identified 12 

targets that have been the focus of clinical trials for treatment of autoimmune diseases. One 

example is IL23A, which has been successfully targeted in the treatment of inflammatory 

bowel disease (IBD)57 and psoriasis58. The IL-23 inhibitors are being explored for use in 

T1D (ClinicalTrials.gov identifiers NCT02204397 and NCT03941132). Our results provide 

genetic support for these trials. Similarly, JAK1, JAK2 and JAK3 were implicated in T1D 

etiology in our analysis. JAK inhibitors are safe and effective in the treatment of rheumatoid 

arthritis59 and ulcerative colitis60. Finally, this study presents the first well-powered, 

convincing genetic evidence linking interleukin-6 (IL-6), a cytokine with known roles in 

multiple autoimmune diseases, to T1D etiology. The IL-6 receptor complex consists of two 

essential subunits: the alpha subunit (encoded by IL6R) and the signal transducing subunit 

(encoded by IL6ST). Both the IL6ST and IL6R regions were identified here as T1D-
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associated at genome-wide significance for the first time (Table 1), and both IL6ST and 

IL6R were prioritized by the Pi analysis. IL6ST is implicated by QTL colocalization, and 

the lead T1D variant near IL6R (rs2229238:T>C) is an eQTL for IL6R expression in whole 

blood (formal colocalization was not assessed as the IL6R region is not densely covered by 

the ImmunoChip). We cannot say, based on current evidence, that IL6ST and IL6R are T1D 

causal genes. The associations in each region may be unrelated and due to different causal 

genes; for example, the association near IL6ST also colocalizes with an eQTL for 

ANKRD55. However, we note that the humanized IL-6 receptor antagonist monoclonal 

antibody, tocilizumab, is an approved treatment for rheumatoid arthritis and systemic 

juvenile idiopathic arthritis, both of which share substantial genetic effects with T1D3 

(Supplementary Fig. 7), and a trial of this drug in recently diagnosed T1D cases is underway 

(ClinicalTrials.gov identifier NCT02293837). Surprisingly, we showed that the lead T1D 

variant near IL6R (rs2229238:T>C) tags a causal variant distinct from the nonsynonymous 

variant in IL6R, rs2228145:A>C (NP_000556.1:p.Asp358Ala), thought to drive the 

association in rheumatoid arthritis26, suggesting potentially different mechanisms altering 

disease risk in this region. The recent success of anti-CD3 therapy, after 40 years of study 

through experimental models and clinical trials targeting different patient subgroups and 

time points relative to disease diagnosis61, highlights both the challenges and hopes for 

translating target identification to efficacious clinical outcomes in T1D.

One limitation of this study is that genotyping was restricted to ImmunoChip content, which 

provides dense coverage in 188 immune-relevant genomic regions, as defined by previous 

largely European ancestry-based GWAS of immune-related traits. This design restricts the 

scope of discovery, fine mapping, and generalizability of subsequent functional enrichment 

analyses. This may explain the absence of T1D variant enrichment in open chromatin of 

non-immune cell types (e.g., pancreatic islets)62,63. Additionally, the effect sizes of novel 

loci are likely over-estimated due to winner’s curse, particularly those identified in non-

European ancestry groups where sample sizes remain small, such as rs190514104:G>A near 

MTF1. We also acknowledge the possibility of results in non-European ancestry groups 

being confounded by admixture. While this analysis is the largest and most comprehensive 

study prioritizing novel gene targets in T1D according to genetic evidence, extension of 

future genetic studies to genome-wide analyses28 and continuing efforts to expand cohorts 

from diverse populations will further define the genetic landscape of T1D.

Online Methods

Genotyping and quality control

DNA samples were genotyped on the Illumina ImmunoChip at University of Virginia (UVA) 

Genome Sciences Laboratory (n = 52,219), Sanger Institute (n = 4,347), University of 

Cambridge (n = 2,941), and Feinstein Institute (n = 1,811). Raw genotyping files were 

assembled at UVA. Genotype clusters were generated using the Illumina GeneTrain2 

algorithm. Stringent SNP- and sample-level quality control filtering and data cleaning was 

performed to ensure high quality genotypes and accurate pedigrees (Supplementary Fig. 1). 

The following variant filters were applied: (1) re-annotated ImmunoChip variant positions 

by aligning probe sequences to GRCh37 and removed any variants with <100% match or 
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multiple matches at different positions in the genome; (2) removed variants with call rates 

<98%; (3) removed variants with any discordance between duplicate or monozygotic twin 

samples, as confirmed by genotype-inferred relationships; (4) removed variants with 

Mendelian inconsistencies in >1% of informative trios or parent-offspring pairs, based on 

genotype-inferred relationships.

For sample filtering, we used X chromosome heterozygosity and Y chromosome 

missingness to identify and exclude participants with apparent sex chromosome anomalies 

or resolve inconsistencies with reported sex. Pedigree-defined and genotype-inferred sample 

relationships were compared using KING version 2.1.364. Samples were excluded when 

inconsistencies could not be resolved, including relationships between families, within and 

across cohorts. For each pair of related families observed, we randomly selected one to 

remove from association analysis. After resolving sex and relationship issues, samples with 

genotype call rate < 98% were removed. Variants with genotype frequencies deviating from 

Hardy-Weinberg Equilibrium (P < 5 × 10-5) in unrelated European ancestry controls were 

excluded before imputation.

Stratification of major ancestry groups and family trios

Principal components (PC) were generated in 1000 Genomes phase 3 individuals using 

8,297 autosomal ImmunoChip variants selected by excluding regions of long-range linkage 

disequilibrium (LD)65, pruning for short-range LD (r 2 < 0.2 in 50-kb windows), and 

filtering for minor allele frequency (MAF) > 0.05). Participant genotypes were projected 

onto the 1000 Genomes PC space using PLINK v1.966. The first ten PCs were used in k-

means clustering to define five clusters of ancestrally similar participants, European (EUR), 

African-American (AFR), East Asian (EAS), Finnish (FIN), and Admixed (AMR), labeled 

according to their closest 1000 Genomes super-population. For case-control analyses to be 

performed within each ancestry cluster, affected trios were excluded and a set of unrelated 

individuals was selected from the remaining subjects using KING version 2.1.3 software (“--

unrelated” option)64. Cluster-specific PCs were calculated by performing PC analysis on 

unrelated controls and projecting the remaining subjects onto the resulting axes. Remaining 

population stratification within each ancestry cluster was assessed visually (Supplementary 

Fig. 3).

Defining targeted regions for discovery and fine-mapping analysis

The ImmunoChip densely covered genetic variation in immune-associated genomic regions. 

Discovery analyses included all genotyped variants, as well as imputed variants from any 

500-kb region that contained more than 50 genotyped variants (Supplementary Table 3). To 

define boundaries for fine-mapping regions, we mapped previously defined “ImmunoChip 

regions” (provided by the R package humarray) from GRCh36 to GRCh38 coordinates 

(Supplementary Table 2): for each region, we mapped all variants originally included in the 

region to GRCh38 to define boundaries as the lowest and highest observed GRCh38 

positions among these variants (+/- 50 kb either side). Fine-mapping analyses were then 

restricted to densely genotyped regions overlapping these “ImmunoChip regions”.
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Association analysis – Phase I (case-control analyses)

Genotypes were imputed with the NHLBI Trans-Omics for Precision Medicine (TOPMed) 

Freeze 5 (Supplementary Note) reference panel. We analyzed association with type 1 

diabetes (T1D) for all genotyped variants and high-confidence imputed variants separately in 

the five ancestry groups (Supplementary Tables 2 and 3 and Supplementary Note). 

Assuming an additive mode of inheritance, we used logistic regression for unrelated case-

control analyses, adjusting for five ancestry-specific PCs and using genotype posterior 

probabilities to account for uncertainty in imputed genotypes using the SNPTEST version 

2.5.4 software67. Due to small sample size (38 cases and 106 controls), EAS subjects were 

excluded. We combined results using an inverse-variance weighted fixed-effects meta-

analysis (METAL software version released on 2011-03-25)68. Forward stepwise logistic 

regression was performed to identify loci with more than one independent association with 

T1D. All conditionally independent associations (P < 5 × 10-8) were reported. Case-control 

analyses were performed under recessive and dominant models of inheritance. To evaluate 

the relative fit of the three models, we compared the Akaike Information Criterion (AIC) in 

EUR ancestry and identified the model providing the lowest AIC (best fit). On the X 

chromosome, only genotyped variants were examined for their association with T1D. The Y 

chromosome was not examined.

Association analysis – Phase II (trio families and combined analyses)

Trio families (two parents and an affected offspring) were analyzed within ancestry group 

using the transmission disequilibrium test (TDT)69. As TDT statistics are susceptible to 

substantial bias when applied to imputed genotypes70, a stringent variant filter was applied 

to imputed genotypes, removing all variants with Mendelian inconsistencies in >1% of trios 

with heterozygous offspring or parent-offspring pairs with homozygous offspring. From 

TDT summary statistics, we derived effect sizes and standard error estimates71 and meta-

analyzed with Phase I results.

Statistical fine mapping

Two complementary approaches were used to define credible variant sets within each T1D-

associated ImmunoChip region. Fine mapping included high-confidence variants within 750 

kb of the lead variant (1.5-Mb region total), usually consisting of imputed variants across the 

entire ImmunoChip region and genotyped variants adjacent to the ImmunoChip region.

Fine mapping using European case-control data only (GUESSFM)—Since 

forward stepwise model selection can fail to identify complex genetic architectures72, we 

applied a Bayesian method (GUESSFM, see Supplementary Note) in the EUR case-control 

data to identify the most likely combinations of variants explaining T1D risk29,73. In the 

results, we refer to groups of variants prioritized by GUESSFM as “credible sets” and 

variants within these groups as “credible variants”. Variants that failed quality control 

metrics (or were not genotyped or imputed in our data for other reasons) but are in LD (r 2 > 

0.9 in 1000 Genomes Phase 3) with a prioritized variant were included in the comprehensive 

list of credible variants (Supplementary Table 11).

Robertson et al. Page 13

Nat Genet. Author manuscript; available in PMC 2021 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Trans-ethnic fine mapping—In regions where association signals were marginally 

associated (P < 5 × 10-4) in multiple ancestry groups and evidence from EUR ancestry only 

fine mapping suggested a single causal variant (marginal posterior probability for one causal 

variant in the region > 0.5), we applied the multi-ethnic fine-mapping method, PAINTOR32, 

to refine the association. PAINTOR uses association z-scores and population-level LD to 

identify the combination of alleles that best explain the phenotype, multiplying the posterior 

probability of the causal vector across ancestry groups, assuming the same variant(s) are 

causal in each ancestry group. Since loci examined were those with evidence of one causal 

variant in the region, we restricted the maximum model size to two variants in the region and 

enumerated the posterior of every model, rather than performing an MCMC search. The 

association z-scores used for each ancestry group were from a meta-analysis of case-controls 

and family trios in that ancestry cluster. PAINTOR input LD reference panels were 

generated separately for each ancestry group with LDstore version 1.174 using imputed 

genotype data from unrelated cases and controls.

Haplotype analyses

Haplotype analyses were performed in the EUR ancestry cases and controls by taking “best-

guess” genotype values for the variants included in the analysis and obtaining haplotype 

phase distribution estimates for each individual, using an expectation-maximization 

algorithm75. Each individual’s haplotype was sampled ten times and a logistic regression 

was fitted estimating the effect size of the haplotype relative to the most common haplotype 

in the population, with T1D status as the outcome and adjusting for five PCs. The estimates 

and standard errors for each haplotype relative to the most common were averaged over the 

ten logistic regression models to obtain overall haplotype effect sizes on T1D risk.

Annotating T1D-associated protein-altering variants

The functional impacts of T1D credible variants (Supplementary Table 11) were annotated 

using ANNOVAR (version released on 16 April 2018)76 and the Ensembl and refGene 

annotation databases.

Generating representative cell type- and condition-specific chromatin accessibility profiles

We downloaded publicly available ATAC-seq data from diverse immune cell types38, 

pancreatic islets35, and cardiac fibroblasts40 (see Data Availability statement).

We generated additional ATAC-seq data on CD4+ T cells (n = 6 donors) and CD19+ B cells 

(n = 4 donors), using different culture and stimulation conditions from Calderon et al.38. 

CD4+ T cells were enriched and stimulated as previously described77. B cells were 

positively selected from PBMCs using anti-CD19 beads (Miltenyi Biotec, GmbH) and 

cultured for 24 hours in X-VIVO 15 (Lonza, Switzerland) supplemented with 1% Human 

Ab Serum (Sigma) and penicillin/streptomycin (Thermo Fisher) and plated in 96-well 

CELLSTAR U–bottomed plates (Greiner Bio-One, Austria) at concentration of 2.5 × 105 

cells/well. Cells were left untreated or stimulated with 10 μg/ml goat anti-human 

IgM/IgG/IgA antibody (109‐006‐064, Jackson Immunoresearch), 0.15 μg/ml rhCD40L 

(ALX-522-110-C010, ENZO Lifesciences), 20 ng/ml rhIL-21 and rhIL-4 (200-21 and 

200-04 respectively, Peprotech) for 24 hours. ATAC-seq data was generated from 50,000 
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cells from each cell type and culture condition following the Omni-ATAC protocol78. ATAC-

seq datasets were mapped to GRCh38.p1279 with minimap2 (version 2.17)80, except for 

GSE123404 (pancreatic islets dataset) where bowtie2 (version 2.3.5) was used. After 

mapping, the technical replicates (where available) were merged and PCR duplicated reads 

were detected with Picard tools (version 2.20.2). The percentage of detected duplicated 

reads was very low (mean value < 1%) in all datasets. bigWig files were generated with 

bamCoverage from the deeptools package (version 3.3.0), using reads per genome coverage 

(RPGC) normalization and ignoring allosomes and the mitochondrial chromosome. Peaks 

were called using macs281 (version 2.1.2) with the params “--nomodel --shift 37 --extsize 73 

--keep-dup all”.

The immune cell ATAC-seq dataset GSE11818938 was used to create a consensus list of 

peaks. For each cell type, the donor contributing the fewest number of reads to that cell type 

was selected and the number of reads was divided by two. Reads were then randomly pooled 

by that number for each sample, creating a representative alignment file for that cell type. 

This procedure was performed twice in order to obtain two pseudo-replicates. Peaks were 

called with macs2 with the same parameters. Irreducible discovery rate (IDR) was calculated 

between the two pseudo replicates82, any peak with an IDR ≤ 0.05 were included in the 

consensus list of peaks. This list was then used as a feature reference and reads were counted 

per feature with featureCounts from the package subread83 (version 1.6.4). A similar 

approach was used for the other datasets in the analysis. IDR was used to obtain a reliable 

list of peaks. In these datasets, no feature reference was derived from the IDR, and counting 

was performed directly from the list obtained from GSE118189. Workflows were 

implemented using conda and snakemake.

ATAC-seq enrichment analyses

To examine enrichment of T1D credible variants (group marginal posterior probability > 0.8 

from GUESSFM) in open chromatin, for each cell type, two complementary approaches—

SNP-matching and GoShifter84 (http://software.broadinstitute.org/mpg/goshifter/)—were 

employed. In the SNP-matching approach, variants were randomly sampled across the 

genome, matched on LD structure and gene density, to generate a null distribution of SNPs 

overlapping accessible chromatin (see below). GoShifter, in contrast, generates a null 

distribution within each locus (see Trynka et al.84).

SNP-matching enrichment analysis. The number of T1D credible variants falling within 

open chromatin was compared to variants in regions of the genome with similar LD 

structure and gene density:

(1) Using European individuals from 1000 Genomes Project data, identified all 

variants with a Pearson correlation > 0.8 with each other.

(2) Binned the T1D credible variants with group marginal posterior probability > 

0.8 with regards to their LD block size: 1-9, 10-19, 20-49, 50-74,75-99,100-149 

or 150-249.
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(3) Binned the 1000 Genomes Project data variants with regards to LD block size, 

taking an LD block as the variants with Pearson correlation > 0.8 with an index 

variant.

(4) For each T1D credible group, randomly selected an LD block from the 1000 

Genomes Project data of the same bin size and with the same (or similar for 

large haplotypes) number of genes overlapping the credible group, therefore 

selecting a similar number of variants to the T1D credible group, with an 

approximately equivalent LD structure and gene density.

(5) Repeated step (4) 100 times, yielding 100 randomly-sampled genome segments 

with approximately equivalent size and LD structure to the T1D credible 

variants.

(6) For cell type “X”, counted the number of T1D credible SNPs overlapping 

ATAC-seq peaks. Compared this to the number overlapping ATAC-seq peaks 

from the first randomly sampled set of variants. Calculated a z-score (Fisher’s 

exact test) for the comparison of ATAC-seq peak overlap with T1D credible 

variants versus randomly sampled variants with equivalent size, gene density, 

and LD structure.

(7) Repeated step (6) 100 times, one for each randomly sampled set of haplotypes 

across the genome, obtaining 100 z-scores.

(8) Took the mean z-score from the 100 tests and compared it to a normal 

distribution to obtain an enrichment p-value for cell type “X”.

Steps (6) to (8) were performed for each cell type and condition.

Generating caQTL maps using T1DGC frozen samples

We profiled chromatin accessibility in 115 individuals (57 controls and 58 T1D cases; 67 

AFR and 48 EUR) from the Type 1 Diabetes Genetics Consortium (T1DGC). CD4+ T cells 

were purified from viably frozen PMBC samples using magnetic cell separation according to 

the manufacturer protocol, using either negative selection (n = 42; STEMCELL 

Technologies EasySep Human CD4+ T Cell Isolation Kit) or positive selection (n = 73; 

MACS Miltenyl Biotec). The selection approach was incorporated in data processing and 

analysis. After CD4+ T cell purification, the “Omni-ATAC-seq” protocol78 was followed for 

nuclei isolation, transposase incubation, and library preparation. Libraries were sequenced 

using 75 bp paired-end reads on an Illumina NextSeq and data were processed using the 

PEPATAC pipeline85. Briefly, reads were trimmed using Skewer (version0.2.2)86 and, after 

removing reads mapping to mitochondrial and human repeat regions, were mapped to 

GRCh38 using bowtie287. PCR duplicates were removed, enzymatic cut sites were inferred 

based on read alignment, and peaks called using macs281. Libraries with transcription start 

site (TSS) enrichment scores less than 6 million or fewer than 10 million aligned reads were 

excluded from analyses. A set of consensus peaks was determined by merging peaks across 

all samples using bedops (version 2.4.35)88. A matrix of peak counts was calculated by 

counting the number of cut sites within each consensus peak in each sample using the R 

package bigWig (https://github.com/andrelmartins/bigWig).
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Peaks with low counts were excluded (required ≥ 10 reads in ≥ 50% of samples). Further 

peak quality filtering and normalization was performed using the R package edgeR89. These 

steps included:

(1) filtering for peaks with ≥ 10 counts-per-million (CPM) across samples within 

each batch;

(2) peak count normalization using the trimmed mean of M-values (TMM) 

method90;

(3) mean-variance modeling-based transformation using the ‘voom’ function to 

enable linear modeling of peak counts assuming a normal distribution;

(4) removing outlier peaks by clustering samples based on counts for each peak 

(one at a time using k-means with k = 2) and excluding any peak that results in 

one sample clustering separately from all other samples.

We confirmed matching sample identity between ATAC-seq libraries and genotyped subjects 

using the “Match BAM to VCF” (MBV) command in the software tool set QTLtools91. 

Association between imputed genotype dosage and chromatin accessibility (caQTL analysis) 

was tested with a linear model, adjusting for the first two genotype principal components, 

age at sample collection, TSS enrichment score, and CD4+ T cell purification approach 

using the R package MatrixEQTL92. The caQTL discovery analyses were performed 

separately by ancestry group (EUR and AFR) and combined in an inverse-variance weighted 

fixed effect meta-analysis (R package meta). All variant-peak combinations were tested 

where the accessibility peak was within 1 Mb of a T1D credible variant.

Colocalization analysis

We evaluated colocalization of T1D and caQTL for all peaks where at least one T1D 

credible variant (as defined by GUESSFM) was associated with peak accessibility (meta-

analysis P < 5 × 10-5) using the R package coloc41, and visualized colocalized signals using 

the R package locuscomparer93. Conditional summary statistics were used in regions 

predicted to have more than one causal variant underlying the T1D association or regions 

with multiple, conditionally independent variants associated with accessibility of the same 

peak. When running coloc for T1D-caQTL colocalization, we used a prior probability of 

colocalization of 5 × 10-6 and provided association betas and standard errors as input data. 

When running coloc for T1D-eQTL colocalization, we used the same priors and supplied 

association z-scores. We considered GWAS and QTL signals were considered to be 

significantly colocalized when the posterior probability of colocalization was greater than 

0.8 (‘PP.H4.abf’ > 0.8).

Allele-specific accessibility analysis

For significant caQTLs that colocalized with T1D-associated variants, we tested for allele-

specific accessibility of the caQTL peak. First, we identified individuals heterozygous for 

T1D credible variants overlapping the caQTL peak. Within each heterozygous individual, 

we then counted the number of reads overlapping the variant position containing the 

reference or alternative allele. We only performed this analysis if the T1D credible variant 

overlapping the caQTL peak was directly genotyped on the ImmunoChip, since uncertainty 
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in the heterozygous status of an individual could lead to biased results. For peaks with at 

least 5 participants who had at least 5 reads overlapping the peak, we formally tested 

whether the proportion of reads containing an alternative allele significantly deviated from 

the expected null hypothesis proportion of 0.5. We calculated P-values for deviation from 

“allelic balance” (proportion = 0.5 for each read) by fitting a generalized linear mixed model 

where the dependent variable is the number of reads and follows a Poisson distribution and 

the independent variables include a fixed effect for the allele and a random effect for the 

participant.

EMSA supershift assay

Jurkat cell line (E6-1) was purchased from ATCC and grown in Roswell Park Memorial 

Institute, RPMI (RPMI-1640; Gibco) supplemented with 10% fetal bovine serum, 1% 

penicillin-streptomycin, 1% sodium pyruvate), at 37 °C and 5% CO2.

Labeled (5’ IRDye 700) and unlabeled 31-bp, single-stranded oligonucleotides containing 

rs72928038 were obtained from Integrated DNA Technologies (Reference Allele strand: 

5’AGGGACGGATTTCCTGTAAGCTGATCTTGAA 3’ and Alternative Allele strand: 5’ 

AGGGACGGATTTCCTATAAGCTGATCTTGAA 3’) along with complementary 

oligonucleotides. Double-stranded oligonucleotides were generated by annealing equal 

amount of labeled or unlabeled complementary oligonucleotides at 95 °C for 5 min, 

followed by gradual cooling with a ramp rate of -1.2 °C/min for 1 h (Bio-Rad C1000 Touch 

Thermal Cycler). Nuclear extract from Jurkat cells was obtained by following the 

manufacturer’s protocol for NE-PER™ Nuclear and Cytoplasmic Extraction Reagents kit 

(Thermo Scientific) and the extracted nuclear protein was dialyzed with Slide-A-Lyzer MINI 

Dialysis Units, 10,000 MWCO (Thermo Scientific) against a 1 L buffer (10 mM Tris, pH 

7.5, 50 mM KCl, 200 mM NaCl, 1 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 

and 10% glycerol) for 16 h at 4 °C with slow stirring.

Binding reaction for the EMSA was carried out using 2 μL 10X binding buffer (100 mM 

Tris, 500 mM KCl, 10 mM DTT; pH 7.5), 2 μL 25 mM DTT (2.5% Tween 20), 1 μL Poly 

(dI-dC) (1 μg/μL in 10 mM Tris, 1 mM EDTA; pH 7.5), 1 μL 1% NP-40, 100 mM MgCl2, 

20 fmol IRDye double-stranded oligonucleotide probe, and 16 μg Jurkat nuclear extract in a 

final volume of 20 μL. For supershift lanes, tested transcription-factor-binding antibodies 

(ETS-1 Rabbit mAb and Stat1 Rabbit mAb) were diluted 1:50 with ddH2O. Negative control 

Rabbit IgG was diluted to the same concentration as tested antibody. 1 μL of diluted 

antibody was added to the binding reaction mixture while maintaining a total volume of 20 

ul. Binding reaction was incubated for 20 min at room temperature, after which 2 μL of 10X 

Orange Loading Dye was added. Electrophoresis was performed with binding reaction 

mixture on a pre-run 6% DNA retardation gel for 70 min at 70 V. To capture the image, the 

gel was placed directly on the Odyssey-CLx (Licor) scan bed. The gel was scanned with a 

thickness of 0.5 mm at 700 nm channel. The EMSA binding condition for rs72928038 was 

repeated three times to ensure reproducibility of the experiment.
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Priority Index (Pi)

To prioritize drug targets implicated by T1D genetic associations, we ran the Prioritiy Index 

(Pi) algorithm, as implemented in the R package Pi46. Data used to identify eQTL 

colocalization (eGenes) included those from the initial publication (unstimulated 

monocytes94, n = 414; LPS-stimulated monocytes after 2 hours94, n = 261; LPS-stimulated 

monocytes after 24 hours94, n = 322; interferon-gamma-stimulated monocytes after 24 

hours94, n = 367; unstimulated B cells95, n = 286; unstimulated NK cells (unpublished), n = 

245; unstimulated neutrophils96, n = 114; unstimulated CD4+ T cells97, n = 293; 

unstimulated CD8+ T cells97, n = 283; and whole blood98, n = 5,311), as well as a larger 

whole blood study (n = 31,684)42. Hi-C data from monocytes, fetal thymus, naïve CD4+ T 

cells, total CD4+ T cells, activated total CD4+ T cells, non-activated total CD4+ T cells, 

naïve CD8+ T cells, total CD8+ T cells, naïve B cells, and total B cells43 were used to 

identify genes interacting with index variants (cGenes). Data used to define functional genes 

(fGenes, pGenes and dGenes) were those used in the initial publication. The STRING 

database99 was used to define protein-protein interaction networks, where confidence scores 

≥ 700 were considered.

Statistical analyses

Unless otherwise noted, all statistical analysis and data visualization was performed using R 

version 3.6100. All statistical tests based on symmetrically distributed test statistics were 

two-sided. No repeated measures data were analyzed in this study. All genotyped and 

ATAC-seq samples analyzed in association tests represent distinct individuals. The R 

packages ggplot2, cowplot, ggbio, GenomicRanges, gridExtra, RColorBrewer, and 

rtracklayer were used for data visualization.
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Extended Data

Extended Data Figure 1. 
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Extended Data Figure 2. 

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code availability

Code used to generate the results presented in this paper is available at https://github.com/

ccrobertson/t1d-immunochip-2020. Pipelines for processing ATAC-seq data are available at 

https://github.com/dfloresDIL/MEGA and http://pepatac.databio.org.

Data Availability

All univariable summary statistics for genotype association with T1D (including imputed 

variants) are available through the NHGRI-EBI GWAS Catalog (GCST90013445 and 

GCST90013446). Chromatin accessibility QTL summary statistics are available through the 

Type 1 Diabetes Knowledge Portal (https://t1d.hugeamp.org).

Publicly available ATAC-seq

Raw FASTQ files were obtained from Gene Expression Omnibus (GEO) accession number 

GSE118189. These data included four individuals and 25 immune cell types under resting 

conditions and after stimulation with anti-human CD3/CD28 dynabeads and human IL-2 

(for 24 hours, T lymphocytes), F(ab)’2 anti-human IgG/IgM38 and human IL-4 (for 24 
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hours, B lymphocytes), human IL-2 (for 48 hours, NK cells), or LPS (for 6 hours, 

monocytes)37.

ATAC-seq data from pancreatic islets of five donors without glucose intolerance and five 

EndoCβH1 cell line replicates, under resting conditions and after stimulation with IFN-γ 
and IL-1β for 48 hours were downloaded from GEO, accession number GSE12340435.

ATAC-seq data from cardiac fibroblasts (two fetal and three adult) were downloaded from 

the European Nucleotide Archive (https://www.ebi.ac.uk/ena/data/view/SRX2843570 and 

https://www.ebi.ac.uk/ena/data/view/SRX2843571), as a control cell type that we did not 

expect to be involved in the etiology of T1D40.

Epigenome annotation tracks, chromHMM101 tracks from diverse primary human cells were 

obtained from the NIH Epigenome Roadmap, http://dcc.blueprint-epigenome.eu/#/md/

secondary_analysis/Segmentation_of_ChIP-Seq_data_20140811 and additional immune-

specific human primary and cell lines from the Blueprint consortium, https://egg2.wustl.edu/

roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/

final.

Whole blood eQTL summary statistics

Summary statistics from whole blood cis eQTL analysis from 31,683 individuals42 were 

downloaded from https://eqtlgen.org.

Additional databases used in the Priority Index (Pi) drug target prioritization analysis were 

obtained through the relational database provided in the R package Pi (http://

pi.well.ox.ac.uk:3010/download).

References

1. Barrett JC, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk 
of type 1 diabetes. Nat Genet. 2009; 41:703–707. [PubMed: 19430480] 

2. Todd JA, et al. Robust associations of four new chromosome regions from genome-wide analyses of 
type 1 diabetes. Nat Genet. 2007; 39:857–864. [PubMed: 17554260] 

3. Onengut-Gumuscu S, et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for 
colocalization of causal variants with lymphoid gene enhancers. Nat Genet. 2015; 47:381–386. 
[PubMed: 25751624] 

4. Inshaw JRJ, Walker NM, Wallace C, Bottolo L, Todd JA. The chromosome 6q22.33 region is 
associated with age at diagnosis of type 1 diabetes and disease risk in those diagnosed under 5 years 
of age. Diabetologia. 2018; 61:147–157. [PubMed: 28983737] 

5. Fortune MD, et al. Statistical colocalization of genetic risk variants for related autoimmune diseases 
in the context of common controls. Nat Genet. 2015; 47:839–846. [PubMed: 26053495] 

6. Evangelou M, et al. A Method for gene-based pathway analysis using genomewide association study 
summary statistics reveals nine new type 1 diabetes associations. Genet Epidemiol. 2014; 38:661–
670. [PubMed: 25371288] 

7. Rewers M, Ludvigsson J. Environmental risk factors for type 1 diabetes. Lancet. 2016; 387:2340–
2348. [PubMed: 27302273] 

8. Sharp SA, et al. Development and standardization of an improved type 1 diabetes genetic risk score 
for use in newborn screening and incident diagnosis. Diabetes Care. 2019; 42:200–207. [PubMed: 
30655379] 

Robertson et al. Page 24

Nat Genet. Author manuscript; available in PMC 2021 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://www.ebi.ac.uk/ena/data/view/SRX2843570
https://www.ebi.ac.uk/ena/data/view/SRX2843571
http://dcc.blueprint-epigenome.eu/#/md/secondary_analysis/Segmentation_of_ChIP-Seq_data_20140811
http://dcc.blueprint-epigenome.eu/#/md/secondary_analysis/Segmentation_of_ChIP-Seq_data_20140811
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final
https://eqtlgen.org
http://pi.well.ox.ac.uk:3010/download
http://pi.well.ox.ac.uk:3010/download


9. Krischer JP, et al. Predicting islet cell autoimmunity and type 1 diabetes: an 8-year TEDDY Study 
progress report. Diabetes Care. 2019; 42:1051–1060. [PubMed: 30967432] 

10. Onengut-Gumuscu S, et al. Type 1 diabetes risk in African-ancestry participants and utility of an 
ancestry-specific genetic risk score. Diabetes Care. 2019; 42:406–415. [PubMed: 30659077] 

11. Skyler JS. Hope vs hype: where are we in type 1 diabetes? Diabetologia. 2018; 61:509–516. 
[PubMed: 29275427] 

12. Herold KC, et al. An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes. N Engl 
J Med. 2020; 381:603–613.

13. King EA, Davis JW, Degner JF. Are drug targets with genetic support twice as likely to be 
approved? Revised estimates of the impact of genetic support for drug mechanisms on the 
probability of drug approval. PLoS Genet. 2019; 15 e1008489 [PubMed: 31830040] 

14. Nelson MR, et al. The support of human genetic evidence for approved drug indications. Nat 
Genet. 2015; 47:856–860. [PubMed: 26121088] 

15. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of 
seven common diseases and 3,000 shared controls. Nature. 2007; 447:661–678. [PubMed: 
17554300] 

16. Cooper JD, et al. Meta-analysis of genome-wide association study data identifies additional type 1 
diabetes risk loci. Nat Genet. 2008; 40:1399–1401. [PubMed: 18978792] 

17. Hakonarson H, et al. A novel susceptibility locus for type 1 diabetes on Chr12q13 identified by a 
genome-wide association study. Diabetes. 2008; 57:1143–1146. [PubMed: 18198356] 

18. Grant SFA, et al. Follow-up analysis of genome-wide association data identifies novel loci for type 
1 diabetes. Diabetes. 2009; 58:290–295. [PubMed: 18840781] 

19. Bradfield JP, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple 
associated loci. PLoS Genet. 2011; 7 e1002293 [PubMed: 21980299] 

20. Huang J, Ellinghaus D, Franke A, Howie B, Li Y. 1000 Genomes-based imputation identifies novel 
and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data. Eur J 
Hum Genet. 2012; 20:801–805. [PubMed: 22293688] 

21. Zhu M, et al. Identification of novel T1D risk loci and their association with age and islet function 
at diagnosis in autoantibody-positive T1D individuals: based on a two-stage genome-wide 
association study. Diabetes Care. 2019; 42:1414–1421. [PubMed: 31152121] 

22. Divers J, et al. Trends in incidence of type 1 and type 2 diabetes among youths — selected counties 
and Indian reservations, United States,2002-2015. Morb Mortal Wkly Rep. 2020; 69:161–165.

23. Taliun D, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. 
Nature. 2021; 590:290–299. [PubMed: 33568819] 

24. Cortes A, et al. Promise and pitfalls of the Immunochip. Arthritis Res Ther. 2011; 13:101. 
[PubMed: 21345260] 

25. Ferreira RC, et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and 
influences risk of diverse inflammatory diseases. PLoS Genet. 2013; 9 e1003444 [PubMed: 
23593036] 

26. Okada Y, Wu D, Trynka G, Towfique R. Genetics of rheumatoid arthritis contributes to biology and 
drug discovery. Nature. 2014; 506:376–381. [PubMed: 24390342] 

27. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under 
depencency. AnN Stat. 2001; 29:1165–1188.

28. Crouch DJM, et al. Enhanced genetic analysis of type 1 diabetes by selecting variants on both 
effect size and significance, and by integration with autoimmune thyroid disease. bioRxiv. 2021; 
doi: 10.1101/2021.02.05.429962

29. Wallace C, et al. Dissection of a complex disease susceptibility region using a Bayesian stochastic 
search approach to fine mapping. PLoS Genet. 2015; 11 e1005272 [PubMed: 26106896] 

30. Asimit JL, et al. Stochastic search and joint fine-mapping increases accuracy and identifies 
previously unreported associations in immune-mediated diseases. Nat Commun. 2019; 10 3216 
[PubMed: 31324808] 

31. Wojcik GL, et al. Genetic analyses of diverse populations improves discovery for complex traits. 
Nature. 2019; 570:514–518. [PubMed: 31217584] 

Robertson et al. Page 25

Nat Genet. Author manuscript; available in PMC 2021 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



32. Kichaev G, Pasaniuc B. Leveraging functional-annotation data in trans-ethnic fine-mapping 
studies. Am J Hum Genet. 2015; 97:260–271. [PubMed: 26189819] 

33. Boyle AP, et al. Annotation of functional variation in personal genomes using RegulomeDB. 
Genome Res. 2012; 22:1790–1797. [PubMed: 22955989] 

34. Lizio M, et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome 
Biol. 2015; 16:22. [PubMed: 25723102] 

35. Ramos-rodríguez M, et al. The impact of proinflammatory cytokines on the beta-cell regulatory 
landscape provides insights into the genetics of type 1 diabetes. Nat Genet. 2019; 51:1588–1595. 
[PubMed: 31676868] 

36. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, 
regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016; 
44:877–881.

37. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: A method for assaying chromatin 
accessibility genome-wide. Curr Protoc Mol Biol. 2015; 109:21.29.1–21.29.9.

38. Calderon D, et al. Landscape of stimulation-responsive chromatin across diverse human immune 
cells. Nat Genet. 2019; 51:1494–1505. [PubMed: 31570894] 

39. Varshney A, et al. Genetic regulatory signatures underlying islet gene expression and type 2 
diabetes. Proc Natl Acad Sci USA. 2017; 114:2301–2306. [PubMed: 28193859] 

40. Jonsson MKB, et al. A Transcriptomic and epigenomic comparison of fetal and adult human 
cardiac fibroblasts reveals novel key transcription factors in adult cardiac fibroblasts. JACC Basic 
to Transl Sci. 2016; 1:590–602.

41. Giambartolomei C, et al. Bayesian test for colocalisation between pairs of genetic association 
studies using summary statistics. PLoS Genet. 2014; 10 e1004383 [PubMed: 24830394] 

42. Võsa U, et al. Unraveling the polygenic architecture of complex traits using blood eQTL meta-
analysis. bioRxiv. 2018; doi: 10.1101/447367/

43. Javierre BM, et al. Lineage-specific genome architecture links enhancers and non-coding disease 
variants to target gene promoters. Cell. 2016; 167:1369–1384. [PubMed: 27863249] 

44. Schmiedel BJ, et al. Impact of genetic polymorphisms on human immune cell gene expression. 
Cell. 2018; 175:1701–1715. [PubMed: 30449622] 

45. Westra HJ, et al. Fine-mapping and functional studies highlight potential causal variants for 
rheumatoid arthritis and type 1 diabetes. Nat Genet. 2018; 50:1366–1374. [PubMed: 30224649] 

46. Fang H, et al. A genetics-led approach defines the drug target landscape of 30 immune-related 
traits. Nat Genet. 2019; 51:1082–1091. [PubMed: 31253980] 

47. Chun S, et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune-
disease-associated loci in three major immune-cell types. Nat Genet. 2017; 49:600–605. [PubMed: 
28218759] 

48. Hukku A, et al. Probabilistic colocalization of genetic variants from complex and molecular traits: 
promise and limitations. Am J Hum Genet. 2021; 108:25–35. [PubMed: 33308443] 

49. Chiou J, et al. Large-scale genetic association and single cell accessible chromatin mapping defines 
cell type-specific mechanisms of type 1 diabetes risk. bioRxiv. 2021; doi: 
10.1101/2021.01.13.426472

50. Benaglio P, et al. Mapping genetic effects on cell type-specific chromatin accessibility and 
annotating complex trait variants using single nucleus ATAC-seq. bioRxiv. 2020; doi: 
10.1101/2020.12.03.387894

51. Kundu K, et al. Genetic associations at regulatory phenotypes improve fine-mapping of causal 
variants for twelve immune-mediated diseases. bioRxiv. 2020; doi: 10.1101/2020.01.15.907436

52. Danko CG, et al. Dynamic evolution of regulatory element ensembles in primate CD4+ T cells. Nat 
Ecol Evol. 2018; 2:537–548. [PubMed: 29379187] 

53. Tsukumo S, et al. Bach2 maintains T cells in a naive state by suppressing effector memory-related 
genes. Proc Natl Acad Sci USA. 2013; 110:10735–10740. [PubMed: 23754397] 

54. Roychoudhuri R, et al. BACH2 regulates CD8+ T cell differentiation by controlling access of AP-1 
factors to enhancers. Nat Immunol. 2016; 17:851–860. [PubMed: 27158840] 

Robertson et al. Page 26

Nat Genet. Author manuscript; available in PMC 2021 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



55. Afzali B, et al. BACH2 immunodeficiency illustrates an association between super-enhancers and 
haploinsufficiency. Nat Immunol. 2017; 18:813–823. [PubMed: 28530713] 

56. Cotsapas C, et al. Pervasive sharing of genetic effects in autoimmune disease. PLoS Genet. 2011; 7 
e1002254 [PubMed: 21852963] 

57. Faegan BG, et al. Risankizumab in patients with moderate to severe Crohn’s disease: an open-label 
extension study. Lancet Gastroenterol Hepatol. 2018; 3:671–680. [PubMed: 30056030] 

58. Fotiadou C, Lazaridou E, Sotiriou E, Ioannides D. Targeting IL-23 in psoriasis: current 
perspectives. Psoriasis Targets Ther. 2018; 8:1–5.

59. Wollenhaupt J, et al. Safety and efficacy of tofacitinib for up to 9.5 years in the treatment of 
rheumatoid arthritis: final results of a global, open-label, long-term extension study. Arthritis Res 
Ther. 2019; 21:89. [PubMed: 30953540] 

60. Sandborn WJ, et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl 
J Med. 2017; 376:1723–1736. [PubMed: 28467869] 

61. Gaglia J, Kissler S. Anti-CD3 antibody for the prevention of type 1 diabetes: a story of 
perseverance. Biochemistry. 2019; 58:4107–4111. [PubMed: 31523950] 

62. Aylward A, Chiou J, Okino M-L, Kadakia N, Gaulton KJ. Shared genetic risk contributes to type 1 
and type 2 diabetes etiology. Hum Mol Genet. 2018; doi: 10.1093/hmg/ddy314

63. Dooley J, et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. 
Nat Genet. 2016; 48:519–527. [PubMed: 26998692] 

64. Manichaikul A, et al. Robust relationship inference in genome-wide association studies. 
Bioinformatics. 2010; 26:2867–2873. [PubMed: 20926424] 

65. Price AL, et al. Long-Range LD can confound genome scans in admixed populations. Am J Hum 
Genet. 2008; 83:127–147. [PubMed: 18606302] 

66. Chang CC, et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. 
Gigascience. 2015; 4:7. [PubMed: 25722852] 

67. Marchini J, Howie B. Genotype imputation for genome-wide association studies. Nat Rev Genet. 
2010; 11:499–511. [PubMed: 20517342] 

68. Willer CJ, Li Y, Abecasis GR. METAL: Fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics. 2010; 26:2190–2191. [PubMed: 20616382] 

69. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin 
gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993; 52:506–
516. [PubMed: 8447318] 

70. Taub MA, Schwender H, Beaty TH, Louis TA, Ruczinski I. Incorporating genotype uncertainties 
into the genotypic TDT for main effects and gene-environment interactions. Genet Epidemiol. 
2012; 36:225–234. [PubMed: 22678881] 

71. Kazeem GR, Farrall M. Integrating case-control and TDT studies. AnN Hum Genet. 2005; 69:329–
335. [PubMed: 15845037] 

72. Asimit JL, et al. Stochastic search and joint fine-mapping increases accuracy and identifies 
previously unreported associations in immune-mediated diseases. Nat Commun. 2019; 10:3216. 
[PubMed: 31324808] 

73. Bottolo L, Richardson S. Evolutionary stochastic search for bayesian model exploration. Bayesian 
Anal. 2010; 5:583–618.

74. Benner C, et al. Prospects of fine-mapping trait-associated genomic regions by using summary 
statistics from genome-wide association studies. Am J Hum Genet. 2017; 101:539–551. [PubMed: 
28942963] 

75. Excoffier L, Slatkin M. Maximum-likelihood estimation of molecular haplotype frequencies in a 
diploid population. Mol Biol Evol. 1995; 12:921–927. [PubMed: 7476138] 

76. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-
throughput sequencing data. Nucleic Acids Res. 2010; 38 e164 [PubMed: 20601685] 

77. Burren OS, et al. Chromosome contacts in activated T cells identify autoimmune disease candidate 
genes. Genome Biol. 2017; 18:165. [PubMed: 28870212] 

78. Corces MR, et al. An improved ATAC-seq protocol reduces background and enables interrogation 
of frozen tissues. Nat Methods. 2017; 14:959–962. [PubMed: 28846090] 

Robertson et al. Page 27

Nat Genet. Author manuscript; available in PMC 2021 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



79. Harrow J, et al. GENCODE: The reference human genome annotation for The ENCODE Project. 
Genome Res. 2012; 22:1760–1774. [PubMed: 22955987] 

80. Li H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics. 2018; 34:3094–
3100. [PubMed: 29750242] 

81. Gaspar JM. Improved peak-calling with MACS2. bioRxiv. 2018; doi: 10.1101/496521

82. Li Q, Brown JB, Huang H, Bickel PJ. Measuring reproducibility of high-throughput experiments. 
AnN Appl Stat. 2011; 5:1752–1779.

83. Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for assigning 
sequence reads to genomic features. Bioinformatics. 2014; 30:923–930. [PubMed: 24227677] 

84. Trynka G, et al. Disentangling the effects of colocalizing genomic annotations to functionally 
prioritize non-coding variants within complex-trait loci. Am J Hum Genet. 2015; 97:139–152. 
[PubMed: 26140449] 

85. Smith JP, et al. PEPATAC: An optimized ATAC-seq pipeline with serial alignments. bioRxiv. 2020; 
doi: 10.1101/2020.10.21.347054

86. Jiang H, Lei R, Ding S, Zhu S. Skewer: a fast and accurate adapter trimmer for next-generation 
sequencing paired-end reads. BMC Bioinformatics. 2014; 15:182. [PubMed: 24925680] 

87. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9:357–
359. [PubMed: 22388286] 

88. Neph S, et al. BEDOPS: high-performance genomic feature operations. Bioinformatics. 2012; 
28:1919–1920. [PubMed: 22576172] 

89. Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics. 2010; 26:139–140. [PubMed: 
19910308] 

90. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of 
RNA-seq data. Genome Biol. 2010; 11 R25 [PubMed: 20196867] 

91. Fort A, et al. MBV: a method to solve sample mislabeling and detect technical bias in large 
combined genotype and sequencing assay datasets. Bioinformatics. 2017; 33:1895–1897. 
[PubMed: 28186259] 

92. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 
2012; 28:1353–1358. [PubMed: 22492648] 

93. Liu B, Gloudemans MJ, Rao AS, Ingelsson E, Montgomery SB. Abundant associations with gene 
expression complicate GWAS follow-up. Nat Genet. 2019; 51:768–769. [PubMed: 31043754] 

94. Fairfax BP, et al. Innate immune activity conditions the effect of regulatory variants upon monocyte 
gene expression. Science. 2014; 343 1246949 [PubMed: 24604202] 

95. Fairfax BP, et al. Genetics of gene expression in primary immune cells identifies cell type-specific 
master regulators and roles of HLA alleles. Nat Genet. 2012; 44:502–510. [PubMed: 22446964] 

96. Andiappan AK, et al. Genome-wide analysis of the genetic regulation of gene expression in human 
neutrophils. Nat Commun. 2015; 6 7971 [PubMed: 26259071] 

97. Kasela S, et al. Pathogenic implications for autoimmune mechanisms derived by comparative 
eQTL analysis of CD4+ versus CD8+ T cells. PLoS Genet. 2017; 13 e1006643 [PubMed: 
28248954] 

98. Westra H, et al. Systematic identification of trans eQTLs as putative drivers of known disease 
associations. Nat Genet. 2013; 45:1238–1243. [PubMed: 24013639] 

99. Szklarczyk D, et al. The STRING database in 2017: quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res. 2017; 45:D362–D368. [PubMed: 
27924014] 

100. R Core Team. R Foundation for Statistical Computing. R: A language and environment for 
computingVienna, Austria: 2020. URLhttps://www.R-project.org/

101. Ernst J, Kellis M. Chromatin-state discovery and genome annotation with ChromHMM. Nat 
Protoc. 2017; 12:2478–2492. [PubMed: 29120462] 

Robertson et al. Page 28

Nat Genet. Author manuscript; available in PMC 2021 December 14.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://www.R-project.org/


Figure 1. Fine-mapping T1D regions using a Bayesian stochastic search algorithm.
a, Number of variants in GUESSFM-prioritized groups with group posterior probability > 

0.5. Candidate gene names and lead variants for each group are shown on the y-axis. b, 

Manhattan plot of the UBASH3A region from the EUR case-control analysis, highlighting 

the lead variant from the univariable analysis, rs11203203:G>A (grey), and the three 

variants prioritized using GUESSFM, rs9984852:T>C (blue), rs13048049:G>A (red) and 

rs7276555:T>C (green). c, Comparison of model AIC in the UBASH3A region for models 

fit using EUR cases and controls only, comparing combinations of alleles prioritized either 

in univariable (grey) or GUESSFM analyses (red, green and blue). d, Analysis of haplotypes 

associated with T1D in the UBASH3A region. The most common haplotype (H1: T-G-G-T 

for rs7276555-rs13048049-rs11203203-rs9984852) is presented on the far left; alternative 

haplotypes (H2-H6) are shown with white squares highlighting the differentiating alleles (C, 

A, A, or C, respectively). The frequency and effect estimates for association with T1D 

relative to the baseline haplotype (H1) are shown above the grid (the point and error bars 

represent the log odds ratio and 95% confidence interval of the log odds ratio, respectively); 

for example, the log odds ratio for T1D risk for haplotype H3 (T-G-A-T) relative to the 

baseline haplotype (H1) is close to zero and the 95% confidence interval crosses zero. 

Haplotype analyses were performed based on n = 33,601 unrelated EUR individuals (13,458 

T1D cases and 20,143 controls).
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Figure 2. Fine-mapping of the chromosome 4p15.2 region.
a, European (EUR, top panel) and African (AFR, middle panel) ancestry group association 

z-score statistics; posterior probabilities (bottom panel) from multi-ethnic fine-mapping of 

EUR and AFR using PAINTOR; z-scores are colored by linkage disequilibrium (LD) to the 

lead PAINTOR-prioritized variant. b, Overlay of T1D-credible variants with open chromatin 

ATAC-seq peaks in immune cells, with variants prioritized by PAINTOR (posterior 

probability > 0.1) highlighted with blue dashed lines. Normalized ATAC-seq read count 

shown for effector CD4+ T cells, B cells, and CD8+ T cells, under stimulated and non-

stimulated conditions.
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Figure 3. Functional annotation of T1D-associated variants in the BACH2 region.
a-c, Position of T1D credible variants (rs72928038:G>A and rs6908626:G>T) relative to 

introns and exons of BACH2 (a), chromHMM tracks across diverse immune cell types from 

the BLUEPRINT consortium (red, active promoter; orange, distal active promoter; dark 

green, transcription; light green, genic enhancer; yellow, enhancer; white, quiescent; light 

grey, Polycomb repressed; dark grey, repressed; blue, heterochromatin) (b), and interactions 

with the BACH2 promoter in published PCHi-C data from naïve CD4+ T cells43 (grey 

squares indicate boundaries of target (left) and bait (right)) (c). Chromatin coordinates and 
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scale are identical and aligned in figures a-c. d, Accessibility of regions overlapping 

rs72928038:G>A and rs6908626:G>T by genotype; peak accessibility is quantified as 

normalized transposase cut frequency (Online Methods); center line, median; box limits, 

upper and lower quartiles; whiskers, 1.5x interquartile range (n = 115 individuals). e, Allele-

specific accessibility of chromatin within heterozygous individuals at rs72928038:G>A (n = 

14 heterozygous individuals) and rs6908626:G>T (n = 15 heterozygous individuals). f, 
Chromatin accessibility profiles in the region overlapping rs72928038:G>A across resting 

and activated CD4+ and CD8+ T cells (published data38). Height of tracks represent 

transposase cut frequency; all tracks are plotted using the same vertical scale. g, 

LocusCompare plots showing colocalization between T1D association, the caQTL for 

chr6:90266766-90267715 (left), and the eQTL for BACH2 (right).
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Table 1

Regions of association with T1D, identified to genome-wide significance (P < 5 × 10-8) for 
the first time.

Of these 36 regions, 13 had a lead variant that was in strong linkage disequilibrium (r 2 > 0.95 in 1000 

Genomes Project European population) with variants that are associated with at least one related trait.

Chr
Position (bp)

†
Lead variant 

rsID A1 A2

Putative 
candidate 

gene*
AFEUR 
(A2)

OR** 

META P META

Traits with shared 
association***

1 63643100 rs2269241 T C PGM1 0.196 1.111 4.67 × 10-12

1 92358141 rs34090353 G C RPAP2 0.361 1.078 1.10 × 10-8

1 119895261 rs2641348 A G NOTCH2 0.107 1.113 1.61 × 10-8
Crohn’s disease, 
T2D

1 154465420 rs2229238 T C IL6R 0.813 0.896 1.38 × 10-12

1 172746562 rs78037977 A G FASLG 0.124 0.884 2.41 × 10-9
Asthma, vitiligo, 
allergic sensitization

1 192570207 rs2816313 G A RGS1 0.719 1.090 4.57 × 10-9

1 212796238 rs11120029 G T TATDN3 0.147 1.102 1.82 × 10-8

2 12512805 rs10169963 C T AC096559.1 0.580 1.074 2.78 × 10-8

2 100147438 rs12712067 G T AFF3 0.358 0.925 4.12 × 10-9

2 191105394 rs7582694 C G STAT4 0.773 0.916 2.83 × 10-9

SLE, 
hypothyroidism, 
celiac disease, RA

2 241468331 rs10933559 A G FARP2 0.208 1.109 2.39 × 10-11

4 973543 rs113881148 C A TMEM175 0.626 1.082 5.72 × 10-9 Body fat percentage

4 38602849 rs337637 G A KLF3 0.364 0.919 2.57 × 10-10
White blood cell 
count

5 40521603 rs1876142 G T PTGER4 0.658 0.905 2.18 × 10-14

5 56146422 rs10213692 T C
ANKRD55/

IL6ST 0.241 0.912 2.85 × 10-9
RA, Crohn’s 
disease, MS

6 424915 rs9405661 C A IRF4 0.514 1.080 2.26 × 10-9

6 137682468 rs12665429 T C TNFAIP3 0.370 0.907 1.36 × 10-13

6 159049210 rs212408 G T TAGAP 0.638 1.112 1.42 × 10-15
MS, Crohn’s 
disease, eczema

7 20557306 rs17143056 A G ABCB5 0.183 0.909 2.44 × 10-8

7 28102567 rs10245867 G T JAZF1 0.331 0.928 3.15 × 10-8

Eczema, hay fever, 
MS, SLE, monocyte 
percentage

8 11877675 rs2250903 G T CTSB 0.283 0.905 1.35 × 10-10

9 99823263 rs1405209 T C NR4A3 0.375 1.075 3.45 × 10-8

10 33137219 rs722988 T C NRP1 0.367 1.108 3.21 × 10-15

11 35267496 rs11033048 C T SLC1A2 0.366 1.091 1.53 × 10-10 Vitiligo

11 60961822 rs79538630 G T CD5/CD6 0.035 1.213 1.14 × 10-9

11 61828092 rs968567 C T FADS2 0.177 0.903 8.42 × 10-9
RA, neutrophil 
percentage
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Chr
Position (bp)

†
Lead variant 

rsID A1 A2

Putative 
candidate 

gene*
AFEUR 
(A2)

OR** 

META P META

Traits with shared 
association***

11 64367826 rs645078 A C CCDC88B 0.385 0.925 3.34 × 10-9

11 128734337 rs605093 G T FLI1 0.470 1.077 4.25 × 10-9

12 8942630 rs1805731 T C M6PR 0.389 1.073 4.16 × 10-8 Eosinophil count

12 53077434 rs7313065 C A ITGB7 0.162 1.101 3.28 × 10-9

13 42343795 rs74537115 C T AKAP11 0.141 1.109 5.41 × 10-9

14 68286876 rs911263 C T RAD51B 0.710 1.083 1.69 × 10-8 PBC, SLE, RA

16 20331769 rs4238595 T C UMOD 0.687 0.912 2.43 × 10-11

17 45996523 rs1052553 A G MAPT 0.232 0.879 1.65 × 10-15 Parkinson’s disease

17 47956725 rs2597169 A G PRR15L 0.348 1.081 3.35 × 10-9

21 44204668 rs56178904 C T ICOSLG 0.187 0.898 6.48 × 10-11

†
Genome build 38

*
Closest gene or gene with mechanistic support from the literature.

**
Additive odds ratio for the addition of an A2 allele.

***
Related traits (https://genetics.opentargets.org) where the lead variant is in strong LD (r 2 > 0.95 in 1000 Genomes Project European 

population) with T1D lead variant.

RA, rheumatoid arthritis; T2D, type 2 diabetes; SLE, systemic lupus erythematosus; MS, multiple sclerosis; IBD, inflammatory bowel disease; 
PBC, primary biliary cholangitis; AF, allele frequency; OR, odds ratio.
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Table 2

T1D-associations colocalizing with caQTLs in CD4+ T cells.

Five regions show colocalization between T1D and a caQTL with a colocalization posterior probability > 0.8. 

In all of these regions, at least one T1D credible variant overlaps the caQTL peak itself. In four regions, the 

T1D association also colocalizes with an eQTL for expression of one or more genes in whole blood.

T1D lead variant*
BetaT1D 

**
Peak

T1D-
credible 

variants in 
peak

caQTL lead variant*
BetacaQTL 

**
P 

caQTL
PP

Whole 
blood cis-
eQTLs***

rs71624119 
(chr5:56144903:G:A)

-0.099 chr5:56147972-56149111 rs7731626 rs7731626 
(chr5:56148856:G:A)

-0.5 2.4 × 
10-9

0.97
ANKRD55 

(z = -58; 
PP = 0.98)
IL6ST (z = 

-10; PP = 
0.98)

rs72928038 
(chr6:90267049:G:A)

0.172 chr6:90266766-90267747 rs72928038 rs72928038 
(chr6:90267049:G:A)

-1.0 3.9 × 
10-16

1.00 BACH2 (z 
= -21; PP 

= 1)

rs2027299 
(chr6:126364681:G:C)

0.147 chr6:126339725-126340580 rs9388486 rs1361262 
(chr6:126380821:T:C)

-0.4 2.0 × 
10-16

0.87 CENPW (z 
= -9.8; PP 

= 0.82)

rs61555617
† 

(chr12:56047884:TA:T)

0.257 chr12:56041256-56042638 rs705704
rs705705

rs705704 
(chr12:56041628:G:A)

-0.2 1.1 × 
10-15

0.97 GDF11 (z 

= -7.5
††

; 
PP = 0.97)

rs4900384 
(chr14:98032614:A:G)

0.118 chr14:98018322-98019163 rs11628807
rs4383076
rs11628876
rs11160429

rs11628807 
(chr14:98018774:T:G)

0.7 1.8 × 
10-21

0.95 -

*
T1D lead variant is the most associated variant in the credible set, as defined by fine mapping (Supplementary Table 11); caQTL lead variant is 

the most associated variant with chromatin accessibility at the peak of interest. Variants are provided as rsid 
(chromosome:hg38_position:reference:alternative).

**
BetaT1D refers to the effect size for the alternative allele of the T1D lead variant; BetacaQTL refers to the effect size for the alternative allele of 

the caQTL lead variant.

***
Whole blood cis-eQTL statistics from eQTLGen for the T1D lead variant and colocalization with the T1D association.

†
rs61555617 is referred to as rs796916887 in supplementary tables

††
 cis-eQTL statistics for rs61555617 are missing in eQTLGen; the reported GDF11 cis-eQTL z-score is for the highly correlated variant 

rs705704.

PP, posterior probability of colocalization between the QTL (eQTL or caQTL) and the T1D association (referred to in coloc documentation as 
“PP.H4.abf”); caQTL, chromatin accessibility quantitative trait locus; eQTL, expression quantitative trait locus.
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