
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Increasing the Robustness of Deep Learning Models Using Generative Networks

Permalink
https://escholarship.org/uc/item/6938t87d

Author
Theagarajan, Rajkumar

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6938t87d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Increasing the Robustness of Deep Learning Models using Generative Networks

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Rajkumar Theagarajan

June 2020

Dissertation Committee:

Dr. Bir Bhanu, Chairperson
Dr. Yingbo Hua
Dr. Matthew Barth

Copyright by
Rajkumar Theagarajan

2020

The Dissertation of Rajkumar Theagarajan is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I thank my dissertation chair, Dr. Bir Bhanu, who never gives up on motivating me to

finish my degree. I would like to thank Dr. Yingbo Hua and Dr. Matthew Barth for

being my committee members on my dissertation defense. I would also want to thank

Dr. Salman Asif, Dr. Aaron Seitz and Dr. Ertem Tuncel for conferring my doctoral

candidacy. I am grateful for the friends/colleagues who were part of my graduate life:

Adam Witmer, Alex Woonggi Shin, Ankit Jain Rakesh Kumar, Asong Tambo, Hengyue

Liu, Runze Li, Saisri Padmaja Jonnalagedda, Vincent On and Xiu Zhang. I also want to

thank Dr. Ninad S. Thakoor, Dr. Federico Pala, Dr. Jing Zhang, and Dr. Ming Chen

for their discussions as well as their support on my publications. I am extremely grateful

to Benjamin X. Guan, Ashwini Shandilya, Eric Ebert and Don Ebert for helping us in

collecting the data for the projects. My research was supported by NSF Grant 1552454 and

191197, ONR grant N00014-12-1-1026 and a gift from SEVAai. Inc. This dissertation was

compiled from “DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving

the classification of hESC”, “An Automated System for Generating Tactical Performance

Statistics for Individual Soccer Players from Videos”, and “ShieldNets: Defending Against

Adversarial Attacks Using Probabilistic Adversarial Robustness” by R. Theagarajan et

al. c© 2019, 2020 the IEEE.

iv

To my mother Manimekalai Theagarajan, I thank you for your support and

understanding on my pursuit for higher education without her help, I would not

have been here. I also thank both of my uncles Dr. Mathiazhagan Chakrawarthy,

and Dr. Anbazhagan Chakrawarthy, for their encouragement and Meghan H. Keiser

for all her love and support.

v

ABSTRACT OF THE DISSERTATION

Increasing the Robustness of Deep Learning Models using Generative Networks

by

Rajkumar Theagarajan

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2020

Dr. Bir Bhanu, Chairperson

Over the past few years deep learning has demonstrated impressive performance

on many important practical problems such as image, video, and audio classification. This

work develops three novel applications for automated stem cell classification, automated

sports analytics, and a novel framework for defending deep learning models from white and

black box adversarial attacks. In the field of stem cell classification, it is very expensive and

time consuming to generate data which is very intrusive and not easy to obtain. This work

leverages an ensemble of generative networks to create a large dataset of synthetic human

embryonic stem cell (hESC) images which are exclusively used for training deep learning

classifiers. In order to verify that the data distribution of the synthetic images is similar to

that of the real-world images, the quality of the synthetic images are validated at a pixel

level and high dimensional feature level with respect to the real-world data. Experimental

results show that the classifiers trained on the synthetic dataset are able to achieve high

performance when evaluated on real-world data and can be used as a tool for annotating

more data saving hours of manual labor.

In the field of automated sports analytics, it is very important to analyze every

minute detail in order to generate reliable statistics for every individual player. This work

develops a novel framework for automatically generating the tactical statistics of soccer

vi

players directly from a video. The proposed approach empirically shows that high-level

features learned from specific soccer matches do not necessarily generalize across all soccer

matches and it is not feasible to obtain datasets for every single match. To solve this,

the proposed approach develops a match-specific application that uses previously recorded

videos of teams to learn fine-grained features that can generalize across other matches

played by the same respective teams. Although generative networks have had huge success

in augmenting existing datasets which improve the performance of deep learning classifiers,

this work shows that they often overlook minute details when generating new data which is

very important in sports analytics and can cause the performance of the classifiers to drop.

This work proposes a novel generative architecture that learns to generate synthetic images

with fine-grained structures which further improves our system to generate accurate tactical

statistics for the players. Various ablation studies are performed to show the improvement

in performance and significance of the results across different soccer matches.

Despite their outstanding performance, these models are vulnerable to adversar-

ial manipulation of their input which could lead to poor performance. These adversarial

manipulations are carefully crafted perturbations that are so subtle that a human observer

does not even notice the modification at all, but can cause deep learning models to predict

incorrect results. In order to address this vulnerability, this work proposes a novel white box

defense algorithm that uses generative networks with Probabilistic Adversarial Robustness

to neutralize adversarial examples by concentrating the sample probability to adversarial-

free zones. Although, our proposed defense achieves state-of-the-art classification accuracy,

this is not a reliable metric to determine if an image is “adversarial-free”. This is a foun-

dational problem for online image verification applications where the ground-truth of the

input image is not known and hence we cannot validate the performance of the classifier

or know if the image is ”adversarial-free” or not. To address this problem, this work pro-

poses a novel framework that uses an ensemble of individual defenses whose performance

vii

is continuously validated in a loop using Bayesian uncertainties and does not require any

information about the black box classifier such as its architecture, parameters, or training

dataset. Unlike existing defense mechanisms that requires knowing the ground-truth of

the input data and modifying/re-training the black box classifier which is not feasible in

online applications, our defense is designed in the first place to provide proactive protec-

tion to any existing deep learning based model. Evaluation on various public benchmark

datasets including autonomous driving and face biometrics datasets shows that our defense

can consistently detect adversarial examples and purify them against a variety of attacks

with different ranges of perturbations.

viii

Contents

Acknowledgements iv

List of Figures xii

List of Tables xiv

1 Introduction 1

2 DeephESC 2.0: Deep Generative Multi Adversarial Networks for improv-
ing the classification of hESC 6

2.1 Related Work and Our Contributions 10
2.1.1 Detection of hESC in Video 10
2.1.2 Classification of hESC Images 11
2.1.3 Generation of Synthetic hESC Images 15
2.1.4 Contributions of this Chapter 16

2.2 Data and Technical Approach . 17
2.2.1 Data . 17
2.2.2 Technical Approach for DeephESC 2.0 17

2.3 Experimental Results . 27
2.3.1 Detection of hESC from Video 27
2.3.2 Measures for Classification Performance 29
2.3.3 Synthetic hESC from GMAN 33
2.3.4 Augmenting the Dataset 37
2.3.5 Discussion of Results . 39

3 An Automated System for Generating Tactical Performance Statistics for
Individual Soccer Players from Videos 43

3.1 Related Work and Our Contributions 47
3.1.1 Player Tracking . 47
3.1.2 Player and Team Detection 48
3.1.3 Event Detection and Player Analysis 48
3.1.4 Contributions of this chapter 49

3.2 Technical Approach . 50

ix

3.2.1 Localization and Tracking 50
3.2.2 Team Identification . 53
3.2.3 Identifying the Player Controlling the Ball 56
3.2.4 Data Augmentation using Triplet CNN-DCGAN 57
3.2.5 Tactical Statistics Generation 60

3.3 Experimental Results . 61
3.3.1 Dataset . 62
3.3.2 Results for the Player Detection Module 66
3.3.3 Results for the Player Classification Module 68
3.3.4 Generalization Across Different Matches 72
3.3.5 Ablation Study for Generating the Tactical Statistics . . . 75
3.3.6 Discussion of Results . 79
3.3.7 Application to Internet of Things 81

4 ShieldNets: Defending Against Adversarial Attacks Using Probabilistic
Adversarial Robustness 82

4.1 Related Work on Adversarial Attacks and Defenses and Our Contri-
butions . 84
4.1.1 Adversarial Attacks . 85
4.1.2 Adversarial Defense . 86
4.1.3 Contributions of this Chapter 93

4.2 Probabilistic Adversarial Robustness (PAR) 94
4.2.1 Theory of PAR . 94
4.2.2 PAR via PixelCNN . 96
4.2.3 ShieldNet Implementation 97

4.3 Experimental Results . 98
4.3.1 Datasets and Target CNN Models 98
4.3.2 Neutralizing Adversarial Examples 99
4.3.3 ShieldNet Defending Intra-attack 101
4.3.4 Generalization Across Different Attacks 103
4.3.5 Robustness against Adversarial Transferability 106

5 Defending Black Box Classifiers Against On-line Adversarial Attacks 109
5.1 Related Works . 111
5.2 Technical Approach . 111

5.2.1 Assumptions and Target Applications of our Defense . . . 112
5.2.2 Functionality Transfer Using Knowledge Distillation 114
5.2.3 Uncertainty Prediction via Bayesian Learning 118
5.2.4 When is an image adversarial? 120
5.2.5 Ensemble of Iterative Adversarial Defenses 120
5.2.6 Determining the Number of Iterations of Purification . . . 121
5.2.7 Theoretical Lower Bound on the Amount of Purification . 123

5.3 Experimental Results . 124
5.3.1 CNN Architectures and Datasets 124
5.3.2 Threat Models . 126

x

5.3.3 Performance Evaluation of the Proposed KD Approaches . 126
5.3.4 Performance Evaluation and Comparison of our Defense Against

Adversarial Attacks . 127
5.3.5 Ablation Study for Evaluating the Different Combinations

of Ensembles of Iterative Defenses 130
5.4 Robustness of our Defense - an Adversary’s Point of View 131

6 Conclusions 138

xi

List of Figures

1 The Nikon BioStation IM benchtop live cell imaging system. (a) External
features include a incubation unit, joystick for controlling the position of
the camera during sample selection, and a monitor. (b) Culture dish sitting
inside the BioStation IM incubator unit. 7

2 Phase contrast images for the six different classes of hESC obtained from the
Nikon BioStation IM. 8

3 Example images of Cell clusters and Apoptically Blebbing cells. The distin-
guishing features between Cell clusters and Apoptically Blebbing cells are the
small cells in the Cell clusters packed close to each other. 14

4 Workflow of DeephESC 2.0 is split into three modules namely: Detection
of hESC from video, Generation of synthetic hESC images and hierarchical
classification of the hESC images into six different classes. 18

5 Images of the cell body and the substrate and their corresponding intensity
distribution. 19

6 Detected cell bodies of a single frame using the approach proposed by [36].
The detected cell bodies are then cropped and passed through the hierarchical
classifier to be classified into one of the aforementioned six classes. 20

7 Workflow of the hierarchical classifier. The input is either a real or synthetic
image belonging to one of the six classes. The outputs of the CNN and
Triplet CNNs are fused at the decision level using the product rule. 21

8 Architecture of Triplet CNN A and Triplet CNN B in Fig. 7. The parameters
within the parenthesis indicate the kernel dimension, stride and padding. By
skipping intermediate layers and concatenating the feature maps of branched
layers, DeephESC 2.0 is able to extract much more robust features, further
improving the classification. 23

9 Architecture of GMAN. The generator is trained to take as input a random
noise vector and generate an image that resembles the training data. The task
of the N discriminators are to predict if the input image to the discriminator
is either a real or a synthetic image. In our architecture of GMAN the softmax
outputs of the N discriminators are combined together by computing their
geometric mean. 27

xii

10 Visualization of features extracted by the CNN in DeephESC 2.0 for (a)
Apoptically Blebbing cell and (b) Unattached cell. 32

11 Visualization of features learned by DeephESC 2.0. (a) Image of a Cell
cluster. (b) Image after masking the surrounding small cells using a window.
Red bounding boxes are drawn across the masked area only for visualization
purposes. (c) Probability heat map for the class Apoptically Blebbing cell. . 33

12 Visualization of features learned by the generators in DeephESC 2.0. (a)
Unattached cell and (b) Attached cell. 34

13 The 600 synthetic images used for validating the quality in Table 9. (a) Cell
clusters, (b) Debris, (c) Unattached cells, (d) Attached cells, (e) Dynamically
Blebbing cells, (f) Apoptically Blebbing cells. 35

14 Classification accuracy Vs training time trade-off. 41
15 Examples of images that were unintentionally labeled wrong by the biologist,

but correctly classified by our classifier. (a) Unattached cell mislabeled as
Cell cluster, (b) Attached cell mislabeled as Dynamically Blebbing cell. (c)
Apoptically Blebbing cell mislabeled as Cell cluster. 42

16 Overall architecture of our approach. 51
17 Architecture of the Siamese CNN. 54
18 Architecture of the Triplet CNN-DCGAN. 58
19 Generated images of the class “Player with the ball” using (a) DCGAN [42]

and (b) Triplet CNN-DCGAN. 59
20 Examples of players in our dataset for the class: (a) Player with the ball and

(b) Player without the ball. 63

21 (a) Examples of original images from the CIFAR-10 and fashion-MNIST
datasets correctly classified by VGG, (b) generated perturbation for the cor-
responding images, (c) corresponding adversarial examples mis-classified by
VGG. 83

22 Implementation of PAR: ShieldNet. 98
23 p-values of the original testing dataset of CIFAR-10 and the adversarial at-

tacks on the testing dataset of CIFAR-10 with ε = 8. 100
24 p-values of the neutralized images after transformation using ShieldNet on

the testing dataset of CIFAR-10 with ε = 8. 101

24 Overall framework of our approach. 113
25 (a) - (f) shows the average amount of purification VS. the number of iterations

of purification, (g) - (l) shows the average Aleatoric uncertainties and (m) - (r)
shows the average Epistemic uncertainties for the Fashion-MNIST, CIFAR-
10, GTSRB, Tiny ImageNet, MIO-TCD, and MS-Celeb datasets, respectively.122

26 Example of images from the (a) GTSRB, (b) MIO-TCD, and (c) MS-Celeb
datasets . 125

xiii

List of Tables

1 Architecture of the Convolution Neural Network in the hierarchical classifier. 22
2 Data augmentation performed to train the CNN. 22
3 Best hyper-parameters for training the networks in DeephESC 2.0. 24
4 Architecture of the generator and the three discriminators used in our Gen-

erative Multi Adversarial Network. 28
5 Comparison of the average classification accuracy of the networks used in

DeephESC and DeephESC 2.0. 30
6 Confusion matrix for the classification of the 724 real hESC images using the

CNN architecture of DeephESC 2.0. 30
7 Confusion matrix for the classification of the 724 real hESC images using the

CNN-Triplet architecture of DeephESC 2.0. 30
8 Confusion matrix for the classification of the 724 real hESC images using the

Fused CNN-Triplet architecture of DeephESC 2.0. 31
9 Comparison of our GMAN architecture used in DeephESC 2.0 with e-DCGAN [5],

DCGAN [42] and c-DCGAN [41] using the SSIM and PSNR metrics. SSIM
has no units and PSNR is measured in decibels (dB) 36

10 Accuracy and number of images of each fold for the 5-fold cross validation us-
ing the 724 real hESC images. The number in the brackets indicates the num-
ber of images per class for Cell clusters, Debris, Unattached cells, Attached
cells, Dynamically blebbing cells, and Apoptically blebbing cells respectively. 38

11 Comparison of using different data compositions of synthetic images for train-
ing the classifier and then testing it on the 724 real images 38

12 Statistics of the number of male and female soccer players in high school,
NCAA* and MLS* [44] . 44

13 Data distribution for the two classes with respect to the teams 63
14 Performance metrics of different approaches for detecting the soccer players. 66
15 Performance comparison of tracking algorithms 67
16 Data distribution for training, validation and testing datasets for team iden-

tification. 69
17 Results and comparison for team identification. 69
18 Data distribution for training, validation and testing for identifying the player

controlling the ball. 71

xiv

19 Results of the four-fold cross validation for identifying the player controlling
the ball. 71

20 Results on the generalizability across different matches for identifying the
player controlling the ball. 73

21 Match specific performance of different CNNs for the game played between
Pink jersey Vs. Black jersey. 74

22 Match specific performance of different CNNs for the game played between
Green jersey Vs. Black jersey. 75

23 Ablation study for comparing the performance of our system for generating
the tactical statistics at a match level on the moderate complexity highlight
videos. 76

24 Ablation study for comparing the performance of our system for generating
the tactical statistics at a match level on the severe complexity highlight videos. 77

25 Ablation study for generating the tactical statistics on an individual level for
Player ID: #6 (White jersey) from a 45 second video of moderate complexity. 78

26 Ablation study for generating the tactical statistics on an individual level for
Player ID: #10 (White jersey) from a 45 second video of moderate complexity. 79

27 Ablation study for generating the tactical statistics on an individual level for
Player ID: #13 (Red jersey) from a 45 second video of moderate complexity. 80

16 Classification accuracy of ResNet and VGG on the Fashion-MNIST and
CIFAR-10 testing datasets . 99

17 Performance comparison of ShieldNet and other defense algorithms on the
Fashion-MNIST testing dataset. The highest accuracy is indicated in bold
+ italic and the second highest accuracy is indicated in bold. 103

18 Performance comparison of ShieldNet and other defense algorithms on the
CIFAR-10 testing dataset. The highest accuracy is indicated in bold + italic
and the second highest accuracy is indicated in bold. 104

19 Cross evaluation of adversarial attacks on the Fashion-MNIST dataset using
ResNet. 105

20 Cross evaluation of adversarial attacks on the CIFAR-10 dataset using ResNet.105
21 Evaluation of our approach against adversarial transferability on the CIFAR-

10 testing dataset. 107
22 Evaluation of our approach against adversarial transferability on the Fashion-

MNIST testing dataset. 107

23 Summary of the related work for black box adversarial defenses and knowl-
edge distillation . 112

24 CNN architectures . 124
25 Summary of the datasets used in this paper. 125
26 Performance evaluation and comparison of our KD approaches with respect

to the Teacher (black box) classifier. 127
27 Performance Comparison of our Defense on the Fashion-MNIST dataset using

the KD-1 approach with X = 25%. 128

xv

28 Performance comparison of our Defense on the Fashion-MNIST dataset using
the KD-1 approach with X = 50%. 129

29 Performance comparison of our Defense on the CIFAR-10 dataset using the
KD-1 approach with X = 25%. 130

30 Performance comparison of our Defense with on the CIFAR-10 dataset using
the KD-1 approach with X = 50%. 131

31 Performance comparison of our Defense on the GTSRB dataset using the
KD-1 approach with X = 50% and ε = 0.1. 132

32 Performance comparison of our Defense on the Tiny ImageNet dataset using
the KD-2 approach with ε = 0.1. 133

33 Performance comparison of our Defense on the MIO-TCD classification dataset
using the KD-2 approach with no overlap between the black box and pseudo-
labeled dataset. 134

34 Performance comparison of our Defense on the MS-Celeb dataset using the
KD-3 approach with no overlap between the black box and pseudo-labeled
training dataset. 135

35 Ablation study for comparing different combinations of ensembles of iterative
defenses. 136

36 Time complexity required for breaking our defense framework on the CIFAR-
10 dataset using the IFGSM attack with ε = 0.1. 137

xvi

Chapter 1

Introduction

In the field of stem cell classification, Human embryonic stem cells (hESC), derived

from the blastocysts, provide unique cellular models for numerous potential applications.

They have great promise in the treatment of diseases such as Parkinson’s, Huntington’s,

diabetes mellitus, etc. hESC are a reliable developmental model for early embryonic growth

because of their ability to divide indefinitely (pluripotency), and differentiate, or function-

ally change, into any adult cell type. Their adaptation to toxicological studies is particularly

attractive as pluripotent stem cells can be used to model various stages of prenatal devel-

opment. Automated detection and classification of human embryonic stem cell in videos

is of great interest among biologists for quantified analysis of various states of hESC in

experimental work. Currently video annotation is done by hand, a process which is very

time consuming and exhaustive. To solve this problem, this thesis introduces DeephESC

2.0 an automated machine learning approach consisting of two parts: (a) Generative Multi

Adversarial Networks (GMAN) for generating synthetic images of hESC, (b) a hierarchical

classification system consisting of Convolution Neural Networks (CNN) and Triplet CNNs

to classify phase contrast hESC images into six different classes namely: Cell clusters, De-

bris, Unattached cells, Attached cells, Dynamically Blebbing cells and Apoptically Blebbing

1

cells. The approach is totally non-invasive and does not require any chemical or staining

of hESC. DeephESC 2.0 is able to classify hESC images with an accuracy of 93.23% out

performing state-of-the-art approaches by at least 20%. Furthermore, DeephESC 2.0 is able

to generate large number of synthetic images which can be used for augmenting the dataset.

Experimental results show that training DeephESC 2.0 exclusively on a large amount of

synthetic images helps to improve the performance of the classifier on original images from

93.23% to 94.46%. This thesis also evaluates the quality of the generated synthetic images

using the Structural SIMilarity (SSIM) index, Peak Signal to Noise ratio (PSNR) and sta-

tistical p-value metrics and compares them with state-of-the-art approaches for generating

synthetic images. DeephESC 2.0 saves hundreds of hours of manual labor which would

otherwise be spent on manually/semi-manually annotating more and more videos.

The world of sports intrinsically involves fast and complex events that are difficult

for coaches, trainers and players to analyze, and also for audiences to follow. In fast paced

team sports such as soccer, keeping track of all the players and analyzing their performance

after every match are very challenging. Current scenarios for identifying the best talents

in soccer involve word-of-mouth and coaches/recruiters scouring through hours of manually

annotated videos. This is a very expensive and laborious process and also biased by the

nature of the recruiters. To alleviate these problems, this paper proposes an automated

system that can detect, track, classify the teams of multiple players and identify the player

controlling the ball in a video. The system generates three very important tactical statistics

for a player: 1) duration of ball possession, 2) number of successful passes and 3) number

of successful steals. This is done by training Convolutional Neural Networks (CNNs) to

(a) localize and track the players on the field, (b) classify the team of a detected player,

(c) identify the player controlling the ball and (d) pooling all the information extracted

from (a), (b), and (c) to generate the statistics of players. To overcome the problem that

the features learned from specific soccer matches do not necessarily generalize across differ-

2

ent soccer matches, the thesis proposes minimal amount of match-specific annotation and

data augmentation, using a variant of Deep Convolutional Generative Adversarial Networks

(DCGAN) to improve the accuracy. Experimental results and ablation studies show that

the proposed approach outperforms the state-of-the-art approaches in terms of accuracy

and processing speed.

Deep learning models have achieved impressive results on various tasks but, these

models have been shown to be vulnerable to adversarial attacks. Adversarial attacks are im-

perceptible perturbations added to an image such that the deep learning model misclassifies

the image with high confidence. This thesis introduces Probabilistic adversarial robustness

(PAR), as a theoretical framework to neutralize adversarial attacks by concentrating sample

probability to adversarial-free zones. Distinct to most of the existing defense mechanisms

that require modifying the architecture/training of the target classifier which is not feasible

in the real-world scenario, e.g., when a model has already been deployed, PAR is designed

in the first place to provide proactive protection to an existing fixed model. ShieldNet is

implemented as a demonstration of PAR in this work by using PixelCNN. Experimental

results show that this approach is generalizable, robust against adversarial transferability

and resistant to a wide variety of attacks on the Fashion-MNIST and CIFAR10 datasets,

respectively.

Existing adversarial defenses validate their performance using only the classifica-

tion accuracy. However, classification accuracy by itself is not a reliable metric to determine

if the resulting image is “adversarial-free”. This is a foundational problem for online im-

age recognition applications where the ground-truth of the incoming image is not known

and hence we cannot compute the accuracy of the classifier or validate if the image is

“adversarial-free” or not. This thesis proposes a novel framework for defending Black box

classifiers from adversarial attacks using an ensemble of iterative adversarial image puri-

fiers whose performance is continuously validated in a loop using Bayesian uncertainties.

4

The proposed approach can convert a single-step black box adversarial defense into an it-

erative defense and proposes three novel Knowledge Distillation approaches that use prior

information from various datasets to mimic the performance of the Black box classifier.

Additionally, this thesis also proves the existence of an optimal distribution for the purified

image to reach a theoretical lower bound, beyond which the image can no longer be puri-

fied. Experimental results on six public benchmark datasets namely: 1) Fashion-MNIST,

2) CIFAR-10, 3) GTSRB, 4) MIO-TCD, 5) Tiny ImageNet, and 6) MS-Celeb show that

the proposed approach can consistently detect adversarial examples and purify/reject them

against a variety of adversarial attacks.

5

Chapter 2

DeephESC 2.0: Deep Generative

Multi Adversarial Networks for

improving the classification of

hESC

Human embryonic stem cells (hESC) are derived from the inner cell mass of de-

veloping blastocysts and can be maintained indefinitely in vitro in a pluripotent state [1].

hESC have the ability to self-renew and differentiate into any cell type, thus providing a

unique resource for regenerative medicine and toxicological testing of drugs [2, 3]. The

biologists who study hESC have to manually analyze stem cell videos every day. On an

average it takes 3-5 days for a biologist to manually analyze a single hESC video, taken

over a period of 48 hours with a suitable sampling rate, and annotate its different stages of

development.

To date, there are very limited automated tools [4, 5] for classifying hESC from

videos making it a very laborious manual process. Video Bioinformatics [6–10] is an up-

6

Fig. 1: The Nikon BioStation IM benchtop live cell imaging system. (a) External features
include a incubation unit, joystick for controlling the position of the camera during sample
selection, and a monitor. (b) Culture dish sitting inside the BioStation IM incubator unit.

coming field to help biologists use efficient and effective approaches to analyze expansive

volumes of video data. In this study,the hESC videos were recorded using a Nikon BioSta-

tion IM [32] which has a phase contrast microscope. Each frame in the video can contain

any number of the following six cell types: 1) Cell clusters (CC), 2) Debris (DEB), 3)

Unattached Cells (UN), 4) Attached Cells (AT), 5) Dynamically Blebbing Cells (DYN),

and 6) Apoptotically Blebbing cells (APO). Fig. 1 shows the Nikon BioStation IM and

Fig. 2 shows the hESC phase contrast images that have been detected and cropped from

full frame images for each class. It should be noted that, our approach is totally

non-invasive and does not require chemicals for staining the hESC.

The Unattached cells, Attached cells, Dynamically Blebbing cells and Apoptically

Blebbing cells are considered as the intrinsic cell types. Cell clusters are a colony of growing

cells consisting of a group of two or more different intrinsic cell types that are packed close

to each other. Blebbing cells are membrane protrusions that appear and disappear from

the surface of cells. The changing area of the blebbing cells over time is important for

understanding and evaluating the health of cells. Dynamic blebs indicate healthy cells and

Apoptotic blebs indicate dying cells. The ability to analyze rates of bleb formation and

7

Fig. 2: Phase contrast images for the six different classes of hESC obtained from the Nikon
BioStation IM.

retraction are important in the field of toxicology and could form the basis of an assay that

depends on a functional cytoskeleton [33].

From Fig. 2, it can be observed that although certain classes such as Debris and

Unattached cells look very discriminative compared to the remaining four classes. Certain

classes like Attached cells and Dynamically Blebbing cells share very similar color intensities,

similarly Cell clusters and Apoptically Blebbing cells share very similar texture making

making it very challenging to classify these hESC classes.

Previous studies involving the classification of hESC have primarily used manual/

semi-manual detection and segmentation [34], hand-crafted feature extraction [4]. These

manual methods, hand-crafted feature extraction approaches are prone to human bias and

they are tedious and time-consuming processes when performed on a large volume of data.

Therefore, it is advantageous to develop an image analysis software such as DeephESC 2.0

to automatically classify hESC images and also generate synthetic data to compensate for

the lack of real data.

8

Recent years have witnessed the boom of CNNs in many computer vision and

pattern recognition applications including object classification [28], object detection [29]

and semantic segmentation [30]. In this chapter, we propose DeephESC 2.0, an automated

machine learning based classification system for classifying hESC images using Convolu-

tion Neural Networks (CNN) and Triplet CNNs in a hierarchical system. The CNNs are

trained on a very limited dataset consisting of phase contrast imagery of hESC to extract

discriminative and robust features to automatically classify these images. This is not a

straight forward task as some classes of hESC have very similar shape, intensity and tex-

ture. To solve this we trained triplet CNNs that help extract very fine-grained features and

classify between two very similar but slightly distinctive classes of hESC. DeephESC 2.0

uses a CNN and two triplet CNNs fused together in a hierarchical manner to perform fine-

grained classification on six different classes of hESC images. Previous studies have shown

that augmenting the size and diversity of the dataset, results in improved classification

accuracy [31].

The process of obtaining video recordings of hESC is a very long and tedious pro-

cess, and to date there are no publicly available datasets. To compensate for the lack of

data, DeephESC 2.0 uses Generative Multi Adversarial Networks (GMANs) to generate

synthetic hESC images and augment the training dataset to further improve the classifi-

cation accuracy. We compare different architectures of Generative Adversarial Networks

(GANs) and the quality of the generated synthetic images using the Structural SIMilarity

(SSIM) index and Peak Signal to Noise Ratio (PSNR). Furthermore, we trained DeephESC

2.0 using the synthetic images, evaluated it on the original hESC images obtained from

biologists and verified the significance of our results using the p-value.

9

2.1 Related Work and Our Contributions

In the following we present the related work into the following three areas: de-

tection of hESC in video, classification of hESC images and generation of synthetic hESC

images

2.1.1 Detection of hESC in Video

Ambriz-Colin et al. [11] proposed two methods for cell region detection from phase

contrast images: detection by pixel Intensity Variance (PIV) and detection by Gray Level

Morphological Gradient (GLMG). The PIV method computes the variance of a pixel in a

given neighborhood and based on a threshold classifies if the pixel belongs to a cell region

or background. The GLMG approach converts the phase contrast image to a binary image

and performs morphological dilation and erosion and based on a threshold separates the

cell region and background. Li et al. [12] used a combination of morphological rolling-ball

filtering and a Bayesian classifier to classify the pixels into either the cell regions or the

background. The major drawback with these approaches is that they are very susceptible

and would fail to classify the pixels even if there is slight change in pixel intensity or change

in texture which normally occurs over time.

Eom et al. [13] used circular Hough transform to detect the shapes of cells in an

image and classify them. This approach is very sensitive to the variation of shapes and

appearance of cells. This approach is not viable for detection of hESC where blebbing is

continuously altering the shape of the hESC. Miroslaw et al. [14] proposed to use correlation

using template images for cell region detection. This approach requires pre-selection of

exemplar template images which are not readily available in most cases. Moreover, this

approach is most likely to fail in conditions where parts of two or more cells are overlapping

in a single image.

10

The most commonly used algorithms for image segmentation are the K-means seg-

mentation and mixture of Gaussians by Expectation-Maximization (EM) algorithm. Tati-

raju et al. [15] used a variant of the K-means algorithm such that each pixel intensity is

considered as an individual observation and the authors partition these observations into k

clusters. This method does not consider the intensity distribution of its clusters. As a re-

sult the segmentation obtained lacks the connectivity within the neighborhood pixels. The

mixture of Gaussians segmentation proposed by Farnoosh and Zarpak [16] depends heavily

on the intensity distribution models to group the image data. The underlying assumption

of their approach is that intensity distribution of the image can be represented by multiple

Gaussians. However, it does not take into account the neighborhood information. As a

result, the segmented regions lack connectivity with the pixels within their neighborhood.

DeephESC 2.0 detects the hESC regions using the approach proposed by Guan

et al. [36]. The algorithm uses the intensity distributions of the foreground (hESC) and

background (substrate) as well as the cell property for detection. The intensity distributions

of the foreground and background are modeled as a mixture of two Gaussians and the cell

property is translated into a local spatial information. The algorithm is optimized by

parameters of the distributions and the cell regions evolve with the local cell property.

The advantage of this approach is that, it not only uses information of the foreground and

background, but it also uses cell properties resulting in fine-grained localization of the hESC

even in the presence of background noise.

2.1.2 Classification of hESC Images

Lowry et al. [17] designed a texture based multi-stage Bayesian level set algorithm

to segment pluripotent and trophectoderm colony images of hESC and their derivatives.

The authors used an MR8 approach [18] for modeling the texture by convolving image

patches with a filter bank containing Gaussian and Laplacian of Gaussian (LoG) filters at

11

a fixed scale and edge bar filters at three different scales and several orientations. This

results in a texton feature vector containing eight filter responses for every given pixel in

the image. After extracting these texton features, the texturally inhomogeneous images

are segmented using a multi stage Bayesian Level Set (BLS). The advantage of using BLS

is that it produces smoother segmentation maps with regular borders and is much more

tolerant to poor initial conditions.

Lowry et al. [19] combined set levels, multi resolution wavelet analysis and non-

parametric estimation of the density functions of the wavelet coefficients to segment and

classify stem cell nuclei. The authors also used an adjustable length window to deal with

small size textures where the largest inscribed rectangular window may not contain a suf-

ficient number of pixels for multiresolution analysis of elongated and irregularly shaped

nuclei. Mangoubi et al. [20] classified hESC into differentiated and pluripotent cell colonies

using a wavelet based texture decomposition. The authors used four visual features namely:

textural homegeneity, textural tightness, border sharpness and border circularity. Based on

these visual features, the authors achieved an accuracy of 96% in classifying colonies that

were very distinct from each other and 86% in colonies with a mixed distribution. The

authors suggest that a good pluripotent stem cell colony must exhibit a homogeneous, tight

texture throughout, thus allowing a statistical analysis of the coefficients obtained from a

wavelet based texture decomposition to discriminate between the colonies.

Desai et al. [21] classified fluorescent stem cell nucleus images into pluripotent and

differentiated nucleus. The authors assume that the nucleus exhibits an onion layer texture

where we may assume that within a layer the behavior is homogeneous, but may vary from

layer to layer. The authors use a matrix edge function that adaptively modulates the shape,

size, and orientation of neighborhoods over different regions of the texture, thus providing

directional information on the texture that is not available in the more conventional scalar

edge field based approaches.

12

Sammak et al. [22] classified differentiating cells into three classes namely: Trophec-

toderm, Neurectoderm, and Progeny cells. The authors showed that during differentiation

the edges at the borders of the cell become more thin. The authors extract features, us-

ing wavelet decomposition and a matrix edge function, which are then given to a Support

Vector Machine (SVM) for classification.

Niioka et al. [23] detect the cellular differentiation of myoblasts to myotubes using

Convolutional Neural Networks. During the differentiation process, the cellular morphology

changes from a round shape to an elongated tubular shape due to the fusion of cells. The

authors trained their CNN using stained fluorescent images as input and were able to detect

the differentiation with an accuracy of 91.3%.

Chang et al. [24] were able to classify human Induced Pluripotent Stem (iPS) cells

in human cord blood CD34+ images using Convolutional Neural Networks. The authors

used a 5 convolutional layer network to classify 256x256 patches of images with an accuracy

of 91.8%. Xie et al. [25] performed cell counting in fluorescent images using a convolu-

tional regression network. They trained a network to localize fluorescent labeled cell nuclei

via down-convolutional feature extraction and symmetrically up-convolutional pixel-wise

classification. They apply their network to a variety of datasets and manually annotated

grayscale histology sections with an average error of 2.9% for their cell counting task. While

their method is a successful implementation for training a neural network feature classifier

for localizing cells, it is relatively easy to localize cells in a fluorescent dataset compared to

more non-invasive complex datasets, such as the data with low contrast and high texture.

A drawback of the works done by [23–25] is that they had to stain hESC in order to classify

them making it an invasive approach, whereas, our approach is totally non-invasive.

Witmer et al. [26] developed an automated system to localize six cell colonies

namely: Debris, Dense, Spread, Differentiated, Partially spread, and Partially differentiated.

The authors extracted patches of size 224×224 using a sliding window from phase contrast

13

images. These patches are then passed through an entropy filter that segments the cell

colonies by exploiting the difference between the background and foreground of the images.

The segmented patches are then passed through a CNN which classifies the patch into one

of the 6 classes. The authors were able to achieve an accuracy of 89.35% in classifying

the cell colonies, but a drawback of their approach is that they used a fixed window size

of size 224 × 224 for localizing the cell colonies. This leads to smaller sized colonies to be

overlooked leading to an incorrect segmentation.

Fig. 3: Example images of Cell clusters and Apoptically Blebbing cells. The distinguishing
features between Cell clusters and Apoptically Blebbing cells are the small cells in the Cell
clusters packed close to each other.

In our previous work using DeephESC [5], we used a CNN and Triplet CNNs to

classify hESC images into six different classes. DeephESC was able to classify hESC images

with an accuracy of 91.71%, but a problem encountered in this approach is that images

belonging to the class Cell clusters were misclassifed as Apoptically Blebbing cells with an

error rate of 7.89% which was the highest error percentage between any two classes. The

reason for this is that Cell clusters and Apoptically Blebbing cells have a very similar texture

and intensity. Fig. 3 shows example images of Cell clusters and Apoptically Blebbing cells.

14

The main distinguishing factor between these two classes is the presence of smaller cells

packed close to the Cell clusters.

In Fig. 3, the small cells in the manually annotated red bounding box are the

factors that distinguish between a Cell cluster and an Apoptically Blebbing cell. Since these

cells are very small, and as the image is passed forward through the convolution layers of

CNN the dimensions of the feature maps progressively decrease and hence the receptive

fields of the convolution filters are not able to detect these small cell bodies. To solve this

DeephESC 2.0 skips connections between the initial and final convolution layers. The initial

convolution layers learn a more coarse representation of the image where the receptive field

of the filters are able to detect the small surrounding cells, whereas, the final layers learn

a more fine-grained representation. By skipping intermediate layers and concatenating the

feature maps of the initial and final convolution layers, DeephESC 2.0 is able to extract

much more robust features that can detect these small surrounding cells which helps to

improve the classification between these two classes.

2.1.3 Generation of Synthetic hESC Images

To the best of our knowledge, there is no published work that synthetically gener-

ates hESC images prior to our work in DeephESC [5] and this chapter [27]. In DeephESC

we evaluated two different approaches for generating synthetic hESC images namely: Deep

Convolution Generative Adversarial Networks (DCGAN) [42] and ensemble - Deep Convo-

lution Generative Adversarial Networks (e-DCGAN) [5].

Generative adversarial nets were recently introduced as a novel way to train a net-

work to generate synthetic images. They consists of two ‘adversarial’ models: a generative

model G that captures the data distribution, and a discriminative model D that estimates

the probability that a sample came from the training data (real images) rather than the

generator G (synthetic images). In order to learn the distribution Pg(x) over data x, the

15

generator builds a mapping function from a prior noise distribution Pz(z) to data space as

G(z; θg). The discriminator D(x; θd) outputs a single scalar representing the probability

that x came from the training data rather than Pg(x).

In this chapter, DeephESC 2.0 [27] uses a variant of the DCGAN architecture

named Generative Multi Adversarial Network (GMAN) [37]. GMAN is different from DC-

GAN by the fact that instead of using a single discriminator, we use N multiple discrimina-

tors to train the generator. In practice, training against a single discriminator can impede

the generator’s learning. This is because if the generator is unlikely to generate any sample

considered “realistic” by the discriminator’s standards, the generator will receive negative

feedback. This is problematic because the information contained in the gradient derived

from negative feedback only dictates where to drive down Pg(x), not specifically where to

increase Pg(x). Furthermore, driving down Pg(x) necessarily increases Pg(x) in other re-

gions of X (to maintain
∫
X Pg(x) = 1) which may or may not contain samples from the

true dataset (whack-a-mole dilemma). In contrast, a generator is more likely to see positive

feedback against an ensemble of discriminators (because the generator needs to fool only 1

of the N discriminators), which may better guide a generator towards amassing Pg(x) in

approximately correct regions of X.

2.1.4 Contributions of this Chapter

• An improved hierarchical classifier to classify hESC phase contrast image into six

different classes with an accuracy of 93.23%

• Generating high quality synthetic hESC images using an ensemble of GMANs

• Exhaustive validation of the quality of the generated synthetic images using the Struc-

tural SIMilarity (SSIM) index, Peak Signal to Noise Ratio (PSNR) and statistical p-

value tests.

16

• Training DeephESC 2.0 exclusively on a large amount of synthetic hESC images helps

improve the classification accuracy of the classifier on the original hESC images from

93.23% to 94.46%.

• Comparison and visualization of the features learned using DeephESC [5] and Deep-

hESC 2.0.

2.2 Data and Technical Approach

2.2.1 Data

The hESC were cultured in vitro using methods described in detail previously [35].

The videos were acquired using the Nikon BioStation IM with a 20x objective resulting in

a resolution of 600x800. A dataset of 784 cropped images was obtained from nine hESC

videos. The dataset had the following numbers of images for each class: 1) 122 Cell Cluster

images; 2) 113 Debris images; 3) 135 Unattached cell images; 4) 132 Attached cell images;

5) 104 Dynamically Blebbing cell images; and 6) 178 Apoptotically Blebbing cell images.

The ground-truth for the dataset was annotated manually by expert stem cell biologists.

The annotation was done by observing the morphology of the cells in the image as well as

how they change in the video.

2.2.2 Technical Approach for DeephESC 2.0

DeephESC 2.0 is designed in a modular manner with three parts: hESC detection,

hESC classification and hESC generation. Fig. 4 shows the workflow of DeephESC 2.0. The

source code was written and developed in PyTorch. The source code and supplied test data

are available online at http://vislab.ucr.edu/SOFTWARE/software.php. To successfully

run the source code requires the following softwares/libraries: python 3.5.2, pytorch 0.3.1,

torchvision, PIL, numpy.

17

Fig. 4: Workflow of DeephESC 2.0 is split into three modules namely: Detection of hESC
from video, Generation of synthetic hESC images and hierarchical classification of the hESC
images into six different classes.

(a) Detection of hESC from Videos using a mixture of Gaussians: We detected

and cropped stem cells from video frames of size 600 x 800 using a method developed by

Guan et al. [36]. In the following we provide a brief description of the method. The hESC are

grown in culture dishes coated with a layer of substrate (Matrigel). The substrate becomes

the background after the hESC are placed on its surface. Therefore, we model a hESC

image with two regions of interest: foreground and background [36]. Fig. 5 shows examples

of the cell (foreground) and the substrate (background) and their intensity distributions.

Consequently we model the intensity distribution of foreground (cell region with a mean µf

and variance σf
2) and background (substrate region with a mean µb and variance σb

2) as

the mixture of two Gaussians.

With this model, we then want to maximize the absolute difference of mean-to-

variance ratios of the foreground MVRf and the mean-to-variance ratio of the background

MVRb; The MVRs of the foreground and background data sets are calculated by the

following equations:

18

Fig. 5: Images of the cell body and the substrate and their corresponding intensity distri-
bution.

MVRf =
µf
σf

(1)

MVRb =
µb
σb

(2)

where MVRf and MVRb are the MVRs for the foreground and background, respectively.

Thus, the optimization metric M is formulated as:

M = |MVRf −MVRb| (3)

substituting Eq (1) and Eq (2) into Eq (3), we get the following:

M =

∣∣∣∣∣µfσ2
f

− µb
σ2
b

∣∣∣∣∣ (4)

Eq (4) shows the metric that is used to determine how much the cell region data

are different from the substrate region data. Since the algorithm is spatially evolving the

foreground region from the initial high intensity variation region by a mean filter at each

iteration, the foreground mean and variance are approaching to the background mean and

variance. The limit of M is 0 as µf/σ2
f approaches to µb/σ

2
b . Therefore, our problem

19

becomes finding Mopt which is the optimal value for metric M, given by:

Mopt = max
µf,σf

2,µb,σb
2
M(µf, σf

2, µb, σb
2) (5)

Mopt finds the parameters that maximize the difference between the foreground and back-

ground pixels. Fig. 14 shows the detected components of a single frame. These detected

components are then cropped and passed to the hierarchical classifier to be classified into

one of the six aforementioned classes.

Fig. 6: Detected cell bodies of a single frame using the approach proposed by [36]. The
detected cell bodies are then cropped and passed through the hierarchical classifier to be
classified into one of the aforementioned six classes.

(b) Hierarchical Classification of hESC: In this section we explain in detail the

architecture, training and parameters of the hierarchical classifier which includes the CNN

and Triplet CNNs. Fig. 7 shows the work flow of the hierarchical classifier.

20

Fig. 7: Workflow of the hierarchical classifier. The input is either a real or synthetic image
belonging to one of the six classes. The outputs of the CNN and Triplet CNNs are fused at
the decision level using the product rule.

(c) Convolution Neural Networks: After detecting and cropping all the cell regions

in a video, we resize all the hESC images to size 64x64. These images are then used for

training the CNN. Table 1. shows the architecture details of our CNN. To train the CNN,

we chose a mini batch size of 64. Since the size of our dataset is very limited, in order to

prevent the CNN from over-fitting, we perform random affine transformations to the images

and employ early stopping. Table. 2 shows the data augmentation performed for training

the CNN. We perform early stopping by saving the model after every epoch, only if the

validation accuracy increases compared to the previous epoch. If the validation accuracy

has not increased after 3 consecutive epochs we stop the training.

We randomly chose 10 images from each class (60 images in total) as the validation

dataset. The remaining of the dataset excluding the validation images, was divided into 5

folds for cross-validation. We did random hyper-parameter search for the CNN to obtain

the best learning rate, momentum and weight decay. We chose random values for the

21

TABLE 1: Architecture of the Convolution Neural Network in the hierarchical classifier.

Input

Dimension

Output

Dimension

Number of

feature maps

Layer (Kernel dimension,

stride, padding)

64x64 32x32 64 Convolution (7, 2, 3)

32x32 16x16 64 Maxpool (3, 2, 1)

16x16 8x8 128 Convolution (5, 2, 2)

8x8 4x4 128 Maxpool (3, 2, 1)

2,048x1 6 classes - Fully connected layer

TABLE 2: Data augmentation performed to train the CNN.

Affine Transformation Parameters

Image rotation −180◦ to 180◦

Image shearing 0◦ to 30◦

Image zooming 70% to 140% of image size

learning rate, momentum and weight decay within a given range and step size and trained

the network for three epochs. The combination of hyper-parameters that gave us the highest

classification accuracy after three epochs are chosen as the best hyper-parameters for the

network. The random hyper-parameter search was done by evaluating the CNN only on

the validation dataset. Based on this we chose the best hyper-parameters as learning rate

= 1.2x10-2, momentum = 0.9 and weight decay = 1x10-3 The network was optimized using

the stochastic gradient descent algorithm with cross entropy loss.

We performed 5-fold cross validation and the results are shown in detail in Section

3.3. After evaluating the CNN we observed that the CNN was able to classify the classes

Debris and Unattached Cells with high accuracy, but the classes Cell clusters/Apoptically

Blebbing cells and Dynamically Blebbing Cells/Attached Cells were misclassified the most.

The reason for this is that, the classes Cell clusters/Apoptically Blebbing Cells and Dynam-

ically Blebbing Cells/Attached Cells have similar intensity and texture.

22

(d) Triplet Convolution Neural Network: To solve this misclassification, we train

a Triplet CNN to perform fine-grained classification between Cell clusters and Apoptically

Blebbing Cells and similarly, for Dynamically Blebbing Cells and Attached Cells. Fig. 8

shows the visual representation of the architecture for Triplet CNN A and Triplet CNN B

from Fig. 7.

Fig. 8: Architecture of Triplet CNN A and Triplet CNN B in Fig. 7. The parameters
within the parenthesis indicate the kernel dimension, stride and padding. By skipping
intermediate layers and concatenating the feature maps of branched layers, DeephESC 2.0
is able to extract much more robust features, further improving the classification.

The Triplet CNN architecture in Fig. 8 is different from DeephESC by the fact

that, DeephESC does not have any concatenation of feature maps between intermediate

layers. By doing so, the initial convolution layers learn more coarse features while the

final convolution layers are able to learn more fine-grained features. Concatenating the two

branches together helps extract robust features and improves the classification accuracy

compared to DeephESC [5]. Fig. 11 in Section 3.2.2b shows the visual comparison of

features extracted between DeephESC and DeephESC 2.0 and it can be observed that

DeephESC fails to extract robust features for a given image compared to DeephESC 2.0.

The Triplet CNN takes as input a query image and one anchor image from each

class. The output of the Triplet CNN is the two pairwise distances between the extracted

features for the query image and the two anchor images as shown in Fig. 7. For a correct

classification, the pairwise distance between the query image and the anchor image belonging

23

to the same class must be smaller (close to 0) compared to the distance between the query

image and the anchor image belonging to the opposite class.

We used the same 10 validation images from each class used for validating the

CNN, to validate the Triplet CNN. We randomly selected 5,000 triplet pairs for validation

and 100,000 triplet pairs to train both Triplet CNN A and Triplet CNN B using 5-fold cross

validation similar to how we trained the CNN. We chose a mini-batch size of 256 triplets

and performed random hyper-parameter search and random affine transformation to the

images as shown in Table 2 that was similarly done while training the CNN. Table 3. shows

a summary for the best hyper-parameters for the CNN, Triplet CNN A and Triplet CNN

B.

TABLE 3: Best hyper-parameters for training the networks in DeephESC 2.0.

Network Learning rate Momentum Weight decay

CNN 1.2x10-2 0.9 1x10-3

Triplet CNN A 1.2x10-2 0.8 1x10-3

Triplet CNN B 2x10-2 0.8 1x10-3

The Triplet CNNs were optimized using the Stochastic Gradient Descent algorithm

with the Ranked Marginal loss function given by Eq (6). In Eq (6), X1 and X2 are the two

anchor images and G(X) is the pairwise distance between the feature extracted by Triplet

CNN for the query image and the anchor image. In Eq (6) if Y = 1 it indicates that the

anchor image x1 belongs to the same class as the query image, whereas, Y = -1 indicates

that the anchor image x2 belongs to the same class as the query image. For all of our

experiments we set the value of the margin as 1.

Loss = Max(0,−Y ∗ (G(X1)−G(X2)) +margin) (6)

Upon evaluating the Triplet CNNs with 5-folds cross validation, Triplet CNN

24

A achieved an average classification accuracy of 95.24% and Triplet CNN B achieved an

average classification accuracy of 95.83%.

(e) Decision level fusion of the CNN and Triplet CNNs: After training the CNN

and the individual Triplet CNNs we combine them in a hierarchical system as shown in Fig.

7. The input hESC image is first passed into the CNN, the CNN is trained to classify the

input image into one of the aforementioned six classes. If the predicted class is Debris or

Unattached cells, we take the prediction of the CNN as the final prediction.

If the predicted class is Attached cell or Dynamically Blebbing cells, the input image

is passed to Triplet CNN A, and we obtain the prediction of Triplet CNN A. Similarly, if

the prediction of the CNN is Cell cluster or Apoptically Blebbing cells, the input image is

passed to the Triplet CNN B and we obtain the prediction of Triplet CNN B.

The decision level fusion was done by taking the complementary pairwise distance

(i.e. 1 - pairwise distance) measure outputs from the Triplet CNN and multiplying the

corresponding probability score for that class from the CNN. For example in Fig. 7, in

Triplet CNN B, the complementary pairwise distance measure between the input image

and anchor image of Cell clusters is multiplied with the probability score for Cell clusters

from the CNN. Similarly, the complementary pairwise distance measure between the input

image and anchor image of Apoptically Blebbing cells is multiplied with the probability

score for Apoptically Blebbing cells from the CNN, and so on for Triplet CNN A. The

results obtained with and without the fusion are explained in detail in Section 3.2.2a.

(f) Generating Synthetic hESC Images using Generative Multi Adversarial Net-

works: The purpose of this section is to generate synthetic data and add more variability

to the training dataset to help improve the classification performance of DeephESC 2.0. To

achieve this we trained an ensemble of Generative Multi Adversarial Networks (GMAN) [37]

25

GMAN consists of a generator network G and N discriminator networks (D1, D2,

..., DN). The generator takes a random noise vector z as input and returns an image

Xgen = G(z). On the other hand, the discriminator takes a real or a generated image, and

outputs a probability distribution P (S|X) = D(X) over the two image sources S. The

discriminator is trained to maximize the log-likelihood of assigning the correct source while

G tries to minimize it:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

+Ex∼pz(z) [log (1−D(G(z)))]

(7)

In GMAN since we have multiple discriminators, we combine the outputs of the N discrim-

inators using the weighted geometric mean as shown in Eq (8).

GM(V, λ) = −exp(
N∑
i

wilog(−Vi)) (8)

where, wi = eλVi/
∑

j e
λVj , Vi is the output of the ith discriminator and λ is a constant such

that λ ≥ 0. The objective is that the generator network and the ensemble of discriminators

converge to the Nash equilibrium so that D1, D2, ..., DN are maximally confused and G

generates samples that resemble the training data. In our approach we trained six individual

GMANs to generate images belonging to the corresponding six classes. Fig. 9 shows the

architecture of a GMAN. In DeephESC 2.0, we chose to use three different discriminators

in our GMAN architecture. Table 4. shows the architecture of the generator and the three

discriminators.

We chose the learning rate for the generator to be 1x10-4 and learning rate of the

three discriminators to be 1x10-5 and mini batch of size 32. All the networks were optimized

using the Adam algorithm [38] with loss function as a combination of Binary Cross Entropy

26

Fig. 9: Architecture of GMAN. The generator is trained to take as input a random noise
vector and generate an image that resembles the training data. The task of the N discrim-
inators are to predict if the input image to the discriminator is either a real or a synthetic
image. In our architecture of GMAN the softmax outputs of the N discriminators are
combined together by computing their geometric mean.

and Embedding loss as shown in equation (9).

Loss =
−1

n

n∑
i=1

yi ∗ log(pi) + (1− yi) ∗ log(1− pi) + α ∗ 1

n

n∑
i=1

||Xi −X| |2 (9)

In Eq. 9, the first term is the Binary Cross Entropy loss. yi is the ground-truth label (real

or synthetic image), pi is the probability score being a real image. The second term is the

Embedding loss, Xi is an image from the mini batch (either synthetic or real image) and

X is a real image chosen randomly from the training dataset belonging to the same class

as Xi. The Binary Cross Entropy loss ensures that the GMAN is able to extract accurate

features to generate synthetic images resembling the images from the training dataset and

the Embedding loss ensures that the generated images have a similar morphology as the

images from the training dataset. α is an empirical value and was chosen to be 5x10-2.

2.3 Experimental Results

2.3.1 Detection of hESC from Video

We evaluated the detection of hESC objects using the algorithm proposed by

Guan et al. [36]. The metrics used for evaluating the detection are Jaccard similarity, Dice

coefficient, Specificity and Sensitivity. The Sensitivity (SEN), measures the proportion of

27

TABLE 4: Architecture of the generator and the three discriminators used in our Generative
Multi Adversarial Network.

Network
Input

dimension

Output

dimension

Number of

feature maps

Layer (Kernel dimension,

stride, padding)

Generator

100x1 8,192x1 - Fully connected layer

4x4 8x8 256 ConvolutionT* (6, 2, 2)

8x8 16x16 128 ConvolutionT* (6, 2 , 2)

16x16 32x32 64 ConvolutionT* (6, 2, 2)

32x32 64x64 1 ConvolutionT* (6, 2, 2)

Discriminator 1

64x64 32x32 32 Convolution (5, 2, 2)

32x32 16x16 64 Convolution (5, 2, 2)

16x16 8x8 128 Convolution (5, 2, 2)

8x8 4x4 256 Convolution (5, 2, 2)

4,096x1 1 - Fully connected layer

Discriminator 2

64x64 32x32 16 Convolution (5, 2, 2)

32x32 16x16 32 Convolution (5, 2, 2)

16x16 8x8 64 Convolution (5, 2, 2)

8x8 4x4 128 Convolution(5, 2, 2)

2,048x1 1 - Fully connected layer

Discriminator 3

64x64 32x32 32 Convolution (5, 2, 2)

32x32 16x16 64 Convolution (5, 2, 2)

16x16 8x8 128 Convolution (5, 2, 2)

8x8 4x4 256 Convolution (5, 2, 2)

4x4 2x2 512 Convolution (5, 2, 2)

2,048x1 1 - Fully connected layer

* Note: ConvolutionT stands for the Convolution Transpose operation.

actual positives which are correctly detected:

SEN =
TP

(TP + FN)
(10)

28

The Specificity (SPC), is the true negative rate which is given by:

SPC =
TN

(FP + TN)
(11)

The Jaccard similarity (J), is a measure of similarity between the detected results and the

ground-truth:

J =
TP

(TP + FP + FN)
(12)

The Dice coefficient (DIC), measures the agreement between the detected results and the

ground-truth:

DIC =
2TP

(2TP + FP + FN)
(13)

The approach achieved a Jaccard similarity (J) of 0.754, Dice coefficient (DIC) of 0.860,

Sensitivity (SEN) of 0.906 and Specificity (SPC) of 0.924.

2.3.2 Measures for Classification Performance

We trained and evaluated the classifier using the K - fold cross validation. K -

fold cross validation divides the dataset into K subsets. Each time, one of the K subsets

is used as the testing set and the remaining K - 1 subsets are put together to form a

training set. Then the average error across all K trials is computed. The advantage of this

method is that it matters less how the data gets divided. Every data point gets to be in

the testing set exactly once, and gets to be in a training set K - 1 times. The variance

of the resulting estimate is reduced as K is increased. In the following we evaluated the

classification accuracy using the 5- fold cross validation (K = 5).

(a) Classification Results: Table 5 shows the average classification accuracy for the

5-fold cross validation using CNN, CNN-Triplet and Fused CNN-Triplet approach of Deep-

29

TABLE 5: Comparison of the average classification accuracy of the networks used in Deep-
hESC and DeephESC 2.0.

Approach Network Average Classification Accuracy

ResNet18 [39] CNN 70.44%

VGG19 [40] CNN 72.57%

AlexNet [28] CNN 71.91%

DeephESC [5]
CNN 86.14%

CNN-Triplet 89.37%

Fused CNN-Triplet 91.71%

DeephESC 2.0
CNN 86.33% ± 0.29

CNN-Triplet 90.88% ± 0.26

Fused CNN-Triplet 93.23% ± 0.24

TABLE 6: Confusion matrix for the classification of the 724 real hESC images using the
CNN architecture of DeephESC 2.0.

Class CC DEB UN AT DYN APO

CC 97 3 0 0 1 11

DEB 0 100 1 1 1 0

UN 2 0 121 1 0 1

AT 1 2 0 100 16 3

DYN 2 0 1 10 81 0

APO 30 4 2 1 5 126

TABLE 7: Confusion matrix for the classification of the 724 real hESC images using the
CNN-Triplet architecture of DeephESC 2.0.

Class CC DEB UN AT DYN APO

CC 102 3 0 0 1 6

DEB 0 100 1 1 1 0

UN 2 0 121 1 0 1

AT 1 2 0 105 11 3

DYN 2 0 1 4 87 0

APO 13 4 2 1 5 143

30

TABLE 8: Confusion matrix for the classification of the 724 real hESC images using the
Fused CNN-Triplet architecture of DeephESC 2.0.

Class CC DEB UN AT DYN APO

CC 105 3 0 0 1 3

DEB 0 100 1 1 1 0

UN 2 0 121 1 0 1

AT 1 2 0 110 6 3

DYN 2 0 1 2 89 0

APO 6 4 2 1 5 150

The Abbreviations used in Table 6, 7 and 8 are as follows: CC: Cell clusters, DEB: Debris, UN:
Unattached cells, AT: Attached cells, DYN: Dynamically Blebbing cells, APO: Apoptically Blebbing cells.

hESC 2.0 and Table 6, 7 and 8 show the confusion matrices for the CNN, CNN-Triplet and

fused CNN-Triplet, respectively.

All the networks in Table 5 were trained and evaluated on the real hESC images.

We compare the results obtained using DeephESC 2.0 with the results obtained using

DeephESC. The dataset has a total of 784 real hESC images, 10 randomly chosen images

from each class (60 in total) were used as the validation dataset. In order to maintain fairness

in evaluation, these 60 validation images were not used for evaluating the performance of

the networks. The remaining 724 hESC images are split into 5 folds for cross validation.

Note that the results shown in Table 5 - Table 8 are for the 724 images used in the 5 fold

cross validation.

Comparing Table 6 and Table 7 it can be observed that, the misclassification

between the classes Cell clusters (CC) and Apoptically Blebbing cells (APO) has

been reduced from 14.64% to 6.79% using the CNN-Triplet compared to just the CNN.

Similarly, the misclassification of Attached cells (AT) and Dynamically Blebbing cells

(DYN) has been reduced from 12.04% to 6.94%. Moreover, upon fusing the outputs of the

CNN and the Triplet CNN we further reduced the misclassification of Cell clusters (CC)

and Apoptically Blebbing cells (APO) to 3.21%.

31

(b) Comparison of Features learned by DeephESC 2.0 and DeephESC: Fig.

10(a) and (b) shows the features extracted by the CNN used in DeephESC 2.0. for an

Apoptically Blebbing cell and Unattached cell respectively. In Fig. 10, the first convolutional

layer learns filters some of which look like edge detectors, filters for image blurring and image

sharpening. These features become more sparse and localized as the data flows further

through the layers of the CNN.

Fig. 10: Visualization of features extracted by the CNN in DeephESC 2.0 for (a) Apoptically
Blebbing cell and (b) Unattached cell.

In order to compare the improvement in classification between DeephESC and

DeephESC 2.0, we visualized the features learned by DeephESC 2.0. Fig. 11(a) shows

an image of a Cell cluster (CC) that was correctly classified by DeephESC 2.0, but was

incorrectly classified as Apoptically Blebbing cell (APO) by DeephESC.

We masked the area containing the surrounding small cells in Fig. 11(a) with

a sliding window of size 5 x 5 with gray scale pixel value of 85 (pixel range is from 0 to

255) that matches the surrounding background as shown in Fig. 11(b). For visualization

32

Fig. 11: Visualization of features learned by DeephESC 2.0. (a) Image of a Cell cluster. (b)
Image after masking the surrounding small cells using a window. Red bounding boxes are
drawn across the masked area only for visualization purposes. (c) Probability heat map for
the class Apoptically Blebbing cell.

purposes we draw a red bounding box across the masked area in Fig. 11(b). The image in

Fig. 11(b) is then passed through the hierarchical classifier for each position of the sliding

window and the output probability score of the class Apoptically Blebbing cell (APO) for

that center position of the sliding window is plotted in Fig. 11(c).

The inference that we get from Fig. 11(c) is that, the bright pixel locations indicate

the locations that the classifier predicts as important features for the image being a Cell

cluster. The reason for this is that, the 5 x 5 mask window centered around that area is

masking the small cells as seen in Fig. 11(b), and since the network is unable to see these

surrounding small cells, it predicts the image to be an Apoptically Blebbing cell. Hence,

this means that the small cells in the image are considered as important features for the

network to classify the image as a Cell Cluster.

2.3.3 Synthetic hESC from GMAN

Fig. 12(a) and 12(b) shows examples for visualizing the features learned by the

generators in DeephESC 2.0 for generating an Unattached cell and Attached cell, respec-

tively. In Fig. 12, the input to the respective generators is a 100x1 dimensional randomly

sampled Gaussian noise vector. We can observe that the FC layer and the first convolu-

33

tional layer learn features that are very sparse and localized. As these features progress

through the layers of the generator, the features become more smooth and gradually start

to resemble a hESC both in texture and shape.

Fig. 12: Visualization of features learned by the generators in DeephESC 2.0. (a) Unattached
cell and (b) Attached cell.

(a) Evaluation of the Quality of the Generated Synthetic Images: In order to

evaluate the quality of the synthetic images, we first generated 100 synthetic images for

each of the six classes. Fig. 13 shows the 600 synthetic images that were generated for

validating the quality. The average Structural Similarity (SSIM) score and average Peak-

Signal-to-Noise Ratio (PSNR) score for a given synthetic image are computed by computing

average the SSIM and PSNR between that given synthetic image and all the real images in

the dataset for that given class. This is repeated for all the 100 synthetic images in each

class and the average SSIM score and PSNR score is obtained. The structural similarity

index between two images is calculated by:

SSIM(X,Y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(14)

34

Fig. 13: The 600 synthetic images used for validating the quality in Table 9. (a) Cell
clusters, (b) Debris, (c) Unattached cells, (d) Attached cells, (e) Dynamically Blebbing cells,
(f) Apoptically Blebbing cells.

In Eq (14), µx and µy are the average pixel values of image X and Y respectively, σ2
x and

σ2
y are the variance of the pixel values of image X and Y , respectively, σxy is the covariance

between image X and Y . C1 and C2 are constants given by C1 = (K1L)2 and C2 = (K2L)2,

where, L = 255 is the maximum range of the pixel values and K1 = 0.01 and K2 = 0.03

are fixed constants. The PSNR between two images is calculated by:

PSNR(X,Y) = 10 log10

(
L2

MSE(X,Y)

)
(15)

In Eq (15), L = 255 is the maximum range of the pixel values, MSE(X,Y) is computed by

MSE(X,Y) =
1

mn

∑m
i=1

∑n
j=1[X(i, j) − Y (i, j)]2, m and n are the spatial dimensions of

35

the synthetic image X and real image Y . Table 9 shows the average SSIM score and PSNR

score obtained using the 100 synthetic images for each class shown in Fig. 13. The cells in

Table 9 are formatted as x/y where x and y are the SSIM and PSNR values, respectively.

TABLE 9: Comparison of our GMAN architecture used in DeephESC 2.0 with e-
DCGAN [5], DCGAN [42] and c-DCGAN [41] using the SSIM and PSNR metrics. SSIM
has no units and PSNR is measured in decibels (dB)

Approach
Cell

Cluster
Debris

Unattached

cell

Attached

cell

Dynamically

Blebbing cell

Apoptically

Blebbing cell

GMAN
0.6312/

19.71

0.6217/

18.23

0.8347/

26.27

0.6072/

17.56
0.5921/16.25 0.5827/16.82

e-DCGAN
0.6047/

18.23

0.5931/

15.77

0.7731/

24.29

0.5730/

16.28
0.5463/14.33 0.5498/14.24

DCGAN
0.5732/

18.23

0.5931/

15.77

0.7731/

24.29

0.5730/

16.28
0.5463/14.33 0.5498/14.24

c-DCGAN
0.5691/

18.27

0.5722/

15.28

0.7231/

20.96

0.5897/

15.29
0.5625/15.33 0.5411/15.09

The scale for SSIM is from 0 - 1 and has no unit, 0 indicates the images have no resemblance and 1
indicates they are the same images. The ideal range for SSIM score is between 0.5 - 0.85. The scale for
PSNR is from 0 - ∞ and is measured in dB, 0 indicates the images have no similarity and ∞ indicates they
are the same images. The ideal range for PSNR score is between 15dB - 30dB.

From Table 9, it can be observed that our GMAN architecture achieved the highest

average SSIM and PSNR score for all the six classes. Unattached cells had the highest SSIM

and PSNR score of 0.8347 and 26.27 dB, respectively as this class of hESC was the easiest

to generate. The reason for this is that Unattached cells visually have the least complex

structure compared to the other five classes. This is further supported by the observation

that Unattached cells had a high correct classification accuracy of 96.80% because they are

very easy to classify. It should also be noted that, the SSIM and PSNR for e-DCGAN and

36

DCGAN are the same except for the class Cell clusters because both of these approaches

use the same architecture of generators and discriminators for all the classes except Cell

clusters.

2.3.4 Augmenting the Dataset

Since SSIM and PSNR metrics tend to ignore the higher order characteristics of

the image, we evaluated the quality of the synthetic images by training the classifier using

different proportions of real and synthetic images. The assumption of this approach is that,

if the synthetic images have similar higher order characteristics compared to the real images,

then the features learned by the CNNs during the training on the synthetic images, should

also be able to classify the real images.

To verify this assumption, we trained and evaluated our hierarchical classifier in

two different data settings:

• Training on 100% real images.

• Training on 100% synthetic images.

Training on 100% real images is the same experiment as reported in Table 5. Table 10 shows

the accuracy for each fold in the 5-fold cross validation using the 724 real hESC images.

In the second data setting, we trained our fused CNN-Triplet classifier exclusively on the

synthetic images and evaluate the performance on the real hESC images. Table 11 shows

the accuracy after training the classifier using different amounts of synthetic images.

Observing the results in Table 11, it can be seen that training the classifier exclu-

sively with the synthetic images resulted in an increase in the classification accuracy. This

verifies our assumption that the generated synthetic images do have similar higher order

characteristics as the real images and hence augmenting our dataset helps the classifier to

generalize better resulting in an increase in classification accuracy.

37

TABLE 10: Accuracy and number of images of each fold for the 5-fold cross validation using
the 724 real hESC images. The number in the brackets indicates the number of images per
class for Cell clusters, Debris, Unattached cells, Attached cells, Dynamically blebbing cells,
and Apoptically blebbing cells respectively.

Cross validation

fold number

Number of images

for training

Number of images

for testing

Classification

Accuracy (%)

Fold 1 580 (88, 80, 100, 100, 76, 136) 144 (24, 23, 25, 22, 18, 32) 93.18

Fold 2 579 (90, 83, 100, 97, 75, 134) 145 (22, 20, 25, 25, 19, 34) 93.02

Fold 3 579 (90, 83, 100, 97, 75, 134) 145 (22, 20, 25, 25, 19, 34) 93.65

Fold 4 579 (90, 83, 100, 97, 75, 134) 145 (22, 20, 25, 25, 19, 34) 93.21

Fold 5 579 (90, 83, 100, 97, 75, 134) 145 (22, 20, 25, 25, 19, 34) 93.10

Average - - 93.23 ± 0.24

TABLE 11: Comparison of using different data compositions of synthetic images for training
the classifier and then testing it on the 724 real images

Number of synthetic hESC images

per class used for training

Classification Accuracy on

the 724 real hESC images

5,000 93.84%

10,000 94.26%

20,000 94.31%

30,000 94.43%

40,000 94.46%

We verified the significance of the accuracy in Table 11 using the statistical p-

value test. The p-value is calculated using the one-way Analysis of Variance (one-way

ANOVA). One-way ANOVA is a technique that can be used to compare means of two or

more experiments using the F distribution. We assume the training using real images in

Table 10 and the training using synthetic images in Table 11 to be two different experiments.

Based on this setting, the one-way ANOVA yields a F score ratio of 33.18, which corresponds

to a p-value of 4.24× 10−4. We set the significance threshold of the p-value as 0.01. Since,

38

the p-value (4.24 × 10−4) is lower than the threshold (0.01), our results are proved to be

significant.

2.3.5 Discussion of Results

In this section we discuss about the improvement in classification accuracy, quality

of the generated synthetic images and the reasons for misclassification.

(a) Improvement in Classification Accuracy: This sub-section explains the reasons

for the improvement in classification accuracy compared to our prior work in DeephESC [5].

We show that by concatenating feature maps from the early and final stages of the CNN, the

CNN learns a better feature representation and helps reduce the misclassification between

visually similar classes.

It can be observed from Table 8 that Debris and Unattached cells had the highest

classification accuracy of 97.08% and 96.80%, respectively. The reason for this is that these

two classes are visually very distinctive compared to Cell clusters/Apoptically Blebbing cells

and Attached cells/Dynamically Blebbing cells.

On the contrary, in comparison with DeephESC [5], Cell clusters/ Apoptically

Blebbing cells had the highest misclassification rate of 7.89%. The reason for this is that

the CNN was not able to detect the small neighboring cells which distinguish a Cell cluster

from an Apoptically Blebbing cell as depicted in Fig. 3. In DeephESC 2.0 we solved this

by concatenating features learned from the initial and final convolution layers which helps

the CNN learn a more robust feature representation as shown in Fig. 11 which in turn re-

duces the misclassification rate from 7.89% to 3.21%. Similarly Attached cells/Dynamically

Blebbing cells have very similar intensities and texture with the only difference being in

their morphology. Attached cells have a more uniform and homogeneous morphology com-

pared to Dynamically Blebbing cells. By concatenating the features from initial and final

convolution layers we are able to reduce the misclassification rate from 5.26% to 3.70%.

39

(b) Quality of the Generated Synthetic Images: This sub-section explains why

Unattached cells have higher SSIM and PSNR scores compared to the other five classes.

We also explain the disadvantage of using SSIM and PSNR to validate the quality of the

images and how we overcome this problem.

It is observed from Table 9 that the SSIM and PSNR for the five classes Cell

clusters, Debris, Attached cells, Dynamically and Apoptically Blebbing cells were relatively

lower compared to the SSIM and PSNR for Unattached cells. The reason for this is that the

structure of these five classes are much more complex and diverse compared to Unattched

cells as shown in Fig. 13. SSIM and PSNR metrics compare the similarity between two

images at a pixel level ignoring the higher order characteristics (such as the overall structure

and texture). Although our approach is able to generate synthetic images which visually

look similar to the original images, due to the diverse variations in shape even a slight change

in corresponding pixel values will result in a significantly low SSIM and PSNR value.

Since SSIM and PSNR tends to ignore higher order characteristics of the image,

we evaluated the quality of higher order characteristics of the synthetic images by training

our classifier exclusively on the synthetic image and tested its classification accuracy on

the real hESC images as shown in Table 11. The assumption here is that, if the real

hESC images and the generated synthetic images have similar higher order characteristics,

then the features learned by the CNN trained on the synthetic images should be able to

also classify the real hESC images. From Table 11, we can observe that our CNN trained

exclusively on synthetic images is able to classify the real hESC images with an accuracy

of 94.46%. This observation validates our assumption that the generated synthetic images

do have similar higher order characteristics as the real hESC images.

(c) Saturation of Classification Accuracy: This sub-section shows how the accuracy

of the classifier varies with increasing amounts of synthetic images as well as the trade-off

40

Fig. 14: Classification accuracy Vs training time trade-off.

between the number of images for training Vs the time taken for training. We also show

some examples of hESC images that were predicted incorrectly by our classifier and explain

the reason for the misclassification.

It can be observed from Table 11, the classification accuracy increases progressively

as we generate more synthetic images, but after a certain amount of synthetic images (40,000

synthetic images per class) the classification accuracy does not significantly increase. In

Table 11 we get an improvement in accuracy of only 0.03% from increasing the number of

synthetic images from 30,000 to 40,000 per class but the time taken to train the classifier

significantly increases. Hence, in order to balance the trade-off between the classification

accuracy and the training time we limit the number of synthetic images per class to be

40,000. Fig. 14 shows the graph of the classification accuracy versus the training time

trade-off.

A possible reason for the saturation in classification accuracy is that the ground-

truth for certain images may have been labeled incorrectly by the biologists and the classifier

is able to correctly classify these images even though the ground-truth is wrong. Fig. 15

41

shows examples of such images that were unintentionally labeled incorrectly by the biologist,

but our classifier was still able to predict the correct class.

Fig. 15: Examples of images that were unintentionally labeled wrong by the biologist,
but correctly classified by our classifier. (a) Unattached cell mislabeled as Cell cluster,
(b) Attached cell mislabeled as Dynamically Blebbing cell. (c) Apoptically Blebbing cell
mislabeled as Cell cluster.

Fig. 15(a) is an Unattached cell, but due to the presence of a growing Dynamic

Blebbing cell near it, the biologist decided to label it as a Cell cluster. Fig. 15(b) is a

Dynamically Blebbing cell that was mislabeled as an Attached cell. Since the morphology

of these two classes are very similar, the biologist was not sure to which class the hESC

belonged to. Fig. 15(c) is a Cell cluster mislabeled as Apoptically Blebbing cell. This is

another example where the morphology of of two classes look very similar and the biologist

was not sure as to which class the hESC belonged to.

42

Chapter 3

An Automated System for

Generating Tactical Performance

Statistics for Individual Soccer

Players from Videos

In recent years, automatic interpretation of sports has gained a keen interest. It

is a challenging task especially when it involves rapid changes and long-term dynamics. To

date most of the applications for providing sports analysis and player training from video

are carried out manually. This requires lots of hours spent watching videos and annotating

them. Computer vision and machine learning play a key role in the world of sports in areas

such as player detection, player tracking, action recognition and player analysis.

Soccer is one of the most popular sports played by high school students in the

USA. According to a survey conducted by Ranker.com [43] and Statista.com [44] 846,844

(456,362 boys and 390,482 girls) high school students played soccer during the year 2017/18.

43

TABLE 12: Statistics of the number of male and female soccer players in high school,
NCAA* and MLS* [44]

Year
High school NCAA*

MLS*

Male Female Div 3 Div 2 Div1

2011/12 411,757 370,975 10,117 6,076 5,153 38

2012/13 410,982 371,532 11,097 6,165 4,832 38

2013/14 417,419 374,564 10,870 6,261 5,426 77

2014/15 432,569 375,681 11,679 6,489 5,623 84

2015/16 440,322 381,529 11,889 6,805 5,724 75

2016/17 450,234 388,339 11,256 6,754 5,953 81

2017/18 456,362 390,482 12,322 6,545 5,933 81

*NCAA stands for National Collegiate Athletic Association

*MLS stands for Major League Soccer

From this only 9% of the boys and 11.9% of the girls receive scholarship to go to college

which makes it extremely competitive.

Table 12 shows the statistics of the number of male and female soccer players in

high school, the National Collegiate Athletic Association (NCAA) and the Major League

Soccer (MLS) for the years 2011-2018. After graduating from high school, less than 6%

of soccer players get qualified for the NCAA. The NCAA consists of three tiers namely:

Division 1, Division 2 and Division 3. Most of the Major League Soccer (MLS) recruiters

seek out only the players in Division 1 and Division 2 and less than 100 of them qualify to

become pros in the MLS every year. The most common reason for players not qualifying

for the NCAA or other soccer clubs is that coaches do not have enough time to observe the

performance of every player. To alleviate this problem, we propose an automated system

that can detect, analyze all of the soccer players, identify the player controlling the ball in

a video and generate the tactical statistics of each player.

44

In team-based sports, such as soccer, talent identification is a complex process

due to the different qualities associated with performance; they include technique, tactics,

fitness and psychological attributes [45].

Technique involves the player’s style such as dribbling and how offensive/defensive is that

player.

Tactics involve attributes such as how well is the player able to control the ball and play

with the team-mates.

Fitness involves attributes such as the fatigue, stamina level of the player and history to

injuries.

Psychological involves the emotional intelligence of the player and how the player deals

with interpersonal and intrapersonal conflicts.

In this chapter, we focus on generating directly from the video, three very im-

portant tactical statistics for a soccer player namely: (i) duration of ball possession, (ii)

number of successful passes and (iii) number of successful steals.

Importance of tactical statistics: Ball possession is a very important statistic

(stat) for a player as it is has an influence on other statistics such as the number of successful

shots at the goal and number of tackles won/lost [46]. The number of successful passes

made by a player is very important because the number of overall attempted passes and

number of successful passes are important factors in achieving better results leading to

winning a match [47–49]. It has been shown that the accuracy of successful passes increase

significantly five minutes before scoring [50]. The number of successful steals within the 6

yard area has been shown to increase the number of shots at the goal [51]. Interestingly,

unsuccessful teams tend to play more in the pre-defensive area which increases the chances

of the opposition to steal the ball which in turn also increase their chances of scoring [52].

In order to develop an automated system to compute the tactical statistics for

players we collected a dataset that consists of 49,950 images of high school soccer players

45

which are annotated into two classes namely: “Players with the ball” (12,585) images and

“Players without the ball” (37,365) images. The first step in our system involves detecting

the players using the YOLOv2 framework [53] and tracking them using the DeepSort algo-

rithm [56]. Next, the detected players are passed through a Triplet-Convolutional Neural

Network (CNN) that extracts fine-grained features which are used for predicting the team

of the player and finding out if the player is controlling the ball. While trying to solve this

problem, we also address two key issues: Speed Vs. Performance and Generalizability.

Speed Vs Performance : In the field of sports analytics, the speed at which

algorithms perform without sacrificing accuracy is very important. For example, on the

COCO dataset [57] the algorithms with the best performance are rather slow [58, 59], while

the real-time algorithms have lesser accuracy [53, 60]. In this chapter, we experiment with

different architectures of CNNs and show that during inference, our approach is able to

perform relatively faster compared to the state-of-the-art approaches while not sacrificing

accuracy. It should be noted that our system is not intended to run real-time but

instead to be used as a tool for post-match analysis.

Generalizability : A last problem can be the lack of generalizability, whose origin

is at least two fold in sports video analysis: inter-sport variability, and intrasport variability.

It is currently too ambitious to hope for a universal system that can perform accurate player

analysis on any sports video, which underlines the need for developing sports-specific models.

Besides, even within videos from a single sport, some play conditions may change from one

match to the next, such as the outfits of the teams and environmental conditions in the

case of outdoor sports such as soccer. Fast algorithms can be less robust to such variations,

which might make them non-reusable from one match to the next.

Rather than trying to unify all of these conditions within a single network, it is

more appropriate to re-train a specific network for every match in order to adjust to the

conditions of that match [61]. To achieve this we experiment with different soccer matches

46

played by different teams and find the least amount of images that need to be annotated

in order to achieve robust performance. Another problem that arises is that how do we

annotate images for a match that has not yet been played? To solve this we annotate

images of matches previously played by the same teams and then re-train our models and

evaluate it on the match that is to be played.

3.1 Related Work and Our Contributions

In this section, we describe various state-of-the-art approaches that have been

used in sports for detecting and tracking players, identifying teams and events, and player

analysis.

3.1.1 Player Tracking

Duh et al. [62] used a 2D Gaussian model for segmenting the soccer field followed

by a histogram based method and a Spatial Similarity Matrix for detecting and tracking

players. Liu et al. [63] performed an adaptive Gaussian background subtraction followed by

clustering to detect soccer players. Finally the detected players are tracked using the Markov

Chain Monte Carlo (MCMC) association. Chiang et al. [64] assume that the histogram of

a moving player is narrower compared to the histogram of the entire frame. Based on this

the mean shift algorithm is used for segmenting and tracking the player

Xing et al. [65] used a Bayesian inference approach that dynamically switches

between an offline general model and an online dedicated model to track players under

occlusions. D’Orazio et al. [66] track soccer players by first detecting the soccer players in

the video using background subtraction. Bounding box features such as the position and

velocity are extracted for each player. These features are then matched with the detected

players in the next frame. Khatoonabadi and Rahmati [67] detected the soccer players using

perspective transformations and tracked them using histogram based template matching

47

3.1.2 Player and Team Detection

Senocak et al. [68] used CNNs to extract holistic features from an image of a

player and each part of his body which is encoded into a Fisher vector representation [69]

and passed to a Support Vector Machine (SVM) for classification. Xu et al. [70] detected

soccer players from 4K videos in multiple stationary cameras. The authors divided the

video into non-overlapping regions of size 416×416 and used a YOLOv3 detector to detect

the player in the regions where foreground movement was detected.

Liu and Bhanu [71]designed an automated system using a pose-guided R-CNN for

detecting the jersey numbers of players from different sports and classify the digits. Istasse

et al. [72] used a lightweight CNN to learn a pixel-wise embedding vector, that is similar

for players from the same team and dissimilar for different teams. Theagarajan et al. [74]

used histogram matching and a YOLO framework to detect and distinguish players from

different teams. In their approach the authors manually cropped 10 template images of

soccer players for each team.

3.1.3 Event Detection and Player Analysis

Cai et al. [75] detected the actions of ice hockey players using Part Affinity Fields

(PAF) [76] and extracted temporal features using optical flow [77]. The pose and optical

flow features are then fused to predict the action of the player. Piergiovanni and Ryoo [78]

introduced the MLB-YouTube dataset that consists of 20 baseball games from the 2017

MLB post-season with over 42 hours of footage. The authors The authors experimented

with various temporal feature pooling methods to classify the events in baseball. Cioppa

et al. [79] used the contextual information from soccer broadcast videos such as the line

marking and player position to predict how offensive/defensive the players were playing.

Tora et al. [80] classified the puck possession events in hockey using a player based

CNN, a frame based CNN and a Long Short Term Memory (LSTM) recurrent neural net-

48

work. The authors extract contextual and holistic features from the CNNswhich are given

as input to train the LSTM. Li and Bhanu [81] used Mask-R-CNN [82] and OpenPose [83]

to compute the Dribble Enery Image (DEI) and then classify the dribbling style of soccer

players. Theagarajan et al. [74] designed an automated system to detect using the YOLO

framework and VGG-16 CNN to and classify the soccer player controlling the ball videos

recorded using a single un-calibrated camera.

3.1.4 Contributions of this chapter

In contrast to the state-of-the-art approaches described above, the contributions

of this chapter are as follows:

• Generating Tactical statistics: To the best of our knowledge, this is the first

approach in the field of computer vision, sports analysis and circuits and systems for

video technology, that can automatically generate three quantifiable tactical statistics

(duration of ball possession, number of successful passes, and steals) of individual

soccer players from a video. In addition, an ablation study is carried out to show

how different combinations of the individual modules affect the generation of tactical

statistics at a match level and individual player level.

• Team Identification: Unlike previous approaches that use clustering based tech-

niques such as [63, 67, 72] and ad hoc histogram based matching such as [73, 74, 85]

which are susceptible to the player pose and environmental conditions, we evaluate

three different approaches using Siamese and Triplet CNNs and show that our ap-

proach is more robust and outperforms the state-of-the-art approaches by 26%.

• Player Analysis: Prior work done by Theagarajan et al. [74] shows that regular

CNNs have trouble in detecting minute details such as the soccer ball in low resolution

images which is very important for differentiating between a player with and without

49

the ball. To overcome this problem, we extract fine-grained features using a Triplet

CNN trained on only 100 images per class and show that our approach outperforms

the state-of-the-art by at least 14% and has significantly lesser number of parameters.

• Generation of Fine-grained Synthetic Images: This chapter shows that regu-

lar Generative Adversarial Networks (GANs) often overlook minute details such as

the soccer ball when generating synthetic images. To overcome this problem, this

chapter designs a Triplet CNN-DCGAN for generating fine-grained images of soccer

players controlling the ball and performs an ablation study to show the improvement

in generating tactical statistics with and without data augmentation.

3.2 Technical Approach

In this section, we explain the framework of our approach and its individual mod-

ules as shown in Fig. 16. The input video first passes through the player detection module

where the soccer players are detected, tracked and cropped. Next, the cropped images are

passed through a player classification module which consists of two Triplet CNNs that are

trained to extract fine-grained features and 1) predict the team of the player and 2) identify

the player controlling the ball. Next we pool together the outputs of the player detection

and player classification modules for the entire video to generate the tactical statistics for

all of the individual players.

3.2.1 Localization and Tracking

Localization of Soccer Players In our approach we detected the soccer players in a

video using the YOLOv2 framework proposed by [53]. YOLOv2 consists of a CNN that

predicts multiple bounding boxes for an image along with the respective class probabilities

for each bounding box. YOLOv2 initially divides the input frame into a 11×11 grid. Each

grid predicts B bounding boxes and the confidence score associated for each bounding box.

50

Fig. 16: Overall architecture of our approach.

Formally, the confidence is defined as Pr(object) * IOU, where Pr(object) is the probability

of an object present and IOU is the Intersection Over Union between the predicted bounding

box and the ground-truth bounding box. This probability is conditioned on the grid cell

containing one object meaning that, if there is no object present on the grid cell, the loss

function will not penalize the CNN for a wrong class prediction.

The network was trained on the COCO 2016 keypoints challenge dataset [57] as

this dataset consists of diverse images for the class “Person” which also includes sports

players. The images in these datasets have different scale variations, and occlusions which

is similar to the scenario of a soccer field. For a given frame, the bounding boxes belonging

to the class “Person” with probability greater than a given threshold are considered to be

the locations of the soccer players for that frame. In our approach we set the threshold to

be 0.5.

Tracking the Soccer Players After detecting the soccer players in consecutive frames,

we use the DeepSort long-term tracking approach proposed by Wojke et al. [56] who refor-

mulate the tracking association as the re-identification problem. In traditional broadcast

videos of soccer league matches, the camera operator is located at least 100 feet away from

51

the side lines of the soccer field at a reasonable height. This provides a large Field-of-View

(FoV) for the camera operator and there is very small amount of gradual pan and tilt. In

these kinds of videos when a player is moving on the field, the camera operator also pans

the camera very gradually such that the cartesian coordinates of the soccer player in the

video has minimal change. In high school soccer videos such as our dataset, due to the

availability of limited space, the camera operator is located just 20 - 30 feet from the side

lines of the soccer field at a height of 15 feet. This creates a very limited FoV for the camera

operator which leads to large amount of pan, tilt and zoom even when the soccer players

are not running very fast.

Based on these requirements we experimented with five state-of-the-art tracking

algorithms (including DeepSORT and algorithms proposed in [86]) and found DeepSORT

to perform the best given the current scenario. The reason for this is that, unlike the

other mentioned algorithms that solely rely on the features extracted from object detectors,

DeepSORT also uses an 8-dimensional state space vector which is given as input to a Kalman

filter. This state space vector contains the information such as velocity and direction in

which the player is moving relative to the camera. Assuming that the players usually move

at a constant velocity relative to the camera that is located at a distance and the tracklets

of a player always follow a linear model (a player cannot arbitrarily appear at different

locations in consecutive frames) the Kalman filter is able to track the individual players

more consistently. In the case of soccer videos if a group of players of the same team are

close to each other, it would cause association problems if the tracking algorithm solely

relied on the features extracted from an object detector. DeepSORT is able to handle

these kind of situations with much ease compared to the other methods because it uses the

combination of an object detector and a state space Kalman filter that assumes that players

move linearly in a video.

52

In our approach the CNN used for detecting the players is YOLOv2 and the 8-

dimensional state-space vector is represented by (u, v, γ, h, u’, v’, γ’, h’) where, (u, v)

is the image coordinate of the center of the bounding box, γ is the aspect ratio, h is the

height of the bounding box and (u’, v’, γ’, h’) are their respective velocities in the image

coordinate. Finally, the features extracted by YOLOv2 and the state-space motion vector

are concatenated and passed as the input to a Hungarian algorithm [87].

Moreover, it should be noted that our current system does not account for any

camera calibration and the camera operator is allowed to freely pan, tilt and zoom the

camera depending on where the action is happening on the soccer field. Due to this if a

player moves out of the view of the camera and re-appears after a while, the algorithm

associates the player as a new person. In this situation our approach will treat these

players as new players and continue to generate the statistics. It is very challenging to track

players under such conditions using state-of-the-art long-term tracking and re-identification

algorithms and it is a problem of its own. In the case of soccer videos, it is more challenging

because players belonging to the same team wear the same jersey and they visually look

very similar from the camera’s perspective.

3.2.2 Team Identification

In this sub-section we experiment three different approaches (TI-1, TI-2, and TI-

3) for predicting the team of the players and compare their pros and cons individually.

TI-1: Cross Dataset Transfer Learning and Feature Matching using Siamese

CNN: In soccer, since players belonging to the same team wear the same color of jersey, we

can formulate the task of player team identification as a person re-identification problem. In

this approach we train a Siamese CNN on the Town Center subset of the PETA dataset [88]

53

Fig. 17: Architecture of the Siamese CNN.

for the task of pedestrian re-identification with two output classes “Same person” and

“Different person”. Fig. 17 shows the architecture of the Siamese CNN. In Fig. 17 Conv(x,

y, z) represents the dimension of the filter (x), stride of the filter (y), and padding (z). We

used the Siamese loss function for training and it is given by:

LossSiamese = (1− Y)
1

2
D2
W + Y

1

2
{max(0,m−DW)}2 (1)

In Eq. 1, DW is the Euclidean distance between the outputs of the Siamese networks, m is

the margin and is chosen as 1 and Y is either 0 or 1. If the inputs are from the same class,

then the value of Y is 0, otherwise Y is 1.

After training the Siamese CNN on the PETA dataset, we evaluate the trained

CNN on our dataset. Initially we select 10 template images for each team. Next, we pass

the detected player through the Siamese CNN and we extract a feature vector X. Similarly,

we also extract the feature vectors of the 10 template images of each team Yi where i = 1 to

10. Next, we compute the average Euclidean distance between X and Yi for both the teams

and the team with the least average Euclidean distance is taken as the final prediction.

54

TI-2: Fine Tuning and Feature Matching using Siamese CNN: This approach

is similar to that of TI-1 except that, after pre-training on the PETA dataset we further

fine tune the Siamese CNN with images from our dataset as well. This helps the CNN to

learn features specific to the match being played which improves the performance of the

prediction. During testing similar to TI-1, we select 10 template images from each team

and compute the average Euclidean distance between the feature vector of the detected

player X and the feature vector of the template images Yi for both the teams and the team

with the least average Euclidean distance is taken as the final prediction. Experimental

results (see Table 17) show that this approach performs better than TI-1 because in TI-2

the CNN is able to learn features that are more specific to the soccer match.

TI-3: Fine-grained Feature Extraction using Triplet CNN: Triplet CNNs are

known for extracting fine-grained features while maximizing the interclass variance and

minimizing the intraclass variance at the same time [5, 27, 89, 90]. In this approach we use

the same CNN architecture as in Fig. 17 and the only change is that we replaced the final

fully connected layer (FC Layer 2) with two output nodes for “Team A” and “Team B”.

During testing, this approach does not require any template images for matching. We use

both the Triplet loss (eq. 2) and binary cross entropy loss (eq. 3) for training.

LossTrip = Max(0,−Y ∗ (G(X1)−G(X2)) +margin) (2)

LossBCE =
−1

n

n∑
i=1

yi ∗ log(pi) + (1− yi) ∗ log(1− pi) (3)

Loss = α1 × LossTrip + α2 × LossBCE (4)

In Eq. 2, X1 and X2 are the two anchor images and G(X) is the pairwise distance

between the feature extracted by Triplet CNN for the localized player image and the anchor

55

image. If Y = 1 it indicates that the anchor image X1 belongs to the same class as the

localized player image, whereas, Y = -1 indicates that the anchor image X2 belongs to the

same class as the localized player image.

In Eq. 3, yi is the ground-truth label and pi is the output probability score for

the respective classes. In Eq. 2, α1 and α2 are constants and are chosen to be 0.5. The

advantage of this approach compared to TI-1 and TI-2 is that, this approach does not

require any template images during inference and gives us the highest accuracy.

3.2.3 Identifying the Player Controlling the Ball

To generate player statistics and visual analytics for soccer, we need to identify

the player who is in control of the ball at any given point of time. To achieve this, we

trained another Triplet CNN with the same architecture used in chapter 4.2.2 (TI-3) (the

two CNNs do not share the same weights) to classify a given cropped image of the soccer

player as either a “player with the ball” or “player without the ball”. The cropped images of

the soccer players are resized to size 160×100. We chose this size because the normal aspect

ratio of a human body is between 0.6 - 0.7. We chose a mini-batch size of 256 Triplet pairs

and during every epoch the training data is randomly shuffled and randomly horizontally

flipped.

We used a combination of both the Triplet loss and binary cross entropy loss as

shown in Eq. 2 - 2 to train the Triplet CNN. Furthermore, we separated a part of our

training data as the validation dataset for finding the best training hyper parameters. The

validation dataset is used only for finding the best hyper parameters and it is never used for

training. We performed random hyper parameter search to obtain the best learning rate,

momentum and weight decay. This is done by training and validating the network with

random values within a range for each hyper parameter for 5 epochs, and the combination

of hyper parameters that resulted in the highest accuracy at the end of 5 epochs were chosen

56

as the best. Based on this we chose the learning rate = 2 ×10−2, momentum = 0.7 and

weight decay = 4 ×10−3. Finally, the networks were optimized using the stochastic gradient

descent algorithm.

3.2.4 Data Augmentation using Triplet CNN-DCGAN

In this sub-section, we explain on how we performed data augmentation to our

dataset. The purpose of data augmentation is to determine if adding more variability to the

training dataset helps to improve the generation of tactical statistics. To achieve this we

trained the Deep Convolutional Generative Adversial Network (DCGAN) proposed by [42].

It consists of two deep convolutional neural networks, a generator G and a discriminator D

trained against each other. The generator takes a randomly sampled Gaussian noise vector,

z, and returns an image, Xgen = G(z). The discriminator takes a real or a generated

image X, and outputs a log probability P (S|X) = D(X) over the two image sources S. The

optimization function V is given by:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)] +

+Ex∼pz(z) [log (1−D(G(z)))]

(5)

In eq. 5, log(D(x)) is the log probability of the output of the discriminator and

D is trained to maximize the probability of assigning the correct label to the image (i.e.

is the image original or generated) while G is simultaneously trying to minimize it. The

significance of eq. 5 is that by doing a minimax optimization, we are essentially pitting

the generator against an adversary that can detect if an image is a counterfeit or not.

This encourages G to learn the distribution of the dataset and hence generate images that

resemble the dataset. The final objective is that the two networks converge to an equilibrium

so that D is maximally confused and G generates samples that resemble the training data.

57

Fine-grained Synthetic Image Generation: After training the DCGAN, we observed

that after the generator and discriminator have reached an equilibrium the generator was

able to produce images of the soccer player but, most of these images did not have the

soccer ball in it. Generating the soccer ball with the player is the most important feature

for distinguishing a “player with the ball” from a “player without the ball”. In our approach

we solve this problem by introducing a regularizer CNN into the DCGAN architecture. The

task of the regularizer CNN is to classify the images generated and if the image is classified

as a “Player without the ball”, the generator is penalized more. So now the task of the

generator is not only to fool the discriminator but also generate images that resemble a

“player with the ball”. In our approach we used the Triplet CNN trained to identify the

player controlling the ball as the regularizer CNN. Fig. 18 shows the Triplet CNN-DCGAN

architecture.

Fig. 18: Architecture of the Triplet CNN-DCGAN.

In Fig. 18, it should be noted that the regularizer CNN (i.e., Triplet CNN) is

pre-trained to classify between the two classes “Player with the ball” and “Player without

the ball” and its parameters are frozen after pre-training. This means that we do not update

58

the weights of the regularizer CNN while training the generator. In this new architecture,

we use the regular DCGAN loss as described in [42] along with the binary cross entropy

loss of the Triplet CNN.

We included the regularizer CNN in the loop only after the generator and discrimi-

nator have already reached an equilibrium. The reason for this is that initially while training

the DCGAN, the generator does not generate realistic images and if we pass these unreal-

istic images to the Triplet CNN, it would not be able to recognize the images, resulting in

mis-classifications leading to an erroneous back propagation. Hence after the discriminator

and generator have reached an equilibrium and the generator is able to produce realistic

images of soccer players, we include the Triplet CNN in the loop. Fig. 19(a) shows images

generated using the regular DCGAN approach [42] and Fig. 19(b) shows images generated

using our fine-grained Triplet CNN-DCGAN approach. In Fig. 19(b) the red bounding box

indicates the location of the soccer ball in the image.

Fig. 19: Generated images of the class “Player with the ball” using (a) DCGAN [42] and
(b) Triplet CNN-DCGAN.

59

3.2.5 Tactical Statistics Generation

In this sub-section we explain our algorithm for generating the tactical statistics

of the soccer players in the video. We pool together the outputs of the player detection

module and player classification modules shown in Fig. 16 for the entire video as inputs to

our statistics generation module. The outputs of the statistics generation module are the

duration of ball possession, number of successful passes and number of successful steals for

every player in the video. The pseudo code for generating the tactical statistics is given

below. In the pseudo code i is the frame number and j is the number of players detected

in frame i. ID[i][j] contains the tracking IDs of all j players in frame i. This information

is obtained as the output from the player detection module. x[i] contains the tracking ID

of the player controlling the ball in frame i and y[i] contains the team name of the player

controlling the ball in frame i. This information is obtained as the output from the Player

classification module.

Pseudo code for generating the tactical statistics

Inputs: 1) List of tracking IDs (ID[i][j]), 2) Player with ball dictionary (x[i]), 3) Team dictionary (y[i])

where, i is the frame number of the video and j is the ID of the tracked player in frame i.

Outputs: Ball possession dictionary[], successful passes dictionary[], and successful steal dictionary[].

Initialize all the key-value pairs for the ball possession, successful passes and successful steal dictionary to 0

Initialize Players tracked list to be empty

For i = 1 to N frames in the video

do

% This block keeps track of new incoming players

For j = 1 to length (ID[i])

end

60

if (ID[i][j] does not belong in Players tracked):

Append ID[i][j] to Players tracked

ball possession dictionary[ID[i][j]] = 0

successful passes dictionary[ID[i][j]] = 0

successful steal dictionary[ID[i][j]] = 0

% This block computes the statistics

while (i>1 and i<=N):

% Is the ID of the player controlling the ball in frame i

and frame i - 1 different?

if (x[i] is not equal to x[i-1]): % Yes

% Are the two players in the same team?

if (y[i] is equal to y[i-1]): % Yes

% It’s a successful pass

successful passes dictionary[x[i-1]] += 1

ball possession dictionary[x[i]] += 1

else: % No, they belong to different teams

% It’s a successful steal

successful steal dictionary[x[i]] += 1

ball possession dictionary[x[i]] += 1

else: % No, it’s the same player controlling the ball

ball possession dictionary[x[i]] += 1

end

3.3 Experimental Results

We trained and evaluated our approach on a dataset collected from three different

high school soccer matches. The overall framework of our approach is implemented using

2 TITAN X GPUs with 7 TFlops of precision, 336.5GB/s of memory and 12 GB of RAM

memory per GPU.

61

3.3.1 Dataset

We collected a dataset from three different soccer matches. The matches played

by the teams were recorded using a single Canon XA10 video camera. The camera was

installed at a height of 15 feet and 20 feet away from the horizontal baseline of the soccer

field. The resolution of the recorded video is 1280×720. The camera operator was allowed

to pan and zoom depending on where the action is happening on the soccer field in order to

collect high resolution and good quality images with enough pixels on a player’s body. To

the best of our knowledge, the only other dataset that has annotations of soccer players in

the video, was done by Pettersen et al. [91]. The authors used three stationary wide angle

cameras installed inside the control room behind the audience in the Alfheim stadium in

Norway. Since the control room is very far away from the soccer field (at least 100 feet) the

resulting videos have very small number of pixels on the soccer player and even fewer pixels

on the soccer ball making it difficult to distinguish the player controlling the ball. Hence

we could not use this dataset.

Ground-truth for Training Data Our dataset consists of 49,950 images, and it is

annotated into two classes namely: “Players with the ball” (12,585 images) and “Players

without the ball” (37,365 images). The dataset consists of three teams whose jersey colors

are white, red and blue. Out of the 49,950 images, the white team constitutes 13,960 images,

the red team constitutes 17,390 images and the blue team constitutes 18,600 images of the

dataset. Within the two classes, the white, red and blue team constitute 26.12%, 16.16%

and 57.73% for the class “Players with the ball” and 28.58%, 41.26% and 30.16% for the

class “Players without the ball”, respectively. Table 13 shows the distribution of the two

classes in our dataset. Fig. 20(a) and Fig. 20(b) shows example images of “Players with

the ball” and “Players without the ball” from our dataset, respectively.

62

TABLE 13: Data distribution for the two classes with respect to the teams

Class White team Red team Blue team

Player with the ball 3,348 2,071 7,400

Player without the ball 10,612 15,319 11,200

Fig. 20: Examples of players in our dataset for the class: (a) Player with the ball and (b)
Player without the ball.

It should be noted that in our approach we are not generating tactical

statistics for the goal keeper. The reason for this is that a goal keeper is evalu-

ated based on the number of goal shots saved and since we are not generating

that statistic we ignore the goal keeper and did not annotate any images of

goal keepers in our dataset. From Table 13 it can be seen that the dataset is highly

unbalanced which makes it challenging. The reason for this is that for every frame of the

video only one player can control the ball which leaves 21 other players without the ball.

But as the camera is being panned and zoomed not all 22 players are present in a single

frame all the time, resulting in 25.66% of the data constituting for the class “Players with

the ball” and 74.34% of the data constituting for the class “Players without the ball”.

Clearly from Table 13 it can be seen that the dataset is highly unbalanced which

makes it challenging. The reason for this is that for every frame of the video only one player

63

can control the ball which leaves 21 other players without the ball. But as the camera is

being panned and zoomed not all 22 players are present in a single frame all the time,

resulting in 25.66% of the data constituting for the class “players with the ball” and 74.34%

of the data constituting for the class “players without the ball”.

Detailed Ground-truth Generation for Testing Videos of Varying Complexities:

It should be noted that the dataset consisting of the 49,950 images does not have any an-

notations of player’s positions in the video or their tactical statistics. Hence, in order to

evaluate the performance of the player detection, tracking and tactical statistics generation

module, we annotated seven highlight test videos for evaluation/testing only. Six of these

highlight videos were extracted from matches played between the Red jersey Vs. White jer-

sey categorized into three different complexities namely: Low (2 video clips), Moderate

(2 video clips) and Severe (2 video clip). The duration of these six videos ranges from ap-

proximately 90 to 180 seconds. Since our approach uses only a single un-calibrated camera,

we selected these six highlight videos such that the camera was not moving (pan, tilt, or

zoom) faster than the players on the field. We also ensured that the FoVs of the camera in

the highlight videos were large enough such that we do not have players entering/exiting the

FoV of the camera for a long duration and then re-appearing elsewhere in the video. The

7th highlight video is publicly available on the internet and the match was played between

a white and blue jersey team. The duration of this video is 31 seconds and it contains

small segments of the Low, Moderate, and Severe complexity. This video contains segments

where the players are entering/exiting the FoV of the camera and the tracking algorithms

cannot associate them if the duration of entering/exiting is longer than 5 seconds. In order

to evaluate the tracking algorithms in a fair manner, we consider the players who exit/enter

after 5 seconds in the video to be new players. It should also be noted that these highlight

videos were not used for training the CNNs.

64

We have carefully chosen these seven videos such that each video shows some

level of complexity during different segments of the match. We chose the videos in the

Low complexity when there are 4 - 5 players of the same team passing the ball among

themselves and they are widely spread out. We can see this kind of play in a match when

a team is trying to stall the opposing team. It is relatively easy to predict the statistics in

this Low complexity case as compared to the Moderate and Severe complexity cases. In the

Moderate complexity case we chose the videos where the mid-fielders are trying to penetrate

the oppositions defense by passing the ball between their team mates while the opposition

mid-fielders are trying to steal the ball. This scenario causes a lot of occlusion as there are

usually 6 - 10 players in a small area as compared to the Low complexity case that makes

it even more challenging to generate statistics. In the Severe complexity case, the offensive

players try to aim for a shot at the goal while trying to avoid the opposition defenders and

mid-fielders simultaneously. This scenario involves significant occlusion because usually

there are several offensive players from the same team who pass the ball among themselves

while there are at least 2 defenders and more than 2 mid-fielders from the opposition trying

to steal the ball within a very narrow area of the field. This scenario causes the most

occlusion leading to a significant drop in performance of generated statistics (see Table

24). In summary, these seven videos are representative and the results from our approach

demonstrate how the overall system will perform under different segments of a match.

The ball possession for these highlight videos was annotated by identifying the

player controlling the ball in all of the frames of all videos. The number of passes and steals

made by each player in a video were annotated by observing the video and identifying

the tracking ID of the players and the frame numbers of the video when the ball was

passed/stolen.

65

3.3.2 Results for the Player Detection Module

In this sub-section we evaluate the performance of the player detection and tracking

algorithms using the seven highlight test videos described above.

Localization Results and their Comparisons: We evaluated four state-of-the-art ob-

ject detection algorithms namely: YOLOv2 [53], Single Shot Detection (SSD) [60], Open-

Pose [83], and Mask R-CNN [82] for detecting the soccer players in video. We used Inter-

section Over Union (IOU) between the ground truth and predicted bounding box and the

speed of performance during inference in Frames Per Second (FPS) as metrics. Since we

do not have any annotated training data with the soccer players position we trained all the

above localization approaches on the COCO dataset [57] and then evaluated them on our

highlight test videos. We chose the COCO dataset because it has a lot of diverse images for

the class “Person”. Table 14 shows the detection results on the seven highlight test videos.

TABLE 14: Performance metrics of different approaches for detecting the soccer players.

Approach Average IOU (%) Average Speed (FPS)

YOLOv2 [53] 84.81 ± 2.74 17.2 ± 0.3

SSD [60] 74.30 ± 2.03 15.8 ± 0.2

OpenPose [83] 69.45 ± 3.74 6.4 ± 0.2

Mask R-CNN [82] 86.68 ± 2.58 1.7 ± 0.4

All the approaches in Table 14 were evaluated using two TITAN X GPUs. From

Table 14 it can be observed that YOLOv2 [53] had the highest average speed of performance

with 17.2 FPS and average IOU accuracy of 84.68% while OpenPose had the least average

IOU accuracy of 69.53%. SSD had a similar speed of performance compared to YOLOv2

but fell short in its average IOU accuracy. Mask R-CNN [82] had the highest average IOU

of 86.47%, but had the least speed of performance of only 1.7 FPS making it impractical

to use in our approach compared to YOLOv2.

66

Tracking Results and their Comparisons: We evaluated three deep learning based [54]

- [56] and two hand-crafted features based [66, 67] long-term tracking algorithms. Table

15 shows the average Multi Object Tracking Accuracy (MOTA), Mostly Tracked (MT),

and processing speed of each algorithm evaluated on our 7 highlight videos. MOTA is the

accuracy of assigning the correct tracking ID to a player during all the frames the player is

detected. MT is the accuracy of assigning the correct tracking ID to a player for at least

70% of their tracking duration. In Table 15 since we are only comparing the performance

of tracking algorithms, for fair comparison we replaced the object detection in [66] and [67]

with YOLOv2 [53] and used [54] and [55] as proposed in their paper.

TABLE 15: Performance comparison of tracking algorithms

Approach
Average

MOTA* (%)

Average

MT* (%)

Average

speed (FPS)

Feichtenhofer et al. [54] 72.60 ± 7.37 60.88 ± 3.51 14.1 ± 0.4

Bertinetto et al. [55] 63.87 ± 6.55 49.02 ± 4.34 16.3 ± 0.3

D’Orazio et al. [66] 29.78 ± 3.22 15.63 ± 4.22 20.6 ± 0.4

Khatoonabadi and Rahmati [67] 23.35 ± 2.13 10.89 ± 2.27 20.4 ± 0.4

DeepSORT [56] 76.59 ± 6.32 63.57 ± 3.85 17.2 ± 0.4

*MOTA and MT refer to Multi Object Tracking Accuracy and Mostly Tracked, respectively.

From Table 15 it can be observed that DeepSORT had the best MOTA and MT

with a speed of 17.2 FPS. The hand-crafted approaches of [66] and [67] had the worst

MOTA and MT but had the best processing speed. Most of the errors for the 5 different

approaches occurred in Severe complexity cases when multiple players overlap with each

other, causing the detector to detect them as a single player. This kind of situation arises

when a player approaches close to the opposition team aiming for a shot at the goal.

We currently do not account for any camera calibration and the players are tracked

based on the Euclidean coordinates of the video frame and not the actual coordinates of

67

the soccer field. As a result, when the camera changes its focus from one part of the field to

another, some players do not appear in the video for a while and when they re-appear, they

are detected and tracked as new players. It is very challenging to track re-appearing players

if the duration between disappearing and re-appearing is very large. Possible solutions to

eliminate this problem are:

Player re-identification : 1) We can a use a player re-identification framework to associate

the players when they re-appear, but the challenge with this is that, the players are wearing

the jersey of the same color which makes it difficult to re-identify them under all situations.

2) We can associate the soccer players by recognizing their jersey numbers as proposed

by Liu et al. [71], but this is possible only when the soccer player is displaying the jersey

number to the camera.

Additional hardware : 1) We can use multiple static cameras on opposite sides of the

soccer field such that the collective FoV of the cameras spans the entire soccer field [84].

2) We can use unique GPS trackers attached to the jersey of the soccer players along with

camera calibration to get the physical location of the players on the soccer field.

3.3.3 Results for the Player Classification Module

Team Classification Results and their Comparisons: In this sub-section we evaluate

and compare the performance of our three different team identification algorithms (TI-1,

TI-2, TI-3) as described in Section 4.2.2. For the TI-1 approach, we trained the Triplet

CNN on the Town Center subset of the PETA dataset [88] and then evaluated the CNN on

all of the 49,950 images from our dataset. For the TI-2 and TI-3 approaches, we randomly

split our dataset consisting of 49,950 images evenly based on the number of images in our

dataset for each team into 65% for training, 10% for validation and 25% for testing. The

validation dataset was selected randomly and fixed for all of the experiments for team

68

identification. We used the validation dataset only for finding the best hyper parameters.

Table 16 shows the distribution of the training, validation and testing datasets and Table

17 shows the results and comparison of the four-fold cross validation for team identification.

TABLE 16: Data distribution for training, validation and testing datasets for team identi-
fication.

Team Training Validation Testing

White Team 9,075 1,395 3,490

Red Team 11,303 1,739 4,348

Blue Team 12,090 1,860 4,650

Total Images 32,468 4,994 12,488

TABLE 17: Results and comparison for team identification.

Approach Average Accuracy (%) Requires template?

Theagarajan et al. [74] 71.28 yes

TI-1* 83.56 yes

TI-2* 93.17 ± 1.07 yes

Otsu [85] 64.07 ± 5.37 no

ResNet18 [39] 82.55 ± 1.56 no

ResNet34 [39] 89.40 ± 1.62 no

ResNet50 [39] 93.58 ± 1.40 no

AlexNet [28] 85.73 ± 1.44 no

VGG-16 [40] 82.07 ± 1.31 no

TI-3* 97.46 ± 1.19 no

*TI stands for Team Identification

In order to evaluate the approach of Theagarajan et al. [74], we randomly selected

10 template images from the dataset for each team and evaluated the performance on all of

the remaining images from our dataset. We can observe from Table 17 that our approach

(TI-3) outperforms all of the state-of-the-art methods. Otsu’s method [85] had the least

69

accuracy followed by Theagarajan et al. [74] because even within the same match if the pose

of the detected player is in the profile view and the templates consists of images that are

frontal/back view of the player, the histograms will look very different and it is not realistic

to collect new templates dynamically during a match.

From Table 17 in the TI-1 setting, we trained the Siamese CNN on the Town

Center subset of the PETA dataset [88] for the task of pedestrian re-identification. After

training the CNN, we evaluated it on our dataset by extracting features of the detected

player and matching it with the features for the template images. This approach achieved

an accuracy of 83.56% and did not require any knowledge of the soccer match making it

generalizable to other soccer matches.

The TI-2 setting is similar to the TI-1 setting except that after pre-training on

the subset of the PETA dataset [88], we further fine tune the Siamese CNN with our soccer

dataset which helps to improve the accuracy to 93.17%.

In the TI-3 setting, we train the Triplet CNN using both the Triplet loss and the

binary cross entropy loss. The difference between TI-1, TI-2 and TI-3 is that TI-3 does not

require any template images for matching the features and it provides the highest accuracy

of 97.46%. In TI-3 we need to train the Triplet CNN for every single match, making it less

generalizable compared to TI-1. Although the TI-3 setting is less generalizable compared to

the TI-1 setting, in applications such as sports analytics, coaches and fans of the sport prefer

to have a system that provides the highest accuracy compared to having a generalizable

system that provides a significantly lower accuracy.

Results for Identifying the Player with the Ball and Comparison of Algorithms:

In this sub-section we evaluate and compare the performance of our Triplet CNN for identi-

fying the player controlling the ball using the prediction accuracy and speed of performance

during inference as the performance metrics. For this purpose, we split the dataset evenly

70

based on the number of images for the two classes from our dataset into 65% for training,

10% for validation and 25% for testing. Table 18 shows the data distribution for the train-

ing, validation and testing datasets and Table 19 shows the results and comparison of the

four-fold cross validation for identifying the “Player with the ball”. Similar to Table 16, the

validation dataset was used only for finding the best hyper parameters and not for training.

TABLE 18: Data distribution for training, validation and testing for identifying the player
controlling the ball.

Class Training Validation Testing

Player with the ball 8,333 1,281 3,205

Player without the ball 24,135 3,713 9,283

Total Images 32,468 4,994 12,488

TABLE 19: Results of the four-fold cross validation for identifying the player controlling
the ball.

Network
Average

accuracy (%)

Average

speed (FPS)

Number of

parameters

ResNet18 [39] 81.70 ± 3.21 8.2 ± 0.7 111.7m

ResNet34 [39] 81.18 ± 3.58 6.3 ± 0.7 212.8m

ResNet50 [39] 82.51 ± 4.76 5.9 ± 0.6 235.1m

AlexNet [28] 79.51 ± 2.07 13.4 ± 0.8 61.1m

VGG-16 [40] 81.29 ± 3.22 7.9 ± 0.6 134.2m

Theagarajan et al. [74] 83.47 ± 4.02 7.5 ± 0.7 139.5m

Our Approach 90.66 ± 2.46 26.7 ± 1.2 3.7m

From Table 19 it can be observed that our approach had the highest accuracy and

speed of performance compared to the state-of-the-art. Moreover, our CNN performs at

least 2x faster with less than 16x the number of parameters than the state-of-the-art. The

71

reason for this is that most of the state-of-the-art CNNs are built for more generalized tasks

such as classifying the ImageNet dataset [92] which has more than 1,000 classes requiring

more number of parameters and computation time. On the other hand, our approach for

generating statistics of soccer players is for a specific and time-critical task which requires a

Triplet CNN to extract fine-grained features for achieving higher accuracy with less number

of parameters. Moreover, as shown in Theagarajan et al. [74] regular CNNs have trouble in

detecting minute details such as the soccer ball in low resolution images which is the only

feature that distinguishes between a player with and without the ball. By using a Triplet

CNN, the CNN is able to learn fine-grained features that help in distinguishing a “Player

with the ball” and further improves the accuracy.

3.3.4 Generalization Across Different Matches

Results on Generalizability and Comparison with other Algorithms: In this

sub-section we evaluate and compare our approach for its generalizability across different

matches. Generalizability is a very important metric for determining a classifier’s robust-

ness. Many studies have shown that a classifier that is generalizable across multiple domains

does not necessarily have the best performance on all of the domains, similarly a classifier

that has the best performance in one domain does not necessarily generalize across multiple

domains [93, 94].

To evaluate the generalizability we trained the CNNs on all the training images

(32,468 images) in our dataset as shown in Table 18 and evaluated them on soccer matches

played by different teams that were never included in our dataset. We selected four high

school soccer matches where two matches were played by Pink jersey Vs Black jersey and

two matches were played by Green jersey Vs Black jersey. In order to validate the perfor-

mance, we annotated 100 images per team per match for the two classes “Player with the

ball” and “Player without the ball”, resulting in a total of 800 images. Table 20 shows the

72

results and comparison of different CNNs for their generalizability across different soccer

matches.

TABLE 20: Results on the generalizability across different matches for identifying the player
controlling the ball.

Network
Accuracy (%)

Pink Vs Black Green Vs Black

ResNet18 [39] 59.31 54.22

ResNet34 [39] 57.60 61.23

ResNet50 [39] 60.44 60.76

AlexNet [28] 55.81 58.29

VGG-16 [40] 63.36 61.29

Theagarajan et al. [74] 58.35 61.07

Our Approach 60.26 62.28

From Table 20 it can be seen that all the CNNs fell short in their performance

compared to Table 19. This indicates that the features learned from one match do not

necessarily transfer over to another match played by two different teams. This is similar to

the findings reported by the authors of [74, 79, 95]. Moreover, it is not feasible to collect

data that resembles all the different conditions to train the network, hence, it is more

appropriate to re-train the CNNs for every match with as minimal annotation as possible.

Match Specific Annotation for Robust Performance: In this sub-section we use a

minimum number of images annotated for specific matches in varying proportions to fine

tune the different CNNs and observe the performance. In order to validate the match

specific performance, a problem that arises is that how do we annotate images for a match

that has not yet been played? To solve this we annotate images of matches previously

played by the same teams for training our models and evaluate it on the match that is to

be played.

73

As mentioned in the previous sub-section, we annotated 100 images per team per

class (Player with/without the ball) from four different matches, where two matches were

played by Pink jersey Vs Black jersey and two matches were played by Green jersey Vs

Black jersey. We took the two matches played by the same teams and used one match for

training and the other match for testing. Based on this we perform two-fold cross validation.

Table 21 and 22 shows the match specific performance for the different CNNs.

TABLE 21: Match specific performance of different CNNs for the game played between
Pink jersey Vs. Black jersey.

Network

Average accuracy (%)

50 images

per class

75 images

per class

100 images

per class

ResNet18 [39] 64.32 ± 2.56 64.88 ± 3.13 65.72 ± 2.01

ResNet34 [39] 65.60 ± 3.97 65.89 ± 3.42 67.22 ± 3.19

ResNet50 [39] 68.23 ± 4.15 68.42 ± 2.91 69.01 ± 2.88

AlexNet [28] 61.98 ± 4.23 62.34 ± 3.85 64.56 ± 3.76

VGG-16 [40] 66.39 ± 2.54 68.25 ± 4.31 69.14 ± 3.67

Theagarajan et al. [74] 65.78 ± 3.58 67.41 ± 3.19 70.22 ± 4.29

Our Approach 84.05 ± 2.56 84.73 ± 3.02 84.81 ± 2.71

In columns 2 and 3, we randomly selected 50 and 75 images, respectively, for training.

From Table 21 and 22 it can be seen that, as we fine tune the CNNs on images for a

specific match, we can observe an increase in performance. Comparing Table 20 with Table

21 and 22 we can observe an increase in performance across all CNNs, but our approach

significantly outperforms the state-of-the-art CNNs. One possible reason for this is that

although the training dataset consists of only 100 images per class (Player with/without

the ball), we can create more than 75,000 Triplet pairs and train the Triplet CNN to learn

fine-grained features by increasing the inter-class variance and decreasing the intra-class

74

TABLE 22: Match specific performance of different CNNs for the game played between
Green jersey Vs. Black jersey.

Network

Average accuracy (%)

50 images

per class

75 images

per class

100 images

per class

ResNet18 [39] 63.02 ± 3.01 64.51 ± 2.78 64.43 ± 3.44

ResNet34 [39] 65.13 ± 3.44 66.58 ± 4.28 66.77 ± 2.95

ResNet50 [39] 66.08 ± 3.37 66.70 ± 3.56 68.35 ± 3.51

AlexNet [28] 63.28 ± 2.80 63.97 ± 3.89 64.89 ± 3.25

VGG-16 [40] 65.41 ± 4.05 66.98 ± 2.19 70.36 ± 2.71

Theagarajan et al. [74] 67.88 ± 4.69 67.13 ± 4.11 69.24 ± 3.53

Our Approach 82.49 ± 3.76 84.17 ± 3.04 84.68 ± 3.32

In columns 2 and 3, we randomly selected 50 and 75 images, respectively, for training.

variance. Furthermore, this finding is consistent with the works reported by the authors

of [5, 27, 89, 90], wherein Triplet networks are able to outperform regular CNNs in the

presence of very limited data.

3.3.5 Ablation Study for Generating the Tactical Statistics

Generating Match Level Tactical Statistics: In this sub-section we perform an ab-

lation study to observe how using different combinations of player detectors and classifiers

for identifying the team and player controlling the ball affects the generation of match level

statistics. We do not need any tracking algorithm for generating match level statistics,

hence we use only the outputs of the player detector and classifier for identifying the team

and player controlling the ball. Table 23 and 24 shows the performance and comparison

of our approach with the state-of-the-art approaches for generating match level statistics

with and without data augmentation. Additionally, there is no other work that can directly

provide the tactical statistics for the number of passes and steals from a video, hence, we

75

cannot compare the state-of-the-art approaches in Tables 23 and 24 with our work for these

statistics. The accuracy of the ball possession is calculated by identifying the correct player

controlling the ball in all of the frames in the videos. Based on this we can observe from

Tables 23 and 24 that using our approach for classification outperforms all other approaches

for computing the match level ball possession accuracy. Additionally, it is observed that

using Mask R-CNN [82] as the detector slightly improves the accuracy for ball possession

compared to using YOLOv2 [53].

TABLE 23: Ablation study for comparing the performance of our system for generating the
tactical statistics at a match level on the moderate complexity highlight videos.

Detector Classifier
Avg. ball possession acc.

(w/ DA)/w/o DA (%)*

No. of

passes

No. of

steals

YOLOv2

ResNet50 [39] (73.56 ± 3.19)/72.17 ± 2.44 - -

AlexNet [39] (71.92 ± 3.87)/70.46 ± 4.47 - -

Theagarajan et al. [74] (74.82 ± 5.02)/71.17 ± 4.65 - -

Our Approach (84.19 ± 2.38)/81.83 ± 2.56 7/8 2/3

Mask R-CNN

ResNet50 [39] (73.78 ± 4.24)/72.55 ± 3.13 - -

AlexNet [39] (72.49 ± 3.17)/70.36 ± 3.20 - -

Theagarajan et al. [74] (73.38 ± 3.86)/72.64 ± 3.41 - -

Our Approach (83.27 ± 2.56)/82.34 ± 2.15 7/8 2/3

*w/ DA and w/o DA refer to with Data Augmentation and without Data

Augmentation, respectively. Acc. refers to Accuracy.

• Effect of Data Augmentation : From, the data distribution shown in Table 13, we can

observe that the class “Player without the ball” has 3x more training data than the class

“Player with the ball”. In order to observe the effect of data augmentation for generating

the tactical statistics, we generated and augmented 20,000 synthetic images for the class

“Player with the ball” to our dataset using our Triplet CNN-DCGAN approach explained

76

TABLE 24: Ablation study for comparing the performance of our system for generating the
tactical statistics at a match level on the severe complexity highlight videos.

Detector Classifier
Avg. ball possession acc.

(w/ DA)/w/o DA (%)*

No. of

passes

No. of

steals

YOLOv2

ResNet50 [39] (68.24 ± 5.11)/65.57 ± 4.74 - -

AlexNet [28] (63.18 ± 3.79)/61.53 ± 4.21 - -

Theagarajan

et al. [74]
(64.28 ± 4.81)/63.17 ± 4.42 - -

Our Approach (76.65 ± 3.41)/74.06 ± 2.72 3/5 1/3

Mask R-CNN

ResNet50 [39] (69.83 ± 4.76)/66.02 ± 4.31 - -

AlexNet [28] (64.02 ± 4.16)/63.20 ± 3.77 - -

Theagarajan

et al. [74]
(67.35 ± 4.53)/65.18 ± 4.39 - -

Our Approach (76.78 ± 3.82)/72.35 ± 2.56 3/5 1/3

*w/ DA and w/o DA refer to with Data Augmentation and without Data

Augmentation, respectively. Acc. refers to Accuracy.

in Section 4.2.4. Next, we trained all the classifier approaches in Tables 23 and 24 using

the augmented dataset and compared their results without any data augmentation. Based

on this we can observe that performing data augmentation helped improve the performance

of all approaches in Tables 23 and 24. We were able to improve the performance for our

approach by 2.59% and 4.43% using YOLOv2 [53] and Mask R-CNN [82], respectively.

Our approach was able to successfully detect 7/8 passes and 2/3 steals in the

Moderate complexity and 3/5 passes and 1/3 steals in the Severe complexity. There is a

drop in performance in the Severe complexity because the players are too close to each

other and since we are using only one camera, it causes a lot of occlusions. Hence, it is

difficult for the network to identify which player is controlling the ball leading to a drop in

performance.

77

Generating Individual Level Tactical Statistics: In this sub-section we perform an

ablation study to observe the performance in generating individual player level tactical

statistics using different combinations of player detector and tracking algorithms and fixing

our approach for predicting the team and player controlling the ball. For this purpose, we

selected a 45 second clip from a video (recorded at 30 FPS) of moderate complexity where

Players ID # 6 and 10 belonging to the white team were passing the ball between them

while Player ID # 13 belonging to the red team was trying to steal the ball. Towards the

end of the video Player ID # 13 successfully stole the ball from Player ID # 10. Tables 25,

26, and 27 shows the performance and comparison of our approach with the state-of-the-art

approaches for generating individual player statistics. In Tables 25, 26, and 27, the duration

of ball possession is shown in frames, this can be converted into time by dividing it by the

frame rate of the video. The cells in Duration of possession are formatted as x/y where x is

the total number of frames the player was predicted to control the ball and y is the ground

truth total number of frames the player was controlling the ball. The cells in the No. of

pass/(No. of steal) are formatted as p/q/(r/s) where p and q are the number of predicted

and ground-truth passes, and r and s are the number of predicted and ground-truth steals,

respectively.

TABLE 25: Ablation study for generating the tactical statistics on an individual level for
Player ID: #6 (White jersey) from a 45 second video of moderate complexity.

Detector Tracker
Operating

speed (FPS)

Duration of

possession*

No. of pass/

(No. of steal)

YOLOv2
DeepSort 16.9 498/533 2/2/(0/0)

D’Orazio 20.6 162/533 0/0/(0/0)

Mask R-CNN
DeepSORT 1.6 498/533 2/2/(0/0)

D’Orazio 1.6 162/533 0/0/(0/0)

Feichtenhofer 14.4 483/533 1/2/(1/0)

78

From Tables 25, 26, and 27, we can observe that using DeepSORT achieves better

performance in generating the statistics with the highest processing speed using two TITAN

X GPUs. Although, Mask R-CNN [82] outperformed YOLOv2 [53] by 3 frames in predicting

the duration of ball possession for Player ID #13, there is no other significant change. On

the contrary using YOLOv2 had the highest processing speed of 16.9 FPS which is a 10x

improvement compared to Mask R-CNN. This is significant because, although our approach

is offline it is unreasonable for a user to wait 10x longer to analyze a video using Mask R-

CNN compared to using YOLOv2 for a very small trade off in accuracy. It can also be

observed that the algorithm proposed by Feichtenhofer et al. [54] did not detect a pass of

Player ID # 6 and also had a false negative in predicting the steals of Player ID #10. The

reason for this is that the algorithm had an identity flip for that player during which the

pass was made leading to incorrect stats.

TABLE 26: Ablation study for generating the tactical statistics on an individual level for
Player ID: #10 (White jersey) from a 45 second video of moderate complexity.

Detector Tracker
Operating

speed (FPS)

Duration of

possession*

No. of pass/

(No. of steal)

YOLOv2
DeepSort 16.9 314/371 1/1/(0/0)

D’Orazio 20.6 107/371 0/0/(0/0)

Mask R-CNN
DeepSORT 1.6 314/371 1/1/(0/0)

D’Orazio 1.6 106/371 0/0/(0/0)

Feichtenhofer 14.4 314/371 1/1/(0/0)

3.3.6 Discussion of Results

In this sub-section we analyze the results and provide high level conclusions of the

individual modules for generating the tactical statistics.

• Player detection and tracking : In our approach we evaluated various player detection

79

TABLE 27: Ablation study for generating the tactical statistics on an individual level for
Player ID: #13 (Red jersey) from a 45 second video of moderate complexity.

Detector Tracker
Operating

speed (FPS)

Duration of

possession*

No. of pass/

(No. of steal)

YOLOv2
DeepSort 16.9 291/337 0/0/(1/1)

D’Orazio 20.6 82/337 0/0/(0/0)

Mask R-CNN
DeepSORT 1.6 294/337 0/0/(1/1)

D’Orazio 1.6 85/337 0/0/(0/0)

Feichtenhofer 14.4 274/337 0/0/(1/1)

and tracking algorithms and found the best combination for detecting and tracking play-

ers are YOLOv2 [53] and DeepSORT [56], respectively. Although the Mask R-CNN [82]

approach was able to slightly outperform YOLOv2 in terms of IOU, YOLOv2 has a 10x

improvement in processing speed. This is a very important trade-off in terms of processing

speed. In terms of tracking we observed that deep learning based approaches proposed

by [54–56] outperform some of the hand-crafted approaches described in [86]. The reason

for this is that the approaches proposed in [86] are not very generalizable across different

matches and do not handle player occlusions well.

• Team identification : We proposed three different team identification algorithms (TI-1,

TI-2, and TI-3) and found that TI-3 outperformed all state-of-the-art approaches as shown

in Table 17. A drawback of TI-3 is that we require an annotated dataset for training,

making it less generalizable. A solution for this problem is that since team jerseys do not

often change, we can choose a match that was played in the past by the same teams and

annotate those images for training the CNN. In cases where datasets are not available we can

still use TI-1 which is the most generalizable approach for a slight trade off in performance.

• Identifying the player controlling the ball : We proposed to use a Triplet CNN

for identifying the player controlling the ball throughout all the frames in a video. Prior

80

work done by [74] showed that regular CNNs often overlook minute details such as soccer

balls which is the most important feature for identifying the player controlling the ball.

We empirically showed that by training Triplet CNNs to extract fine-grained features our

approach outperforms the state-of-the-art classifiers for this task. A general drawback of

all the approaches shown in Table 19 is that, they do not generalize to matches beyond

the dataset. Our approach solves this problem by requiring only 100 annotated images per

class (Player with/without the ball) per match in order to achieve a reasonable performance

and it outperforms the other approaches shown in Tables 21 and 22.

3.3.7 Application to Internet of Things

Internet of Things (IOT) is an environment where individual devices sense and

collect data which is shared through the internet where the data can be processed and

interpreted in real time. This technology has been widely used in areas such remote mon-

itoring, healthcare and recently in sports [96]. In our case the proposed approach can be

integrated into a multi-camera system in order to generate more robust statistics and usu-

ally this would create a bottleneck problem in terms of processing speed. This kind of

problem can be solved by moving heavy computations onto a cloud based IOT-environment

as shown in [96]. Additionally, in order to make the tracking more robust, we can attach

cheap GPS tracking sensors on the jerseys of the players which transmit the data to a cloud

server where all of the data are being collectively processed in real-time.

81

Chapter 4

ShieldNets: Defending Against

Adversarial Attacks Using

Probabilistic Adversarial

Robustness

Deep learning has demonstrated impressive performance on many important prac-

tical problems such as image [28], video [97], audio [98] and text classification [99]. Despite

their outstanding performance, it has been recently shown that deep learning models are

vulnerable to adversarial manipulation of their input which is intended to cause a mis-

classification [100–102]. These attacks are carefully crafted perturbations that are so subtle

that a human observer does not even notice the modification at all, but can cause deep learn-

ing models to mis-classify the input. Fig. 21(a) shows examples of original images from

the CIFAR-10 [103] and Fashion-MNIST [104] testing datasets, (b) shows the adversarial

perturbations crafted using attacks discussed in this chapter and (c) shows the adversarially

perturbed images being mis-classified using a VGG [105] Convolutional Neural Network.

82

Fig. 21: (a) Examples of original images from the CIFAR-10 and fashion-MNIST datasets
correctly classified by VGG, (b) generated perturbation for the corresponding images, (c)
corresponding adversarial examples mis-classified by VGG.

Adversarial attacks can be achieved through black-box attacks and white-box at-

tacks. In the black-box attack model [106], the attacker does not have any access to the

parameters or architecture of the classification model, whereas in the white-box attack [107],

the attacker has complete access to all the parameters and architecture of the classification

model. Szegedy et al. [101] showed that an adversarial example that was designed to be

83

mis-classified by a model M1 can also be used to mis-classify a different model M2. This

adversarial transferability helps bridge the gap between white-box attacks and black-box

attacks. Furthermore, Kurakin et al. [100] showed that adversarial examples can also ex-

ist in the physical world [108]. The authors of [100] created an adversarial perturbation,

printed the perturbed image, photographed the printed image and fed it back to the classi-

fier. Their results show that the classifier mis-classified the photographed image, indicating

that physical sensors are also prone to adversarial examples. These kind of attacks can

provide disastrous results in safety-critical applications such as self-driving cars [109].

To this end we propose Probabilistic Adversarial Robustness (PAR) as a funda-

mental approach to neutralize adversarial attacks. The underlying concept of PAR is to

utilize the application loss functions to guide a probabilistic model for projecting adversarial

examples to the adversarial-free zones. In this chapter, we present the theory of PAR and

its theoretical possibility to reliably prevent adversarial attacks in a compact region. More-

over, as a demonstration, we select PixelCNN [110] as a specific implementation of PAR’s

probabilistic model for its state-of-the-art performance in modeling image distributions and

tractability of evaluating the data likelihood [111, 112]. The resulted defense network is

named as ShieldNet. We train the ShieldNet to learn the adversarial-free zones around

the input data distribution of the target CNN, and numerically show that the transformed

image does belong closer to the training/testing manifold using statistical p-value tests.

4.1 Related Work on Adversarial Attacks and Defenses and Our Contri-

butions

In this section we explain in detail the related works in two parts. First, we

introduce and discuss different adversarial attack strategies employed in this literature.

Second, we introduce and discuss existing defense mechanisms.

84

4.1.1 Adversarial Attacks

For an image-label pair (x, y), adversarial attacks try to find a small perturbation

δ with ‖ δ ‖∞ ≤ ε, such that a classifier f (·) gives f (x + δ) 6= y. ε is a hyper-parameter

that sets the perturbation limit for each pixel in x on the color scale.

Fast Gradient Sign Method (FGSM): This attack was proposed by Goodfellow et

al. [113]. The authors generate a malicious perturbation given by

xadv = x + ε · sign(5xL(x, y)) (1)

where 5xL(x, y) is the loss function used to train the model and y is the class label. This

approach uses the sign of the gradients at every pixel to determine the direction with which

to change the corresponding pixel value.

Basic Iterative Method (BIM): This attack was proposed by Kurakin et al. [100]. The

authors implemented a variant of the FGSM attack by applying it multiple times with a

smaller step size. The adversarial examples are formally computed as:

xadvn+1 = Clipε(xn + α · sign(5xL(xn, y))) (2)

Clipε(·) clips the resulting image to be within the ε-ball of x and α is the iterative step size.

Similar to Kurakin et al. [100], we set α = 1 and limit the number of iterations to be [min(ε

+ 4, 1.25 · ε)].

DeepFool: This attack was proposed by Moosavi-Dezfooli et al. [114]. The authors con-

struct DeepFool by assuming that Neural Networks are linear, with a hyperplane separating

each class. Based on this, they iteratively linearize the decision boundary and find the clos-

est adversarial example. We clip the resulting image so that its perturbation is not larger

than ε.

Carlini-Wagner (CW): Carlini and Wagner [107] proposed an efficient optimization ob-

jective for iteratively finding the adversarial examples with the smallest perturbation leading

85

to high probability of mis-classification. We clip the resulting image so that its perturbation

is not larger than ε.

Momentum Iterative-FGSM (MI-FGSM): Dong et al. [115] proposed integrating a

momentum term into an existing iterative attack helps improve the success rate of the

attack. The adversarial examples are formally computed as:

g0 = 0, xadv0 = x, gt+1 = µ · gt +
5x L(xadvt , y)

‖ 5x L(xadvt , y) ‖1
, xadvt+1 = xadvt + α · sign(gt+1) (3)

where, µ is the momentum and α = ε/T .

4.1.2 Adversarial Defense

Current defenses against adversarial attacks can be classified into four approaches:

1) modifying the training data, 2) modifying the model, 3) using auxiliary tools, and 4)

detecting and rejecting adversarial examples.

1) Modifying the Data:

Adversarial training: The adversarial samples are introduced into the training dataset

to improve the robustness of the target. Szegedy et al. [101] injected the adversarial samples

and modified its labels to make the model more robust in the face of the adversaries.

Goodfellow et al. [113] reduced the misclassification rate on the MNIST dataset from 89.4%

to 17.9% by using adversarial training. Huang et al. [128] increased the robustness of the

model by punishing misclassified adversarial samples. Tramèr et al. [117] proposed ensemble

adversarial training which can increase the diversity of adversarial samples. However, it is

unrealistic to introduce all unknown attack samples into the adversarial training, which

leads to the limitation of adversarial training. Zhang et al. [129] using the Pontryagin’s

Maximal Principle (PMP) showed that adversarial training mainly updates the weights of

86

only the first few layers of the model. It was also shown that this approach was not scalable

and an adversarially trained classifier can still be attacked with just slight modifications to

the existing attacks [100, 130, 131].

Gradient hiding: A natural defense against gradient based attacks presented in [117] and

attacks using adversarial crafting method such as FGSM. This method hides information

about model gradient from the adversaries, i.e., if a model is non-differentiable (e.g., a

decision tree or a nearest neighbor classifier), the gradient-based attack is invalid. However,

by learning the proxy black-box model with gradient and using the adversarial samples

generated by this model [106], the method can easily be fooled in this case.

Data compression: Dziugaite et al. [132] found that JPG compression method can im-

prove a large number of network model recognition accuracy declined caused by FGSM

attack disturbance. Das et al. [133] used a similar JPEG compression method to study a

defense method against FGSM and DeepFool attacks. However, these image compression

technologies still cannot serve as an effective defense against more powerful attacks, such

as CW attack [134]. Similarly, the Display Compression Technology (DCT) compression

method [133] used in the fight against universal disturbance attacks [?] has also been

proved to be insufficient. The biggest limitation of these defense methods based on data

compression is that a large amount of compression will lead to a decrease in the accuracy

of original image classification, while a small amount of compression is often not enough to

remove the impact of disturbance.

Data randomization: Xie et al. [135] demonstrated that the operation of random resiz-

ing adversarial samples can reduce the effectiveness of adversarial samples. Wang et al. [136]

used a data conversion module separated from the network to eliminate the possible adver-

sarial disturbance in the image.

87

Image transformations: Guo et al. [137] used a combination of random input trans-

formations to counter adversarial examples. The authors used bit-depth reduction, JPEG

compression, total variance minimization, and image quilting transformations. The authors

reported that using total variance minimization and image quilting proved to be the most

robust transformations. Raff et al. [138] improved the robustness against adversarial exam-

ples by combining a set of random hand crafted input transformations that are unknown

to the adversary. They achieved the highest robustness when they transformed the image

using ten different randomly chosen transformations. The drawback of these approaches is

that, once the adversary knows what these transformations are, they can create adversary

that specifically counter them.

Blocking the Transferability: Since the transferability attribute holds even if the clas-

sifiers have a different architecture or are trained on the disjoint dataset, the key to prevent-

ing the black-box attack is to prevent the transferability of adversarial samples. Hosseini

et al. [139] proposed a three-step null Labeling method, in order to prevent the adversarial

samples from one network to another network. Its main idea is adding a new null label to

the dataset, and classify them to null label by training classifier to resist adversarial attacks.

The three main steps are: initial training target classifier, computing null probabilities, and

adversarial training.

2) Modifying the Model:

Defensive distillation: Papernot et al. [119] proposed a defensive distillation method to

resist attacks on the basis of distillation technology [140]. Defensive distillation does not

change the scale of the model, and produces a model with a smoother output surface and

less sensitivity. However, the effectiveness of defense distillation cannot be guaranteed in

black-box attacks.

88

Label Smoothing: This approach proposed by Warde-Farley and Goodfellow [118] con-

verts one-hot labels to soft targets, where the correct class has a value 1 - T while the wrong

classes have T/(N - 1). Here T is a small constant and N is the number of classes. When

the classifier is re-trained on these soft targets rather than one-hot labels it is more robust

to adversarial examples. This method is similar to defensive distillation proposed by [119]

but is shown to be computationally inexpensive.

Feature squeezing: Feature squeezing is a model enhancement technique [120], whose

main idea is to reduce the complexity of the data representation, thereby reducing the

adversarial interference due to low sensitivity. There are two heuristic methods, one is

to reduce the color depth at the pixel level; the other is using a smooth filter on the

image. Although this technique can effectively prevent adversarial attacks, it also reduces

the accuracy of the classification of real samples.

Parseval networks: Cisse et al. [141] proposed a network called Parseval as a defensive

method against adversarial attacks. This network adopts hierarchical regularization by

controlling the global Lipschitz constant of the network. They proposed to control the

spectral norm of the network weight matrix by parameterizing it through Parseval tight

frames, so it was called “Parseval” network.

Thermometer encoding: Buckman et al. [123] discretized the input by replacing the

pixel values with a binary vector using a thermometer encoding process. The idea here is

that by encoding, the threshold effects of discretization makes it harder to find adversarial

examples that only make small alterations of the image. A drawback of this approach is

that it scales the input space dimension linearly with the number of discretization steps,

leading to a significant increase in the number of parameters for the model.

89

Feature denoising: Xie et al. [142] included denosing blocks after the convolution lay-

ers while training the CNN models. The authors used combinations of non-local means,

bilateral filter, mean filter, and median filter as their denoising blocks. Mustafa et al. [143]

disentangled the class-wise intermediate feature representation by forcing the learned fea-

tures to lie inside within a convex polytope that is maximally separated from the polytopes

of other classes. The drawback of the these approaches is that they are highly dependent

on the ε strength of the attack.

Mask Defense: Gao et al. [144] proposed to insert a mask layer before processing the

classified network model. This mask layer trained the original images and corresponding

adversarial samples and encoded the differences between these images and the output fea-

tures of the previous network model layer. It is generally believed that the most important

weight in the additional layer corresponds to the most sensitive feature in the network.

Therefore, in the final classification, these features are masked by forcing the additional

layers with a primary weight of zero. In this way, the deviation of classification results

caused by adversarial samples can be shielded.

Architecture pruning: Madaan et al. [146] proposed to sparsify the latent features that

are sensitive to adversarial perturbation. They proposed a Bayesian framework to prune

features based on their contribution to both the original and adversarial loss. The au-

thors also suggested that regularizing the features learned during training helps improve

the robustness. Ye et al. [147] observed that adversarially trained models are much more

sparse compared to the original models. They performed weight pruning on the adversar-

ially trained model thus, achieving both model compression and more robustness against

adversarial attacks.

90

3) Using Auxiliary Tools:

Defense-GAN: Samangouei et al. [122] used a Generative Adversarial Network (GAN)

to project input images onto the range of the generator by minimizing the reconstruction

error, prior to feeding the image to the classifier. As compared to the adversarial images,

the clean images are closer to the range of the generator.

PixelDefend: This approach proposed by Song et al. [124] leverages pre-trained proba-

bilistic generative networks to purify an adversarial example to resemble the distribution of

the training dataset. Although their approach is model and attack agnostic, its performance

decreases as the strength of the attack increases.

ShieldNets: Theagarajan et al. [145] extended [124] by using Probabilistic Adversarial

Robustness (PAR). PAR is used to neutralize adversarial examples by concentrating the

sample probability within adversarial-free zones. They showed the connection between

the PAR loss and SGD loss, and prove the existence of an optimal distribution for the

probabilistic transformation to reach a theoretical lower bound.

MagNet: This approach proposed by Meng et al. [121] uses an auto encoder to learn the

distribution of the training data. During testing if the input image is from the real dataset

the reconstruction loss will be minimum but if the input is an adversarial example, then

the loss will be higher.

Deep Contractive Autoencoder: Gu and Rigazio [148] proposed a variant of autoen-

coder, to increase the robustness of neural networks. A denoising autoencoder network is

trained to encode adversarial examples to the original images to remove adversarial pertur-

bations.

91

High-Level Representation Guided Denoiser: Liao et al. [149] proposed High-Level

Representation Guided Denoiser (HGD) as a defense for image classification. Standard

denoisers such as [121, 148] suffer from the problem of error amplification, in which an

already small adversarial noise is progressively further amplified. HGD is able to alleviate

this by using a loss function defined as the difference between the target model’s outputs

activated by the clean image and corresponding denoised image. This advantage of this

approach is that it can be trained on a small subset of the training images and it genaralizes

well to other images.

4) Detecting and Rejecting Adversarial Examples:

SafetyNet: Lu et al. [150] introduced an approach called SceneProof which detects whether

an image is a picture of a real scene or not using RGBD images. SceneProof uses a VGG

architecture [105] and compares the RGB image and the depth map to see if the depth

map is consistent with the RGB image. It relies on the relative difficulty of producing

naturalistic depth maps for images in post processing.

Detection using branched networks: Metzen et al. [151] detected adversarial examples

by introducing a branched subnetwork to an already trained classifier network. The original

dataset and its corresponding adversarial data points are used for training the branched

network and the output of the branched network is the probability that the image is from

the original distribution or the adversarial distribution. The disadvantage of this approach

is two folds: 1) the defense does not generalize well to different attacks and 2) the layer at

which the branched network is attached specific for every dataset and different classification

networks

92

Statistical testing: Grosse et al. [152] used the kernel based two sample test proposed

by Gretton et al. [153] to distinguish adversarial examples from the training data. They

reported that when the sample size of the adversarial examples is more than 100, the success

rate of detecting them is more than 80%, but it drastically reduces for small sample size.

To overcome this, they perform an outlier detection by adding an additional class to their

model output and training the it to classify the adversarial examples to this class.

Bayesian uncertainty: Feinman et al. [154] used the model confidence on adversarial

examples by looking at the Bayesian uncertainty metrics from dropout networks. After

obtaining the Bayesian uncertainty metrics they perform a kernel density estimation in

the feature space of the deeper layers of the network to see if the data points is close to

the manifold corresponding to the real images. Rawat et al. [155] used three Bayesian

uncertainty metrics namely: 1) Model Uncertainty as measured by Mutual Information

(MUMMI), 2) Predicted entropy, and 3) Variation ratio for detecting adversarial examples.

First, the authors converted regular CNNs into a corresponding Bayesian CNN using the

Monte-Carlo dropout approach proposed by Yarin et al. [156]. From this they are able

to create a Gaussian distribution for every parameter by passing the input multiple times

through the network using different dropout ratios. Finally, for a given input they compute

the three uncertainty metrics and observed that as the strength of the adversarial attack

increases, the value of each uncertainty metric also correspondingly increases.

4.1.3 Contributions of this Chapter

In light of the state-of-the-art, our work is significantly different from the existing

approaches.

• We introduce the theoretic framework of Probabilistic Adversarial Robustness (PAR)

to neutralize adversarial attacks by concentrating sample probability to adversarial-

free zones.

93

• We theoretically demonstrate the connection between PAR loss and the SGD loss, and

prove the existence of an optimal distribution for the probabilistic transformation to

reach a theoretical lower bound.

• We empirically show that our approach is generalizable and robust to adversarial

transferability of attacks.

• Our approach is model and attack agnostic, and can be combined with other existing

approaches which results in even more improved performance.

4.2 Probabilistic Adversarial Robustness (PAR)

In this chapter, we introduce the PAR to provide a theoretical foundation of pos-

sibly neutralizing adversarial attack (AA) samples in the compact regions near the “good”

samples. The approach of PAR is to seek a random function via a probabilistic model to

transform the AA samples to the adversarial-free regions. In the following, we establish the

theory of PAR, and provide a demonstration of PAR implementation via PixelCNN [110].

4.2.1 Theory of PAR

For any given image x ∈ RM×N where M × N is the number of pixels in the

image, an ε-bounded adversarial sample is denoted as x + δ, where δ belongs to the lp-

bounded neighbourhood ∆ = {δ ∈ RM×N | ‖δ‖p ≤ ε} to x. The probabilistic generative

model πω(x′|x + δ) in PAR is expected to map the AA samples from adversarial regions

back to safer space in ∆. Adversarial attack on any classification task with a loss function

of L(x′, y; θ), where x′ is sampled from πω(x′|x + δ) transformation, can be achieved by

optimizing,

arg max
δ∈∆

∫
∆
πω(x′|x+ δ)L(x′, y; θ)dx′. (4)

94

The loss function of PAR can be expressed as the marginalized expectation,

LPAR = E
(x,y)∼D

∫
∆
Ex∼πω(·|x+δ)

[
L(x′, y; θ)

]
p(δ)dδ (5)

where p(δ) represents the distribution of adversarial samples in ∆. The theoretical possi-

bility of PAR to neutralize AA samples is supported by the following two theorems.

Theorem 1 if πω(x′|x+ δ) = δDirac(x
′−x) for ∀ x ∼ D, where δDirac(·) is the Dirac delta

function, then LPAR reduces to SGD loss.

Proof of Theorem 1: Assume p(δ) is any distribution that only supports in ∆,

LPAR = E
(x,y)∼D

∫
∆
Ex′∼πω(x′|x+δ)

[
L(x′, y; θ)

]
p(δ) dδ (6a)

= E
(x,y)∼D

∫
∆
p(δ) dδ

∫
dx′ πω(x′ | x+ δ) L(x′, y; θ) (6b)

= E
(x,y)∼D

∫
∆
p(δ) dδ

∫
dx′ δDirac(x

′ − x) L(x′, y; θ) (6c)

= E
(x,y)∼D

∫
∆
p(δ) dδ L(x, y; θ) (6d)

= E
(x,y)∼D

L(x, y; θ) (6e)

Theorem 2 Assume L(x′, y; θ) is continuous in x + ∆ and πω(x′|x + δ) is supported on

x+∆, there exists a lower bound for LPAR in space ∆. If πω(x′|x+δ) = δDirac(x
′−x−β0),

LPAR reaches the lower bound, where β0 = arg minβ∈∆ L(x+ β, y; θ).

Proof of Theorem 2: Since L(x + β, y; θ) is continuous and ∆ is compact, β0 =β∈∆

L(x + β, y; θ) exists. Assume p(δ) is any distribution that only supports in ∆ and πω

95

supports in x+ ∆,

LPAR = E
(x,y)∼D

∫
∆
Ex′∼πω(x′|x+δ)

[
L(x′, y; θ)

]
p(δ) dδ (7a)

= E
(x,y)∼D

∫
∆
p(δ) dδ

∫
x+∆

dx′ πω(x′ | x+ δ) L(x′, y; θ) (7b)

≥ E
(x,y)∼D

∫
∆
p(δ) dδ

∫
x+∆

dx′ πω(x′ | x+ δ)

(
min
x′∈∆

L(x′, y; θ)

)
(7c)

= E
(x,y)∼D

∫
∆
p(δ) dδ

∫
x+∆

dx′ πω(x′ | x+ δ) L(x+ β0, y; θ) (7d)

= E
(x,y)∼D

∫
∆
p(δ) dδ L(x+ β0, y; θ) (7e)

= E
(x,y)∼D

L(x+ β0, y; θ) (7f)

The equality is satisfied when πω(x′|x+ δ) = δDirac(x
′ − x− β0).

Corollary 3 If LPAR reaches the lower bound, adversarial perturbation exist only if δ /∈ ∆.

In practice, there is no guarantee that the lower bound of LPAR can be realized. Although

adversarial attacks through eq. (7) are possible, the optimization requires SGD and the

convergence rate is in the order of O(1/λ) [125], which is exponentially slower than the

deterministic optimization, where λ is the convergence error.

4.2.2 PAR via PixelCNN

In this chapter we use PixelCNN as the probabilistic model for PAR. πω(x′|x+ δ)

is a joint probability among all pixels, i.e.

Pcnn(x) =
M×N∏
i

Pcnn(xi|x1:(i−1)) , (8)

where xi is the i-th pixel of the image. By adopting PixelCNN, it can be factorized into a

product of conditional distributions.

πω(x′|x+ δ) =
M×N∏
i=1

p(xi|[x1, ..., xi−1], x+ δ) . (9)

96

Solving eq. (8) requires a proper definition of space ∆. As a practical solution, we introduce

a regularization term γ · Reg(x′, x) to constraint how far x′ can deviate from x, which

implicitly confines the space ∆. Besides, as illustrated by Theorem 1, this regularization

also acts as a restraint on LPAR to be close to the SGD loss without adversarial perturbation.

In this work, we use PixelCNN loss as Reg(x′, x). The combined loss function is given by:

Limp = E
(x,y)∼D

∫
∆
Ex′∼πω(·|x+δ)

[
L(x′, y; θ) + γ · Reg(x′, x)

]
p(δ) dδ (10)

where, ω is the parameters in the probabilistic model of PAR. We note that θ, which

represents the parameters of protected model, is fixed during the learning of PAR. In all

of our approaches for a given input image to the probabilistic model, we sample n = 10

number of transformations of x′.

For white-box scenario, the optimization of eq. (2) requires the estimation of

∂Limp/∂ω. We utilize PixelCNN++ [111] implementation, which employs mixture models

of logistic distributions to represent pixel-wise conditional probability. Through variable

transformation of x′ = x′(ω)1 the gradients can be directly evaluated by chain rule.

4.2.3 ShieldNet Implementation

Fig. 22 shows the overview of the implementation of PAR as ShieldNet. ShieldNet

consists of three major components: the probabilistic transformation model via PixelCNN,

the target CNN classifier, and the optional average for logits. The inputs to ShieldNet

are samples potentially with adversarial perturbations x + δ. PixelCNN in Fig. 16 is a

probabilistic model that generates n different neutralized samples (x′ni=1) for the provided

AA sample. then given as input to the original target CNN classifier and the average of the

n logits is taken for deciding the final prediction y.

1In this work, mean and standard deviation of logistic distribution with respect to ω are optimized.

97

Fig. 22: Implementation of PAR: ShieldNet.

4.3 Experimental Results

4.3.1 Datasets and Target CNN Models

We evaluated our approach on two publicly available datasets namely: Fashion-

MNIST [104] and CIFAR-10 [103]. Fashion-MNIST was designed to be a much more difficult

and drop-in replacement for the MNIST dataset [126]. The dataset consists of 60,000 train-

ing and 10,000 testing gray-scale images of size 28x28 distributed evenly into 10 different

classes. CIFAR-10 is another widely used dataset that consists of 50,000 training and 10,000

testing RGB images of size 32x32 distributed evenly into 10 different classes.

We evaluated our proposed approach on two state-of-the-art classifiers: ResNet and

VGG. For fair comparison we use the same architectures used by [124]. Before training the

98

agent, the two CNNs: ResNet and VGG, were pre-trained on the CIFAR-10 and Fashion-

MNIST datasets, and after pre-training the parameters are fixed and not updated. In

principle, we could train both the agent and the CNN jointly but, this is not our desired task,

as our aim is to train an agent that can defend a CNN without changing the architecture or

re-training the CNN. Table 16 shows the classification results of ResNet and VGG on the

original Fashion-MNIST and CIFAR-10 testing datasets.

TABLE 16: Classification accuracy of ResNet and VGG on the Fashion-MNIST and CIFAR-
10 testing datasets

Network Fashion-MNIST CIFAR-10

ResNet 93.51% 95.31%

VGG 93.05% 92.53%

4.3.2 Neutralizing Adversarial Examples

It has been shown by [124] that adversarial examples have lower probability densi-

ties compared to the original training/testing images. Most classifiers suffer from a covariate

shift due to the lack of adversarial instances for training leading to mis-classifications.

Similar to [124], we empirically verify this hypothesis by training the PixelCNN

model on the CIFAR-10 dataset and then use its log-likelihood estimate combined with a

p-value test to detect if an input image is from the original distribution or from the low

probability density adversarial space. Let us assume the adversarial input to the PixelCNN

model belongs to a distribution q(x) while the original images belong to p(x).

99

Pseudo code for p-value estimation

Assumptions: If the adversarial distribution is same as the training/testing distribution, then the

null hypothesis H0 is given by q(X) = p(X). The alternate hypothesis H1 is given by q(X) 6= p(X)

Input to PixelCNN: perturbed image X + δ

Output: p-value of perturbed image

• Compute the output probability of the perturbed image as Pcnn(X + δ)

• Compute the output probabilities of the original images in the dataset as {Pcnn(X1), ..., Pcnn(XN)}

• Compute the p-value P given by: P = 1
N+1

∑N
i=1 I[Pcnn(Xi) ≤ Pcnn(X + δ)] + 1 where, I[.] = 1,

if the condition in the bracket is true, otherwise it is 0.

Fig. 23: p-values of the original testing dataset of CIFAR-10 and the adversarial attacks on
the testing dataset of CIFAR-10 with ε = 8.

Fig. 23 shows the p-values of the original testing dataset of CIFAR-10 and p-values

of state-of-the-art adversarial attacks with ε = 8. It can be observed that the original testing

images have a more uniform p-value distribution compared to the adversarial attacks which

significantly deviate from a uniform distribution. This proves that the distribution space

100

Fig. 24: p-values of the neutralized images after transformation using ShieldNet on the
testing dataset of CIFAR-10 with ε = 8.

of the original testing images is different from the adversarial distribution space proving

the alternate hypothesis H1. Fig. 24 shows the p-values of the corresponding images in

Fig. 23 after being transformed by our approach. It can be observed that the transformed

adversarial images have a much more uniform p-value distribution similar to the p-value

distribution of the original testing dataset. In Fig. 24 after the neutralization, DeepFool

and CW attacks have distributions very similar to the original testing images compared

to FGSM, BIM and MI-FGSM. The reason for this is that DeepFool and CW attacks are

designed to linearize the decision boundaries between classes which result in perturbations

that are small enough just to fool the classifier compared to FGSM, BIM and MI-FGSM

that create larger perturbations as shown in Fig. 21.

4.3.3 ShieldNet Defending Intra-attack

In this sub-section we evaluate the performance of individual ShieldNet defending

against the same attacking schemes as the ones used in training. The evaluations cover the

state-of-the-art attacking algorithms including FGSM, BIM, DeepFool, CW and MI-FGSM

101

for ResNet and VGG on both Fashion-MNIST and CIFAR-10 datasets, as shown in Table

17 and 18. For fair comparison on both datasets, we use the same ε used by [124] for

evaluating and comparing our approach. In Table 17 the evaluation on Fashion-MNIST

dataset utilizes ε = 8 and 25, where the CIFAR-10 experiments in Table 18 apply ε = 2

and 16. The cells in Table 17 and 18, as well as all following tables in this chapter, are

formatted as x/y where x and y are the accuracy for the smaller/larger ε.

Table 17 and 18 show that our approach in general outperforms other defending

algorithms listed in the tables. For example, on Fashion-MNIST dataset, our approach

outperforms PixelDefend in FGSM attack and achieves an accuracy of 89.04% and 88.59%

against the strongest attack for ResNet and VGG respectively whereas, PixelDefend achieves

74% and 82% respectively. Although there is a drop in performance as the strength of the

attack increases it does not significantly drop as compared to PixelDefend. On CIFAR-10

dataset, PixelDefend slightly outperforms our approach in defending VGG against FGSM

and BIM when ε = 2 but, as ε increases from 2 to 16, the performance of PixelDefend

drops down drastically. When protecting ResNet against FGSM and BIM attacks with ε

= 16, PixelDefend only achieves 24% and 25% while our approach achieves an accuracy of

70.52% and 68.86% respectively. Moreover, by combining our approach with adversarial

training using FGSM we observe overall increases in accuracy as shown in the bottom rows

in Table 17 and 18.

It should be noted that in general as the strength of the attack increases the

performance of defense algorithms tends to decrease, but these perturbations become more

clearly visible even to a human observer and can easily be detected and filtered out using

statistical p-value tests.

102

TABLE 17: Performance comparison of ShieldNet and other defense algorithms on the
Fashion-MNIST testing dataset. The highest accuracy is indicated in bold + italic and the
second highest accuracy is indicated in bold.

Fashion-MNIST ε = 8, 25

Network Training Technique FGSM BIM DeepFool CW MI-FGSM

ResNet

Label Smoothing
64.23/

36.81

9.76/

0.00

22.42/

3.37

20.77/

4.61

4.25/

0.00

Adversarial FGSM
82.49/

78.43

44.34/

6.46

57.28/

11.92

51.03/

15.70

39.72/

0.00

PixelDefend
85.00/

74.00

83.00/

76.00

87.00/

87.00

87.00/

87.00
NA

Our Approach
91.59/

89.04

91.17/

89.74

92.62/

90.28

92.66/

90.78

90.63/

90.47

Our Approach +

Adversarial FGSM

92.46/

90.35

91.93/

90.68

92.88/

91.36

93.47/

91.61

91.45/

90.59

VGG

Adversarial FGSM
84.55/

76.21

56.39/

22.74

37.48/

18.71

30.69/

12.52

28.72/

10.11

PixelDefend
87.00/

82.00

85.00/

83.00

88.00/

88.00

88.00/

88.00
NA

Our Approach
89.04/

88.59

90.78/

87.59

90.11/

90.29

90.56/

90.33

90.49/

89.81

Our Approach +

Adversarial FGSM

91.55/

88.72

91.37/

90.15

91.02/

90.77

91.27/

90.76

90.95/

90.56

4.3.4 Generalization Across Different Attacks

In this sub-section we demonstrate the generalizability of ShieldNet against differ-

ent attack schemes. It has been shown that adversarial training does not generalize across

different attacking schemes. As an example, from Table 17 and 18, it can be observed that

103

TABLE 18: Performance comparison of ShieldNet and other defense algorithms on the
CIFAR-10 testing dataset. The highest accuracy is indicated in bold + italic and the
second highest accuracy is indicated in bold.

CIFAR-10 ε = 2, 16

Network Training Technique FGSM BIM DeepFool CW MI-FGSM

ResNet

Label Smoothing
64.57/

14.78

43.28/

2.92

53.45/

20.56

50.78/

14.37

32.91/

6.73

Adversarial FGSM
83.47/

79.13

34.58/

6.73

39.22/

8.76

28.47/

5.38

26.94/

2.33

PixelDefend
73.00/

24.00

71.00/

25.00

80.00/

80.00

78.00/

78.00
NA

Our Approach
76.57/

70.52

73.13/

68.86

83.47/

82.34

80.71/

80.43

75.81/

70.42

Our Approach +

Adversarial FGSM

81.29/

72.61

75.59/

69.84

84.73/

84.08

82.91/

80.86

78.44/

71.27

VGG

Adversarial FGSM
79.28/

71.59

39.88/

2.96

28.49/

2.60

34.27/

5.39

30.06/

3.18

PixelDefend
80.00/

52.00

80.00/

48.00

81.00/

76.00

81.00/

79.00
NA

Our Approach
78.61/

68.25

75.32/

67.34

83.19/

76.20

83.26/

79.11

73.92/

70.43

Our Approach +

Adversarial FGSM

81.34/

70.61

77.58/

70.13

88.42/

79.35

83.82/

80.79

75.69/

71.98

adversarial training with FGSM examples is able to defend against the basic FGSM attacks,

but fails to defend against other attacks. This finding is consistent with the results obtained

by [124] and [127].

104

TABLE 19: Cross evaluation of adversarial attacks on the Fashion-MNIST dataset using
ResNet.

Generalization of the ShieldNet + ResNet on Fashion-MNIST with ε = 8, 25

Attack used

for training
FGSM BIM DeepFool CW MI-FGSM

FGSM 91.59/89.04 88.58/88.09 86.43/84.39 84.22/83.05 83.79/82.01

BIM 88.57/86.18 91.17/89.74 88.46/83.99 86.67/85.43 84.25/81.22

DeepFool 81.39/78.21 83.47/81.26 92.62/90.28 85.91/84.04 83.19/81.48

CW 80.11/78.56 86.39/82.11 87.48/83.72 92.66/90.78 82.44/79.49

MI-FGSM 82.83/79.34 83.41/81.93 86.90/81.38 84.31/82.01 90.63/90.47

TABLE 20: Cross evaluation of adversarial attacks on the CIFAR-10 dataset using ResNet.

Generalization of ShieldNet + ResNet on CIFAR-10 with ε = 2, 16

Attack used

for training
FGSM BIM DeepFool CW MI-FGSM

FGSM 76.57/70.52 71.56/66.82 68.96/63.51 65.23/61.40 66.02/59.24

BIM 70.44/68.52 73.13/68.86 70.38/68.44 68.87/67.49 71.37/68.94

DeepFool 66.97/63.21 68.55/60.13 83.47/82.34 78.37/77.40 66.54/61.10

CW 70.91/64.11 65.22/60.98 73.50/71.25 80.71/80.43 63.17/61.45

MI-FGSM 66.10/61.32 68.90/68.27 71.44/66.71 71.77/70.84 75.81/70.42

Table 19 and 20 demonstrate that ShieldNet is able to generalize for both the

training and other attacking schemes. As an example, ShieldNet trained with FGSM sam-

ples achieves an accuracy of 89.04%, 88.09%, 84.39%, 83.05%, 82.01% accuracy against

FGSM, BIM, DeepFool, CW and MI-FGSM attacks respectively. We believe the reason

that ShieldNet generalizes across different attacks is that, by using a PixelCNN model in

PAR, the model learns to make small changes on the individual pixels that can move the

perturbed image back to an adversarial-free zone around the training/testing data distribu-

tion. In Table 19 and 20 training our approach using the BIM attack had the best overall

105

accuracy and generalization across different attacks. From Table 20 it should be noted that

training on DeepFool is only able to successfully defend against CW attacks and vice-versa

and falls short across the other attacks compared to BIM. This is because, DeepFool and

CW attacks are designed to create higher order perturbations by directly linearizing the de-

cision boundaries of the CNN, whereas, iterative attacks such as BIM create perturbations

based on the sign of the gradient at every pixel irrespective of the decision boundary of the

CNN. This means that DeepFool and CW attacks are highly dependent on the individual

CNN indicating that they have less adversarial transferability.

4.3.5 Robustness against Adversarial Transferability

From a security perspective, an important property of adversarial examples is that

they tend to transfer from one model to another, enabling an attacker to create adversarial

examples from a source model M1 and then deploy those adversarial examples to fool a

target model M2. To evaluate our approach against this property, we created adversarial

examples that fooled the source CNN (ResNet/VGG) and used those adversarial examples

to evaluate the performance on the target CNN (VGG/ResNet).

Table 21 and 22 shows the robustness of our approach against adversarial trans-

ferability. From Table 21 and 22, it can be observed that the adversarial transferability

property of FGSM and MI-FGSM was the highest followed by BIM. DeepFool and CW

attacks had the least adversarial transferability which is evident from the fact that, these

attacks are designed to linearize decision boundaries of the CNN. Since ResNet and VGG

were trained independent to each other, they do not have the same decision boundaries thus

making the adversarial examples from DeepFool and CW less transferable. As the adver-

sarial transferability of DeepFool and CW are relatively low, the accuracy of ShieldNet does

not vary too much. However, for FGSM, BIM and MI-FGSM attacks which have relatively

106

TABLE 21: Evaluation of our approach against adversarial transferability on the CIFAR-10
testing dataset.

Adversarial transferability ε = 2, 16

Source CNN Target CNN FGSM BIM DeepFool CW MI-FGSM

ResNet

VGG
51.61/

20.77

72.45/

41.56

83.24/

82.56

81.02/

77.29

44.37/

19.86

ShieldNet +

VGG

78.62/

72.60

71.43/

66.03

83.51/

79.95

79.91/

76.53

73.29/

70.17

VGG

ResNet
53.81/

29.14

58.44/

27.67

79.41/

82.46

81.93/

80.85

51.45/

18.26

ShieldNet +

ResNet

79.14/

70.82

70.43/

68.18

80.94/

79.81

81.34/

81.37

71.66/

68.54

TABLE 22: Evaluation of our approach against adversarial transferability on the Fashion-
MNIST testing dataset.

Adversarial transferability ε = 8, 25

Source CNN Target CNN FGSM BIM DeepFool CW MI-FGSM

ResNet

VGG
66.41/

26.37

70.39/

37.25

86.41/

87.26

81.92/

82.43

45.22/

22.19

ShieldNet +

VGG

85.95/

82.40

81.33/

76.38

90.29/

89.26

87.31/

84.53

82.60/

80.41

VGG

ResNet
59.27/

35.91

72.83/

40.90

83.27/

80.18

80.66/

78.51

64.92/

38.36

ShieldNet +

ResNet

84.32/

80.17

83.50/

84.26

88.74/

86.71

85.70/

86.65

88.67/

81.51

high adversarial transferability, as shown in Table 21 and 22, our approach is able to defend

against the adversarial transferability property by improving the accuracy from 20.77% to

72.60% for ResNet and from 29.14% to 70.82% for VGG against the strongest FGSM at-

107

tack on the CIFAR-10 testing dataset. Similarly, the performance is improved from 26.37%

to 82.40% for ResNet and from 35.91% to 80.17% for VGG against the strongest FGSM

attack on the Fashion-MNIST testing dataset.

108

Chapter 5

Defending Black Box Classifiers

Against On-line Adversarial

Attacks

Although, deep learning has had astounding success on several image classifica-

tion tasks, it has been shown to be vulnerable to adversarial attacks [101, 113, 131]. These

attacks are carefully crafted perturbations, added to an image that are visually impercep-

tible to the human eye, and they can cause deep learning models to misclassify the image

with high confidence. In the domain of adversarial attacks, there are two types of threat

models: 1) white box, and 2) black box attacks. In the white box setting, the attacker

has full knowledge about the classification model’s parameters and architecture, whereas

in the black box the attack does not have this knowledge. In this chapter we focus only

on the black box based attacks. The drawbacks of the approaches discusses in the related

works in Section 4.1.2 are that, they do not quantify how much adversarial component is

left in the resulting purified image and these approaches are single-step defenses. Here,

single-step defense refers to defenses that purify the image only once and assume that the

109

purified image is void of all adversarial components. These defenses are trained on some

annotated datasets and after achieving reasonable performance on the annotated dataset,

they are deployed to defend real world applications. Once deployed it is assumed that all

of the purified images are no longer adversarial, but in reality this is not the case. This

is a foundational problem for online/safety-critical applications as shown in [187] - [191]

where it is not possible to know the annotations of all of the incoming input images, and

these defenses do not have the ability to determine by themselves whether if the purified

image is adversarial or not which could further cause disastrous results. To address this

problem, this paper proposes a general framework for defending black box classifiers from

adversarial attacks using an ensemble of iterative adversarial defenses whose performance

is continuously validated in a loop using Bayesian uncertainties. This paper also proposes

three novel knowledge distillation approaches for transferring the functionality of the black

box classifier into our defense and experimental results on six different datasets shows that

our defense can be applied to defend various black box applications ranging from the general

Fashion-MNIST [104] and CIFAR-10 [103] datasets to face biometrics and classification for

autonomous driving. In summary, the contributions of this paper are as follows:

• To the best of our knowledge prior to [192], this is the first approach that defends

against adversarial attacks using an ensemble of iterative adversarial defenses and

can convert any single-step black box adversarial defense into an iterative adversarial

defense.

• We theoretically and empirically prove that, there exist a lower bound on the amount

of purification done to an image, beyond which an image can no longer be purified.

• This paper proposes three novel knowledge distillation approaches that exploit prior

meta-information of the training dataset in order to transfer the functionality of the

black box classifier into our defense and does not require any information such as the

logits probabilities or Teacher model architecture.

110

• Exhaustive evaluation on six public benchmark datasets shows that are approach is

able to consistently purify/reject adversarial examples and ablation studies show that

it is computationally expensive to break the defense of our framework compared to

stand-alone defenses.

5.1 Related Works

In this section we describe state-of-the-art black box adversarial defenses and

knowledge distillation approaches and contrast them with our approach. Table 23 shows a

summary of the related work.

5.2 Technical Approach

Fig. 24 shows the overall framework of our approach. The input image (X) first

passes through the Bayesian CNN and if the image is classified as an adversarial image,

it is purified by the ensemble of independently trained iterative adversarial defenses. The

purified image of each defense is averaged resulting in the average purified image (X ′i). Here

i refers to the current iteration number. Next, X ′i is passed as input back to the Bayesian

CNN. If X ′i is not adversarial, it is passed as input to the Black box classifier for final

classification, else, it is again passed as input to the ensemble of adversarial defenses and

this continues for M iterations. After M iterations, if X ′M is still adversarial then the image

is rejected. In Fig. 24, we chose to take the average of the purified image of each individual

defense as this further helps in removing high frequency adversarial perturbations [197, 198]

that may have not been purified by some of the individual defenses. Additionally, the

number of iterations of purification M is chosen empirically depending on the training

dataset used (see Section III D1) and we prove the existence of a theoretical lower bound

beyond which an image cannot be further purified (see Section III D2).

111

TABLE 23: Summary of the related work for black box adversarial defenses and knowledge
distillation

Authors Def/KD* Comments

Das et al. [133] Def Used JPG compression to suppress adversarial perturbations

Raff et al. [138] Def Performed N number of random transformations

Goswami et al. [157] Def Performed selective dropout on convolutional filters

Samangouei et al. [122] Def
Defense-GAN: Used Generative Adversarial Networks to map the

adversarial image to the closest image within the latent space

Song et al. [124] Def
PixelDefend: Used PixelCNN to remap adversarial images to the

distribution of the training dataset

Meng et al. [121] Def
MagNet: Used the reconstruction loss of autoencoder to detect

and purify adversarial examples

Theagarajan et al. [145] Def
ShieldNets: Used Probabilistic Adversarial Robustness (PAR) to

purify adversarial images

Grosse et al. [152] Def
Used kernel based two sample test to distinguish between

adversarial and original images

Rawat et al. [155] Def Used Bayesian CNN to detect adversarial attacks

Orekondy et al. [180] KD
Used the softmax probability scores and cross dataset images

to distill knowledge

Furlanello et al. [193] KD
Decomposed the predictions of the teacher model into incorrect

prediction and ground-truth information

Frosst and Hinton [194] KD Distilled deep networks to decision trees

5.2.1 Assumptions and Target Applications of our Defense

• Assumptions of our Defense : 1) The output of the Black box model is the top pre-

dicted class without any probabilities. 2) The architecture, parameters and entire training

dataset of the Black box are not known to both the adversary and the defense algorithm.

112

Ba and Caruana [195] KD
Distilled knowledge using the l2 norm between the logits of the

Teacher and Student model

Shin et al. [196] KD Used KD to minimize forgetting in continuous learning

This paper

Def

This paper proposes a novel defense framework that uses an

ensemble of adversarial defenses to iteratively purify adversarial

images and shows the relationship between the adversarial

image and its corresponding purified image and proves the

existence of a theoretical lower bound beyond which the image

cannot be further purified

KD

This paper proposes three knowledge distillation approaches

that exploit the prior meta-information of the training datasets

and shows that knowledge distillation can still be performed

even when we do not have any knowledge such as the logit

probabilities or information about the black box classifier

*Def and KD refer to black box adversarial Defense and Knowledge Distillation, respectively

Fig. 24: Overall framework of our approach.

3) The outputs of the Bayesian framework and ensemble of adversarial image purifiers are

not shared with the adversary (i.e., the adversary can only see the final classification of the

113

Black box). Although this is a strong assumption, we perform ablation studies to observe

the computational complexity required to break the defense, when the adversary knows

partial information of our defense (see Section IV G).

• Target Applications for our Defense : Our defense is suited for Black box applications

that contain sensitive personnel information such as human biometrics, remote monitoring,

autonomous driving, etc. These are critical applications that require security against adver-

sarial attacks and preserve user privacy and do not want to give up sensitive information.

5.2.2 Functionality Transfer Using Knowledge Distillation

According to our assumptions described in Section III A, we do not know any infor-

mation about the target black box model’s architecture, parameters, and training dataset,

hence we cannot directly use our defense algorithm. To solve this problem, we transfer

the functionality of the black box model to a substitute model using Knowledge Distil-

lation [178], [193],- [180]. In this paper we assume that the target black box classifier is

deterministic (weights are fixed after training) and ignore approaches that continuously

update the weights of the CNN (i.e., incremental [199] and reinforcement learning [200]).

Based on this we propose three novel Knowledge Distillation (KD) approaches

namely: KD-1, KD-2, and KD-3 that exploit the meta-information of the training datasets.

Unlike the approaches proposed in Table 23 our knowledge distribution approach is dif-

ferent because the approaches in Table 23 assume that they have prior knowledge about

the training dataset or the logit probability outputs/architecture of the target black box

classifier. Whereas, in our approach we assume a strict black box classifier where we have

no knowledge about the architecture/logit probabilities of the black box classifier and the

only observable output is the single top predicted class.

114

Assumptions of our KD approaches:

• KD-1 : We know the name, total number of the classes in the training dataset and X %

of images from each class.

• KD-2 : We know only the name, total number of classes in the training dataset and the

domain the dataset belongs to.

• KD-3 : We know only the total number of classes in the training dataset and the domain

the dataset belongs to.

In KD-2 and KD-3, domain refers to the application of the black box classifier, e.g., classifiers

trained on the MS-Celeb [173] and MIO-TCD [201] datasets generally belong to the domain

of face recognition and vehicle classification.

KD-1: Here we assume that we have access to X % amount of images of each class from

the training dataset used to train the black box classifier. For simplicity we refer to the black

box classifier as the Teacher model and our substitute classifier as the Student model. Next,

we randomly select X % of images from each class of the dataset and use these images to

train a Deep Convolutional Generative Adversarial Network (DCGAN) [42]. After training

the DCGAN, we probe the Teacher model with the generated images and label them as

the predicted class. We then augment these labeled images to the X % amount of original

images to create a pseudo-labeled dataset. In order to have an equal data distribution

between the original and pseudo-labeled dataset, we made the number of images per class

in the pseudo-labeled dataset to be the same as the original dataset used for training the

Teacher model. Finally, the pseudo-labeled dataset is used for training the Student model

(i.e., our substitute classifier).

In KD-1, since we randomly select X % of images from each class to train the

DCGAN and create the pseudo-labeled dataset, there is no guarantee that the selected

images statistically represent an accurate distribution of each class. To address this issue

we perform k -fold cross validation by selecting different folds of X % amount of images (see

115

Section IV D). In our approach we set the value of X to be 25% and 50% and use the

Fashion-MNIST [104], CIFAR-10 [103], and GTSRB [202] datasets to evaluate KD-1.

KD-2: In KD-2, we do not have any knowledge about the images or their data distri-

bution, but we know the names and total number of classes in the dataset. Hence, we

search for images belonging to those classes from publicly available datasets and the in-

ternet. First, we create a pseudo-labeled dataset by probing the Teacher model with the

images from the public domain and label these images with the predicted class. It should

be noted that since we already know the names of the class the image belongs to, we do

not need to further probe the Teacher model and re-label the images, but prior work done

by [203] - [205] shows that when we train the Student model with images that were manu-

ally annotated by humans, the classification accuracy with respect to the Teacher model is

lower compared to training the Student model with images that were annotated entirely by

the Teacher model. The reason for this is that images that are misclassified by the Teacher

model add a regularizing effect while training the Student model thus resulting in efficient

functionality transfer [205].

Finally, after creating the pseudo-labeled dataset, we use it for training the Stu-

dent model. In this paper we use the MIO-TCD [201] and Tiny ImageNet [206] dataset to

evaluate the KD-2 approach.

• MIO-TCD dataset : This dataset consists of two parts: 1) classification dataset, and 2) lo-

calization dataset. We trained the Teacher model using the MIO-TCD classification dataset

and used the localization dataset to create our pseudo-labeled dataset for training the Stu-

dent model. It should be noted that in the MIO-TCD classification dataset, we ignored

the class “Background” because this class does not belong in the localization dataset [?].

Based on this we probed the Teacher model and created the pseudo-labeled dataset such

that each class had at least 1,713 images.

116

• Tiny ImageNet dataset : The Tiny ImageNet dataset consists of 200 classes and this

dataset is used for training the Teacher model and the pseudo-labeled dataset is created

using the ImageNet dataset [92]. It should be noted that we use only the 200 classes in

the ImageNet dataset to create the pseudo-labeled dataset. Based on this we probed the

Teacher model and created the pseudo-labeled dataset such that each class had at least

487 images. In the MIO-TCD and MS-Celeb datasets we chose the number of augmented

images in the pseudo-labeled dataset to be at least 1,713 and 487 images per class respec-

tively, because this is the maximum amount of images possible for the class with the least

amount of images.

KD-3: In this setting we know only the total number of classes in the training dataset

and do not have any knowledge of the images in the dataset nor we do know the names

of the classes either. This scenario occurs in large scale re-identification applications such

as face recognition and pedestrian re-identification. We evaluate the KD-3 approach using

the MS-Celeb dataset [173]. The MS-Celeb dataset consists of approximately 9.5M images

for 99,892 celebrities. It has been shown that this dataset is extremely noisy with many

incorrect annotations [207] - [209]. In order to reduce the noise due to incorrect annotation,

we followed the community detection algorithm [210] approach of Jin et al. [211]. Based

on this method, the authors provided a list of correctly annotated images and showed that

approximately 97.3% of images in the dataset are correctly labeled. This results in a total

of approximately 6.5M images for 94,682 celebrities.

In order to train the Teacher model, we manually selected 100 celebrities that had

at least 100 images after discarding images that had extremely skewed poses and celebrities

wearing sunglasses. We denote this dataset as Q1:100 (Qi is the identity of the celebrity)

and it is used for training Teacher model. In order to train the Student model we first

create a pseudo-labeled dataset by probing the Teacher model with images of celebrities

that do not belong in Q1:100 and labeled the images with the predicted class. We denote

117

this pseudo-labeled dataset as Q101:∞ and it should be noted that the dataset Q1:100 and

Q101:∞ contain images of different celebrities and their data distributions do not overlap

(ignoring the noise due to incorrect annotations). Based on this we pseudo-labeled 3,000

images per class in the Q101:∞ dataset.

Although the Student model is trained on a dataset that is entirely different from

the dataset used for training the Teacher model, we are still able to distill some of the learned

features from the Teacher model. The reason for this is that the Teacher model is assumed to

be a deterministic model meaning that, after training, the features learned are fixed and do

not change over time. Hence, when we probe a given image x, the resulting prediction f(x)

= y will never change and with a considerably large and diverse pseudo-labeled dataset, the

student model model is able to distill the learned features of the Teacher model and achieve

good classification accuracy on the testing dataset belonging to Q1:100. Prior to [212], this

observation had not been addressed in the fields of face biometrics and is very advantageous

because of the abundance of unrestricted images available in the public domain that can

effectively be used for distilling the knowledge of Black box facial recognition classifiers.

5.2.3 Uncertainty Prediction via Bayesian Learning

In the domain of adversarial defense, it is very important to know the amount of

adversarial perturbation that still remains in the output of any defense algorithm. Bayesian

methods offer a principled way to represent these uncertainties in a model and can be

utilized to quantify a model’s confidence in its prediction [155]. Deep learning models f(·)

consists of a set of weights w that are optimized on a labeled dataset D = {xi, yi}Ni=1,

where xi and yi are the input data and corresponding ground-truth, respectively. Bayesian

inference involves learning a posterior distribution over the weights p(w|D) which is used

for predicting unseen observations:

p(y|x,D) =

∫
p(y|x,w) p(w|D)dw (1)

118

The above integral is intractable because of the sheer number of parameters in deep learning

models. To overcome this, in our approach we design the Bayesian CNN using Bayes by

Backprop [182]. Bayes by Backprop is a variational inference to Bayesian neural networks

where the posterior is assumed to be a diagonal Gaussian distribution which assumes inde-

pendence between variables. The Gaussian posterior qθ(ω|D) is defined to be as similar as

possible to the true posterior p(ω|D) when measured by the KL divergence [184]. Based on

this the optimal parameters are defined as:

θopt = arg min
θ

KL(qθ(w|D)||p(w)) − Eq(w|θ)(log p(D|w)) + log p(D) (2)

After learning the approximate posterior distribution we compute two uncertainty metrics

namely: 1) Aleatoric, and 2) Epistemic uncertainties [181] which are given by:

Aleatoric Uncertainty =
1

T

T∑
t=1

diag(ĝt) − ĝt ĝ
T
t (3)

Epistemic Uncertainty =
1

T

T∑
t=1

(ĝt − g̃)(ĝt − g̃)T (4)

where, T is the number of samples drawn from the posterior distribution, g̃ = 1
T

∑T
t=1 ĝt

and ĝt = fwt(x). It should be noted that we trained the Bayesian CNN using the same

pseudo-labeled dataset used for training the Substitute model described in the previous

sub-section.

Aleatoric Uncertainty : is a measure for the variation of data. This value increases if

certain classes are heavily unbalanced/lack of data. Adversarial images have been shown to

lie in the high frequency and low probability density regions [124, 145], which is similar to

highly imbalanced datasets and long-tailed datasets. This is also a reason why adversarial

training [113] is an effective white box defense.

Epistemic Uncertainty : is caused by the model itself. It is the ability of the model to

learn robust and representative features which depends on its architecture and parameters.

This value increases in the presence of adversarial attacks.

119

5.2.4 When is an image adversarial?

After learning the posterior distribution qθ(ω|D), in order to find the minimum

uncertainty to classify an input image as adversarial. For this we generated adversarial

images with the smallest perturbation (i.e. ε = 1/255) for the Substitute model using three

well known attacks: IFGSM [113], BIM [100], and PGD [127]. Next, these adversarial

images are transferred to the Bayesian CNN and we compute the average (µ) and standard

deviation (σ) of the Epistemic and Aleatoric uncertainties. Finally, we set two thresholds

T1 and T2 given by:

T1 = µ(Aleatoric) − 3σ(Aleatoric) (5)

T2 = µ(Epistemic) − 3σ(Epistemic) (6)

For a given image if at least one uncertainty is greater than its corresponding threshold, we

classify it as an adversarial image and pass it as input to our ensemble of iterative defenses.

We chose the threshold values for T1 and T2 to be as shown in Eq. 5 and 6 because, although

µ - σ is the least amount of uncertainty corresponding to the annotated training dataset D,

in practice there could be unseen attacks in the real-world where the uncertainty value is

below µ - σ. To accommodate these unseen adversarial images we set T1 and T2 to be two

standard deviations lesser than µ - σ as shown in Eq. 5 and 6.

5.2.5 Ensemble of Iterative Adversarial Defenses

The adversarial defenses used in this paper are auxiliary generative networks that

can be used in conjunction with any classifier as a pre-processing step without modify-

ing the structure of the classifier. These approaches do not assume any classifier model

and are model agnostic. In this paper we chose to use MagNet [121], PixelDefend [124],

ShieldNets [145], and Defense-GAN [122] in our ensemble because they achieve state-of-

the-art results for white/black box defense. It should be noted that the above mentioned

defenses are all single-step defenses and cannot quantify if a purified image is adversarial

120

or not. However, using our defense framework, we are able to convert these single-step

defenses into iterative defenses and quantify the amount of adversarial component remain-

ing after each iteration of purification. Additionally, each of these individual defenses are

trained independently and this provides flexibility to alter the structure of the ensemble

(i.e., add/remove individual defenses without affecting entire framework. See Section IV

E).

5.2.6 Determining the Number of Iterations of Purification

In Fig. 24, M is the maximum number of iterations an image can be purified before

being (a) passed as input to the black box CNN or (b) rejected. The reason for this is that

after each iteration, the amount of purification done decreases and after M iterations the

ensemble is not able to further purify the image. This situation arises when the adversarial

perturbation (ε) is very high causing the adversarial noise to dominate the image, which

makes it very difficult to purify the image. This is a potential threat an adversary could

use to lock our defense in a state of infinite loops of purification, thus crashing the defense

framework. To eliminate this threat, we set a threshold (M) on the maximum number

of iterations of purification before rejecting an image. In order to empirically determine

the value of M , we attacked the Substitute CNN using the IFGSM [113], BIM [100], and

PGD [127] attacks with ε = 0.05, 0.1, and 0.2. We chose the values of ε within the range of

0.05 - 0.2 because this is the range an adversarial attack is likely to fool a human observer,

and adversarial images with ε > 0.2 makes the resulting images more discernible to the

human eye [145, 192]. The resulting adversarial images are then passed as input to our

ensemble of image purifiers for six iterations of purification. From this we quantify the

amount of purification done by measuring the l2 distance between the input and output

at every iteration. Fig. 25 shows the plots for the amount of purification, Aleatoric,

and Epistemic uncertainties VS. the number of iterations of purification for the Fashion-

121

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r)

Fig. 25: (a) - (f) shows the average amount of purification VS. the number of iterations of
purification, (g) - (l) shows the average Aleatoric uncertainties and (m) - (r) shows the av-
erage Epistemic uncertainties for the Fashion-MNIST, CIFAR-10, GTSRB, Tiny ImageNet,
MIO-TCD, and MS-Celeb datasets, respectively.

MNIST [104], CIFAR-10 [103], GTSRB [202], MIO-TCD [201], Tiny ImageNet [206], and

MS-Celeb [173] datasets with ε = 0.05 and 0.1. From Fig. 25(a) - (f) we can see that after 3

iterations, the amount of purification does not significantly change for the Fashion-MNIST,

CIFAR-10, GTSRB, and Tiny ImageNet datasets. Hence, we set the vale of M = 3 for

these datasets. Similarly, for the MIO-TCD and MS-Celeb datasets we set M = 4. It is

122

also interesting to note that, as the dimension of the input space increases (see Table 25),

the value of M also increases.

5.2.7 Theoretical Lower Bound on the Amount of Purification

For any given image X ∈ RP×Q, where P ×Q is the number of pixels in the image,

an ε-bounded adversarial sample is denoted as X + δ, where δ belongs to the lp bounded

neighborhood ∆ = {δ ∈ RP×Q | ‖δ‖p ≤ ε} to X. The individual adversarial defenses

πω(X′|X + δ) are expected to map the adversarial images from adversarial regions back to

a safer space within ∆, where ω are the trainable parameters of the defense and X ′ is the

output of the defense. Adversarial attacks on any classification task with a loss function

of L(X′,Y; θ), where, θ are the parameters of the black box classifier, can be achieved by

optimizing,

arg max
δ∈∆

∫
∆
πω(X′|X + δ)L(X′,Y; θ)dX′. (7)

The loss function of the adversarial defense can be expressed as the marginalized expecta-

tion:

LDef = E
(X,Y)∼D

∫
∆
EX′∼πω(·|X+δ)

[
L(X′,Y; θ)

]
p(δ)dδ (8)

where p(δ) represents the distribution of adversarial samples in ∆. The theoretical pos-

sibility of the adversarial defense to neutralize the adversarial images is supported by the

following theorem:

Theorem 4 Assume L(X′,Y; θ) is continuous in X + ∆ and πω(X′|X + δ) is supported

on X + ∆, there exists a lower bound for LPAR in space ∆. If πω(X′|X + δ) = δDirac(X
′−

X− β0), LPAR reaches the lower bound, where β0 = arg minβ∈∆ L(X + β,Y; θ).

Proof of Theorem 4 : See Theorem 2 in Chapter 4.2.1. Theorem 4 is further empirically

supported by Fig. 25, in Fig. 25(a) - (f) it can be seen that after M iterations the amount

123

of purification significantly decreases and the image can no longer be purified. This also

means that after M iterations, the adversarial image Xadv is transformed/purified to X’

∈ β0, beyond which it cannot be further purified. Additionally, from Fig. 25 it can be

seen that as the amount of purification decreases after each iteration (Fig. 25(a) - (f)), the

aleatoric and epistemic uncertainties also gradually decrease (Fig. 25(g) - (r)) and after M

iterations they do not significantly vary because the the amount of purification does not

change. This further emphasizes that the resulting purified image X’ has been mapped into

the lower bound space β0 ∈ ∆ and cannot be further purified.

5.3 Experimental Results

5.3.1 CNN Architectures and Datasets

Table 24 shows the architectures of the CNN used in our defense. For fair com-

parison, the CNN architectures in Table 24 are the same as reported in [145] and [192].

We evaluated our black box defense by creating an adversarial Substitute CNN and trans-

ferred the adversarial images generated for the adversary’s Substitute as input to our de-

fense [106, 185]. It should be noted that in Table 24 we used the same CNN architecture

and training data for our defense’s Substitute as well as the adversary’s Substitute. By doing

so we are giving the adversary equal knowledge as to our Substitute model in order to have

a fair evaluation of our defense.

TABLE 24: CNN architectures

CNN Architectures

Target Black Box CNN ResNet

Defense Substitute CNN VGG

Bayesian CNN Bayesian VGG

Adversary’s Substitute CNN VGG

124

We evaluate our defense on six public benchmark datasets namely: Fashion-

MNIST [104], CIFAR-10 [103], GTSRB [202], MIO-TCD [201], Tiny ImageNet [206], and

MS-Celeb [173]. Fig. 26 shows examples of images and Table 25 shows a brief summary of

the datasets used in this paper.

(a) (b)

(c)

Fig. 26: Example of images from the (a) GTSRB, (b) MIO-TCD, and (c) MS-Celeb datasets

TABLE 25: Summary of the datasets used in this paper.

Dataset Image size
Grayscale/

RGB

Number

of classes

Balanced

classes? †

Training

data

Testing

data

Fashion-MNIST 28 x 28 Grayscale 10 Yes (6,000) 60,000 10,000

CIFAR-10 32 x 32 RGB 10 Yes (5,000) 50,000 10,000

GTSRB 64 x 64* RGB 43 No 39,252 12,630

Tiny ImageNet 64 x 64 RGB 200 Yes (500) 100,000 10,000

MS-Celeb 128 x 128* RGB 100 No 8,933 2,177

MIO-TCD 224 x 224** RGB 10 No 359,164 129,796

*images are resized to the specified size. ** shorter side of the image is resized 256 maintaining the

aspect ratio, and center cropped to size of 224 x 224. † Number in brackets indicates the number

of images per class.

125

5.3.2 Threat Models

In this sub-section we define the adversarial attacks used for evaluating our defense.

For a given test image-label pair (x, y), adversarial attacks find a perturbation δ with ||δ||∞

≤ ε such that a deep learning classifier f(·) results in f(x+ δ) 6= y. ε is a hyper-parameter

that sets the perturbation limit for each pixel in x on the color scale.

• Iterative Fast Gradient Sign Method (IFGSM) [113]: This attack uses the sign of

the gradients at every pixel to determine the direction of perturbation.

xadvn+1 = xn + ε · sign(5xL(x, y)) (9)

• Basic Iterative Method (BIM) [100]: This attack extends the FGSM attack [113] by

iterating it multiple times with a small step size.

xadvn+1 = Clipε(xn + α · sign(5xL(xn, y))) (10)

• Projected Gradient Descent [127]: This attack computes the gradient in the direction

of the highest loss and projects it back to the lp norm around the sample.

xadvn+1 =
ε∏

(xn + α · sign(5xL(xn, y))) (11)

In eq. (9) - (11), 5xL(x, y) is the loss function used to train the CNN, α is the iterative

step size, Clip (·) and
∏

(·) are the clipping and projection functions, respectively.

5.3.3 Performance Evaluation of the Proposed KD Approaches

Table 26 shows the baseline performance comparison between the Student model

(defense substitute classifier) and the Teacher model (black box classifier). In Table 26 al-

though the Teacher model outperforms the Student model, it can be seen that as the overlap

between the Teacher model’s training dataset and the pseudo-labeled dataset increases, the

performance of the Student model also increases.

126

TABLE 26: Performance evaluation and comparison of our KD approaches with respect to
the Teacher (black box) classifier.

Training dataset

(Teacher classifier)

Teacher

accuracy (%)

Pseudo-labeled dataset

(substitute)

Student

accuracy (%)

Fashion-MNIST

training dataset

93.51
X + GAN 89.67 ± 1.32

X + GAN 91.63 ± 0.76

CIFAR-10 training

dataset

95.31
X + GAN 85.79 ± 1.78

X + GAN 88.42 ± 1.26

GTSRB training dataset 96.45
X + GAN 90.34 ± 1.04

X + GAN 91.79 ± 0.68

MIO-TCD classification

training dataset

94.68
MIO-TCD localization 84.51

MIO-TCD localization +

50% MIO-TCD classification
89.04 ± 0.83

Tiny ImageNet

training dataset

Top 1: 46.79

Top 5: 72.30

200 classes from ImageNet

training dataset

Top 1: 40.85

Top 5: 64.37

200 classes from ImageNet

+ 50% Tiny ImageNet

Top 1: 41.33 ± 0.57

Top 5: 65.59 ± 1.08

MS-Celeb (100 celebrities)

75% of 100 celebrities

for training

90.32 ± 1.56
Every other celeb than the 100 74.58 ± 3.72

Every other celebrity than the

100 + 50% of 100 celebrities
76.40 ± 2.47

5.3.4 Performance Evaluation and Comparison of our Defense Against Adver-

sarial Attacks

Tables 27 - 34 show the performance and comparison of our approach against the

state-of-the-art on the six public benchmark dataset described in Section IV A. Note that in

Tables 27 - 34 all of the single-step adversarial defenses (MagNet [121], PixelDefend [124],

ShieldNets [145], and Defense-GAN [122]) are converted into iterative defenses using our

127

TABLE 27: Performance Comparison of our Defense on the Fashion-MNIST dataset using
the KD-1 approach with X = 25%.

ε = 0.1 (26/255)

T1 = 0.0437 T2 = 0.0624

Attack Defense
Classification

Accuracy (%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 37.51 - uncertainty

MagNet 80.37 ± 4.56 0.0496 ± 0.0095 0.0683 ± 0.0098

ShieldNets 83.56 ± 4.78 0.0480 ± 0.0087 0.0655 ±0.0099

Defense-GAN 83.70 ± 5.09 0.0349 ± 0.0085 0.0441 ± 0.0088

PixelDefend 81.24 ± 4.17 0.0487 ± 0.0092 0.0673 ± 0.0096

Ensemble 87.03 ± 4.40 0.0302 ± 0.0089 0.0418 ± 0.0082

BIM

No Defense 35.66 - -

MagNet 83.66 ± 5.11 0.0479 ± 0.0102 0.0661 ± 0.0094

ShieldNets 84.51 ± 4.38 0.0455 ± 0.0094 0.0637 ± 0.0091

Defense-GAN 83.02 ± 4.18 0.0327 ± 0.0090 0.0430 ± 0.0093

PixelDefend 81.08 ± 4.22 0.0482 ± 0.0107 0.0647 ± 0.0091

Ensemble 86.75 ± 3.98 0.0315 ± 0.0091 0.0391 ± 0.0095

PGD

No Defense 31.83 - -

MagNet 80.74 ± 3.68 0.0522 ± 0.0090 0.0701 ± 0.0109

ShieldNets 81.63 ± 4.87 0.0505 ± 0.0094 0.0684 ± 0.0103

Defense-GAN 82.80 ± 3.79 0.0376 ± 0.0080 0.0456 ± 0.0093

PixelDefend 78.52 ± 5.56 0.0589 ± 0.0096 0.0733 ± 0.0104

Ensemble 84.55 ± 4.12 0.0364 ± 0.0087 0.0433 ± 0.0098

framework. From Tables 27 - 34 it can be seen that our ensemble of defenses outperforms all

the stand-alone defenses. Although, as the perturbation limit (ε) of the adversarial attack

increases, the performance of all the approaches in Tables 27 - 34 gradually decrease, but

there is also a gradual increase in the Bayesian uncertainty metrics. This means that even

if an adversary tries to break our defense by significantly increasing the value of (ε), the

resulting adversarial image would still be rejected because the uncertainty values of the

image are beyond the threshold limits T1 and T2. Although increasing the value of (ε) in

128

TABLE 28: Performance comparison of our Defense on the Fashion-MNIST dataset using
the KD-1 approach with X = 50%.

= 0.1 (26/255)

T1 = 0.0426 T2 = 0.0654

Attack Defense Accuracy
Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 37.51 - -

MagNet 81.96 ± 2.90 0.0445 ± 0.0077 0.0644 ± 0.0080

ShieldNets 83.92 ± 2.68 0.0412 ± 0.0098 0.0603 ±0.0089

Defense-GAN 84.11 ± 2.88 0.0358 ± 0.0089 0.0424 ± 0.0090

PixelDefend 82.05 ± 2.59 0.0464 ± 0.0094 0.0632 ± 0.0091

Ensemble 88.29 ± 2.40 0.0330 ± 0.0084 0.0406 ± 0.0087

BIM

No Defense 35.66 - -

MagNet 84.87 ± 1.86 0.0435 ± 0.0097 0.0618 ± 0.0090

ShieldNets 84.75 ± 2.46 0.0433 ± 0.0091 0.0602 ± 0.0086

Defense-GAN 84.44 ± 2.95 0.0380 ± 0.0096 0.0452 ± 0.0081

PixelDefend 81.76 ± 2.03 0.0466 ± 0.0097 0.0627 ± 0.0093

Ensemble 87.08 ± 2.92 0.0347 ± 0.0086 0.0411 ± 0.0087

PGD

No Defense 31.83 - -

MagNet 81.27 ± 3.24 0.0462 ± 0.0098 0.0629 ± 0.0095

ShieldNets 82.94 ± 2.76 0.0455 ± 0.0084 0.0621 ± 0.0087

Defense-GAN 83.06 ± 1.93 0.0345 ± 0.0091 0.0437 ± 0.0086

PixelDefend 80.47 ± 1.86 0.0491 ± 0.0074 0.0635 ± 0.0089

Ensemble 86.13 ± 2.38 0.0319 ± 0.0094 0.0446 ± 0.0091

order to break a defense may seem very trivial, it is still a foundational problem in online

applications where there is no human in the loop [190, 191]. In Table 32, we report the Top

5 classification accuracy for the Tiny ImageNet as this is the metric used for evaluating the

dataset. Additionally, the adversarial images used in Table 32 were generated such that the

top 5 predictions for an adversarial image do not contain the ground-truth label (y), i.e.,

y /∈ {y′1, y′2, y′3, y′4, y′5}.

129

TABLE 29: Performance comparison of our Defense on the CIFAR-10 dataset using the
KD-1 approach with X = 25%.

= 0.1 (26/255)

T1 = 0.0597 T2 = 0.0688

Attack Defense Accuracy (%)
Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 15.61 - -

MagNet 61.74 ± 4.83 0.0626 ± 0.0088 0.0635 ± 0.0091

ShieldNets 62.36 ± 3.78 0.0608 ± 0.0094 0.0619 ± 0.0076

PixelDefend 58.03 ± 3.17 0.0645 ± 0.0097 0.0657 ± 0.0084

Ensemble 67.91 ± 3.55 0.0587 ± 0.0086 0.0610 ± 0.0098

BIM

No Defense 12.78 - -

MagNet 64.70 ± 3.67 0.0588 ± 0.0091 0.0611 ± 0.0085

ShieldNets 64.33 ± 3.91 0.0593 ± 0.0095 0.0598 ± 0.0094

PixelDefend 61.26 ± 3.40 0.0613 ± 0.0088 0.0604 ± 0.0092

Ensemble 67.45 ± 3.73 0.0571 ± 0.0079 0.0582 ± 0.0083

PGD

No Defense 12.56 - -

MagNet 61.35 ± 3.18 0.0633 ± 0.0089 0.0625 ± 0.0081

ShieldNets 60.87 ± 3.05 0.0631 ± 0.0096 0.0642 ± 0.0090

PixelDefend 59.87 ± 3.11 0.0622 ± 0.0080 0.0628 ± 0.0084

Ensemble 65.09 ± 3.37 0.0593 ± 0.0084 0.0595 ± 0.0092

5.3.5 Ablation Study for Evaluating the Different Combinations of Ensembles

of Iterative Defenses

In this subsection we perform an ablation study to evaluate different combinations

of ensembles of adversarial defenses and compare their performance. For this purpose we

chose to use the Fashion-MNIST [104] and CIFAR-10 [103] datsets and the following adver-

sarial defenses: MagNet [121], PixelDefend [124], ShieldNets [145], and Defense-GAN [122].

Table 35 shows the comparisons of different ensembles. From Table 35 it can be seen that

using the ensemble MPSD achieves the best overall performance followed my MSD.

130

TABLE 30: Performance comparison of our Defense with on the CIFAR-10 dataset using
the KD-1 approach with X = 50%.

ε = 0.1 (26/255)

T1 = 0.0614 T2 = 0.0672

Attack Defense Accuracy (%)
Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 15.61 - -

MagNet 62.47 ± 3.97 0.0597 ± 0.0082 0.0608 ± 0.0086

ShieldNets 62.94 ± 3.55 0.0571 ± 0.0090 0.0588 ± 0.0082

PixelDefend 60.44 ± 3.48 0.0609 ± 0.0080 0.0634 ± 0.0077

Ensemble 68.52 ± 3.14 0.0579 ± 0.0082 0.0598 ± 0.0095

BIM

No Defense 12.78 - -

MagNet 66.10 ± 4.09 0.0582 ± 0.0079 0.0591 ± 0.0082

ShieldNets 64.96 ± 3.51 0.0578 ± 0.0096 0.0605 ± 0.0091

PixelDefend 62.89 ± 3.62 0.0601 ± 0.0082 0.0585 ± 0.0087

Ensemble 68.01 ± 3.58 0.0549 ± 0.0083 0.0561 ± 0.0084

PGD

No Defense 12.56 - -

MagNet 63.11 ± 3.21 0.0590 ± 0.0077 0.0615 ± 0.0096

ShieldNets 64.26 ± 3.30 0.0605 ± 0.0079 0.0591 ± 0.0082

PixelDefend 61.90 ± 3.20 0.0609 ± 0.0083 0.0610 ± 0.0094

Ensemble 66.28 ± 2.89 0.0564 ± 0.0070 0.0573 ± 0.0095

5.4 Robustness of our Defense - an Adversary’s Point of View

In Section III A, we assumed that the adversary has no knowledge about our

defense and can only see the input and final classification output of the black box classi-

fier. Although this may seem to be a strong assumption, in this sub-section we relax this

assumption by allowing the adversary to have partial amounts of information about our

defense. We chose to use the CIFAR-10 dataset and IFGSM attack with ε = 0.1. In order

to quantify the robustness of our approach, we measure the time taken for the adversary

to create 50 successful adversarial attacks against our defense using 2 TITAN X GPUs.

Table 36 shows the time complexity required to break our defense when the adversary has

131

TABLE 31: Performance comparison of our Defense on the GTSRB dataset using the KD-1
approach with X = 50% and ε = 0.1.

GTSRB KD 1 (X = 50%)

T1 = 0.0525 T2 = 0.0570

Attack Defense Accuracy (%)
Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 28.93 - -

MagNet 84.01 ± 3.12 0.0497 ± 0.0091 0.0515 ± 0.0087

ShieldNets 86.89 ± 3.35 0.0477 ± 0.0080 0.0483 ± 0.0077

PixelDefend 79.43 ± 2.81 0.0537 ± 0.0084 0.0534 ± 0.0088

Ensemble 89.94 ± 2.74 0.0467 ± 0.0090 0.0471 ± 0.0081

BIM

No Defense 22.05 - -

MagNet 81.33 ± 3.76 0.0539 ± 0.0074 0.0548 ± 0.0079

ShieldNets 86.07 ± 3.16 0.0459 ± 0.0081 0.0502 ± 0.0078

PixelDefend 80.76 ± 2.91 0.0532 ± 0.0085 0.0537 ± 0.0081

Ensemble 86.97 ± 3.03 0.0482 ± 0.0083 0.0460 ± 0.0095

PGD

No Defense 24.51 - -

MagNet 83.44 ± 3.17 0.0518 ± 0.0070 0.0510 ± 0.0073

ShieldNets 86.95 ± 3.47 0.0472 ± 0.0093 0.0496 ± 0.0078

PixelDefend 82.04 ± 2.93 0.0503 ± 0.0088 0.0508 ± 0.0080

Ensemble 89.40 ± 3.53 0.0451 ± 0.0090 0.0457 ± 0.0074

varying amounts of information about our defense framework. In Table 36 we attack the

defense framework by creating adversarial attacks against the adversary’s substitute CNN

and transfer the attacks to our defense framework [106, 185]. From Table 36 we can see that

when the adversary has no knowledge about our defense framework, it takes approximately

38 hours to create 50 successful adversarial attacks. To put this into perspective, it took

10 hours for Song et al. [124] to create 100 attacks against their defense using 1 TITAN X

GPU and 27 hours for Theagarajan et al. [145] to create 50 attacks against their defense

using 2 TITAN X GPUs.

132

TABLE 32: Performance comparison of our Defense on the Tiny ImageNet dataset using
the KD-2 approach with ε = 0.1.

Black box training data = Tiny ImageNet

Defense training data = ImageNet + 50% ofTiny ImageNet

T1 = 0.0598 T2 = 0.0647

Attack Defense
Top 5 Accuracy

(%)

Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 12.76 - -

MagNet 44.57 ± 1.24 0.0523 ± 0.0089 0.0607 ± 0.0095

ShieldNets 47.17 ± 1.06 0.0527 ± 0.0082 0.0571 ± 0.0088

PixelDefend 40.07 ± 0.97 0.0591 ± 0.0099 0.0605 ± 0.0106

Ensemble 50.34 ± 1.08 0.0528 ± 0.0080 0.0526 ± 0.0078

BIM

No Defense 14.97 - -

MagNet 45.80 ± 0.87 0.0521 ± 0.0090 0.0569 ± 0.083

ShieldNets 49.27 ± 1.11 0.0508 ± 0.0079 0.0518 ± 0.0086

PixelDefend 42.39 ± 0.72 0.0560 ± 0.0108 0.0627 ± 0.0094

Ensemble 50.86 ± 1.04 0.0483 ± 0.0091 0.0502 ± 0.0077

PGD

No Defense 8.24 - -

MagNet 41.85 ± 1.37 0.0587 ± 0.0110 0.0611 ± 0.0087

ShieldNets 43.18 ± 1.30 0.0571 ± 0.0103 0.0604 ± 0.0093

PixelDefend 37.90 ± 1.45 0.0635 ± 0.0097 0.0667 ± 0.0094

Ensemble 44.01 ± 1.08 0.0534 ± 0.0080 0.0579 ± 0.0089

Attacking the Bayesian CNN : In our defense the Bayesian CNN decides if an incoming

image is adversarial or not before (i) passing it to the Black box classifier or (ii) rejecting

the image. Hence, a natural target for an adversary to beat our defense would be to

adversarially attack the Bayesian CNN. The optimization function for creating adversarial

133

TABLE 33: Performance comparison of our Defense on the MIO-TCD classification dataset
using the KD-2 approach with no overlap between the black box and pseudo-labeled dataset.

Black box training data = MIO-TCD Classification

Defense training data = MIO-TCD Localization

ε = 0.1 (26/255)

T1 = 0.0604 T2 = 0.0689

Attack Defense Accuracy (%)
Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 13.52 - -

MagNet 73.28 0.0588 ± 0.0094 0.0637 ± 0.0102

ShieldNets 75.89 0.0579 ± 0.0089 0.0618 ± 0.0096

PixelDefend 69.57 0.0632 ± 0.0085 0.0683 ± 0.0094

Ensemble 77.04 0.0547 ± 0.0082 0.0607 ± 0.0079

BIM

No Defense 14.21 - -

MagNet 74.01 0.0576 ± 0.0091 0.0621 ± 0.0084

ShieldNets 72.60 0.0589 ±0.0083 0.0635 ± 0.0105

PixelDefend 67.83 0.0645 ± 0.0095 0.0702 ± 0.0090

Ensemble 74.58 0.0559 ± 0.0084 0.0613 ± 0.097

PGD

No Defense 12.76 - -

MagNet 73.96 0.0569 ± 0.0104 0.0602 ± 0.0094

ShieldNets 75.07 0.0572 ± 0.0087 0.0626 ± 0.0097

PixelDefend 65.72 0.0652 ± 0.0086 0.0733 ± 0.0081

Ensemble 75.78 0.0560 ± 0.0091 0.0623 ± 0.0084

examples against the Bayesian CNN is shown in Eq. 12.

arg max ||δ|| < ε (12a)

S.T. y′ 6= y (12b)

Aleatoric uncertainty < T1 (12c)

Epistemic uncertainty < T2 (12d)

From Table 36 we can see that, attacking the Bayesian CNN is by far the weakest point

134

TABLE 34: Performance comparison of our Defense on the MS-Celeb dataset using the
KD-3 approach with no overlap between the black box and pseudo-labeled training dataset.

Black box training dataset = 75% of the 100 celebrities

Defense training dataset = All other celebrities

ε = 0.1 (26/255)

T1 = 0.0572 T2 = 0.0620

Attack Defense Accuracy (%)
Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

IFGSM

No Defense 18.77 ± 4.29 - -

MagNet 61.38 ± 2.91 0.0541 ± 0.0068 0.0585 ± 0.0077

ShieldNets 62.02 ± 2.75 0.0539 ± 0.0079 0.0546 ± 0.0087

PixelDefend 58.15 ± 3.04 0.0551 ± 0.0080 0.0613 ± 0.0092

Ensemble 63. 44 ± 2.70 0.0506 ± 0.0065 0.0542 ± 0.0071

BIM

No Defense 22.43 ± 3.97 - -

MagNet 61.97 ± 3.24 0.0522 ± 0.0089 0.0576 ± 0.0082

ShieldNets 60.55 ± 2.74 0.0567 ± 0.0068 0.0566 ± 0.0072

PixelDefend 56.38 ± 3.39 0.0583 ± 0.0083 0.0637 ± 0.0090

Ensemble 62.84 ± 2.13 0.0517 ± 0.0069 0.0528 ± 0.0074

PGD

No Defense 17.94 ± 4.25 - -

MagNet 60.37 ± 2.61 0.0553 ± 0.0079 0.0557 ± 0.0082

ShieldNets 62.58 ± 2.84 0.0534 ± 0.0082 0.0540 ± 0.0073

PixelDefend 55.93 ± 3.07 0.0606 ± 0.0097 0.0618 ± 0.0103

Ensemble 62.97 ± 2.71 0.0535 ± 0.0068 0.0529 ± 0.0076

in our defense which can be exploited by an adversary provided the adversary has the

information. But, optimizing Eq. 12 makes the adversarial images to be very close to the

boundary of the original images thus resulting in a weakly perturbed adversarial image.

We noticed that when we pass these weakly perturbed adversarial images through our

ensemble of defense the resulting image is purified in just 1 iteration of purification. Hence,

in Table 36 when we force all input images (regardless if they are adversarial or not) to at

least 1 iteration of purification, these weakly perturbed adversarial examples are no longer

135

TABLE 35: Ablation study for comparing different combinations of ensembles of iterative
defenses.

IFGSM ε = 0.05 (13/255)

T1 = 0.0437 T2 = 0.0624

Dataset Ensemble Accuracy (%)
Avg. Aleatoric

uncertainty

Avg. Epistemic

uncertainty

Fashion-MNIST

MPD 84.33 ± 4.01 0.0314 ± 0.0079 0.0347 ± 0.0080

MSD 86.83 ± 4.44 0.0276 ± 0.0085 0.0336 ± 0.0086

PSD 85.09 ± 5.07 0.0304 ± 0.0077 0.0352 ± 0.0078

MPS 87.35 ± 3.24 0.0309 ± 0.0083 0.0335 ± 0.0081

MPSD 87.94 ± 4.51 0.0288 ± 0.0089 0.0324 ± 0.0091

T1 = 0.0597 T2 = 0.0683

CIFAR-10

MPD 75.08 ± 4.49 0.0513 ± 0.0078 0.0546 ± 0.0083

MSD 77.23 ± 4.05 0.0472 ± 0.0086 0.0539 ± 0.092

PSD 74.37 ± 3.64 0.0533 ± 0.0077 0.0560 ± 0.0088

MPS 75.96 ± 3.74 0.0509 ± 0.0085 0.0514 ± 0.0074

MPSD 77.86 ± 3.87 0.0487 ± 0.0095 0.0521 ± 0.0081

*M, P, S, and D refers to MagNet, PixelDefend, ShieldNets, and Defense-GAN, respectively.

adversarial and are correctly classified by the black box classifier. By doing so, even if

the adversary has full knowledge about the Bayesian CNN but no information about our

ensemble of defenses, it takes approximately 34 hours to break our defense compared to

just 17 minutes when there is no forced purification.

Attacking the Ensemble of Defenses: From Table 36 we can see that when the adver-

sary has partial information about our ensemble of defenses, the time taken to break the

defense ranges from 28 to 6.65 hours. The reason for this is that, with the inclusion of prob-

abilistic generative networks such as PixelDefend [124] and ShieldNets [145], the ensemble

changes from being a deterministic system to a probabilistic system and in order to attack

a probabilistic system, one needs to solve the stochastic gradient descent. The convergence

rate for solving this is in the order of O(1/λ), where λ is the convergence error and This

136

TABLE 36: Time complexity required for breaking our defense framework on the CIFAR-10
dataset using the IFGSM attack with ε = 0.1.

Bayesian

CNN
MagNet PixelDefend ShieldNets

Time to create

50 attacks

7 7 7 7 38 hours

3 7 7 7 17 minutes

3* 7 7 7 34 hours

7 3 7 7 19 hours

7 7 3 7 28 hours

7 7 7 3 14 hours

7 3 3 7 9.55 hours

7 7 3 3 8.70 hours

7 3 7 3 6.65 hours

*we force all input images to have 1 forced iteration of purification

is exponentially slower than the deterministic case. Additionally, the individual defenses

are all trained independently and have independent parameters, hence a perturbation in

a certain direction leading to a misclassification against a particular defense does not nec-

essarily lead to a similar perturbation in the same direction for the other defenses within

the ensemble. Moreover, breaking our defense requires a significant amount of probing and

querying from the adversary’s side and this can be limited by setting a threshold beyond

which the adversary cannot probe the defense for a certain amount of time [186], hence

further increasing the computation overhead.

137

Chapter 6

Conclusions

This thesis proposed three novel applications for automated stem cell classifica-

tion, sports analytics, and a novel framework for defending deep learning models from

white and black box models. This dissertation showed how crucial generative networks

are for improving the robustness of deep learning models and defending them against ad-

versarial attacks. In the field of stem cell classification, we proposed DeephESC 2.0 an

automated system for detecting and classifying hESC images. DeephESC 2.0 outperforms

the state-of-the-art in both the classification and generation of synthetic hESC images. We

observed that the certain classes such as Cell clusters/Apoptically Blebbing cells and At-

tached cells/Dynamically Blebbing cells have similar texture and intensity and they are only

different in their morphology. To exploit this difference we designed Triplet CNN architec-

tures with branched convolution layers that can detect these minute changes in morphology

and perform fine-grained classification for further improving the classification accuracy of

these classes. Moreover, by fusing the outputs of the CNN and Triplet CNNs using the

product rule we were able to further improve the classification accuracy to 93.23%.

We designed individual GMANs for each class to generate synthetic hESC images.

We evaluated the quality of the generated images using the SSIM, PSNR and statistical

138

p- value metrics and our approach outperformed state-of-the-art approaches for generating

synthetic hESC images. Furthermore, we trained the classifier of DeephESC 2.0 exclusively

on 40,000 synthetic images per class and evaluated the classifier on the real hESC images

and achieved further improved classification accuracy of 94.46%. We discussed the possible

reasons for misclassification and observed that some images were unintentionally mislabeled

by the biologists and our approach was able to predict their correct class. This shows that

our approach is robust even in the presence of noisy data.

In sports analytics, we proposed and designed a system for analyzing the per-

formance of soccer players and generating three tactical statistics of each player from a

video. We collected a dataset consisting of 49,950 images from high school soccer matches

and performed exhaustive evaluation and comparison of algorithms on the dataset and our

approach achieved the best performance in terms of accuracy and computation time. More-

over, we observed that although our approach achieves the best performance on matches

played between teams in our training dataset, the features learned do no generalize well

across matches played by teams that are not in our dataset. To solve this we employed a

minimum amount of match specific annotations using a novel Triplet CNN-DCGAN archi-

tecture and showed that by fine tuning the network with only 100 annotated images per

class (Player with/without the ball) we can obtain robust performance. Finally, we per-

formed an ablation study that showed how individual modules of our proposed approach

and data augmentation affect the generation of tactical statistics at a match level and in-

dividual player level. The Future work will include using multiple wide lens stationary

cameras and GPS trackers in an IOT based cloud environment which will provide real-time

performance. Additionally more actions can be integrated into our system such as shots on

the goal, dribbling detection and player style classification which can be used for generating

a more comprehensive performance characterization of an individual soccer player.

139

Although, these applications achieve state-of-the-art performance, this disserta-

tion showed how these approaches are vulnerable to adversarial attacks. To solve this,

this dissertation proposed Probabilistic Adversarial Robustness (PAR) and implemented it

via adopting PixelCNN as the probabilistic transformation model to defend target CNNs

against adversarial attacks. We theoretically derived the connection between PAR loss and

the SGD loss, and the existence of a theoretical lower bound of PAR loss representing the

optimal mapping of the adversarial examples to the adversarial-free zones. We numerically

demonstrated that ShieldNet can greatly improve the defending accuracy for intra-attack

and generalize well across different attacking methods. Moreover, experimental results

demonstrated the generality of our approach to adversarial transferability with respect to

different CNN models and its resistance to existing attacks. We additionally proposed a

novel framework for defending black box classifiers from adversarial attacks. The proposed

framework uses an ensemble of defenses and has the ability to convert existing single-step

black box defenses into an iterative defense and experimental results show that using an

ensemble of defenses outperforms the corresponding single-step defenses. We demonstrated

the relationship between an adversarial image and its corresponding purified image and

proved the existence of a lower bound space beyond which an image cannot be further pu-

rified. This paper also proposed three novel knowledge distillation approaches that exploit

prior meta-information of the training datasets. Furthermore, the results show that crowd

sourced images that are available in the public domain can be used to effectively distill

the knowledge from the Black box classifier and still achieve reasonable performance in

defending against adversarial attacks.

140

Bibliography

[1] J. A. Thomson, J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S.
Marshall, and J. M. Jones, “Embryonic stem cell lines derived from human blastocysts”,
Science, 282(5395), pp. 1145-1147, 1998.

[2] Z. Zhu, and D. Huangfu, “Human pluripotent stem cells: an emerging model in devel-
opmental biology”, Development, 140, pp. 705-717, 2013.

[3] P. Talbot, and S. Lin, “Mouse and human embryonic stem cells: can they improve
human health by preventing disease?”, Current Topics in Medicinal Chemistry, 11(13),
pp. 1638-1652, 2011.

[4] B. X. Guan, B. Bhanu, B, P. Talbot, S. Lin, and N. Weng, “Comparison of texture
features for human embryonic stem cells with bio-inspired multi-class support vector
machine”, IEEE International Conference in Image Processing, pp. 4102-4106, 2014.

[5] R. Theagarajan, B. X. Guan, and B. Bhanu, “DeephESC: An automated system for
generating and classification of human embryonic stem cells”, IEEE International Con-
ference on Pattern Recognition, 2018.

[6] B. Bhanu, and P. Talbot (Eds.), “Video Bioinformatics: From Live Imaging to Knowl-
edge”, Springer, 2015.

[7] S. Lin, S. Fonteno, S. Satish, B. Bhanu, and P. Talbot, “Video bioinformatics analysis
of human embryonic stem cell colony growth”, Journal of visualized experiments, 2010.

[8] P. Talbot, N. Zur Nieden, S. Lin, I. Martinez, B. X. Guan, and B. Bhanu, “Use of video
bioinformatics tools in stem cell toxicology”, Handbook of Nanotoxicology, Nanomedicine
and Stem Cell Use in Toxicology, 2014.

[9] R. Sakamoto, M. M. Rahman, M. Shimomura, M. Itoh, T. and Nakatsura, “Time-lapse
imaging assay using the BioStation CT: A sensitive drug-screening method for three-
dimensional cell culture”, Cancer science, 106(6), pp. 757-765, 2015.

[10] A. Zahedi, V. On, S. C. Lin, B. C. Bays, E. Omaiye, B. Bhanu, and P. Talbot, “Eval-
uating cell processes, quality, and biomarkers in pluripotent stem cells using video bioin-
formatics”, PLoS One, 11(2), 2016.

141

[11] F. Ambriz-Colin, M. Torres-Cisneros, J. Avina-Cervantes, J. Saavedra-Martinez, O.
Debeir, and J. Sanchez-Mondragon, “Detection of biological cells in phase-contrast mi-
croscopy images”, Mexican International Conference on Artificial Intelligence, pp. 68-77,
2006.

[12] K. Li, M. Chen, and T. Kanade, “Cell population tracking and lineage construction
with spatiotemporal context”, International Conference on Medical Image Computing
and Computer-Assisted Intervention, pp. 295-302, 2007.

[13] S. Eom, R. Bise, and T. Kanade, “Detection of hematopoietic stem cells in microscopy
images using a bank of ring filters”, IEEE International Symposium on Biomedical Imag-
ing, pp. 137-140, 2010.

[14] L. Miroslaw, A. Chorazyczewski, F. Buchholz, and R. Kittler, “Correlation-based
method for automatic mitotic cell detection in phase contrast microscopy”, Advances
in Intelligent and Soft Computing, pp. 627-634, 2005.

[15] S. Tatiraju, and A. Mehta. “Image segmentation using k-means clustering, EM and
normalized cuts”, UC Irvine, 2008.

[16] R. Farnoosh, and B. Zarpak. “Image segmentation using Gaussian mixture model”,
International Journal on Engineering and Science, 19, 29-32, 2008.

[17] N. Lowry, R. Mangoubi, M. Desai, Y. Marzouk, and P. Sammak, “Texton-based seg-
mentation and classification of human embryonic stem cell colonies using multi-stage
Bayesian level sets”, IEEE International Symposium on Biomedical Imaging, pp. 194-
197, 2012.

[18] M. Varma, and A. Zisserman, “A statistical approach to texture classification from
single images”, International Journal of Computer Vision, 62(1-2), pp. 61-81, 2005.

[19] N. Lowry, R. Mangoubi, M. Desai, and P. Sammak, “Nonparametric segmentation and
classification of small size irregularly shaped stem cell nuclei using adjustable windowing”,
IEEE International Symposium on Biomedical Imaging, pp. 141-144, 2010.

[20] R. Mangoubi, C. Jeffreys, A. Copeland, M. Desai, and P. Sammak. “Non-invasive
image based support vector machine classification of human embryonic stem cells”, IEEE
International Symposium on Biomedical Imaging, pp. 284-287, 2007.

[21] M. Desai, R. Mangoubi, and P. Sammak. “Noise adaptive matrix edge field analysis
of small sized heterogeneous onion layered textures for characterizing human embryonic
stem cell nuclei”, IEEE International Symposium on Biomedical Imaging, pp. 1386-1389,
2009.

[22] P. J. Sammak, R. Mangoubi, T. M. Erb, S. Mucko, and M. Desai. “Methods of gener-
ating trophectoderm and neurectoderm from human embryonic stem cells”, U.S. Patent
9,607,202, 2017.

142

[23] H. Niioka, S. Asatani, A. Yoshimura, H. Ohigashi, S. Tagawa, and J. Miyake, “Classifi-
cation of C2C12 cells at differentiation by convolutional neural network of deep learning
using phase contrast images”, Human cell, 31(1), pp. 87-93, 2018.

[24] Y. H. Chang, K. Abe, H. Yokota, K. Sudo, Y. Nakamura, C. Y. Li, and M. D. Tsai.
“Human induced pluripotent stem cell region recognition in microscopy images using con-
volutional neural networks”, IEEE International Conference on Engineering in Medicine
and Biology Society, pp. 4058-4061, 2017.

[25] W. Xie, J. A. Noble, and A. Zisserman. “Microscopy cell counting and detection
with fully convolutional regression networks”, Computer Methods in Biomechanics and
Biomedical Engineering: Imaging & Visualization, 6(3), pp. 283-292, 2018.

[26] A. Witmer, and B. Bhanu. “Multi-label Classification of Stem Cell Microscopy Images
Using Deep Learning”, IEEE International Conference on Pattern Recognition, 2018.

[27] R. Theagarajan, and B. Bhanu, “DeephESC 2.0: Deep Generative Multi Adversarial
Networks for improving the classification of hESC”, PloS one, 14(3), 2019.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolution neural networks”, Advances in neural information processing systems, pp.
1097-1105, 2012.

[29] J. Redmon, and A. Farhadi, “YOLO9000: better, faster, stronger”, arXiv preprint,
2017.

[30] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolution encoder-
decoder architecture for image segmentation”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 39(12), pp. 2481-2495, 2017.

[31] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, “Understanding data
augmentation for classification: when to warp?”, Digital Image Computing: Techniques
and Applications, pp. 1-6, 2016.

[32] Nikon Biostation-IM. http://www.nikoninstruments.com/Products/

Cell-IncubatorObservation/BioStation-IM.

[33] S. Lin, S. Fonteno, J.H. Weng, and P. Talbot, “Comparison of the toxicity of smoke
from conventional and harm reduction cigarettes using human embryonic stem cells”,
Toxicology Science, 118, pp. 202-212, 2010.

[34] Nikon. CL-Quant, http://www.nikoninstruments.com/News/US-News/

Nikon-Instruments-Introduces-CL-Quant-Automated-Image-Analysis-Software,
2013.

[35] S. Lin, and P. Talbot, “Methods for culturing mouse and human embryonic stem cells”,
Embryonic Stem Cell Therapy for Osteo-Degenerative Diseases. Humana Press, pp. 31-
56, 2011.

143

http://www.nikoninstruments.com/Products/Cell-IncubatorObservation/BioStation-IM.
http://www.nikoninstruments.com/Products/Cell-IncubatorObservation/BioStation-IM.
http://www.nikoninstruments.com/News/US-News/Nikon-Instruments-Introduces-CL-Quant-Automated-Image-Analysis-Software
http://www.nikoninstruments.com/News/US-News/Nikon-Instruments-Introduces-CL-Quant-Automated-Image-Analysis-Software

[36] B. X. Guan, B. Bhanu, P. Talbot, and S. Lin, “Bio-driven cell region detection in
human embryonic stem cell assay”, IEEE Transactions on Computational Biology and
Bioinformatics, 11(3), pp. 604-611, 2014.

[37] I. Durugkar, I. Gemp, and S. Mahadevan, “Generative multi-adversarial networks”,
arXiv preprint, arXiv:1611.01673, 2016.

[38] D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization”, arXiv
preprint, arXiv:1412.6980, 2014.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition”,
IEEE International Conference on Computer Vision and Pattern Recognition, pp. 770-
778, 2016.

[40] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint, arXiv:1409.1556, 2014.

[41] M. Mirza, and S. Osindero, “Conditional generative adversarial nets”, arXiv preprint,
arXiv:1411.1784, 2014.

[42] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolution generative adversarial networks”, arXiv preprint, arXiv:1511.06434, 2017.

[43] https://www.ranker.com/crowdranked-list/most-popular-american-sports

[44] https://www.statista.com/statistics/267963

[45] https://www.footballscience.net/special-topics/performance-analysis/

[46] C. Lago-Peñas and A. Dellal, “Ball possession strategies in elite soccer according to the
evolution of the match-score: the influence of situational variables,” Journal of Human
Kinetics, 25, pp.93-100, 2010.

[47] K. Saito, and M. Yoshimura, “Pass appearance time and pass attempts by teams
qualifying for the second stage of FIFA world cup 2014 in Brazil,” Journal of Sports
Science, 4, pp.156-162, 2016.

[48] K. Saito, M. Yoshimura, and T. Ogiwara, “Pass appearance time and pass attempts by
teams qualifying for the second stage of FIFA World Cup 2010 in South Africa,” Football
Science, 10, pp.65-69, 2013.

[49] A. Janković, B. Leontijević, M. Pas̆ić, and V. Jelus̆ić, “Influence of certain tactical
attacking patterns on the result achieved by the teams participants of the 2010 FIFA
World Cup in South Africa,” Physical Culture, 65(1), pp.34-45, 2011.

[50] A. Redwood-Brown, “Passing patterns before and after goal scoring in FA Premier
League Soccer,” International Journal of Performance Analysis in Sport, 8(3), pp.172-
182, 2008.

144

https://www.ranker.com/crowdranked-list/most-popular-american-sports
https://www.statista.com/statistics/267963
https://www.footballscience.net/special-topics/performance-analysis/

[51] M. A. Gómez, M. Gómez-Lopez, C. Lago, and J. Sampaio, “Effects of game location
and final outcome on game-related statistics in each zone of the pitch in professional
football,” European Journal of Sport Science, 12(5), pp.393-398, 2012.

[52] A. Scoulding, N. James, and J. Taylor, “Passing in the Soccer World Cup 2002,”
International Journal of Performance Analysis in Sport, 4(2), pp.36-41, 2004.

[53] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” IEEE Conference on Computer Vision and Pattern Recognition,
pp. 779-788, 2016.

[54] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Detect to track and track to detect,”
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3038-3046, 2017.

[55] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr, “Fully-
convolutional siamese networks for object tracking,” European conference on computer
vision, pp. 850-865, 2016.

[56] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep
association metric,” IEEE International Conference on Image Processing, pp. 3645-3649,
2017.

[57] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick, “Microsoft coco: Common objects in context,” European Conference on
Computer Vision, pp. 740-755, 2014.

[58] Z. Cai, and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detec-
tion,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154-6162,
2018.

[59] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” IEEE Conference on
Computer Vision, pp. 2961-2969, 2017.

[60] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, “SSD:
Single shot multibox detector,” European Conference on Computer Vision, pp. 21-37,
2016.

[61] P. Parisot, and C. De Vleeschouwer, “Scene-specific classifier for effective and efficient
team sport players detection from a single calibrated camera,” Computer Vision and
Image Understanding, pp.74-88, 2017.

[62] D. J. Duh, S. Y. Chang, S. Y. Chen, and C. C. Kan, “Automatic broadcast soc-
cer video analysis, player detection, and tracking based on color histogram,” Intelligent
Technologies and Engineering Systems, pp. 123-130, 2013.

[63] J. Liu, X. Tong, W. Li, T. Wang, Y. Zhang, and H. Wang, “Automatic player detection,
labeling and tracking in broadcast soccer video,”Pattern Recognition Letters, 30(2), pp.
103-113, 2009.

145

[64] T. K. Chiang, J. J. Leou, and C. S. Lin, “An improved mean shift algorithm based
tracking system for soccer game analysis,” Asia-Pacific Signal and Information Process-
ing Association, pp. 380-385, 2009.

[65] J. Xing, H. Ai, L. Liu, and S. Lao, “Multiple player tracking in sports video: A
dual-mode two-way Bayesian inference approach with progressive observation modeling,”
IEEE Transactions on Image Processing, 20(6), pp. 1652-1667, 2010.

[66] T. D’Orazio, M. Leo, P. Spagnolo, P. L. Mazzeo, N. Mosca, M. Nitti, and A. Distanter,
“An investigation into the feasibility of real-time soccer offside detection from a multi-
ple camera system,” IEEE Transactions on Circuits and Systems for Video Technology,
19(12), pp. 1804-1818, 2009.

[67] S. H. Khatoonabadi, and M. Rahmati, “Automatic soccer players tracking in goal
scenes by camera motion elimination,” Image and Vision Computing, 27(4), pp. 469-479,
2009.

[68] A. Senocak, T. H. Oh, J. Kim, and I. So Kweon, “Part-based player identification
using deep convolutional representation and multi-scale pooling,” IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pp. 1732-1739, 2018.

[69] T. Jaakkola, and D. Haussler, “Exploiting generative models in discriminative classi-
fiers,” Advances in Neural Information Processing Systems, pp. 487-493, 1999.

[70] J. Xu, L. Kanokphan, and K. Tasaka, “Fast and accurate object detection using im-
age cropping/resizing in multi-view 4K sports videos,” ACM International Workshop on
Multimedia Content Analysis in Sports, pp. 97-103, 2018.

[71] H. Liu, and B. Bhanu, “Pose-guided R-CNN for jersey number recognition in sports,”
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.

[72] M. Istasse, J. Moreau, and C. De Vleeschouwer, “Associative embedding for team dis-
crimination,” IEEE Conference on Computer Vision and Pattern Recognition Workshops,
2019.

[73] W. L. Lu, J. A. Ting, K. P. Murphy, and J. J. Little,“Identifying players in broadcast
sports videos using conditional random fields,” IEEE Conference on Computer Vision
and Pattern Recognition, pp. 3248 - 3256, 2011.

[74] R. Theagarajan, F. Pala, X. Zhang, and B. Bhanu, “Soccer: Who has the ball? Gener-
ating visual analytics and player statistics,” IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pp. 1749-1757, 2018.

[75] Z. Cai, H. Neher, K. Vats, D. Clausi, and J. Zelek, “Temporal hockey action recog-
nition via pose and optical flows,” IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

[76] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime multi-person 2D pose estimation
using part affinity fields,” IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7291-7299, 2017.

146

[77] T. W. Hui, X. Tang, and C. Change Loy, “Liteflownet: A lightweight convolutional
neural network for optical flow estimation,” IEEE Conference on Computer Vision and
Pattern Recognition, 2018.

[78] A. J. Piergiovanni, and M. S. Ryoo, 2018. “Fine-grained activity recognition in baseball
videos,” IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
1740-1748, 2018.

[79] A. Cioppa, A. Deliège, and M. Van Droogenbroeck, “A bottom-up approach based
on semantics for the interpretation of the main camera stream in soccer games,” IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 1765-1774,
2018.

[80] M. R. Tora, J. Chen, and J. J. Little, “Classification of puck possession events in ice
hockey,” IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.
147-154, 2017.

[81] R. Li, and B. Bhanu, “Fine-grained visual dribbling style analysis for soccer videos with
augmented dribble energy image,” IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2019.

[82] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” IEEE International
Conference on Computer Vision, pp. 2961-2969, 2017.

[83] Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation
using part affinity fields,” IEEE Conference on Computer Vision and Pattern Recognition,
pp. 7291-7299, 2017.

[84] B. Bhanu, C. V. Ravishankar, A. K. Roy-Chowdhury, H. Aghajan, and D. Terzopoulos
(Eds.), “Distributed video sensor networks”, Springer Science Business Media, 2011.

[85] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transac-
tions on Systems, Man, and Cybernetics, 9(1), 1979.

[86] M. Manafifard, H. Ebadi, and H. A. Moghaddam, “Survey on player tracking in soccer
videos”, Computer Vision and Image Understanding, 159, pp. 19-46, 2017.

[87] H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval research
logistics quarterly, 2(1-2), pp. 83-97, 1955.

[88] Y. Deng, P. Luo, C. C. Loy, and X. Tang, “Pedestrian attribute recognition at far
distance,” ACM international conference on Multimedia, pp. 789-792, 2014.

[89] Z. Han, B. Wei, Y. Zheng, Y. Yin, K. Li, and S. Li, “Breast cancer multi-classification
from histopathological images with structured deep learning model,” Scientific Reports,
7(1), 2017.

[90] X. Wu, R. He, Z. Sun, and T. Tan, “A light cnn for deep face representation with noisy
labels,” IEEE Transactions on Information Forensics and Security, 13(11), pp.2884-2896,
2018.

147

[91] S. A. Pettersen, D. Johansen, H. Johansen, V. Berg-Johansen, V. R. Gaddam, A.
Mortensen, R. Langseth, C. Griwodz, H. K. Stensland, and P. Halvorsen, “Soccer video
and player position dataset,” International Conference on Multimedia Systems, pp. 18-23,
2014.

[92] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-
scale hierarchical image database”, IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248-255, 2009.

[93] R. Wiehagen, and C. H. Smith, “Generalization versus classification,” Journal of Ex-
perimental & Theoretical Artificial Intelligence, 7(2), pp. 163-174, 2007.

[94] O. O. Koyejo, N. Natarajan, P. K. Ravikumar, and I. S. Dhillon, “Consistent binary
classification with generalized performance metrics,” Advances in Neural Information
Processing Systems, pp. 2744-2752, 2014.

[95] A. Cioppa, A. Deliége, M. Istasse, C. De Vleeschouwer, and M. Van Droogenbroeck,
“ARTHuS: Adaptive real-time human segmentation in sports through online distillation,”
IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2019.

[96] https://aws.amazon.com/solutions/case-studies/hudl/

[97] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks for
acoustic modeling in speech recognition: The shared views of four research groups”,
IEEE Signal processing magazine, 29(6), pp. 82-97, 2012.

[98] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks”, IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 1725-1732, 2014.

[99] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning
to align and translate”, arXiv preprint arXiv:1409.0473, 2014.

[100] A. Kurakin, I. J. Goodfellow, and S. Bengio. “Adversarial examples in the physical
world”, arXiv preprint arXiv:1607.02533, 2016.

[101] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, and R.
Fergus, “Intriguing properties of neuralnetworks”, arXiv preprint arXiv:1312.6199, 2013.

[102] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and
F. Roli, “Evasion attacks against machine learning at test time”, European conference on
machine learning and knowledge discovery in databases, pp. 387-402, 2013.

[103] A. Krizhevsky, and G. Hinton, “Learning multiple layers of features from tiny images”,
Technical report, Citeseer, 2009.

[104] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms”, arXiv cs.LG/1708.07747, 2017.

148

https://aws.amazon.com/solutions/case-studies/hudl/

[105] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, arXiv preprint arXiv:1409.1556, 2014.

[106] N. Papernot, P. McDaniel, I. J. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning”, Asia Conference on Computer
and Communications Security, pp. 506-519, 2017.

[107] N. Carlini, and D. Wagner, “Towards evaluating the robustnessof neural networks”,
arXiv preprint arXiv:1608.04644, 2016.

[108] https://www.youtube.com/watch?v=zQ_uMenoBCk&feature=youtu.be

[109] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané, “Con-
crete problems in AI safety”, arXivpreprint arXiv:1606.06565, 2016.

[110] A. V. D. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural net-
works”, arXiv preprint arXiv:1601.06759, 2016.

[111] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: Improving
the pixelcnn with discretized logistic mixture likelihood and other modifications”, arXiv
preprint arXiv:1701.05517, 2017.

[112] A. V. D. Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals, A. Graves, “Conditional
image generation with pixelcnn decoders”, Neural Information Processing Systems, pp.
4790-4798, 2016.

[113] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples”, arXiv preprint arXiv:1412.6572, 2014.

[114] S. M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A simple and accu-
rate method to fool deep neural net-works”, IEEE Conference on Computer Vision and
Pattern Recognition, pp. 2574-2582, 2016.

[115] Y. Dong, F. Liao, T. Pang, H. Su, X. Hu, J. Li, and J. Zhu, “Boosting adversarial
attacks with momentum”, arXiv preprint arXiv:1710.06081, 2017.

[116] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness may
be at odds with accuracy”, arXiv preprint arXiv:1805.12152, 2018.

[117] F. Tram̀er, A. Kurakin, N. Papernot, I. J. Goodfellow, D. Boneh, and P. McDaniel,
“Ensemble adversarial training: Attacks and defenses”, arXiv preprint arXiv:1705.07204,
2017.

[118] D. Warde-Farley, and I. J. Goodfellow, “Adversarial perturbations of deep neural
networks”, Perturbations, Optimization,and Statistics, 2016.

[119] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a
defense to adversarial perturbations against deep neural networks”, arXiv preprint
arXiv:1511.04508, 2015.

149

https://www.youtube.com/watch?v=zQ_uMenoBCk&feature=youtu.be

[120] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in
deep neural networks”, arXiv preprint arXiv:1704.01155, 2017.

[121] D. Meng, and H. Chen, “MagNet: a two-pronged defense against adversarial exam-
ples”, Conference on Computer and Communications Security, pp. 135-147, 2017.

[122] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-GAN: Protecting classifiers
against adversarial attacks using generative models”, arXiv preprint arXiv:1805.06605,
2018.

[123] J. Buckman, A. Roy, C. Raffel, and I. J. Goodfellow. “Thermometer encoding: One
hot way to resist adversarial examples”, International Conference on Learning Represen-
tations, 2018.

[124] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “PixelDefend: Leveraging
generative models to understandand defend against adversarial examples”, International
Conference on Learning Representations, 2018.

[125] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro, “Robust stochastic approxima-
tion approach to stochastic programming”, SIAM Journal on Optimization, 19(4) pp.
1574-1609, 2009.

[126] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition”, Proceedings of the IEEE, 86(11), pp. 2278-2324, 1998.

[127] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks”, arXiv preprint arXiv:1706.06083, 2017.

[128] R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári, “Learning with a strong adver-
sary”, arXiv preprint arXiv:1511.03034, 2015.

[129] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, ”You only propagate once: Ac-
celerating adversarialtraining via maximal principle”, arXiv preprint arXiv:1905.00877,
2019.

[130] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “There is no
free lunch in adversarialrobustness (but there are unexpected benefits)”, arXiv preprint
arXiv:1805.12152, 2018.

[131] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine learning at scale”,
arXiv preprint arXiv:1611.01236, 2016.

[132] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of jpg com-
pression on adversarialimages”, arXiv preprint arXiv:1608.00853, 2016.

[133] N. Das, M. Shanbhogue, S. T. Chen, F. Hohman, L. Chen, M. E. Kounavis, and D. H.
Chau, “Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg
compression”, arXiv preprint arXiv:1705.02900, 2017.

150

[134] N. Carlini, and D. Wagner, “Towards evaluating the robustness of neural networks”,
IEEE Symposium on Security and Privacy, pp. 39-57, 2017.
satc r8S. M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversar-
ial perturbations”, IEEE Conference on Computer Vision and Pattern Recognition, pp.
1765-1773, 2018.

[135] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial examples
for semantic seg-mentation and object detection”, IEEE International Conference on
Computer Vision, pp. 1369–1378, 2017.

[136] Q. Wang, W. Guo, K. Zhang, I. Ororbia, G. Alexander, X. Xing, X. Liu, and
C. L. Giles, “Learning adversary-resistant deep neural networks”, arXiv preprint
arXiv:1612.01401, 2016.

[137] C. Guo, M. Rana, M. Cisse, and L. V. D. Maaten, “Countering adversarial images
using inputtransformations”, arXiv preprint arXiv:1711.00117, 2017.

[138] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random transforms for
adversariallyrobust defense”, IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 6528–6537, 2019.

[139] H. Hosseini, Y. Chen, S. Kannan, B. Zhang, and R. Poovendran, “Blocking
transferability of adversarial examples in black-box learning systems”, arXiv preprint
arXiv:1703.04318, 2017.

[140] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network”,
arXiv preprint arXiv:1503.02531, 2015.

[141] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep structured
prediction models”, arXiv preprint arXiv:1707.05373, 2017.

[142] C. Xie, Y. Wu, L. V. D. Maaten, A. L. Yuille, and K. He, “Feature denoising for
improving adversarial robustness”, IEEE Conference on Computer Vision and Pattern
Recognition, pp. 501–509, 2019.

[143] A. Mustafa, S. Khan, M. Hayat, R. Goecke, J. Shen, and L. Shao, “Adversarial defense
by restricting the hidden space of deep neural networks”, IEEE International Conference
on Computer Vision, 2019.

[144] J. Gao, B. Wang, Z. Lin, W. Xu, and Y. Qi, “Deepcloak: Masking deep neural network
models for robustness against adversarial samples”, IEEE International Conference on
Learning Representations, 2017.

[145] R. Theagarajan, M. Chen, B. Bhanu, J. Zhang, “ShieldNets: Defending Against
Adversarial Attacks Using Probabilistic Adversarial Robustness”, IEEE Conference on
Computer Vision and Pattern Recognition, pp. 6988-6996, 2019.

[146] D. Madaan, and S. J. Hwang, “Adversarial neural pruning”, arXiv preprint
arXiv:1908.04355, 2019.

151

[147] S. Ye, K. Xu, S. Liu, H. Cheng, J. H. Lambrechts, H. Zhang, A. Zhou, K. Ma, Y.
Wang, and X. Lin, “Second rethinking of network pruning in the adversarial setting”,
arXiv preprint arXiv:1903.12561, 2019.

[148] S. Gu, and L. Rigazio, “Towards deep neural network architectures robust to adver-
sarial examples”, arXiv preprint arXiv:1412.5068, 2014.

[149] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against adversarial
attacks using high-level representation guided denoiser”, IEEE Conference on Computer
Vision and Pattern Recognition pp. 1778-1787), 2018.

[150] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adversarial
examples robustly”, IEEE International Conference on Computer Vision, pp. 446–454,
2017.

[151] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting adversarial
perturbations”, IEEE International Conference on Learning Representations, 2017.

[152] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (sta-
tistical) detection ofadversarial examples”, arXiv preprint arXiv:1702.06280, 2017.

[153] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel
two-sample test”. Journal of Machine Learning Research, 13, pp. 723–773, 2012.

[154] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial
samples from artifacts”, arXiv preprint arXiv:1703.00410, 2017.

[155] A. Rawat, M. Wistuba, and M. I. Nicolae, “Adversarial phenomenon in the eyes of
Bayesian deep learning”, arXiv preprint arXiv:1711.08244, 2017.

[156] Y. Gal, and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning”, IEEE International Conference on Machine Learn-
ing, pp. 1050–1059, 2016.

[157] G. Goswami, A. Agarwal, N. Ratha, R. Singh, and M. Vatsa, “Detecting and mit-
igating adversarial perturbations for robust face recognition”, International Journal of
Computer Vision, 127(6-7), pp. 719–742, 2019.

[158] A. J. Bose, and P. Aarabi, “Adversarial attacks on face detectors using Neural Net
based constrained optimization”, IEEE International Workshop on Multimedia Signal
Processing, pp. 1–6, 2018.

[159] Y. Dong, H. Su, B. Wu, Z. Li, W. Liu, T. Zhang, and J. Zhu, “Efficient decision-based
black-box adversarial attacks on face recognition”, IEEE Conference on Computer Vision
and Pattern Recognition, pp. 7714–7722, 2019.

[160] J. Lu, H. Sibai, and E. Fabry, “Adversarial examples that fool detectors”, arXiv
preprint arXiv:1712.02494, 2017.

152

[161] M. A. M. Milton, “Evaluation of momentum diverse input iterative fast gradient sign
method (M-DI2-FGSM) based attack method on MCS 2018 adversarial attacks on black
box face recognition system”, arXiv preprint arXiv:1806.08970, 2018.

[162] Z. Zhou, D. Tang, X. Wang, W. Han, X. Liu, and K. Zhang, “Invisible mask: Practical
attacks on face recognition with infrared”, arXiv preprint arXiv:1803.04683, 2018.

[163] D. Deb, J. Zhang, and A. K. Jain, “Advfaces: Adversarial face synthesis”, arXiv
preprint arXiv:1908.05008, 2019.

[164] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets”, Neural Information Processing
Systems, pp. 2672–2680,2014.

[165] T. Wadhwa, and N. Dhillon, “Defending against attacks on biometrics-based authen-
tication”, Technical Report, 2018.

[166] A. Agarwal, R. Singh, and M. Vatsa, “Face anti-spoofing using Haralick features”,
IEEE International Conference on Biometrics Theory, Applications and Systems, pp.
1–6, 2016.

[167] G. Goswami, N. Ratha, A. Agarwal, R. Singh, and M. Vatsa, “Unravelling robustness
of deep learning based face recognition against adversarial attacks”, AAAI Conference
on Artificial Intelligence, 2018.

[168] A. Agarwal, A. Sehwag, R. Singh, and M. Vatsa, “Deceiving face presentation attack
detection via image transforms”, IEEE International Conference on Multimedia Big Data,
pp. 373–382, 2019.

[169] G. Tao, S. Ma, Y. Liu, and X. Zhang, “Attacks meet interpretability: Attribute-
steered detection of adversarial samples”, Neural Information Processing Systems, pp.
7717–7728, 2018.

[170] A. Agarwal, R. Singh, M. Vatsa, and N. Ratha, “Are image-agnostic universal adver-
sarial perturbations for face recognition difficult to detect?”, IEEE International Confer-
ence on Biometrics Theory, Applications and Systems, pp. 1–7, 2018

[171] Y. Zhang, D. Zhao, J. Sun, G. Zou, and W. Li, 11Adaptive Convolutional Neural
Network and its application in face recognition”, Neural Processing Letters, 43(2), pp.
389–399, 2016.

[172] Y. Rao, J. Lu, and J. Zhou, “Attention-aware deep reinforcement learning for video
face recognition”, IEEE International Conference on Computer Vision, pp. 3931–3940,
2017.

[173] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “MS-Celeb-1m: A dataset and bench-
mark for large-scale face recognition”, European Conference on Computer Vision, pp.
87–102, 2016.

153

[174] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere
embedding for face recognition”, IEEE Conference on Computer Vision and Pattern
Recognition, pp. 212–220, 2017.

[175] S. Fortunato, “Community detection in graphs”, Physics reports, 486(3-5), pp. 75–174,
2010.

[176] T. Strauss, M. Hanselmann, A. Junginger, and H. Ulmer, “Ensemble methods as
a defense to adversarial perturbations against deep Neural Networks”, arXiv preprint
arXiv:1709.03423, 2017.

[177] Z. H. Zhou, “Ensemble methods: Foundations and algorithms”, CRC press, 2012.

[178] G. Chen, W. Choi, X. Yu, T. Han, and M. Chandraker, “Learning efficient object
detection models with knowledge distillation”, Neural Information Processing Systems,
pp. 742-751, 2017.

[179] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, “Born again
neural networks”, International Conference on Machine Learning, 2018.

[180] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff Nets: Stealing functionality of
black-box models”, IEEE Conference on Computer Vision and Pattern Recognition, pp.
4954-4963, 2019.

[181] K. Shridhar, F. Laumann, and M. Liwicki, “Uncertainty estimations by softplus nor-
malization in Bayesian convolutional neural networks with variational inference”, arXiv
preprint arXiv:1806.05978, 2018.

[182] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in
neural networks”, International Conference on Machine Learning, 2015.

[183] J. M. Hernández-Lobato, and R. Adams, “Probabilistic backpropagation for scalable
learning of Bayesian neural networks”, International Conference on Machine Learning,
pp. 1861-1869, 2015.

[184] S. Kullback, and R. A. Leible, “On information and sufficiency”, The annals of math-
ematical statistics, 22(1), pp.79-86, 1951.

[185] N. Narodytska, and S. Kasiviswanathan, “Simple black-box adversarial attacks on
deep neural networks”, IEEE Conference on Computer Vision and Pattern Recognition
Workshops, pp. 1310-1318, 2017.

[186] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks with
limited queries and information”, International Conference on Machine Learning, 2018.

[187] S. Thys, W. Van Ranst, and T. Goedemé, “Fooling automated surveillance cameras:
Adversarial patches to attack person detection,” IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2019.

154

[188] K. Xu, G. Zhang, S. Liu, Q. Fan, M. Sun, H. Chen, P. Chen, Y. Wang, and
X. Lin, “Evading real-time person detectors by adversarial t-shirt,” arXiv preprint
arXiv:1910.11099, 2019.

[189] S. T. Chen, C. Cornelius, J. Martin, and D. H. P. Chau, “Shapeshifter: Robust
physical adversarial attack on faster R-CNN object detector,” European Conference on
Machine Learning and Knowledge Discovery in Databases, pp. 52-68, 2018.

[190] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial examples
and black-box attacks,” International Conference on Learning Representations, 2017.

[191] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and defenses for
deep learning,” IEEE Transactions on Neural Networks and Learning Systems 30(9), pp.
2805-2824, 2019.

[192] R. Theagarajan, and B. Bhanu, “Defending Black Box Facial Recognition Classi-
fiers Against Adversarial Attacks,” IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2020.

[193] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar, “Born again
Neural Networks,” International Conference on Machine Learning, 2018.

[194] N. Frosst, and G. Hinton, “Distilling a neural network into a soft decision tree,” arXiv
preprint arXiv:1711.09784, 2017.

[195] J. Ba, and R. Caruana, “Do deep nets really need to be deep?,” Neural Information
Processing Systems, pp. 2654–2662, 2014.

[196] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative
replay,” Neural Information Processing Systems, pp. 2994–3003, 2017.

[197] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural net-
works,” IEEE Transactions on Evolutionary Computation, 23(5), pp.828-841, 2019.

[198] V. Khrulkov, and I. Oseledets, “Art of singular vectors and universal adversarial
perturbations,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 8562-
8570, 2018.

[199] S. A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “ICARL: Incremental
classifier and representation learning,” IEEE conference on Computer Vision and Pattern
Recognition, pp. 2001-2010, 2017.

[200] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, and S. Petersen, “Human-level
control through deep reinforcement learning,” Nature, 518(7540), pp.529-533, 2015.

[201] Z. Luo, F. Branchaud-Charron, C. Lemaire, J. Konrad, S. Li, A. Mishra, A. Achkar, J.
Eichel, and P. M. Jodoin, “MIO-TCD: A new benchmark dataset for vehicle classification
and localization,” IEEE Transactions on Image Processing, 27(10), pp.5129-5141, 2018.

155

[202] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer: Benchmark-
ing machine learning algorithms for traffic sign recognition,” Neural Networks 32 pp.
323-332, 2012.

[203] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples for
robust deep learning,” International Conference on Machine Learning, 2018.

[204] S. Jenni, and P. Favaro, “Deep bilevel learning,” European Conference on Computer
Vision, pp. 618-633, 2018.

[205] J. M. Köhler, M. Autenrieth, and W. H. Beluch, “Uncertainty based detection and
relabeling of noisy image labels,” IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pp. 33-37, 2019.

[206] L. Yao, and J. Miller, “Tiny imagenet classification with convolutional neural net-
works,” CS 231N, 2(5), pp. 8, 2015.

[207] J. Deng, Y. Zhou, and S. Zafeiriou, “Marginal loss for deep face recognition,” IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 60–68, 2017.

[208] F. Wang, L. Chen, C. Li, S. Huang, Y. Chen, C. Qian, and C. C. Loy, “The devil of
face recognition is in the noise,” European Conference on Computer Vision, pp. 765–780,
2018.

[209] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning approach
for deep face recognition,” European Conference on Computer Vision, pp. 499–515, 2016.

[210] S. Fortunato, “Community detection in graphs,” Physics reports, 486(3-5), pp. 75–174,
2010

[211] C. Jin, R. Jin, K. Chen, and Y. Dou, “A community detection approach to cleaning
extremely large face database,” Computational Intelligence and Neuroscience, 2018.

[212] R. Theagarajan, and B. Bhanu, “Defending Black Box Facial Recognition Classi-
fiers Against Adversarial Attacks,” IEEE Conference on Computer Vision and Pattern
Recognition Workshops, 2020.

156

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC
	Related Work and Our Contributions
	Detection of hESC in Video
	Classification of hESC Images
	Generation of Synthetic hESC Images
	Contributions of this Chapter

	Data and Technical Approach
	Data
	Technical Approach for DeephESC 2.0

	Experimental Results
	Detection of hESC from Video
	Measures for Classification Performance
	Synthetic hESC from GMAN
	Augmenting the Dataset
	Discussion of Results

	An Automated System for Generating Tactical Performance Statistics for Individual Soccer Players from Videos
	Related Work and Our Contributions
	Player Tracking
	Player and Team Detection
	Event Detection and Player Analysis
	Contributions of this chapter

	Technical Approach
	Localization and Tracking
	Team Identification
	Identifying the Player Controlling the Ball
	Data Augmentation using Triplet CNN-DCGAN
	Tactical Statistics Generation

	Experimental Results
	Dataset
	Results for the Player Detection Module
	Results for the Player Classification Module
	Generalization Across Different Matches
	Ablation Study for Generating the Tactical Statistics
	Discussion of Results
	Application to Internet of Things

	ShieldNets: Defending Against Adversarial Attacks Using Probabilistic Adversarial Robustness
	Related Work on Adversarial Attacks and Defenses and Our Contributions
	Adversarial Attacks
	Adversarial Defense
	Contributions of this Chapter

	Probabilistic Adversarial Robustness (PAR)
	Theory of PAR
	PAR via PixelCNN
	ShieldNet Implementation

	Experimental Results
	Datasets and Target CNN Models
	Neutralizing Adversarial Examples
	ShieldNet Defending Intra-attack
	Generalization Across Different Attacks
	Robustness against Adversarial Transferability

	Defending Black Box Classifiers Against On-line Adversarial Attacks
	Related Works
	Technical Approach
	Assumptions and Target Applications of our Defense
	Functionality Transfer Using Knowledge Distillation
	Uncertainty Prediction via Bayesian Learning
	When is an image adversarial?
	Ensemble of Iterative Adversarial Defenses
	Determining the Number of Iterations of Purification
	Theoretical Lower Bound on the Amount of Purification

	Experimental Results
	CNN Architectures and Datasets
	Threat Models
	Performance Evaluation of the Proposed KD Approaches
	Performance Evaluation and Comparison of our Defense Against Adversarial Attacks
	Ablation Study for Evaluating the Different Combinations of Ensembles of Iterative Defenses

	Robustness of our Defense - an Adversary's Point of View

	Conclusions

