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ABSTRACT OF THE THESIS

Towards Better Automatic Speech Recognition Systems for Children

by

Yunzheng Zhu

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Abeer A. Alwan, Chair

This thesis aims to achieve better automatic speech recognition (ASR) for children. The

most challenging problem is a lack of transcribed available databases, and thus this problem

could be regarded as a low-resource task. We introduce this problem from three aspects.

First, compared to adults’ speech, larger intra- and inter-speaker variabilities in children’s

speech exacerbate the low-resource problem due to the different growth patterns of children’s

vocal tracts. Second, there are children’s speech data on the Internet untranscribed. Thus,

exploring how to utilize such untranscribed data to improve children’s ASR is significant but

challenging. Last, lacking training data will cause inadequate training when using random

model initialization. Therefore, finding a good model initialization is important for training

a robust children’s ASR model in a low-resource setting.

We improve the performance of children’s ASR systems from the aforementioned three

aspects. First, we compare multiple effective data augmentation methods for children’s

ASR. On the OGI Kids’ Corpus, we can achieve a WER reduction of around 10 % for the

HMM-BLSTM modeling-based hybrid ASR system and around 25 % for the Connectionist

Temporal Classification - Attention-based Encoder-Decoder (CTC-AED) modeling-based

ii



end-to-end ASR system. Second, unsupervised pre-training and semi-supervised learning are

used as two effective methods for utilizing untranscribed data. Using one of the unsupervised

pre-training methods, bidirectional autoregressive predictive coding, and 3 iterations of semi-

supervised learning could bring a WER reduction of 9.6 % with 60 hours of untranscribed

data. Third, model-agnostic meta-learning (MAML) based meta-initialization (MI) was used

to find a good model initialization. However, MI is vulnerable to overfitting on training tasks

(learner overfitting). To alleviate learner overfitting, an age-based task-level augmentation

method is proposed. After using task-level augmentation methods with MI, the children’s

ASR system is able to achieve a WER reduction of 51 % in kindergarten-aged speech over

no augmentation or initialization.
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CHAPTER 1

Introduction

Automatic Speech Recognition (ASR) for adults has been well-developed over the years

due to the sufficient amount of adult speech data [HDY12]. However, children’s ASR still

remains a challenging problem. In this chapter, three common problems: speaker variations

in children’s speech, utilizing untranscribed children’s speech data, and finding a good model

initialization for children’s ASR in a low-resource setting are discussed.

1.1 Problem 1: Variability in Children’s Speech

First, due to a lack of large, publicly-available databases, it is hard to establish a good ASR

system for children’s speech. Second, acoustic features are speaker-dependent, particularly

for children’s speech. Compared to adults, children’s vocal tracts are shorter and change with

age. Hence, the resonances of the vocal tracts, or formant frequencies, are continuously shift-

ing [MH12]. In previous research, various methods are proposed to alleviate the above prob-

lems [GG03,SHS03,SPL14]. Vocal tract length normalization (VTLN) [LR98] aims at allevi-

ating the variabilities by utilizing a warping in the frequency domain [GGB07,PN03,SPL14].

Maximum likelihood linear regression (MLLR) [LW95], maximum a posterior (MAP) [GL94],

and speaker adaptation training (SAT) [Woo01] are found to be helpful adaptation methods

for children’s speech [GWL14,SPL14]. To address the issue of limited data resources, multiple

data augmentation methods are applied [FBL16, CNW20]. Most of the data augmentation

methods are in-domain, which applies directly to the training data of the target task whereas

out-of-domain data augmentation applies to the upstream task instead of the downstream
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target task. In our experiments, we investigated in-domain data augmentation only. The

data augmentation methods we used are speed perturbation [KPP15], vocal tract length per-

turbation (VTLP) [JH13], SpecAugment (SpecAug) [Par19], volume perturbation [CNW20],

pitch perturbation [CNW20], and F0-based normalization [YFA21a].

1.2 Problem 2: How to Utilize Untranscribed Children’s Speech

Data

Compared to transcribed speech data, un-transcribed speech data is easier to obtain from

various sources. Transcribing speech data is time-consuming and costly. Thus, the exploita-

tion of available limited speech data has been explored [IPM14,TSC13]. To leverage a large

amount of un-transcribed speech data, unsupervised learning with pre-training is an effective

method in utilizing the pre-trained model parameters as acoustic modeling initialization for

model parameters in the downstream task [CHT19, OLV18, RFA20, FAA21]. Another effec-

tive method is semi-supervised learning [LGA02,SXK19,WMG20,KMD20,DMB19,CHC12].

In semi-supervised learning, pseudo-labels for the un-transcribed speech data are generated

from a limited amount of transcribed speech data for further training.

1.3 Problem 3: How to Find a Good Model Initialization for Chil-

dren’s ASR in a Low-Resource Setting

As mentioned earlier, children’s ASR is difficult due to the small size of publicly available

databases. With such insufficient training data, the trained acoustic model is unable to gen-

eralize well due to optimizing to local minima during training. One effective solution is data

augmentation, as mentioned in Section 1.1. Another possible solution, similar to the afore-

mentioned unsupervised pre-training in Section 1.2, is to learn a good model initialization

first, then adapt to the downstream task. Conventionally, supervised pre-training [TWM17]
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is a method with such a purpose. However, supervised pre-training is not able to adapt fast

to an unseen task since it does not have a self-adaptation process in the pre-training phase.

Thus, to alleviate such a problem, a self-adapted initialization, model-agnostic meta-learning

(MAML) [FAL17,NAS18] based meta-initialization (MI) is used in the pre-training phase.

In this thesis, several difficulties in children’s ASR are investigated and addressed with

multiple methodologies. In Chapter 2, speaker variations in children’s speech are alleviated

with various data augmentation methods. In Chapter 3, to utilize untranscribed children’s

speech data, unsupervised learning with pre-train and semisupervised learning are used with

various data augmentation methods. In Chapter 4, to find a good model initialization for

children’s ASR in a low-resource setting, a MAML-based MI is used with the proposed

task-level augmentation. Chapter 5 concludes the paper and proposes future work.

3



CHAPTER 2

Towards Better children’s Automatic Speech

Recognition with Data Augmentation

In this chapter, we present our study on using different data augmentation for improving

the robustness of children’s Automatic Speech Recognition (ASR) systems.

2.1 Background

As mentioned earlier, there is a lack of large publically available children’s speech databases,

and one method to address that is data augmentation techniques. Multiple low-cost data

augmentation methods are investigated, such as speed perturbation, vocal tract length per-

turbation (VTLP), SpecAugment (SpecAug), volume perturbation, pitch perturbation, and

F0-based normalization.

Data augmentation has shown to result in performance improvement in many ASR tasks

[CGK15,KPP15,TGN14,YFA21b,Par19,JH13,CNW20,WMG20]. Most state-of-the-art ASR

systems consist of two types of NN-based systems: hybrid and end-to-end. Even for the

traditional Hidden Markov Models-based (HMM-based) ASR systems, data augmentation

improves adult speech [KPP15, Par19]. Another study showed the advantage of using data

augmentation to improve the performance of children’s ASR using neural network systems

[CNW20]. However, the previous studies did not consider carefully the ASR of kindergarten-

aged children (5 - 6 years old), which has been shown to be a particularly hard task compared

to older children [YA18]. In order to verify the performance improvement in children’s speech

4



(5 - 16 years old) with NN-based ASR systems, such as hybrid, and end-to-end ASR systems,

experiments are conducted using data augmentation methods for both.

2.2 Data Augmentation Methods

In this section, data augmentation methods are discussed, such as speed perturbation, VTLP,

SpecAug, and volume perturbation, along with some pitch warping-based data augmenta-

tion, such as pitch perturbation, and F0-based perturbation.

2.2.1 Vocal Tract Length Perturbation (VTLP)

Vocal tract length perturbation (VTLP) was the first successful augmentation method in

the speech domain [JH13]. The key idea is inherited from vocal tract length normalization

(VTLN) [LR98]. Similar to VTLN, VTLP linearly warps the frequency axis, in this case, of

the acoustic features with a warping factor α. However, different from VTLN, which targets

removing inter-speaker variations, the purpose of VTLP is to add variations to the entire

input speech data by generating multiple folds of data with different warping factors.

The general approach of generating the warped frequency f ′ from the original frequency

f is:

f ′ =

 fα f ≤ Fhigh
min(α,1)

α

S/2− S/2−Fhighmin(α,1)
S/2−Fhigh min(α,1)α

(S/2− f) otherwise
(2.1)

where S is the sampling frequency, Fhigh is the boundary frequency empirically chosen that

falls above the highest significant formant in speech. Based on Eq. (2.1), the center frequen-

cies f(i) for 1 ≤ i ≤ N filter-banks are warped to f(i)′ as the new center frequencies, and

the triangular filter banks are generated at those new center frequencies f(i)′.
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2.2.2 Speed Perturbation

Speed perturbation is one of the most effective augmentation methods in speech [KPP15]. As

a warping-based method, a signal x(t) is warped in the time domain by a factor α, generating

a warped signal x(αt). However, speed perturbation considers the changes in duration or

the number of frames.

2.2.3 SpecAugment (SpecAug)

SpecAugment is another widely-used augmentation method. It is an online augmentation

method, which does not require additional computation costs. The idea composes of three

augmentation techniques on the acoustic features: time warping, frequency masking, and

time masking [Par19], where the two masking policies are adopted from the random masking

algorithm Cutout [DT17] from computer vision.

Suppose we have τ time steps of the log Mel spectrograms, time warping is a strategy

that warps a random point along the horizontal line passing through the center of the image

within the time steps (W, τ −W ), either to the left or right by a distance chosen from the

uniform distribution of (0,W ) where W is the time warp factor along that line.

For frequency masking, it is applied by masking out f consecutive Mel frequency channels

[f0, f0 +f ], where f is chosen from a uniform distribution (0, F ) such that F is the frequency

mask parameter, and f0 is chosen from [0, v − f ] where v is the number of Mel frequency

channels.

Similar to frequency masking, time masking is applied by masking out t consecutive time

frames [t0, t0 + t], where t is chosen from a uniform distribution (0, T ) such that T is the

time mask parameter and t0 is chosen from [0, τ − t].

Both time and frequency masking have shown their effectiveness, whereas time warping

has shown minor improvement [Par19]. Thus, time warping is not further investigated.
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2.2.4 Volume Perturbation

Volume perturbation is an augmentation method that generates multiple folds of speech

data with a warping factor α on the amplitude of the entire audio signal. The key idea is to

increase the robustness of an ASR system with volume variations [GY19,CNW20].

2.2.5 Pitch Perturbation

Pitch perturbation is an augmentation method that shifts the pitch frequency of audio

signals [CNW20]. The pitch function in SoX audio manipulation tool is used to shift the

pitch frequencies within a warping factor [SoX]. For each utterance, we randomly select the

warping factor from the search range for each utterance to increase the robustness of pitch

variations.

2.2.6 F0-based Perturbation

F0-based perturbation is also an augmentation method that originated from F0-based nor-

malization [YFA21b]. The key idea is based on the tonotopic distances between f0 and each

formant frequency. To measure this tonotopic distance consistently across different produc-

tions of the same vowel, normalization is applied to the formants of the vowel, with a default

f0 value, expressed as:

F (n)norm = F (n)orig − (f0,utt − f0,def ), n ∈ {1, 2, 3, . . .} (2.2)

where f0,utt is the f0 of the utterance, f0,def is a predetermined value of f0 to represent a

default speaker, F (n)org is the nth formant after normalizing to f0,def , and all frequencies in

Eq. (2.2) are measured in the perceptual scale. Here, the Mel scale is used as the perceptual

scale of choice.

To make Eq. (2.2) more reliable for children or speakers with high f0 and formant values,
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the complication of formant estimations is disregarded. Instead, the entire spectrum is:

fnorm = forig − (f0,utt − f0,def ) (2.3)

where forig is the frequency of the original spectrum and fnorm is the corresponding frequency

in the normalized spectrum. This represents that the frequency content in forig is shifted

to fnorm. However, different from VTLN, the warping function is different, where VTLN

is implemented by a piece-wise linear function, such as F3 normalization [CA06] and SGR

normalization [GPY15], but F0-based normalization is nonlinear due to the shift in Mel

scale. By applying F0-based normalization, inter-speaker variability is reduced.

F0-based perturbation can be used to create several copies of the original training data

by performing the F0-based normalization. By extracting features using Eq. (2.3) multiple

times with different f0,def , different folds of speech are generated with variability in terms

of tonotopic distances. Similar to F0-normalization, inter-speaker variabilities are reduced

with this F0-based perturbation.

2.3 ASR Systems

Traditional ASR systems focus on maximizing a posterior probability, which is to find the

best transformation from a sequence of n acoustic feature representationsX = (x1, x2, · · · , xn)

into a sequence of n words W = (w1, w2, · · · , wn), wi ∈ V where V is the vocabulary. Then

the expression for achieving the most probable sequence of n words W ∗ = (w∗1, w
∗
2, · · · , w∗n)

is:

W ∗ = arg max
W

P (W |X)

W ∈ V ∗
(2.4)

where arg maxW is the search space of the vocabulary V. The optimal model is achieved by

finding the best posterior distribution P (W |X) in Eq. (2.4). To be specific, optimizing an

ASR model can be decomposed into the following steps: acoustic feature extraction from

speech signals, acoustic modeling, language modeling, and decoding the sequence of words.
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The Hidden Markov Model-Gaussian Mixture Model (HMM-GMM) was the represen-

tative traditional ASR model since the 80s. With the rise of deep learning in ASR, ASR

systems have improved significantly. Most of the recent state-of-the-art ASR systems are

NN-based. Two types of NN-based ASR systems emerged, hybrid and end-to-end (E2E)

ASR systems [ODK22, DAR21, SLY11, BM12, SVK21]. Similar to an HMM-GMM-based

ASR system, a hybrid system is composed of multiple sub-systems, such as acoustic model

(AM), language model (LM), and pronunciation lexicon model (PLM), where each can be

trained with a NN. It has the advantage of tunability and explainability since it trains every

single module of the system separately. An end-to-end ASR system is a system with only

one model, but applying an additional LM is helpful for resolving the grammar and spelling

issues in CTC [Nak19]. Since the end-to-end ASR system is developed with one model only,

it has the advantage of low training complexity.

2.3.1 Feature Extraction

Mel-frequency cepstral coefficients (MFCCs) [ZZS01] are widely used for HMMs [RM07,

SS14,DPG09]. However, MFCC features are not preferred for deep learning-based acoustic

modeling because MFCC features are decorrelated, but for deep learning acoustic modeling,

data are correlated with a particular distribution [Moh14]. Instead, deep learning-based

acoustic modeling use Mel filterbanks (MFbank) [SP03], which result in lower errors [DLH13].

The steps for extracting the MFCC features are shown below:

Step 1. Pre-emphasising to boost the energy in high frequencies.

Step 2. For windowing, common window length and window shift are 25 ms and 10 ms,

respectively, which are just enough for capturing the stationary and dynamic information of

current and neighboring frames. Hamming and Hanning windows are commonly used.

Step 3. DFT is applied to extract frequency information.
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Step 4. Triangular Mel-scale filter banks and a logarithmic are applied to transform the

outputs to log Mel-scale ceptrum. This scale better mimicks human perception.

Step 5. An inverse DFT (or DCT) is applied.

Step 6. A final liftering (as a synonym to filtering but in the cepstral domain) is applied

to filter out only the necessary amount of coefficients (usually 13).

Note, if we are only extracting the MFbank features, we would stop at step 4 above.

2.3.2 Acoustic Modeling

An acoustic model (AM) for ASR could be either Hidden Markov Models (HMM) or deep

neural networks (DNN). The goal for AM is to map the acoustic frames xt to the phonetic

state of the subsequent ft:

arg maxP (ft|xt) (2.5)

For most of the DNN modeling, the ground truth of Eq. (2.5) are sequences of phonetic

states at the frame level f1:n generated by a pre-trained HMM-GMMs, where GMMs model

the acoustic frames, and HMMs predict the most probable phonetic states in a sequence.

During DNN acoustic model training, the objective is to classify the frame-level phonetics

optimized by a cross-entropy loss.

2.3.3 Language Modeling

The goal of a language model (LM) P (W ) is to find the most probable sequences of words.

To be specific, it is to optimize the model P (w|wpre) given previously recognized words wpre.

Traditionally, N-gram LMs were developed to model the transition probabilities between

words. However, it was found that RNN-based language modeling was better at capturing

words out of the N-range, thus RNN-based N-gram language models were developed [CNB17].
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2.3.4 Hybrid System

Before the widespread use of neural networks, the hidden Markov model (HMM) was the

most reliable model for continuous speech recognition. An HMM-based system is composed

of an AM, a PLM, and an LM. Each model needs to be estimated separately and then

composited together for predicting the most probable word sequence given the acoustic

observations with Weighted Finite-State Transducer (WFST) [MPR02]. Suppose we have

X = (x1, x2, · · · , xn) as the sequence of acoustic feature vectors (acoustic observations), and

W = (w1, w2, · · · , wn) as the word sequence. Then the expression for achieving the most

probable word sequence W ∗ = (w∗1, w
∗
2, · · · , w∗n) is:

W ∗ = arg max
W

P (W |X)

= arg max
W

P (X|W )P (W )
(2.6)

where arg maxW is the search space of the vocabulary, P (W ) represents the LM, and P (X|W )

represents the generative AM. Also, the goal of Eq. (2.6) is to find the best path of states

that maximizes the likelihood of observable X, as expressed below:

P (x, a) =
T∏
t=1

pat

m∑
j

Cat,j
∏
d

N (xt,d;µat,j,d, σ
2
at,j,d) (2.7)

where x is the observations, a is the path, pat is the probability of path a, Cat,j is the weight

for the j-th GMM component, µat,j,d and σ2
at,j,d

are the mean and variance for the gaussian

distribution, respectively, for path at with j-th GMM component and d as dimension. Thus,

the best path is determined by the PLM and the m-component GMM. The PLM models the

sequence of phones of the words. This step is usually referenced from a mapping table, which

is a vocabulary table that maps each grapheme to the corresponding phoneme. For example,

the word “apple” is mapped to “æp@l”. Based on the mapping table, the PLM is modeled

implicitly with the HMM. With the trained HMM model, an alignment of the phones and the

audio frames (observables) is performed. Then, the final likelihood of a phoneme observation

x given a state is modeled with the m-component GMM. Compared to a monophone model,
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a triphone model is usually used for better modeling coarticulation between phonemes, but

this would increase the complexity of the GMM model. Thus, a forced alignment process

between phonemes and HMM states, Viterbi decoding algorithm [For73], is applied, which

reduces the complexity by computing the current maximum path in a one-time step. Then,

the current maximum path is used for computing future maximum paths. Finally, each

HMM model can be concatenated and looped back to handle continuous speech.

With the development and competition of the neural networks (NN) [Abd94, HH02],

NN-based models commonly take place of GMMs with a much better performance in ASR

modeling due to neural network’s ability to incorporate nonlinear functions. Since DNN is

not able to generate a conditional probability initially, it uses the posterior probability of

the HMM state and replaces it with the GMM observation probability. This turns the tradi-

tional HMM-GMM model into the HMM-DNN hybrid model. Since each training needs an

alignment of the inputs and the target states, a frame-by-frame force alignment is performed

based on a prior HMM-GMM model. Later on, various architectures of HMM-DNN-based

hybrid systems are developed with NN-based architectures, such as convolutional neural net-

work (CNN) [CL13], time-delay neural network (TDNN), recurrent neural network (RNN)

and long-short term memory (LSTM) [STB10], convolutional LSTM deep neural network

(CLDNN) [SVS15]. And with the rapid emergence of the attention-based mechanism in

NLP [VSP17], transformer-based NN architectures are developed [WML20,GQC20].

As mentioned in Section 2.3.3, n-gram LM is a common method applied to further im-

prove performance by modeling the transition probabilities between words. To decode a

model based on AM, PLM, and LM, a WFST is applied. WSFT has the ability to represent

multiple transducers and optimize them well. For ASR, four transducers are introduced,

such as word-level grammar (G), pronunciation lexicon (L), context-dependency (C), and an

HMM (H). The inputs and outputs for each transducer are listed in Table 2.1 below.
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Table 2.1: WFST Transducer mapping (G stands for word-level grammar, L stands for

pronunciation lexicon, C stands for context-dependency, and H stands for HMM).

transducer input sequence output sequence

G words words

L phones words

C C phones phones

H HMM states C phones

The general idea of optimization in WFST is the composition of the four transducers

with the following process:

H C L G = min(det(H min(det(C min(det(L G)))))) (2.8)

The phonemes are expected to generate from the HMM states by Eq. (2.8). However,

since the graph for WFST is too large to search for large vocabulary continuous speech

recognition (LVCSR) [You96], a beam search [TN03], and the Viterbi algorithm is usually

applied on top of WFST for constraining the search space to reduce the complexity.

2.3.5 End-to-End System

The previous section has shown how a hybrid ASR system can develop the mapping from

acoustic features to HMM states in AM, from HMM states to words in PLM, and the tran-

sitions between words in LM. However, there are several problems in hybrid ASR systems.

First, hybrid ASR requires multiple steps for training. As mentioned in Sec. 2.3, in order

to train a DNN-based AM, the HMM-GMM model is required to train beforehand. The

HMM states and the phonetic alignments are generated from the HMM-GMM model as the

targets for DNN-based AM training. Second, the PLM is based on the handcrafted dictio-

nary (usually represented by a word-to-phoneme mapping table), which is time-consuming
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to build. Third, although the finite state transducers could efficiently integrate all different

modules in a hybrid ASR system together, designing well-optimized transducers to perform

such integration would be complex. Lastly, the optimizations of each module are depending

on different objectives. An implicit incoherence of each module is a possible drawback to

the general objective of the entire hybrid system. Thus, the above issues always hinder re-

searchers from efficiently and effectively developing applications for new languages on top of

the hybrid ASR system. In this section, to address the above issues in hybrid ASR systems,

a simplified ASR system, end-to-end (E2E) ASR system is discussed. The E2E ASR system

contains only one NN architecture in its pipeline. The joint training of all modules into one

enables the model to highly optimize based on the global objective and it directly maps the

input acoustic features to the language representations without the requirement of PLM rep-

resented by a ground truth dictionary. For example, suppose we have X = (x1, x2, · · · , xn) as

the sequence of acoustic feature vectors (acoustic observations), and W = (w1, w2, · · · , wn)

as the word sequence. Then the expression for achieving the most probable word sequence

W ∗ = (w∗1, w
∗
2, · · · , w∗n) is:

W ∗ = arg max
W

P (W |X) (2.9)

As can be seen, Eq. (2.9) is not much different than Eq. (2.4). However, instead of

factorizing P (W |X) into a language model P (W ) and an acoustic model likelihood P (X|W ),

the E2E system is trying to directly model the transformation between input acoustic features

and output word sequences with one single model. Another difference in the E2E system is

that it uses soft alignment by corresponding the audio signals to all possible states with a

certain probability distribution instead of a distinct forced alignment [GJ14]. Common E2E

models are of three types: connectionist temporal classification (CTC) [GFG06], attention-

based encoder-decoder (AED) [CJL16], and recurrent neural network transducer (RNN-

T) [BCC17].

CTC assumes the independency of the output labels at each time step, which means it
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enumerates all possible hard alignments and generates a soft alignment by combining those

hard alignments. This step is usually decomposed into two sub-processes: path probabil-

ity calculation and path aggregation. After passing the input sequence X = {x1, · · · , xT}

into the encoder of CTC, a feature sequence is generated with the same length as the in-

put sequence F = {f1, · · · , fT}. Each unit of the feature sequence is a vector that is in

the dimension of one more than the number of elements in vocabulary (the extra element

represents a blank label “-”). The features are then passed to the CTC decoder with a soft-

max operation, generating a probability distribution sequence Y = {y1, · · · , yT} of the same

length, where each unit yt = {y1t , · · · , y
|V+1|
t } contains the probabilities of V wordpieces and

one additional blank label at a time step t. Suppose the entire vocabulary V
′
= V ∪{b}, V ′T

is the collection of all sequences of length T for vocabulary V ′. The conditional probability

distribution of one sequence π in the collection of V
′T is:

p(π|X) =
T∑
t=1

yπtt ,∀π ∈ V
′T (2.10)

where πt is the label at position t of sequence π. Each element π in V
′T is one path. At

this stage, the mapping from one input sequence X to one path π of the same length could

be regarded as a hard-aligning process. However, since the input speech sequence is usually

longer than its corresponding transcription, a many-to-one mapping step is needed to ag-

gregate multiple paths into a shorter label sequence. This mapping consists of a contiguous

label merging, which merges the identical labels appearing consecutively, and blank label

deletion. For example, two different lengths of 7 paths “cc-aa-t-” and “c-aa-tt-” are aggre-

gated to be “c-a-t-”, and then blank labels “-” are deleted to generate “cat” of length 3 as

the final sequence. As shown in the example, there are many possible paths of the one single

word “cat”, an aggregation step is required to merge them and calculate the probability

P (L|X) of all possible paths for the label sequence L:

P (L|X) =
∑

π∈B−1(L)

p(π|X) (2.11)
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where B−1(L) represents all paths in V
′T . Since it is hard to determine the number of

paths from V
′T is in B−1(L), dynamic programming is used to calculate the aggregation

probability [GJ14, GFG06]. Since the alignment between input speech signals and output

transcription is not depending on one certain path, the entire alignment process is usually

regarded as a soft alignment.

However, the CTC model remains with the issue of independence of output sequences.

One solution is to incorporate the attention mechanism for the CTC model (CTC-AED).

Thus, the final objective function of the CTC-AED model is to estimate the posterior prob-

ability P (L|X):

P (L|X) =
∏
l

P (yl|y1:l−1, X) (2.12)

where l is the output label index. The objective is to minimize the−lnP (L|X). The attention

mechanism is to find the alignment between each element of the output sequence and the

hidden states generated by the encoder. The decoder calculates the weight score between its

hidden states with the states generated by the encoder at each input time. Then the formed

temporal alignment distribution is used to extract an average of the corresponding encoder

hidden states. This attention mechanism does not require any conditional independence

assumptions, which address the problem of CTC. The attention mechanism can be divided

into three types: content-based, location-based, and hybrid. The differences are from the

weight score calculation. Content-based uses only the feature sequence and the previous

hidden state to calculate the weight score at each position. However, it does not incorporate

position information in the calculation. Thus, the location-based method addresses this

issue by using the previous weight score as the location information at each step to calculate

the current weight score. However, it is not using the input feature sequence, which lacks

the information from input features. Thus, to combine the advantages of the above two

mechanisms, the hybrid attention mechanism is usually applied. Thus, the hybrid CTC-

AED model was developed and used in our experiments [WHK17a].

Other solutions to address the independence issue include incorporating LM [Nak19]
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and using a predictor and joiner combined RNNT architecture. The predictor is developed

by a language model for contextual information, and the joiner is developed to combine

the acoustic and context information. The one-to-many mapping is developed by omitting

multiple tokens at a single acoustic unit. However, those solutions are not investigated in

this thesis.

2.4 Experiments

2.4.1 Database

The database used in the study is the OGI Kids’ Speech Corpus [SHC00]. The corpus is

composed of both scripted and spontaneous speech from 1100 children from kindergarten

through grade 10 (approximately from 5 to 16 years old), approximately 100 children per

grade. The specific distribution of the data with respect to age is shown in Table 2.2. In this

study, the total amount of scripted speech is approximately 70 hours for 71,999 utterances,

and for spontaneous speech, it is approximately 30 hours for 1,101 utterances, combined to

be approximately 100 hours for 73,100 utterances.

Table 2.2: Number of utterances in the OGI Kids’ Speech Corpus, separated by grade level

and speech style (scripted and spontaneous)

Grade K 1 2 3 4 5 6 7 8 9 10

Scripted 3270 5866 7595 7596 6063 6649 7575 6539 6694 7181 6971

Spon. 87 87 114 114 91 98 111 96 99 102 102
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2.4.2 Data Preprocessing

2.4.2.1 Feature Extraction

The features for the baseline HMM-GMM were MFCCs. The features were extracted with

a frame length of 25 ms and a frame shift of 10 ms, 512-point DFT, 23 Mel filters, a pre-

emphasis coefficient of 0.97, and a lifter coefficient of 22. For each frame, the first 13 MFCCs

were kept for a 13-dimensional feature set.

MFCCs were widely used in traditional ASR-based HMM-GMM models and they are

good representations of the perceptually relevant aspects of the short-term speech spectra.

However, for the deep learning-based ASR model, it was found that the decorrelation by the

discrete cosine transform used in the computation of MFCCs results in lower performance

than just using Mel-Fbank features [DLH13]. Thus, the features used for both the AM

in the deep learning-based hybrid model and end-to-end model training were Mel-Fbanks.

The features were extracted with a frame length of 25 ms and frame shift of 10 ms, 512-

point DFT, 23 Mel filters, pre-emphasis coefficient of 0.97. For each frame, 80-dimensional

Mel-Fbank features were extracted. For the HMM-BLSTM model, an additional frame of

features after each frame is then appended to form a 160-dimensional input. However, for

the end-to-end model, 80-dimensional Mel-Fbank features were used. (find the study that

did comparisons of features in terms of dimension)

2.4.2.2 Data Split

The data was split into a training set (70%), a development set (8% ), and a test set (22%).

The detailed statistics are shown in Table 2.3.
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Table 2.3: Statistics of the Scripted, Spontaneous, and Combined datasets for OGI Corpus.

The duration of utterances is analyzed. Minimum, maximum, and average(standard

deviation) are measured in seconds. Durations are reported with a (min., max.) range.

Data
Train (70%) Dev (8%) Eval (22%)

# of Utt. Duration Avg.(Std.) # of Utt. Duration Avg.(Std.) # of Utt. Duration Avg.(Std.)

Scripted 50439 (1.21, 9.67) 3.49(1.55) 5482 (1.21, 9.65) 3.38(1.50) 16078 (1.21, 9.67) 3.52(1.57)

Spon. 774 (14, 479) 101.19(35.78) 83 (15, 157) 93.52(29.33) 244 (11, 225) 98.68(31.67)

Combine 63199 (1, 14.71) 3.70(1.83) 6755 (1, 14.1) 3.64(1.80) 16322 (1.21, 225) 4.95(12.28)

2.4.2.3 Speech Segmentation

From Table 2.3, we observe that the OGI spontaneous data contains utterances that are

100 seconds in duration. With such large utterance durations, the HMM-GMM model is

unable to perform an accurate alignment of speech with its corresponding transcriptions.

Moreover, training with long utterances is infeasible due to the limitation of computational

power. In order to solve this problem, segmentation is applied to the audio signals and the

corresponding transcription files of the entire database.

The segmentation process is conducted using the Kaldi toolkit. The segmentation is ap-

plied to the audio signals while retrieving their corresponding transcriptions. The transcript

alignment was decoded with a biased language model (LM) trained on the raw transcripts.

After the raw audio signals are segmented, the best-matching sub-sequence of words is ob-

tained from the raw transcriptions [MPK17]. We use the segmented audio signals and the

corresponding sub-sequence transcriptions for the rest of the experiments on the OGI spon-

taneous data. Details of how to choose the configuration parameters for segmentation are

explained in Section 2.5.1.
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2.4.3 Model Setup

2.4.3.1 Hybrid Model - Acoustic Model (AM)

The acoustic model training experiments are conducted on pykaldi2 [LXC19]. Since the

HMM-BLSTM is effective in sequence data training [HS97, ZDV17], it is chosen as the

acoustic model in all experiments. The model has 4 BLSTM layers with 512 hidden units

in each direction per layer. The last layer transforms the outputs of the BLSTM to a

probability distribution of 1,360, 1,408, and 3,760 states for the scripted, spontaneous, and

combined(scripted + spontaneous) parts of the OGI corpus, respectively, generated by the

HMM model. The dropout rate for the network is empirically set to 0.2 for all experiments.

HMM models with the same hyperparameters are trained for scripted and spontaneous data,

and for the combined dataset, larger hyperparameters are used.

2.4.3.2 End-to-End Model

The end-to-end model training is conducted on the ESPnet, a PyTorch-based end-to-end

speech processing toolkit. The CTC-AED-based end-to-end model is comprised of a trans-

former block with a 12-layer encoder, and a 6-layer decoder. The dimension of attention and

feed-forward layer is set to 256 (4 heads) and 2048, respectively. Based on the vocabulary

from only the training set, a unigram algorithm is applied to generate the number of word-

pieces for the scripted, spontaneous, and combined corpus, which are 564, 3,861, and 3,766,

respectively. The dropout rate in the network is empirically set to 0.1.

2.4.3.3 Language Model Setup

For the hybrid system, the lexicon and language models from the original Librispeech corpus

are used, where the 14M tri-gram (tgsmall) language model is used for decoding, and the

1.3G 4-gram (fglarge) language model is used for rescoring. For the end-to-end system, all
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experiments are conducted with no external language models.

2.4.4 Data Augmentation Setup

To compare different augmentation strategies fairly, all training data are increased by 3 folds

with offline augmentation. For speed perturbation and VTLP, the warping factors are (0.9,

1.0, 1.1) since such a small range results in reasonable warpings. In VTLP, the boundary

frequency (Fhigh) is chosen to be 7,800 Hz. For volume perturbation, the warping factors are

randomly chosen from 0.125 to 2. For pitch perturbation, the warping factors are randomly

chosen from -160 to 160, where each unit is 100th of a semitone. For F0-based perturbation,

f0,utt is chosen to be the median of all training utterances using the multi-band summary

correlogram (MBSC) pitch detection algorithm [TA13], f0,def are chosen to be (80, 100, 120)

Mels, which is (85.93, 100, 114.32) Hz. Lastly, for SpecAug, since it is an online augmentation

strategy with time and frequency masking, no fold increase is applied. Two maximum width

of 5 masks and two maximum width of 8 masks are empirically chosen for the frequency and

time channels, respectively.
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2.5 Results and Discussions

2.5.1 Speech Segmentation

Table 2.4: Segmentation experiments with different configuration thresholds applied to

the Spontaneous dataset of the OGI Corpus. The second, third, fourth, fifth, and sixth

columns represent the segmentation configurations. The last two columns are the % WER

for the development set and evaluation set based on the training on segmented data using

HMM-GMM and HMM-BLSTM models. The best performance is bold-faced. 4-gram

language model rescoring is applied to all systems.

Exp #
Segmentation Configuration (higher bound) HMM-GMM HMM-BLSTM

dur seg len merge bad ppt wer seg len split Dev Eval Dev Eval

a 30 15 0.75 50 30 50.94 50.35 37.67 36.84

b 30 30 0.75 50 30 51.95 51.54 38.25 37.52

c 30 45 0.75 50 30 51.73 51.16 38.39 37.50

d 30 60 0.75 50 30 51.73 51.16 38.39 37.50

e 30 15 0.95 50 30 51.47 50.50 37.07 36.75

f 30 15 0.55 50 30 51.65 51.01 37.54 37.03

g 30 15 0.75 60 30 51.49 50.52 37.50 36.97

h 30 15 0.75 40 30 51.27 50.71 37.35 36.70

i 30 15 0.75 30 30 52.22 51.17 37.68 37.00

j 30 15 0.75 40 45 50.94 50.35 36.94 36.48

k 30 15 0.75 40 15 51.82 50.97 37.37 36.41

l 30 15 0.75 40 60 50.94 50.35 36.94 36.48

m 20 15 0.75 40 45 53.55 52.85 38.45 37.68

n 40 15 0.75 40 45 51.57 50.32 37.52 36.84
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The segmentation experiments are conducted using Kaldi. The biased LM is trained from

960 hours of LibriSpeech. As shown in Table 2.4, the higher bounds of the five factors are

grid searched: dur, seg len merge, bad ppt, wer, and seg length split. dur is to control

the maximum duration of the output segments. seg length merge is to control the length

of the segments before merging them together. The algorithm will keep splitting the long

segments into segments that are smaller than the size chosen for seg length merge. bad ppt

is to control the proportion of the maximum length of silence, junk, and incorrect words into

a merged segment that is less than the fraction of the total length of the merged segment.

wer is to control the maximum word error rate (WER) of merged segments compared to

the original speech data when merging together. And seg len split is to split the segments

longer than this size into smaller segments. Among these five factors, only dur is a factor

when splitting the input into uniform segments, and the other four are the factors when

creating segmented speech data with its corresponding annotations. After performing the

segmentation on the OGI spontaneous speech data with each set of configuration parameters,

an HMM-GMM and an HMM-BLSTM model are trained based on the segmented speech

data. The performance of each set of configuration parameters is evaluated with WERs

after decoding from the model trained with the segmented dataset in the HMM-GMM and

HMM-BLSTM systems, respectively. After grid searching with 14 different configurations

as shown in Table 2.4, it is shown that the configuration parameters of experiment j has the

best performance in WER on both the development and evaluation dataset on HMM-GMM

and HMM-BLSTM models. Thus, the configuration parameters of experiment j are chosen

for the OGI spontaneous data.

2.5.2 Baseline Hybrid and End-to-End ASR models

The baseline experiments are conducted on the HMM-GMM, HMM-BLSTM, and CTC-AED

models. HMM-GMM is our baseline model [SHC00]. HMM-BLSTM was the SOTA method

(at the time of the experiments) in a hybrid ASR system that uses a deep learning model
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Table 2.5: % Word Error Rate (WER) for HMM-GMM, HMM-BLSTM, CTC-AED on the

OGI Scripted (Scripted), Spontaneous (Spon.), and Combined (Combine) datasets. 4-gram

language model rescoring is applied for all systems.

Data Model
Dev Test

Scripted Spon. Combine Scripted Spon. Combine

Scripted

HMM-GMM 30.67 72.58 51.17 35.17 71.95 52.89

HMM-BLSTM 9.57 86.98 45.88 10.69 87.06 45.78

CTC-AED 1.90 98.70 46.90 2.80 98.90 46.90

Spon.

HMM-GMM 61.84 53.90 59.96 64.03 53.76 61.09

HMM-BLSTM 51.79 39.72 47.07 54.12 39.06 48.07

CTC-AED 103.20 84.90 93.30 104.30 89.20 95.40

Combine

HMM-GMM 26.24 52.14 40.06 30.93 51.24 41.98

HMM-BLSTM 8.31 40.43 23.38 9.04 39.31 22.92

CTC-AED 1.80 82.20 39.00 2.70 82.90 39.30

for the acoustic model training [YFA21a, FAA21]. Moreover, the CTC-AED ASR model

was a very common and effective one in ASR training [WHK17b], as well as in children’s

ASR [NLP20]. Performance in the speech data of different speaking styles, scripted and

spontaneous, is also evaluated using the OGI Kids’ speech, for both in-domain and out-of-

domain speech tasks.

2.5.3 Speaking-Style Experiments

In this part, we further investigated the scripted-spontaneous speaking-style mismatch prob-

lem [LLH16]. Experiments for both in-domain, out-of-domain, and combined speaking styles

are conducted respectively.
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2.5.3.1 In-domain Speaking-Style

First, let’s take a look at the hybrid ASR system performance for the in-domain speaking

style experiments from Table 2.5 (column scripted-row scripted and column spontaneous-

row spontaneous). When training with scripted speech/testing with scripted speech, the

traditional HMM-GMM can achieve 30.67 % and 35.17 % WER for the scripted-to-scripted

in-domain task on development and test set, respectively. However, for training with spon-

taneous speech/testing with spontaneous speech, the performance is much worse, in 53.90 %

and 53.76 % WER, respectively.

HMM-BLSTM outperforms the results from the HMM-GMM in all experiments trained

and evaluated on the speech of the same speaking style. HMM-BLSTM achieves nearly 70

% and 27 % WER improvement for both development and evaluation set on scripted and

spontaneous data, respectively.

For the end-to-end system, CTC-AED is applied. As shown in Table 2.5, it outperforms

significantly the HMM-BLSTM in the train on scripted/test on scripted by nearly 70 % WER

relative improvement for both the development and test scripted data. We hypothesize this

is due to the equivalent format in most of the scripted utterances, which is much easier to

generalize by an end-to-end ASR system. However, for experiments training on spontaneous

speech, the performance degrades due to the long-form utterances in the development and

evaluation set, commonly seen as an utterance length mismatch problem in the end-to-

end system. This problem could be resolved by either increasing data diversity through

multidomain training or simulating long-form characteristics during training [NPC19]. This

will be addressed in future work.

2.5.3.2 Out-of-domain Speaking-Style

Out-of-domain speaking-style experiments are also conducted, as shown in Table 2.5 (column

spontaneous-row scripted and column scripted-row spontaneous). When training with the
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HMM-GMM model, both training on scripted speech /testing on spontaneous speech, and

training on spontaneous speech/testing on scripted speech have a much worse performance

compared to the in-domain results (training on spontaneous speech/testing on spontaneous

speech and training on scripted speech/testing on scripted speech). This problem is com-

monly termed a speaking style mismatch. The same problem still exists when training with

the deep learning-based HMM-BLSTM hybrid model and the CTT-AED end-to-end model.

In the next section, a simple data style combination is adopted to increase the robustness of

the model.

2.5.3.3 Combination of different Speaking-Style

For the speaking-style combination, a simple combination of the scripted and spontaneous

speech data is performed and trained with the three models: HMM-GMM, HMM-BLSTM,

and CTC-AED. Also, as mentioned in Sec. 2.4, due to the constraint of the GPU compu-

tation resources, segmentation is applied to the spontaneous speech data before combining

it with the original scripted speech data. As shown in Table 2.5, the model trained with

the combined data is tested not only on the combined data but also on the scripted and

spontaneous data individually. It is initially observed that incorporating training speech

data of the multiple speaking styles could improve the performance of the model for all

three models (HMM-GMM, HMM-BLSTM, and CTC-AED), but it could also be due to the

increase of the training data size. Thus, further experiments are needed. Second, a further

improvement is observed when testing the scripted, and spontaneous data separately for all

three models as well, achieving nearly 10 % WER improvement on scripted, and about 3

% WER improvement on spontaneous. This validates that incorporating the speaking style

into the training data improves performance.
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Table 2.6: % Word Error Rate (WER) for HMM-GMM, HMM-BLSTM, CTC-AED on the

OGI Scripted (Scripted), Spontaneous (Spon.), and Combined (Combine) datasets. 4-gram

language model rescoring is applied for all systems.

Data Model
Dev Test

Scripted Spon. Combine Scripted Spon. Combine

Scripted
HMM-GMM 26.84 70.43 48.17 31.22 68.86 49.25

HMM-BLSTM 7.76 86.18 44.67 8.81 86.13 44.53

Spon.
HMM-GMM 56.93 50.94 56.10 59.40 50.35 56.72

HMM-BLSTM 47.66 36.94 43.98 49.34 36.48 44.30

Combine
HMM-GMM 23.03 49.29 36.95 27.74 48.19 38.74

HMM-BLSTM 6.43 38.51 21.52 7.18 36.99 20.09

2.5.4 Language Model Rescoring

For the hybrid systems, a four-gram language model of LibriSpeech is applied and the results

are shown in Table 2.6. After rescoring with the 4-gram language model of LibriSpeech, all

settings can achieve nearly 10 % to 20 % improvement in WER. Due to time constraints, no

external language model is applied for the end-to-end systems.
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2.5.5 Hybrid and End-to-End ASR models with Data Augmentation

Table 2.7: % Word Error Rate (WER) for applying different data augmentation methods to

the hybrid ASR system (HMM-BLSTM modeling) on OGI Scripted (Scripted), Spontaneous

(Spon.), and Combined (Combine) datasets. 4-gram language model rescoring is applied

for all systems.

Train Data Aug. Technique
Dev Test

Scripted Spon. Combine Scripted Spon. Combine

Scripted

No Aug. 7.76 86.18 44.67 8.81 86.13 44.53

Speed 7.08 90.18 47.07 7.91 90.60 47.71

VTLP 7.12 89.91 47.26 8.13 90.58 48.07

SpecAug 7.67 88.41 46.45 8.66 88.47 46.91

Volume 7.28 88.83 47.12 8.30 88.65 47.49

Pitch 7.17 89.37 46.80 8.07 89.82 47.39

F0-norm 7.34 90.85 46.52 8.21 90.81 46.27

Spon.

No Aug. 47.66 49.34 36.94 36.48 43.98 44.30

Speed 46.78 48.60 34.46 34.23 41.93 42.71

VTLP 47.61 50.08 35.08 35.08 42.70 43.95

SpecAug 47.74 49.28 36.95 36.32 43.96 44.00

Volume 49.01 50.90 36.58 35.74 44.32 44.61

Pitch 48.21 50.73 36.33 36.12 43.90 44.84

Combine No Aug. 6.43 38.51 21.52 7.18 36.99 20.09
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Table 2.8: % Word Error Rate (WER) for applying different data augmentation methods to

the end-to-end ASR system (CTC-AED modeling) on OGI Scripted (Scripted), Spontaneous

(Spon.), and Combined (Combine) datasets. 4-gram language model rescoring is applied

for all systems.

Train Data Aug. Technique
Dev Test

Scripted Spon. Combine Scripted Spon. Combine

Scripted

No Aug. 1.90 98.70 46.90 2.80 98.90 46.90

Speed 1.50 97.30 46.30 2.10 97.40 46.10

VTLP 1.70 99.10 47.10 2.70 99.30 47.00

SpecAug 1.60 99.10 47.10 2.30 99.40 46.90

Volume 1.90 99.20 47.20 2.60 99.40 47.00

Pitch 1.50 98.90 46.90 2.00 98.80 46.50

F0-norm 1.40 97.60 47.30 2.10 97.80 47.30

Spon. No Aug. 103.20 84.90 93.30 104.30 89.20 95.40

Combine No Aug. 1.80 82.20 39.00 2.70 82.90 39.30

A further experiment on the effectiveness of different data augmentation methods is inves-

tigated, such as speed perturbation, VTLP, SpecAug, volume perturbation, pitch perturba-

tion, and F0-normalization. As shown in Tables 2.7 and 2.8, improvements are observed in

all the data augmentation methods compared to using no augmentation on both development

and test scripted data, where around 10 % WER reduction is observed for the HMM-BLSTM

based hybrid ASR system and around 25 % WER reduction is observed for CTC-AED based

end-to-end ASR system. For spontaneous speech, some improvement could be observed for

the HMM-BLSTM based hybrid ASR system by using data augmentation techniques, such

as speed perturbation and SpecAug. It is observed from Table 2.7 that speed perturbation

can still achieve the best performance overall in all scenarios. Also, we can observe that
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after applying data augmentation to an out-of-domain task, there is nearly no improvement

in the testing performance, even when the testing data is combined with the in-domain data

(combined data). From Table 2.8, a similar observation can be achieved as observed from

Table 2.7. However, due to various problems in training spontaneous speech data on an end-

to-end system, such as GPU computation constraints and length-mismatch for segmented

speech, the data augmentation experiments are not investigated on spontaneous speech and

combined speech data.

2.6 Summary and Conclusion

This chapter has presented the performance of different data augmentation methods applied

to the children’s ASR for two neural network-based ASR systems, the HMM-BLSTM-based

hybrid ASR system, and the CTC-AED-based end-to-end ASR system. Data augmentation

is an efficient and low-cost method for improving the robustness of children’s ASR, as a

low-resource task. Most of the data augmentation methods are able to address the speaker

variations of the children’s speech by warping the speech signal. In particular, frequency-

based warping methods, such as vocal tract length perturbation, speed perturbation, and

SpecAugment, and pitch-based warping methods, such as pitch perturbation, and F0-norm,

are improving the robustness of children’s ASR by around 10 % WER reduction on HMM-

BLSTM and 25 % WER reduction on CTC-AED.

In addition, some of the speaking style experiments and hybrid and end-to-end ASR

systems comparison experiments are conducted. For scripted speech, CTC-AED can achieve

better performance than HMM-BLSTM; however, for spontaneous speech, CTC-AED is not

able to train well, which is possibly due to the constraint of the data size and the long-form

utterances. To address the above two possible issues for CTC-AED-based end-to-end ASR

systems, further investigations are needed. Combining both scripted and spontaneous speech

not only increases the amount of data in training but also fuses the speech style, which relieves
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the speaking style mismatch. Furthermore, data augmentation methods are generally helpful

in improving the performance of the children’s ASR on both HMM-BLSTM and CTC-AED-

based ASR systems. However, most of the data augmentation methods require much more

computation resources compared to no augmentation, which could be a constraint.
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CHAPTER 3

Towards Better Children’s Automatic Speech

Recognition with Untranscribed Data

In this chapter, our study [WZF21] for low-resource non-native children’s ASR in German

is investigated. We explored the usage of the untranscribed data with unsupervised pre-

training and semi-supervised learning (SSL) to improve the robustness of children’s ASR, in

addition to various augmentation methods.

3.1 Background

To address the low-resource issue of the speech data, particularly the non-native children’s

data, data augmentation has verified its effectiveness in improving children’s ASR by in-

creasing the variability of the data as shown in Chapter 2. In this chapter, in addition to

data augmentation, utilizing the available untranscribed data to improve ASR performance

is investigated. Two well-known effective approaches for utilizing untranscribed data, un-

supervised pre-training and semi-supervised learning are investigated. Lastly, since many

unprocessed recordings contain non-speech segments within utterances, a non-speech state

discriminative loss (NSDL) is proposed to discriminate the non-speech segments from the

speech part of the utterance during acoustic model training.
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3.2 Data Augmentation

As explained in Section 2.2 of Chapter 2, data augmentation is effective in mitigating the low

resource issue for data, such as children’s speech, and increasing the robustness of the model.

It is applied in different stages of the training pipeline. Speed perturbation, vocal tract length

perturbation (VTLP), volume perturbation, noise augmentation, and pitch perturbation are

used for the transcribed speech data, whereas speed perturbation and noise augmentation

are used for the untranscribed speech data. For noise augmentation, the removed non-

speech utterances are used as foreground and background noise to augment the original

audio with various random SNRs. Speed perturbation uses a conventional method with 3-

way warping factor of 0.9, 1, and 1.1. Volume perturbation, pitch perturbation, and VTLP

are implemented using Kaldi scripts with random warping factors. We also tried SpecAug

for our experiments, but the technique does not improve performance. We will detail the

data augmentation schemes for each training stage in Section 3.6.

3.3 Usage of Untranscribed Data

Due to the ease of acquirement of the untranscribed data, as well as children’s speech data,

unsupervised pre-training and semi-supervised learning are used to tackle the issue with a

limited amount of transcribed speech data.

3.3.1 Unsupervised Pre-training

For unsupervised pre-training, the speech itself is regarded as the supervision, such as au-

toregressive predictive coding (APC) [CHT19], contrastive predictive coding (CPC) [OLV18],

and bi-directional autoregressive coding (Bi-APC) [FAA21]. The core mechanism of all three

unsupervised pre-training methods is to predict a future frame given all the past frames.

Moreover, Bi-APC is able to perform the prediction on the past frames given all the future
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frames, in a bi-directional fashion. This behavior perfectly matches with the state-of-the-art

(SOTA) bi-directional models, such as BLSTM and Bi-Transformer. Also, bi-directional

autoregressive predictive coding (Bi-APC) has shown its effectiveness in children’s speech in

the previous work [FAA21].

3.3.2 Semi-Supervised Learning (SSL)

Similar to unsupervised pre-training, semi-supervised learning also has shown its effectiveness

in leveraging the untranscribed data [LGA02, SXK19, WMG20, KMD20, DMB19, CHC12],

though not in children’s speech. The mechanism is to generate the pseudo labels for untran-

scribed data based on the transcribed data training. To ensure the quality of the pseudo

labels, an incremental SSL is applied for filtering out the utterances with log-likelihood lower

than the threshold, as a comparison to the conventional one-shot SSL.

3.4 Non-Speech State Discriminative Loss (NSDL)

Table 3.1: Statistic of non-speech and speech states in the 5-hour transcribed data.

HMM States Total Avg (Utt) Std (Utt)

Non-speech 11x105 817 875

Speech 5x105 352 519

Table 3.1 shows the statistics of non-speech and speech states, using forced alignment from

the trained GMM model, in the dataset. This shows the dominance of the long-duration

non-speech segments within speech utterances in the dataset. As shown in Table 3.1, the

number of non-speech states is more than twice the number of the speech states, which

is a possible cause of the overfitting to the non-speech states, resulting in more deletion

errors. Thus, by separating the probability distribution of all pdf-ids into two parts, NSDL

is proposed to balance the data, in terms of speech and non-speech, during acoustic model
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training, and better discriminate the speech and non-speech states.

Figure 3.1: A Schematic Diagram of NSDL

The schematic diagram of NSDL is shown in Figure 3.1. Suppose the sets of non-speech

states and speech states are S1 and S2, respectively. The original acoustic model outputs a

probability distribution over all states in S1∪S2. Instead of doing a single classification task
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among all HMM states, the last BLSTM layer output is fed into two separate fully connected

layers to obtain two probability distributions p1 and p2 over states in S3 = {S1, speech} and

S2, respectively. The symbol speech is a placeholder reserved to represent a general speech

state, regardless of specific phoneme states. The probability of a state belonging to speech

state is denoted as Pspeech. We can also obtain Pnon-speech by summing up all non-speech states

in S1. The two probabilities are used to construct a speech/non-speech binary classifier and

are shown in the left path of Figure 3.1. The output probability distributions p1 and p2 are

combined to construct the original HMM states classification problem as plotted in the right

path of Figure 3.1. Let X be the input sequence and Y = {y1, ..., yt, ..., yT} represents the

results from forced alignment, the ground truth for binary classification is bt = 1(yt ∈ S2).

The original acoustic model training is reformulated into a multi-task training as:

LNSDL = L1 + λL2 (3.1)

in which

L1 = −
T∑
t=1

(1(bt == 1) log(p1(speech|X))+

1(bt == 0) log(P (non-speech|X)))

L2 = −
T∑
t=1

log(P (s = yt|X))

P (non-speech|X) =
∑
s∈S1

p1(s|X)

P (s|X) =


p1(s|X) s ∈ S1

p1(speech|X)p2(s|X) s ∈ S2

(3.2)

where L1 is the loss function for the binary classifier for non-speech and speech states, and

L2 is the cross entropy loss for the classifier among all HMM states. λ denotes the task ratio

for L2, which is empirically set to 1.

In addition, we apply weights to the loss with respect to non-speech/speech classes in

L2 to further alleviate the problem that the model is more likely to classify frames as non-
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speech. The weights of non-speech states and speech states are set to 0.9 and 1. Hence,

the model will assign a larger penalty when it misclassifies a speech frame as a non-speech

frame.

3.5 Experiments Setup

3.5.1 Database

The TLT2021 Challenge Corpus is a corpus that contains 5 hours of transcribed training

data from 296 students, about 1,445 utterances, and 1 hour of transcribed development data

from 72 pupils, about 339 utterances, and 60 hours of untranscribed training data from 124

pupils, about 10047 utterances. Two text sources are provided: (1) manual transcriptions

for 5 hours of the training data, and (2) written data extracted from sentences written by

the pupils. Participants’ ages range from 9 to 16.

3.5.2 Data Preprocessing

Before training the baseline, we observed that there are some non-speech utterances in the

provided transcribed dataset. Hence, we remove non-speech utterances that have one or

more of the following transcriptions, @sil, @noise, @laughs, @hes. As a result, 211 non-

speech utterances out of 1445 utterances are eliminated in the transcribed training data.

3.5.3 Feature Extraction

For the baseline GMM model, 39-dimensional Mel-frequency cepstral coefficients (MFCCs),

including first and second derivatives, are extracted with a frame length of 25 ms and a

frame shift of 10 ms, 512-point DFT, 23 Mel filters, pre-emphasis coefficient of 0.97, and

lifter coefficient of 22. For the TDNN model training, 40-dimensional high-resolution MFCCs

are extracted with the same settings except for Mel filters of 40. For the HMM-BLSTM-
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based model training, 80-dimensional log-Mel-filter banks are first extracted every 10 ms

with a frame length of 25 ms. An additional frame of features after each frame is then

appended to form a 160-dimensional input.

3.5.4 Acoustic Model Setup

For the TDNN model, a 3-way speed perturbation is applied to both the transcribed and

untranscribed datasets with factors of 0.9, 1.0, and 1.1 to form the inputs of the models. A

TDNN model is first trained with the 3-fold transcribed data, and then fine-tuned with the

weighted combination of the 3-fold transcribed and 3-fold untranscribed data using one-shot

SSL [GMF21].

The HMM-GMM model is trained with data after preprocessing to obtain the frame-level

alignment for the DNN-based acoustic model training, particularly for the HMM-BLSTM

model. The HMM-BLSTM model consists of 4 BLSTM layers with 512 hidden units in each

direction, followed by a layer transforming outputs of BLSTM to a probability distribution

of 2392 states from HMM model. The dropout rate in the network is set to 0.3. The model

is first trained with a sequence-wise mechanism where each utterance is fed into the model as

one instance (1169 frames on average). However, as shown in Table 3.1, the variance of the

duration in utterances is large, leading to many unnecessary paddings. Moreover, BLSTM

does not model sentences over 3,000 frames well. To mitigate the gradient vanishing problem

in BLSTMs for modeling long-duration utterances and accelerating the training, the model

is then trained in a chunk-wise mechanism where one instance is a segment consisting of

300 frames with 10 appended neighboring frames. The appended frames are only used in

training for accumulating the BLSTM hidden states.
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3.5.5 Language Model Setup

The baseline language model is based on the provided multi-lingual lexicon for both English

and Italian words since the mother tongue of the children is either English or Italian [GMF21].

An additional RNNLM [MKD11,Mik12] is trained as the second-pass rescoring with the

provided scripts in Kaldi. The model consists of two LSTM layers with a hidden size of

128. The dimension of word embedding is 256. A grid search is performed on the language

model weights of 0.25, 0.3, and 0.35, and n-gram order of 2 and 3. The best settings for the

development set in each experiment are used to rescore the lattice of the evaluation set.

3.6 Results and Discussions

Experiments are conducted using Pykaldi2 [LXC19] for acoustic model training and Kaldi

[Pov11] for decoding. The results of the ASR experiments using different methods are shown

in Table 3.2.
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Table 3.2: % Word Error Rate (WER) for different systems on the TLT-2021 development

and evaluation sets, including chunk-wise modeling, NSDL, Bi-APC, different iterations

of SSL, and LM rescoring (in parentheses). The second and third columns represent

augmentation schemes for the transcribed and untranscribed datasets, respectively. SP:

speed perturbation, Pit.: pitch perturbation, Vol.: volume perturbation, VTLP: vocal tract

length perturbation, and Noise: noise perturbation. The last line (+dev) indicates that the

development data is included in the training for the open track case. The best performance

in each case is bold-faced.

Model Transcribed Data Untranscribed Data Dev(%) Eval(%)

Official Baseline 3x SP − 52.38 45.21

Proposed Systems

BLSTM Baseline 3x SP − 57.54 56.63

+ chunk 3x SP − 54.27 50.09

+ NSDL 3x SP − 51.52 48.54

+ Bi-APC 3x SP 3x SP 49.91 44.60

+ SSL iter1 (0.35) 2x Pit. 3x Vol. 2x VTLP 3x SP 3x SP 49.91 43.55

+ SSL iter2 (0.3) 2x Pit. 3x Vol. 2x VTLP 3x SP 3x SP 49.05 41.11

+ SSL iter3 (0.28)

2x Pit. 3x Vol. 2x VTLP 3x SP 3x SP 47.10(46.30) 41.23(41.05)

2x Pit. 3x Vol. 2x VTLP 3x SP 2x Noise 3x SP 47.79(46.99) 41.23(40.81)

2x Pit. 3x Vol. 2x Noise 3x SP 3x SP 47.22(46.59) 41.28(39.86)

2x Pit. 3x Vol. 2x VTLP 2x Noise 3x SP 3x SP 48.02(46.61) 40.87(39.68)

+ dev 2x Pit. 3x Vol. 2x VTLP 2x Noise 3x SP 3x SP − 39.92(38.85)

3.6.1 HMM-BLSTM Baseline and chunk-wise training

A developed HMM-DNN hybrid system with BLSTM modeling is applied as our baseline. It

can achieve 57.54 % and 56.63 % WER for development and evaluation datasets, respectively.

Since this performs much worse than the official baseline, we experiment with chunk-wise

training instead of sequence-wise training, which uses a chunk size of 300 frames, and left

and right context chunks of 10 frames each. Table 3.2, shows that the chunk-wise training
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improves the performance over the sequence-wise training mechanism by 5.68% and 11.55%

in relative WER for the development and evaluation datasets, respectively.

3.6.2 Non-Speech State Discriminative Loss (NSDL)

When using our proposed NSDL method, we further achieve a relative improvement of 5.07

% and 3.09 % on the development and evaluation datasets, respectively, compared with the

chunk-wise training mechanism. A more fair baseline for NSDL is using the default VAD in

Kaldi to filter out the silence frames, which has a WER of 54.33 % for the development set.

The result is even worse than the model without VAD. The reason may be that many non-

speech states are not silenced states, but laugh, hesitation and noise. The proposed NSDL

method is more suitable in this case. Starting from Section 3.3, we use the untranscribed

data to further improve the performance. The relative WER will be in reference to the

official baseline.

3.6.3 Bidirectional Autoregressive Predicting Coding

The first method we used to train the 60 hours of untranscribed data is Bi-APC. Using the

same data augmentation strategy for transcribed data, we apply 3-way speed perturbation

to the untranscribed data. As shown in Table 3.2, better performance is obtained by using

Bi-APC. Both results of WER for the development and evaluation data are further improved,

and relative improvements of 4.72% and 1.35%, respectively, are observed, compared to the

official baseline system.

3.6.4 Semi-supervised Learning

Incremental SSL and various augmentation strategies are applied. As shown in Table 3.2,

the first iteration of SSL chose 0.35 as the log-likelihood threshold, by applying a 10-fold

(2 pitch + 3 volume + 2 VTLP + 3 speed) augmentation on the transcribed data and 3-
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way speed perturbation on untranscribed data. The WER does not improve significantly.

The second iteration with a 0.3 threshold, with the same augmentation strategies used in the

first iteration, results in a relative improvement of 6.36% and 9.07% for the development and

evaluation datasets, respectively, compared to the official baseline. When applying the third

iteration with a threshold of 0.28 and the same augmentation strategies, the performance

is only improved for the development data with the WER of 47.10%. Thus, another SSL

iteration is not applied but implements different augmentation strategies at this stage. When

we apply one iteration of SSL to the BLSTM baseline, the performance still improves from

57.54% to 56.86% in WER for the development set.

Replacing 2-fold VTLP with 2-fold noise perturbation for the transcribed data and keep-

ing the untranscribed data augmentation to be 3-fold speed perturbation results in perfor-

mance degradation. Adding only 2-fold noise perturbation to the untranscribed dataset does

not improve the performance. However, 12-fold (2 pitch + 3 volume + 2 VTLP + 2 Noise

+ 3 speed) augmentation results in better performance for the evaluation dataset, though

slightly worse for the development dataset.

3.6.5 Language Model Rescore

RNNLM rescoring (in parentheses in Table 3.2) is applied to the output of the third it-

eration of SSL, which results in a relative improvement of approximately 2% for both the

development and evaluation datasets. The best performance is achieved with a 12-fold aug-

mentation, resulting in a WER of 39.68 %, a 12.23% relative improvement over the official

baseline system. If we use the development set in training, then the WER for the evaluation

set improves to 38.85%.
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3.7 Summary and Conclusion

In this chapter, a non-native children’s ASR system is developed by utilizing untranscribed

speech data with limited transcribed speech data. To compensate for long-duration non-

speech segments within speech utterances, a novel non-speech discriminative loss is proposed

in the acoustic model training phase to enable the classification of the speech/non-speech

states. By utilizing the 60 hours of untranscribed speech data, Bi-APC pre-training, and

incremental semi-supervised learning are combined and validated the effectiveness of those

methods in addition to the various data augmentation methods, achieving a relative 9.6 %

WER reduction over training with 5 hours of transcribed speech data only. The final system

is able to achieve a 39.68% WER on the evaluation set.
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CHAPTER 4

Towards Better Meta-Initialization with Task

Augmentation for Kindergarten-aged speech

Recognition

In the previous chapters, we have shown that data augmentation and using untranscribed

data with unsupervised pre-training and semi-supervised learning can help improve the per-

formance of the children’s ASR models. In this chapter, our study [ZFA22] is presented for

addressing the model initialization problem for training a children’s ASR system, a model-

agnostic meta-learning (MAML) [FAL17,NAS18] based approach meta-initialization (MI) is

introduced as a possible solution.

4.1 Background

Meta-learning allows for fast adaption from different tasks to an unseen task, and is referred

to as meta-initialization (MI) [AES19,Wan21]. The idea is to learn a good model initializa-

tion from different training tasks. It has been shown to be effective in cross-accent [al20a] and

multi-lingual ASR [HCL20] as well as in other fields such as computer vision [SSZ17], neural

machine translation [GWC18], and speaker adaptive training [KFB18]. However, MI is also

vulnerable to learner overfitting [Yao21,NGS21], which happens when the model overfits the

training tasks and is unable to generalize to the testing task.

To address the issue of learner overfitting, several task augmentation-based mechanisms
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were proposed. Liu et al. treated each rotation of an image as a new task for image classifica-

tion tasks [LCL20], and Murty et al. proposed DRECA that uses latent reasoning categories

to form new tasks for natural language processing tasks [MHM21]. To our knowledge, no

study has addressed the issue of learner overfitting in ASR before.

In this chapter, we discover how meta-learning and task-based augmentation algorithms

can apply to kindergarten children’s ASR. In MI, the tasks are defined according to the

development of children’s vocal tract because it varies by the child’s age.

Although a promising improvement is observed with the MI for kindergarten-aged speech,

learner overfitting occurs. To alleviate learner overfitting, we propose a task augmentation

mechanism for children’s ASR by simulating new tasks using speed perturbation, and spectral

shifting-based data augmentation methods, VTLP, because of the characteristics of each task

(vocal tract differences).

The remainder of this chapter is organized as follows: Section 4.2 presents the meta-

initialization and task augmentation approaches for the low-resource kindergarten-aged ASR.

Section 4.3 describes the experimental setup, followed by results and discussion in Section

4.4. Section 4.5 concludes this thesis.

4.2 Methods

For a data-sufficient task, traditional machine learning can generalize well for in-domain data

using random parameter initialization. However, when data are scarce, random initialization

might overfit to the training data easily, and hence good starting points for training are

essential for better model generalization. Previously, it has been shown that supervised pre-

training can provide a good starting point for training in low-resource tasks [TWM17]. As

mentioned earlier, the aim of a meta-learning application is to provide good initialization for

low-resource tasks by quickly adapting the knowledge learned from the different available

tasks to the unseen task, which is referred to as meta-initialization (MI). However, meta-
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initialization can be at risk of overfitting to the training tasks; this is referred to as learner

overfitting [RIJ20]. In this section, we show how to use MI for ASR of children’s speech

and describe the proposed task-level augmentation method for solving the learner overfitting

problem.

4.2.1 Supervised Pretraining

Supervised pretraining has shown its effectiveness in children’s ASR [SG20]. Suppose we

have the model outputs Y = (y1, y2, . . . , yn) and the corresponding frame-level label Ŷ =

(ŷ1, ŷ2, · · · , ŷn where frame T = 1, 2, · · · , n generated from forced alignment, the objective

function of cross-entropy loss is expressed as:

L = −
T∑
t=1

C∑
c=1

ŷct log(yct ) (4.1)

where C is the number of output categories (HMM states). As shown in Eq. (4.1), the trained

weights are further utilized as the initialization for the downstream children’s acoustic model

training. However, the trained weights of the last feed-forward layer are not used due to the

state mismatch from different models.

4.2.2 Meta Initialization (MI) with Meta Learning

Meta-learning is defined as a “learning to learn” method where the goal is to design a

strategy to better choose a system’s hyperparameters and learning algorithm. Learning

model initialization or meta-initialization (MI) is also one of the most important components

in meta-learning. Suppose we have a set of training tasks G = {G1, G2, . . . , Gi, . . . , Gn} and

a target test task T . The idea is to simulate the adaptation stage during training and

minimize an objective function. Note that the objective function is based on the adapted

model so that the model before adaptation can be regarded as a good model initialization

for the adaptation stage. For each training task Gi, the data are split into a support set Gsup
i

that is used in the inner loop for the adaptation stage, and a query set Gque
i for evaluating
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the effectiveness of the model after the task’s adaptation stage. A better initial model before

adaptation leads to better performance. The loss function based on the query set is used in

the outer loop to calculate the final objective function.

Suppose that the model parameters in the inner-loop are θj at step j, the audio samples

in the support set of each training task Gsup
i are used to simulate the adaptation stage. The

model is updated as follows:

φji = θj − αOθjL(f(Xsup
i ; θj), Y

sup
i ) (4.2)

where Xsup
i and Y sup

i are data samples and corresponding labels in the support set of task

i, respectively. φji is the model parameter updated for task i and step j. f is the forward

computation of the model. L is the cross-entropy loss used in acoustic modeling, and α is

the learning rate for the inner-loop optimizer. O is the nabla operator for computing the

gradient of θj.

In the outer-loop, we quantify how the adaptation behaves in the inner loop by a sum-

mation of the loss function for the query set of each task. The summation is referred to as

the meta-objective function:

∑
Gi

L(f(Xque
i ;φji), Y

que
i ) (4.3)

where Xque
i and Y que

i are data samples and corresponding labels in the query set of task i,

respectively. By minimizing the above objective function with respect to θj, we can find

a model that is suitable for adaptation, and hence the model can be regarded as a good

initialization. Based on Eq. (4.2), after the optimization of the inner loop is completed, the

initialization would be the focus of the algorithm.

θj+1 ← θj − βO′θj
∑
Gi

L(f(Xque
i ;φji), Y

que
i )) (4.4)

where β is the learning rate for the outer-loop optimizer, and O′θj indicates that only first-

order MAML [NAS18] is used since the second-order derivative is computationally expensive
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and it does not affect the results significantly. After enough training steps, N , the final

model θN is regarded as the learned initialization for the unseen test task.

4.2.3 Data Augmentation

As explained in the previous chapters, data augmentation is an effective technique to improve

the ASR model performance by increasing the data variability, particularly for low-resource

tasks, such as children’s ASR. It can also mitigate the overfitting problem commonly existing

in traditional machine learning algorithms.

In this experiment, data augmentation is also applied at the adaptation phase, where

the training data is augmented with additional folds. For example, if all the training data

for the adaptation are augmented with two warping factors 0.9 and 1.1, the final training

data will be 3-fold. Another common augmentation technique is online-based. An online-

based augmentation modifies the training data every epoch without increasing the number

of training utterances, which is usually applied for SpecAug [Par19]. The comparison of the

data augmentation methods is shown in Section 2.2.

4.2.4 Age-based Task Augmentation for MI

Different from overfitting in traditional machine learning algorithms, there are two other

overfitting problems in MI, which are memorization overfitting [al20b] and learner overfitting.

The memorization overfitting happens when the θj+1 memorizes all tasks and does not rely

on support sets for inner-loop adaptation. The learner overfitting happens when the θj+1 is

unable to generalize well on the test task T . The memorization can be well mitigated by

randomly sampling the support set and query set at each step during training since each

sample has the opportunity to participate in either inner loop updates or outer loop updates.

In terms of learner overfitting, a common strategy is to use task augmentation to increase the

model generalization for the test task. However, task augmentation has not been explored
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in ASR, to our knowledge, before.

We propose an age-based task augmentation framework to alleviate the problem of learner

overfitting in kindergarten-aged speech recognition. The higher degree of inter-speaker

variability of children’s speech is mainly due to the different growth patterns of children.

These differences result in shifts in the fundamental frequency (F0) and formant frequencies

(F1, F2, F3, etc.) in kids’ speech as they grow. Hence, we perform the augmentation by

simulating new tasks of children’s speech using time and frequency warping methods, such

as VTLP and speed perturbation. For example, the task for each age Gi(G
1.0
i ) is augmented

with two new tasks with two warping factors 0.9 (G0.9
i ) and 1.1 (G1.1

i ). We compare the two

methods in Section 4.3.

4.3 Experiments

Experiments are conducted using the Kaldi toolkit [Pov11] for feature extraction and WFST-

based decoding and Pykaldi2 [LXC19] for acoustic model training.

4.3.1 Database

The database for the experiments is the scripted part of OGI Kids’ Speech Corpus [SHC00].

The Corpus contains kids’ speech in eleven age groups from kindergarten, grade 1 (G1)

to grade 10 (G10). Each age group has approximately 100 speakers saying single words,

sentences, and digit strings. The dataset is randomly split into 70 % training data, 8 %

development data, and 22 % test data without speaker overlap for each age as in [FAA21].

The kindergarten-aged task is regarded as the meta-testing task for fine-tuning. G1 speech

data, which corresponds to the closest age to kindergarten speech, are used for the validation

task in meta-learning. Other tasks with kids’ speech from G2 to G10 are used as the

training tasks, which is similar to pre-training, for obtaining a model initialization. For

meta-training and meta-validation tasks, training and development sets are combined for
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sampling the support and query sets. Note that the training data for kindergarten-aged

speech is approximately 4 hours and the training data for the meta-initialization stage is

about 45 hours.

4.3.2 Acoustic Model Setup

First, an HMM-GMM model is trained with all the data in the meta-training tasks to obtain

frame-level alignment for the DNN-based acoustic model training. 80-dimensional log-Mel-

filter bank features are extracted every 10 ms with a 25 ms window. An additional frame

of features after each frame is appended to form a 160-dimensional input [al15]. The model

has 4 BLSTM layers with 512 hidden units in each direction. The last layer transforms the

outputs of BLSTM to a probability distribution of the 1360 states from the HMM model.

For the baseline and the adaptation of kindergarten-aged task, the training process takes 15

iterations. An Adam optimizer with a multi-step scheduler is applied, where the learning

rate is initially set to 1e−5 for the first two iterations and decayed with a ratio of 0.1 till the

last iteration.
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4.3.3 Meta Initialization (MI) Setup

Table 4.1: % Word error rate (WER) for Data Augmentation (Data Aug) mechanisms on

baseline system, meta-initialization (MI), and the proposed task augmentation (Task Aug)

mechanisms for MI with vocal tract length perturbation (VTLP) and speed perturbation

(SP) on the Kindergarten-aged development and test sets. SPT stands for supervised

pre-training. Raw Aug stands for augmentation within each task without creating new tasks.

Model
Data Aug MI Aug

Dev Test
Type Type

Baseline - - 53.17 55.01

+ Data Aug

SP - 46.13 43.75

VTLP - 45.42 46.05

SpecAug - 56.69 53.70

+ SPT [TWM17] - - 36.27 29.06

+ MI - - 35.21 30.68

+ Raw Aug
- SP 36.62 28.00

- VTLP 36.27 30.06

+ Task Aug
- SP 34.86 27.50

- VTLP 34.86 29.06

In MI, the support set and query set are randomly sampled with a batch size of 16 for

each age of G2 to G10 during training. The same frame-level alignment and BLSTM model

configuration are used as mentioned in Section 4.3.2.

The number of iterations for MI training is empirically set to 6,800. Separate optimizers

are applied to the outer-loop and inner-loop optimization. The inner loop uses an SGD

optimizer with a fixed learning rate of 2e−4. The outer loop uses an Adam optimizer with a

multi-step scheduler, where the learning rate is stabilized to 2e−4 for the first 2,000 iterations
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and decayed with a ratio of 0.15 to 3e−5 till the last iteration. All the parameters trained

from MI are used as the initialization for the training in the adaptation stage.

4.3.4 Task Augmentation Setup

For age-based task augmentation during the MI stage, speed perturbation and vocal tract

length perturbation (VTLP) are used with the warping factors of 0.9, 1.0, and 1.1, according

to our preliminary results [al21b,al21a], and hence the number of tasks is increased by 3 folds.

Thus, we adopt an online augmentation mechanism where at each iteration the warping factor

is randomly selected from (0.9, 1.0, 1.1).

4.3.5 Raw Augmentation Setup

For a fair comparison with the task augmentation setup in Section 4.3.4, speed perturbation

and vocal tract length perturbation (VTLP) are used with warping factors of 0.9, 1.0, and

1.1 as well; however, it is applied directly to the original meta-training data from all the

grades.

4.3.6 Data Augmentation for Adaptation Setup

During the adaptation stage, speed perturbation and VTLP are used with the same warping

factors (0.9, 1.0, 1.1) as task augmentation. For SpecAug, a maximum width of 5 frequency

channels are masked twice, and a maximum width of 8 time channels are masked twice as

well. The width of the frequency and time channel is chosen empirically.

4.4 Results and Discussions

An HMM-DNN hybrid system with BLSTM modeling is used as our baseline. As shown in

Table 4.2, the development and test set of kindergarten speech have a WER of 53.17% and
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55.01%, respectively, without any prior knowledge. The baseline WER is similar to that

reported in [al21b] for a small size (5 hours) kids dataset.

Table 4.2: % Word error rate (WER) for Data Augmentation (Data Aug) mechanisms on

baseline system, meta-initialization (MI), and the proposed task augmentation (Task Aug)

mechanisms for MI with vocal tract length perturbation (VTLP) and speed perturbation

(SP) on the Kindergarten-aged development and test sets. SPT stands for supervised

pre-training. Raw Aug stands for augmentation within each task without creating new tasks.

Model
Data Aug MI Aug

Dev Test
Type Type

Baseline - - 53.17 55.01

+ Data Aug

SP - 46.13 43.75

VTLP - 45.42 46.05

SpecAug - 56.69 53.70

+ SPT [TWM17] - - 36.27 29.06

+ MI - - 35.21 30.68

+ Raw Aug
- SP 36.62 28.00

- VTLP 36.27 30.06

+ Task Aug
- SP 34.86 27.50

- VTLP 34.86 29.06

4.4.1 Meta Initialization

The results of MI and the proposed task augmentation methods are shown in Table 4.2. As

we can observe from the table, using data augmentation (Data Aug) methods can improve

performance over baseline. The relative improvement in WER for speed perturbation (SP)

and VTLP are around 20%. When training with an initialization through meta-learning,
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the WER of the kindergarten-aged test set is decreased from 55.01% to 30.68%, a larger

relative WER improvement than the data augmentation strategies. For a fair comparison,

we used the supervised pre-training method (SPT) to directly train the acoustic model with

data from G2-G10 as the starting point. We can see from the table that MI is slightly worse

than SPT on the test set.

4.4.2 Raw Augmentation v.s. Task Augmentation

The proposed task augmentation methods are used to address the overfitting problem and

we observe a significant improvement over the MI without augmentation. From Table 4.2,

we found that SP is better than VTLP as a method to simulate new tasks. For a fair

comparison, we also experimented with augmentation that is not task-dependent. In raw

augmentation (Raw Aug), warping is applied to the original data. The results validate the

effectiveness of the proposed task augmentation (Task Aug) method, which achieves a WER

of 27.5% on the kindergarten test set. SpecAug is not used in task augmentation since it

randomly masks out time or frequency channels. Such masking is not consistent for the data

in one task that is regarded as a new task after augmentation.

4.4.3 Impact of Augmented Tasks

The task augmentation in Table 4.2 is using speech data from all ages in the training set to

augment a new ASR task. To obtain an insight into the impact of the augmented tasks on

WER performance, we add the number of augmented tasks incrementally according to age.

For example, as shown in Fig.4.1, the number of tasks is added in either an increasing order

(from G2 to G10) or a decreasing order (from G10 to G2). Our goal is to investigate which

subset of the data is more important for augmentation.

Since SP outperforms VTLP in the previous experiments, SP is explored. As shown in

Fig.4.1, including more augmented tasks in either the forward order or reverse order results
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Figure 4.1: % WER Results of task augmentation mechanism using speed perturbation (SP)

versus the number of augmentation tasks for MI on the Kindergarten test set. The tasks are

added either from G2 to G10 (in blue), or from G10 to G2 (in orange). The dashed line (in

red) is MI without any task augmentation mechanism.

in improved performance. However, the reverse order generally performs worse than the

forward order by 1% WER for the kindergarten-aged test set, which means creating new

tasks that are similar to the target task is effective in addressing the learner overfitting

problem. With all tasks being augmented, the final performance has a 10% relative WER

improvement over MI without task augmentation.
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4.4.4 Data Augmentation for Adaptation

Table 4.3: % Word error rate (WER) for data augmentation during the adaptation stage

with SpecAug, vocal tract length perturbation (VTLP), and speed perturbation (SP) on

the Kindergarten development and test sets.

Aug Type (in adaptation stage) Dev Test

No Aug 34.86 27.50

SpecAug 32.75 27.01

VTLP 32.39 28.13

SP 33.45 27.75

The task we are focusing on is a low-resource one (kindergarten ASR). Hence, data augmen-

tation methods are further used during the adaptation stage of the kindergarten-aged task.

SP, SpecAug, and VTLP are compared in the experiments. The results are shown in Table

4.3. Although all three strategies can improve the performance on the development set, only

SpecAug achieves a slightly better performance on the test set. The reasons why VTLP and

SP did not achieve better results will be explored in future work.

4.5 Summary and Conclusion

In this chapter, to deal with the data scarcity of children’s speech, particularly kindergarten-

aged, meta-initialization is used to find a good starting point for training the acoustic model.

To mitigate the overfitting problem in meta-initialization, particularly learner overfitting, an

age-based task augmentation mechanism is proposed to simulate new ages using time and

frequency warping methods. The data augmentation strategies using speed perturbation and

VTLP that are also used in the task augmentation stage are not helpful in the adaptation

stage. SpecAug used in the adaptation stage resulted in a small WER improvement, and the
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final system achieved a 51% relative WER improvement over the baseline (no augmentation

and no adaptation). In the future, we will explore the use of the proposed algorithm in other

low-resource tasks for both adults’ and children’s ASR.
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CHAPTER 5

Conclusions and Future Work

Children’s automatic speech recognition (ASR) is a comparatively harder problem than

adults’ ASR, due to a lack of transcribed available databases. The approaches proposed to

improve the children’s ASR:

1. Data augmentation is a low-cost and effective method for improving children’s ASR

given limited data. Several augmentation techniques were introduced in Chapter 2: speed

perturbation, VTLP, SpecAug, pitch perturbation, and F0-based normalization. In Chapter

3, volume perturbation is introduced. These techniques improved ASR within 10 - 25 %

WER. On average, speed perturbation achieved the best WER reduction.

2. Both unsupervised pre-training and incremental semi-supervised learning are used to

utilize untranscribed children’s speech data. Bidirectional autoregressive predictive coding

(Bi-APC) is an effective unsupervised pretraining method to learn acoustic modeling pa-

rameters from untranscribed data, and incremental semi-supervised learning well-utilizes

the untranscribed speech data by filtering out low log-likelihood utterances during decoding

for multiple iterations. Both Bi-APC and incremental SSL are introduced in Chapter 3.

3. A meta-initialization technique is used to find a good model initialization for kindergarten-

aged ASR by treating each age group of children as one task. The upstream framework is

based on the model-agnostic meta-learning mechanism, and age-based task augmentation is

proposed to alleviate the learner overfitting in MI, the final performance is able to achieve

much better performance compared to baseline ASR modeling with no augmentation or
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initialization. Details are provided in Chapter 4.

However, some challenges remain. In Chapter 2, first, it is found that speaking style

mismatch is not fully alleviated by combining scripted and spontaneous data. Further ex-

plorations are needed: for example, the variable frame rate (VFR) technique could be used

for compensating speaking style effects [AGP20]. Another challenge is that for spontaneous

speech, CTC-AED is not able to train well due to multiple possible constraints, such as data

size and long-form utterances. To address these challenges for CTC-AED-based end-to-end

ASR systems, further investigations are needed. In Chapter 4, using the meta-learning tech-

nique with respect to each age group has shown improvement. Further experiments are

needed to investigate the effect of reducing the number of samples for each inner-loop task

as mentioned in [FAL17].
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long short-term memory, fully connected deep neural networks.” In 2015 IEEE
international conference on acoustics, speech and signal processing (ICASSP),
pp. 4580–4584. IEEE, 2015.

[SXK19] Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Tatiana Likhomanenko, Edouard
Grave, Vineel Pratap, Anuroop Sriram, Vitaliy Liptchinsky, and Ronan Col-
lobert. “End-to-end ASR: from supervised to semi-supervised learning with
modern architectures.” arXiv preprint arXiv:1911.08460, 2019.

[TA13] Lee Ngee Tan and Abeer Alwan. “Multi-band summary correlogram-based pitch
detection for noisy speech.” Speech communication, 55(7-8):841–856, 2013.
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