Lawrence Berkeley National Laboratory

 Recent WorkTitle
RATE OF CONVERGENCE OF MADELUNG SERIES BY THE METHOD OF BERTAUT

Permalink

https://escholarship.org/uc/item/6942q4f9

Author

Templeton, David H.
Publication Date
1954-11-26

UNIVERSITY OF CALIFORNIA

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

UNIVERSITY OF CALIFORNIA
Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng 48

RATE OF CONVERGENCE OF MADELUNG SERIES BY THE METHOD OF BERTAUT

David H. Templeton
November 26, 1954

Printed for the U.S. Atomic Energy Commission

RATE OF CONVERGENCE OF MADELUNG SERIES BY THE METHOD OF BERTAUT
 David H. Templeton
 Department of Chemistry and Radiation Laboratory University of California, Berkeley, California

November 26, 1954
ABSTRACT
A calculation is made of the correction to be applied to the Madelung constant when computed by a method given by Bertaut with a finite number of terms. Some advantages of this method are discussed.

RATE OF CONVERGENCE OF MADELUNG SERIES BY THE METHOD OF BERTAUT

David H. Templeton
Department of Chemistry and Radiation Laboratory
University of California, Berkeley, California
November 26, 1954
There are many problems in crystal chemistry in which it is of interest to consider the electrostatic energy of a crystal resulting from the interaction of the ions considered as point charges. This energy is given by the sum of an infinite series which converges slowly and conditionally. Considerable effort has been devoted to methods of carrying out this computation.

Bertaut noticed the connection between the terms of this series and the Patterson function of the charge distribution. He showed how the calculation could be carried out if the point charges are replaced by spherically symmetrical charges of various shapes. If the charge of each ion is spread uniformly over the volume of a sphere of radius R, with R no greater than the shortest interionic distance, an expression results which has several advantages for numerical work:

$$
\begin{equation*}
A=-\frac{W L}{\epsilon^{2}}=\frac{3 L}{5 R Z} \sum_{j} z_{j}^{2}-\frac{18 \pi R^{2} L}{Z V} \sum_{h}|F|^{2} \frac{(\sin a-a \cos a)^{2}}{a^{8}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
a=2 \pi h R \tag{2}
\end{equation*}
$$

1. F. Bertaut, J. Phys. Radium, 13, 499 (1952)
and

$$
\begin{equation*}
F=\sum_{j} z_{j} e^{2 \pi i\left(h_{1} x_{1 j}+h_{2} x_{2 j}+h_{3} x_{3 j}\right)} \tag{3}
\end{equation*}
$$

Equation (1) is Bertaut's equation (41) with slight changes of notation. Here A is the Madelung constant based on L as unit distance, W is the electrostatic energy per molecule, ϵ is the electronic charge, Z is the number of molecules in the unit cell, z_{j} is the charge number of atom j, V is the volume of the unit cell, and h is the magnitude of the vector $\left(h_{1} h_{2} h_{3}\right)$ in reciprocal space or the reciprocal of the spacing d of the planes $\left(h_{1} h_{2} h_{3}\right)$. The coordinates of atom j are $x_{1 j}$, $x_{2 j}, x_{3 j}$. The sum over h in Eq. (1) includes the infinite number of reciprocal vectors corresponding to all combinations of integral values of h_{1}, h_{2} and h_{3}, positive, zero, and negative. It is convenient to insert a factor p, the multiplicity of the form $\left(h_{1} h_{2} h_{3}\right)$ for the crystal under consideration, and to include in the sum only one term for each group of equivalent terms. Since $F(000)=0$ for an electrically neutral crystal, there is no difficulty with singularities. The sums over j in Eqs. (1) and (3) include the atoms of one unit cell. The structure factor F is the ordinary X-ray structure factor with charge numbers in place of atomic form factors. The value used for R is arbitrary, as long as it is less than half the smallest interionic distance, but the convergence is more rapid the larger its value.

The convergence of the series in Eq. (I) is reasonably rapid, but the work involved is not trivial except for the most simple structures. A special advantage, at least for crystallographers, is that the geometrical part of the calculations is reduced to the familiar structure
factors and vectors in reciprocal space. It is simple to arrange the terms in order of increasing h and to check that none has been omitted. Full use of the symmetry may be made to combine like terms. The geometry of the unit cell is separated from that of the atomic coordinates in this calculation. Thus it is possible to calculate the energies of several arrangements of the atoms in unit cells of given shape with much less effort than that required to carry out an equal number of separate calculations.

In the application of $E \bar{q}$ 。(1) it is advantageous to know the error introduced if the sum over h includes only those values of h not greater than some quantity m. This becomes especially of interest when the number of terms in a small interval of h becomes large. Under this condition $|F|^{2}$ may be replaced by its average value ${ }^{2} \sum_{j} z_{j}{ }^{2}$ 。The density of terms in reciprocal space is V. Therefore the error, ΔA,

$$
\begin{equation*}
\Delta A=\frac{18 \pi R^{2} L}{Z V} \Sigma_{h>m}|F|^{2} \frac{(\sin a-a \cos a)^{2}}{a^{8}} \tag{4}
\end{equation*}
$$

is approximated by an integral:

$$
\begin{align*}
\Delta A & =\frac{18 \pi R^{2} L}{Z V} \int_{m}^{\infty} \sum_{j} z_{j}{ }^{2} \frac{(\sin a-a \cos a)^{2}}{a^{8}} 4 \pi h^{2} V d h \tag{5}\\
& =\frac{9 L \Sigma z^{2}}{\pi R Z} \int_{\beta}^{\infty} \frac{(\sin a-a \cos a)^{2}}{a} d a \tag{6}
\end{align*}
$$

2. The derivation given by H. Lipson and W. Cochran (The determination of crystal structures, G. Bell and Sons, Ltd., London, 1953, p. 134) applies equally well when some of the z^{θ} s are negative.
where

$$
\begin{equation*}
\beta=2 \pi \mathrm{Rm} . \tag{7}
\end{equation*}
$$

The integral in Eq. (6) can be reduced by five successive integrations by parts to the form

$$
\begin{align*}
\Delta A= & \frac{3 L \Sigma z^{2}}{5 \pi R Z}\left\{\frac{3 \sin ^{2} \beta}{\beta^{5}}-\frac{6 \sin \beta \cos \beta}{\beta^{4}}+\frac{2+\cos ^{2} \beta}{\beta^{3}}\right. \\
& \left.=\frac{\sin \beta \cos \beta}{\beta^{2}}-\frac{1-2 \sin ^{2} \beta}{\beta}+\pi-2 \sin (2 \beta)\right\} \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\operatorname{Si}(2 \beta)=\int_{0}^{2 \beta} \frac{\sin t}{t} d t \tag{9}
\end{equation*}
$$

The function $\operatorname{Si}(x)$ can be found in tables ${ }^{3}$. The error may be written as:

$$
\begin{equation*}
Q=\frac{\Delta A R Z}{L \Sigma z^{2}}=\frac{-\Delta W R Z}{\epsilon^{2} \Sigma z^{2}} \tag{10}
\end{equation*}
$$

 value of $A R Z / L \Sigma z^{2}$ is always of the order of 0.4 if R is half the shortest interionic distance. Therefore we can also list in Table I approximately the percentage error in A if the series is terminated at $\alpha=\beta$ 。

If the calculated errors listed in Table I are applied as corrections to the computed series, then the accuracy of the result
3. Work Projects Administration, Tables of sine, cosine and exponential integrals, New York, 1940. Two volumes.
4. This can be shown by a simple extension (unpublished) of the generalizations of A. Kapustinsky, Z. phys. Chem. B22, 257 (1933)
and D. H. Templeton, J. Chem. Phys. 21, 2097 (19531.
is an order of magnitude better than without the correction. This table is also very useful for planning the work so that enough but only enough terms are included to obtain the desired accuracy.

One should not interpolate in Table I, because the function $Q(\beta)$, though monotonic, has zero slope at certain points near those where β is a half integral multiple of π.

I thank Mrs. Carol Dauben for aid with the calculations. This research was supported by the U, S. Atomic Energy Commission.

Table I
Corrections for termination of the series

β / π	Q	$100 \Delta \mathrm{~A} / \mathrm{A}$
0.5	0.172664	43
1.0	.015992	4
1.5	.004715	1
2.0	.001950	0.5
2.5	.000996	.1
3.0	.000574	.09
3.5	.000242	.06
4.0	.000170	.04
4.5	.000123	.03
5.0		

