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A B S T R A C T

Crosshole ground-penetrating radar (GPR) is a widely used measurement technique to help inspect the structural
integrity of man-made underground structures. In a previous paper, we have introduced a Bayesian framework
for inversion of crosshole GPR experiments to help back out defects in concrete underground structures. Here,
we evaluate the practical usefulness of our inversion framework by application to waveform data from a real-
world GPR survey of a diaphragm wall panel with two embedded structure defects. We also use this case study to
further refine our methodology by introducing the elements of a two-stage inversion method to help delineate
the exact location and shape of small structure defects. Herein, a low-resolution inversion composed of relatively
few inversion coefficients (stage-1) is used to determine roughly the presence of structure defects, followed by a
second inversion (stage-2) with much enhanced spatial resolution in those areas classified with anomalous or
suspicious permittivity values. This two-stage inversion approach uses more wisely CPU-resources by focusing
primarily on those areas of the concrete structure that have been classified as anomalies. We investigate the
benefits of this two-stage inversion scheme using a synthetic and real-world case study involving waveform data
of a diaphragm wall panel measured with crosshole GPR. Our results demonstrate that the proposed two-stage
inversion method recovers successfully the location and shape of structure defects, at a computational cost that is
considerably lower than the original inversion framework.

1. Introduction

Ground-penetrating radar (GPR) is a widely used measurement
technique to measure the properties of the subsurface and evaluate the
integrity of civil structures [1-5]. This method emits high-frequency
electromagnetic (EM) waves in the range of 10MHz to 1 GHz from a
transmitter antenna, and these waves are subsequently received by a
nearby antenna. When the EM wave encounters an anomaly (buried
object) or a boundary between two materials with contrasting dielectric
properties, it will be reflected, refracted or scattered back. The signal
(waveform) that arrives at the receiver antenna thus stores important
information about the structure and properties of the domain in-be-
tween the two antennas. For underground structures such as pile
foundations and diaphragm walls, defects (e.g. cracks, voids, and
weakness zones) may appear during construction and compromise
structural integrity and safety [6]. Such structures usually extend up to
30–50m below the ground surface, which make surface GPR methods

rather ineffective, because the emitted high frequency EM waves do not
penetrate sufficiently deep to characterize accurately the underground
structure[7]. Fortunately, crosshole GPR extends the ability of surface
GPR to deep subsurface media by placing the transmitter and receiver
antenna next to each other in the underground structure in two ad-
jacent boreholes several meters spaced apart [8,9]. This allows for a
rapid characterization of the EM properties of the structure in-between
the two boreholes, commonly referred to as the dielectric permittivity, ε
and electrical conductivity, σ [10]. In the case of man-made under-
ground structures, concrete defects are easily infiltrated by ground
water, thereby leading to anomalies in the measured ε values [11,12].
Indeed, the dielectric permittivity is a good proxy for the distribution
and amount of (soil) water in underground structures.

Ray based methods such as first-arrival traveltime and first-cycle
amplitude tomography have found wide application and use to derive ε
and σ from crosshole GPR data [13-15]. These approaches exhibit af-
fordable modeling errors and have the advantage of being relatively
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CPU-efficient [16-18], yet their resolution is limited to the scale (dia-
meter) of the first Fresnel zone [19,20]. Consequently, these methods
can only resolve features larger than the dominant signal wavelength.
Full-waveform inversion, on the contrary, allows for a much more de-
tailed characterization (sub-wavelength resolution) by solving nu-
merically Maxwell's equations in two- or three-spatial dimensions using
the exact geometry, physical parameters, boundary conditions, excita-
tion, time step, and transmitter and receiver positions of the actual GPR
experiment [21,22]. This approach has enjoyed a lot of attention in the
past few years [23-31] but the forward model (e.g. Maxwell's equa-
tions) and inverse solution place a heavy burden on computational
resources. This can be alleviated somewhat if the inversion is limited
only to inference of the “best” permittivity distribution of the structure
of interest. This realization exhibits the closest match between the ob-
served and simulated EM waves but does not appropriately commu-
nicate measurement and modeling uncertainties [32]. Probabilistic in-
version methods allow for the treatment of different sources of error
and return to the user an ensemble of realizations deemed statistically
acceptable [33-40]. Among these methods, Bayesian inference coupled
with Markov chain Monte Carlo (MCMC) simulation has found wide-
spread application and use in GPR inversion.

In a previous paper, we have developed a Bayesian inversion
methodology to infer the relative permittivity distribution, εr of un-
derground structures from crosshole GPR waveform data [41]. The
relative permittivity is related to the permittivity as follows, εr= ε/ε0,
where ε0 denotes the free space dielectric permittivity. Our method uses
as main building blocks two-dimensional finite-difference time-domain
(FDTD) simulation [42,43], the discrete cosine transform (DCT)
[44,45], and Markov chain Monte Carlo (MCMC) simulation with the
differential evolution adaptive Metropolis algorithm (DREAM(ZS)) [46-
49], and thus is coined FDTD-DCT-DREAM(ZS) framework. The FDTD
simulator solves numerically Maxwell's equations in the time and space
domain of the crosshole GPR experiment and simulates iteratively the
EM waveforms. The DCT algorithm transforms the Cartesian para-
meterization to the frequency domain and reduces drastically the di-
mensionality of the parameter space by retaining only the lower-fre-
quency DCT-coefficients. MCMC simulation with the DREAM(ZS)

algorithm is used to estimate the posterior distribution of the DCT-
coefficients. Numerical experiments with synthetic waveform data were
used by [41] to demonstrate the ability of the FDTD-DCT-DREAM(ZS)

framework to successfully back out structure defects. Indeed, the DCT
approach sacrifices model resolution and may not recover correctly
with sufficient fidelity structure defects, particularly if these anomalous
areas appear relatively small in comparison to the surrounding struc-
ture. A simple remedy to this problem would be to use a much larger
number of DCT-coefficients, yet at the expense of a significant increase
in the computational requirements of the FDTD-DCT-DREAM(ZS) fra-
mework.

In this paper, we evaluate the practical applicability of the FDTD-
DCT-DREAM(ZS) framework using measured waveform data from a
crosshole GPR survey of a diaphragm wall model with embedded
structure defects. We also introduce in this paper an alternative two-
stage inversion method, wherein a rather simple inversion with rela-
tively few DCT-coefficients is used to determine roughly the presence of
structure defects, followed by a second inversion with much enhanced
resolution in those areas of the concrete body that were identified as
anomalous or suspicious in the first inversion. We illustrate this two-
stage approach by application to artificial data from a synthetic GPR
experiment, and the measured waveforms of the diaphragm wall model.
In both studies, we are especially concerned with the computational
efficiency of our method, and investigate the relationship between the
number of DCT-coefficients that is used to characterize the relative
permittivity values of the concrete structure, and the corresponding
CPU-costs of the DREAM(ZS) algorithm. This paper concludes with a
summary of the main findings.

2. Methodology

In the following subsections we will describe the different elements
of our Bayesian inversion framework to help detect defects in man-
made underground structures.

2.1. FDTD-DCT-DREAM(ZS) inversion framework

We have recently developed a Bayesian waveform inversion
strategy to infer the relative permittivity field of underground concrete
structures. This inversion method combines two-dimensional FDTD
solution of the Maxwell's equations, parameter dimensionality reduc-
tion with the DCT, and the DREAM(ZS) algorithm to facilitate a rapid
and efficient characterization of the relative permittivity distribution of
the underground structure of interest. A detailed description of this
method appears in [41] and so will not be repeated herein. Instead, we
only briefly summarize the main building blocks of this framework.

In crosshole GPR, an EM pulse, ∼u, is emitted by a transmitter an-
tenna in one borehole, and the resulting waveform, = …∼ ∼ ∼y yy { , , }N1 ,
which consists of N data points measured by a receiver antenna in an
adjacent borehole spaced several meters apart. By using multiple dif-
ferent vertical positions of the transmitter and receiver antennas a data
set of n waveforms is obtained which contains detailed information
about the physical properties of the underground structure in-between
the two boreholes. For a single position of the transmitter and receiver
antenna, the GPR experiment can be described as follows

= +∼ ∼fy m u e( , ) , (1)

where m is a d-vector of model parameters that describes the physical
properties of the subsurface structure, f(⋅) denotes the forward model
which simulates the physical relation between m, ∼u, and ∼y , and
e={e1,…,eN} is a N-vector of error residuals that lumps together wa-
veform measurement data errors, model structural and input data er-
rors. In this study, the d-vector m, characterizes the relative permit-
tivity distribution of the underground structure wherein defects appear
as local anomalies. The function, f(⋅), used herein is equivalent to the
FDTD model which describes numerically the EM wave propagation
between the transmitter and receiver antennas using numerical solution
of Maxwell's equations [42,43]. The tilde operator, ∼ is used to denote
measured quantities. We solve Eq. (1) for the n different transmitter and
receiver antenna positions used in the GPR experiment, and store the
simulated waveforms of N data points in the n×N-matrix, ∼Y.

The model parameters, m cannot be derived from closed-form
analytic solutions, and we therefore have to resort to iterative methods
to determine the relative permittivity distribution from the measured
waveform data, ∼Y . We adopt herein a probabilistic inversion method
and derive the posterior probability distribution of the parameters,

∼p m Y( | ) using Bayes theorem

=∼
∼

∼p
p p

p
m Y

m Y m
Y

( | )
( ) ( | )

( )
,

(2)

where p(m) denotes the prior distribution and summarizes all prob-
abilistic knowledge of m before collecting the GPR data set,

≡∼ ∼L pm Y Y m( | ) ( | ) signifies the likelihood function, and ∼p Y( ) is
equivalent to a normalization constant, also called marginal likelihood
or evidence, which ensures that the posterior distribution integrates to
unity. In practice, we often discard, ∼p Y( ), and draw all our inferences
from the unnormalized density

∝∼ ∼p p Lm Y m m Y( | ) ( ) ( | ). (3)

The likelihood function, ∼L m Y( | ), quantifies in probabilistic terms,
the (dis)agreement between the observed and FDTD simulated GPR
waveforms. If we assume the measurement data errors of the GPR
waveforms, ∼Y, to be independent and Gaussian distributed, the log-
likelihood function, ∼m Y( | )L is relatively easy to derive and equivalent

H. Qin et al. Automation in Construction 95 (2018) 233–244

234



to

̂ ̂ ̂ ∑= − − − −∼ ∼−
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(4)

where ̂σ2 is a nuisance variable that signifies the variance of the mea-
surement data error, and T= n×N represents the total number of GPR
observations, and the counter i denotes the element (index) of the
matrix ∼Y. In the absence of detailed information about the measure-
ment data error, we can approximate ̂σ2 with a “sufficient” statistic,

= ∑ − ∼
− =s f m Y( ( ) )T i

T
i i

2 1
1 1

2, which, after some rearrangement, leads to
the following definition of the log-likelihood function

∑∝ − ⎛

⎝
⎜ − ⎞

⎠
⎟

∼ ∼

=

T fm Y m Y( | )
2

ln ( ( ) ) .
i

T

i i
1

2L
(5)

The proportionality sign replaces the equality sign in Eq. (4) because all
constant terms independent of the parameters, m, have been removed.
This does not affect the maximum likelihood values of the parameters,
nor their marginal and joint posterior distribution, as all statistical in-
ferences of m are made from the differences in the log-likelihoods.
Note, the sum of these canceled terms is equivalent to the natural
logarithm of the normalization constant, which guarantees that the
conditional distribution, or likelihood function, integrates to unity. The
latter is a requirement for Bayesian model selection to determine the
“best” model among an ensemble of competing hypotheses.

In this work, we use MCMC simulation with the DREAM(ZS) algo-
rithm to generate samples from the posterior distribution, ∼p m Y( | ). This
method runs K different chains simultaneously and proposals are gen-
erated on the fly from the collection of samples states using parallel
direction and snooker sampling. This approach automatically tunes the
scale and orientation of the proposal distribution and therefore leads to
high sampling efficiencies and a relatively rapid convergence to the
target distribution. Details of the DREAM(ZS) algorithm can be found in
[47-49] and interested readers are referred to these publications for
further details.

The d-vector m with parameter values sampled by the DREAM(ZS)

algorithm characterizes the relative permittivity distribution of the
underground structure of interest. If we were to use a uniform para-
meterization then the inference would involve many thousands to
millions of unknowns, namely the relative permittivity of each in-
dividual grid cell. The use of such Cartesian parameterization has the
key advantage of providing a localized and uniform spatial resolution,
yet the resulting inversion problem is prohibitively difficult to solve as
it requires the estimation of a very large number of unknowns. What is
more, the use of discrete boundaries between permittivity values of
neighboring cells not only can complicate forward simulation, but also
lead to visually suspect inversion results. We therefore resort to an al-
ternative parameterization approach and use the DCT method to map
the spatial parameters to the frequency domain. Then we can safely
discard the higher-frequency DCT-coefficients without losing important
information about the spatial distribution of the relative permittivity
values. Those lower-frequency DCT-coefficients are retained and define
a sparse parameterization that will be estimated using the DREAM(ZS)

algorithm. This approach significantly reduces the dimensionality of
the search space [39,40,45], and improves drastically the computa-
tional efficiency of the numerical inversion.

2.2. Two-stage inversion method

The DCT approach reduces significantly the dimensionality of the
search space, thereby improving considerably the computational effi-
ciency of the inference, but possibly at the expense of an insufficient
model resolution required to delineate and demarcate sharply structure
defects. Indeed, truncation of the higher-frequency DCT-coefficients
can sacrifice the necessary model resolution required to characterize
accurately the location and shape of structure defects. Of course, we can

easily enhance the resolution of the resolved relative permittivity dis-
tribution by increasing drastically the number of DCT-coefficients
subject to inference. This approach not only frustrates the effectiveness
of the dimensionality reduction approach but also decreases con-
siderably the CPU-efficiency of the FDTD-DCT-DREAM(ZS) framework.

We propose herein a simple refinement of the FDTD-DCT-
DREAM(ZS) framework of [41] which guarantees a sufficient spatial
detail of the structure defects at reasonable computational cost. This
alternative implementation uses a two-stage approach, where in the
first step only a sufficient number of lower-order DCT-coefficients is
used to detect the presence of areas with anomalous permittivity values,
followed by a second step in which the spatial resolution of the model is
enhanced significantly in these anomalous areas to delineate exactly the
location and shape of each structure defect. These anomalous areas are
hereafter also referred to as areas of interest, abbreviated AOIs. In the
second inversion, we fix the relative permittivity values outside the
AOIs to their posterior mean values derived from the first inversion.
This first step is also conveniently referred to hereafter as full-domain
inversion.

To determine the number of retained DCT-coefficients, or the cut-off
frequency of the DCT approach, is a trade-off between spatial resolution
and computational expense. We herein use a synthetic example to il-
lustrate the basic principle of the truncation criterion.

First and foremost, the minimum size of target that we expect to
resolve needs to be determined before applying parameterization. Note
that the full-waveform inversion of crosshole GPR data has the re-
solution limit up to half the dominant signal wavelength [21], which
means any feature less than this scale will be ignored. Therefore in the
first step the choice of the number of lower-frequency DCT-coefficients
should ensure that the reduced-order DCT representation is capable of
revealing the presence of possible defects with minimum resolvable
size. For instance, suppose we employ a crosshole GPR system with
dominant frequency, fm=450 MHz to work in an underground struc-
ture with relative permittivity, εr=12. Then the dominant wavelength,
λm can be calculated as = = =ελ v f c f/ ( / )/ 0.2rm m m m, where v and c
denote the EM wave velocities in the underground structure and va-
cuum, respectively. Thus the minimum length that can be resolved by
the crosshole GPR measurement with full-waveform inversion is
Lmin= λm/2=0.1 m.

We now create a synthetic unit square εr field with grid size of
0.02m × 0.02m as the reference model (see Fig. 1a), in which a 0.1m
× 0.1m (half wavelength) square-shaped defect is simulated using
εr=16, higher than εr=12 for the surrounding medium. Note that in
real cases the synthetic model dimension and grid size should be the
same as those of the forward model in the FDTD-DCT-DREAM(ZS) fra-
mework. Next, we transform the reference matrix into the frequency
domain using DCT and reconstruct the εr field with different numbers of
lower-order DCT-coefficients. Fig. 1 b to f presents the reconstructed εr
fields using d = (b) 64, (c) 100, (d) 144, (e) 196 and (f) 256 DCT-
coefficients, respectively. It is obvious that as the number of retained
DCT-coefficients increases, the reconstructed εr field resolves better the
defect. In Fig. 1 b (d=64) and c (d=100), a blurred higher εr area in
the center of the reconstructed model can be noticed that indicates the
presence of the defect. In Fig. 1d, the use of d=144 DCT-coefficients
reproduces a much more clear higher εr area, providing us better con-
fidence of the presence of the defect. When this number further in-
creases to d=196 (Fig. 1e) and 256 (Fig. 1f), the defect area becomes
sharper and more concentrated. By visual inspection of the re-
constructed εr fields, the choice of d=144 DCT-coefficients is appro-
priate for the first inversion step as it indicates strongly the presence of
the defect while remains a relatively small number. As for the second
step, a larger proportion of DCT-coefficients is needed to recover more
spatial details, while this number should be also computationally af-
fordable.

In order to quantify the determination of the number of DCT-coef-
ficients, we plot in Fig. 1g the correlation coefficients between the
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reference model and its reduced order DCT representations. The cor-
relation coefficient increases rapidly to 0.82 as the number of DCT-
coefficients reaches 144, and then goes up slowly to 1.0 until the
number approaches the full parameter domain. The marginal increase
demonstrates that the added benefit of additional DCT-coefficients be-
yond d=144 is very limited to improve the reconstructed εr field. This
analysis confirms our findings in the previous visual inspection that the
use of d=144 DCT-coefficients reveals the presence of the defect, and
more DCT-coefficients improve only spatial details. Therefore, the ap-
propriate number of DCT-coefficients, d=144 for this example, can be
selected at the end of the sharp increase period of the correlation
coefficient curve. To sum up, the number of lower-frequency DCT-
coefficients can be determined by investigating a synthetic εr model
with minimum resolvable target using visual inspection and correlation
analysis of reduced-order DCT representations.

3. Real-world application of FDTD-DCT-DREAM(ZS) framework

Numerical examples have proven the usefulness and applicability of
the FDTD-DCT-DREAM(ZS) framework in our previous work [41]. We
now evaluate the merits of this inversion method by application to
waveform data measured by crosshole GPR in a field diaphragm wall
model experiment. We first describe the actual experiment and data
acquisition, followed by a detailed description of our experiment results
and findings.

3.1. Diaphragm wall model and data acquisition

We built a reinforced concrete diaphragm wall model below the
ground surface at an experimental site in Shanghai, China. The ex-
perimental structure is 3.0 m wide (x direction), 5.0 m long (y direc-
tion), and 4.0 m deep (z direction), and is made up of four concrete
walls with thickness of 0.35m (see Fig. 2a). Inside the front facing wall,
two 60mm wide vertical boreholes are drilled spaced 1.5m apart. At a
depth of 2.0m in the front wall, two cube-shaped defects, coined A and
B, are created with edge lengths of 0.25m and 0.15m, respectively.
These defects are clearly visible in Fig. 2, and consist of a mix of con-
crete and soil, reminiscent of construction deficiencies in material
composition.

After the concrete structure was finalized, a stepped-frequency
crosshole GPR experiment was carried out using a vector network
analyzer (VNA), a dipole transmitter and receiver antenna with fre-
quency band from 210 to 560MHz in the left and right-borehole, re-
spectively, and a computer for radar system control and data storage.
Further details on the hardware and experiment setup can be found in
[50]. In summary, the generator of the VNA creates an EM signal (radar

wave) which is emitted through a coaxial cable to the transmitter an-
tenna in the left borehole, and radiated into the surrounding (under-
ground) material. The resulting signal travels through the concrete
structure, and is captured by the receiver antenna in the right borehole.
The retrieval is then transmitted to the VNA receiver by a coaxial cable
for measurement in the frequency domain. The measured data points
are subsequently stored on the computer. Stepped-frequency measure-
ments were made in the range from 100 to 800MHz using many dif-
ferent depths for the transmitter (T) and receiver (R) antennas. These
antenna depths are spaced 0.1 m apart and are marked with red dots (T)
and black crosses (R), in the left and right borehole, respectively (see
Fig. 2b). Each waveform measured by the VNA consisted of 101 data
points.

To maximize information retrieval from the diaphragm wall model,
we perform two separate GPR-experiments and collect data using zero-
offset profiling (ZOP) and multi-offset gathers (MOG). Both these
methods require two closely spaced and parallel boreholes. In ZOP, the
transmitter and receiver antennas are aligned horizontally and lowered
vertically in tandem to common measurement depths in the two bore-
holes. To maintain a zero-offset of the transmitter and receiver an-
tennas, the maximum measurement depth is equivalent to the location
of the bottom red dot in the left borehole (z=3.6 m). MOG, on the
contrary, does not impose restrictions on the alignment of the trans-
mitter and receiver antennas. Instead, the two antennas are allowed to
move independently of each other. This measurement approach in-
creases drastically the number of antenna pairs (27× 30=810 trans-
mitter-receiver combinations) that can be measured, thereby enhancing
considerably information extraction from the concrete structure of in-
terest.

We present in Fig. 3 the ZOP data (in time domain) and project the
measured waveform of each observation depth onto the front-facing
concrete wall. The depth that is used to portray each waveform aligns
exactly with the vertical position of the transmitter-receiver antenna
pair. The ZOP data lack the spatial resolution and information deemed
necessary to recover adequately the main features of the material (di-
electric) properties of the concrete structure. Nevertheless, the zero-
offset waveforms are relatively easy to acquire and interpret, and
therefore serve as a preliminary investigation into the presence of
structure defects. In Fig. 3a, most of the traces appear rather similar,
with the exception of those measured at a depth of 1.9, 2.0, and 2.1m
that are plotted in red. The functional shape of these traces differs
substantially from the waveforms measured immediately above and
below this zone. Indeed, the aberrant traces exhibit a (somewhat) de-
layed first-arrival traveltime and much lower amplitude than their
counterparts plotted at all the other measurement depths (see Figs. 3b
and 3c). These findings suggest the presence of one or more objects with

(a)

d = 144

εr (-)

(b) (c)

(d) (e) (f)

(g)

Fig. 1. Determination of the retained number of DCT-coefficients using a synthetic εr model: (a) Reference εr field, (b–f) reconstructed εr fields using (b) d=64, (c)
d=100, (d) d=144, (e) d=196, and (f) d=256 DCT-coefficients, and (g) correlation coefficients between the reference model and reconstructed εr fields using
different numbers of DCT-coefficients.
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permittivity much larger than that of the surrounding concrete matrix.
Based on these preliminary findings, we can now simplify our analysis
by focusing only on a selected portion of the concrete wall between 1.0
and 2.5m depth which encloses the area of the three aberrant traces.

3.2. Inversion result

We now use the FDTD-DCT-DREAM(ZS) framework to recover the εr
values of the concrete wall from MOG data. We use the 2D-FDTD model
with a regular grid consisting of square cells of 0.02× 0.02 m to solve
Maxwell's equations for the selected 1.5×1.5 m portion of the concrete
wall. We characterize the relative permittivity values of the

75× 75=5625 nodes using d=14×14=196 DCT-coefficients and
sample the DCT-coefficients in the logarithmic (log 10) space using
MCMC simulation with the DREAM(ZS) algorithm. We calculate the
posterior density of each parameter vector,m, using a bounded Jeffreys'
prior [51] equivalent to =p m( ) [log (10), log (20)]d 10 10U and implement
the likelihood function of Eq. (5), where a b[ , ]dU denotes the d-variate
uniform distribution with lower and upper bound equal to a and b,
respectively.

The DREAM(ZS) algorithm is executed with K=4 different chains
using default settings of the algorithmic variables [49]. To maximize
computational efficiency, the proposals of each chain are evaluated
simultaneously in parallel on four different processors (nodes) using the

4 
m

z

y

x

T

R
VNA

PC

LAN 
cable

A B

A B

1.5 m

0

1

2

3

4
310

z(
m

)

x (m)
(a) (b)

T R

#1
#1

2

coaxial cables

Fig. 2. (a) Overview of the experimental site and concrete underground structure used in our stepped-frequency crosshole GPR-experiment, and (b) crosshole GPR
survey configurations. The two cube-shaped items (A and B) consist of a mix of concrete and soil, and serve as structure defects in our analysis. The red dots and black
crosses signify the depths of the transmitter and receiver antennas, respectively, that are used to characterize the material properties of the concrete structure.

)c()b()a(

Fig. 3. Measured zero-offset profiling (ZOP) data: (a) ZOP waveforms, (b) first-arrival travel times, and (c) first-cycle amplitudes.
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distributed computing toolbox of MATLAB. This multi-core im-
plementation results in an almost linear speed-up of DREAM(ZS) for
computationally demanding models such as 2D-FDTD, thereby reducing
the required CPU-time to reach convergence to a limiting distribution to
about 1/4 of that of a serial implementation of the algorithm. What is
more, to enhance the acceptance rate of proposals, the number of
crossover values, nCR, and scaling factor of the jump rate, β0, are set to
20 and 0.25, respectively.

The toolbox of DREAM(ZS) includes various non-parametric and
parametric tests to determine when convergence of the sampled chain
trajectories to a limiting distribution has been achieved. We use herein
the multi-chain R-statistic of [52] which compares for each parameter
the within-chain and between-chain variance. We compute this con-
vergence diagnostic using the last 50% of the sampled values in each
chain. To officially declare convergence, the value of ≤R 1.2j for each
parameter, j={1,…,d}. Once convergence is achieved, we use the last
50% of each chain to summarize model parameter and predictive un-
certainty.

We summarize the CPU budget of the inversion using the compu-
tational time unit (CTU) diagnostic introduced by [38]. We deliberately
use this metric as it is independent of the clock-speed of the processors.
One CTU is simply equivalent to one generation of the DREAM(ZS) al-
gorithm, or K distributed model evaluations of the 2D-FDTD model. The
actual CPU-time (in seconds) scales linearly with the number of CTUs,
that is, CPU= αCTU, where α signifies the average time it takes for the
processors to complete a single 2D-FDTD model evaluation. In this case,
a computational budget of about 164,000 CTUs (1 CTU = 5.11 s) is
needed to reach convergence with the DREAM(ZS) algorithm to the
posterior distribution of the d=196 DCT-coefficients.

Before we proceed with the results of full-waveform inversion of the
MOG data, we first present in Fig. 4a the relative permittivity field of
the concrete wall recovered by ray tomography. Transmitter and re-
ceiver antenna positions are also marked in this plot with red dots and
black crosses, respectively. This approach uses the first-arrival tra-
veltime data only, and therefore leads to a rather poor characterization

with poor resolution, and inaccurate size and shape of the two structure
defects. Nevertheless, the measured traveltime data contain sufficient
information to detect the presence of two anomalous objects in the
concrete wall.

Now we present the results of our FDTD-DCT-DREAM(ZS) frame-
work. The posterior mean εr field (Fig. 4b) portrays clearly the presence
of two objects, spaced 75 cm apart, with much higher permittivity than
the surrounding concrete matrix. The location of these two objects is in
excellent agreement with the position of structure defect A and B in the
concrete wall. Yet, the resolution of the image is insufficient to warrant
a highly detailed characterization of the boundaries and shapes of both
defects. The two defects appear oval, whereas a cube-shaped mix of
concrete and soil was used in the wall. The associated variance (Fig. 4c)
reveals the uncertainty of the εr value at each spatial location. We also
select three parameters at different locations 1, 2, and 3 marked with
“*” in Fig. 4b, and plot their marginal prior (blue) and posterior (red)
histograms in in Fig. 4 d to 4f. Notice that the posterior distributions are
noticeably more refined than the priors, which indicates that the wa-
veform data contain important information regarding the subsurface εr
parameters.

4. Case studies of two-stage inversion approach

To illustrate the various elements of our two-stage inversion ap-
proach, we first carry out a numerical experiment with known locations
of the structure defects, then proceed with the real-world data gathered
in the previous field experiment.

4.1. Case study I: numerical experiment

We consider a unit square concrete structure that is buried in the
ground. The relative permittivity field, εr of this structure is shown in
Fig. 5a, and defines our synthetic truth. The concrete is of homogeneous
composition, and thus has a constant relative permittivity with the
exception of the two defect areas marked with the letters A (0.2 m ×

)c()b()a(

)f()e()d(

* 1

* *2 3

* 1 * 2 * 3

( 10-3)

εr (-) εr (-) εr (-)

Fig. 4. (a) εr field of the concrete diaphragm wall derived from the MOG first-arrival traveltime data using ray tomography, (b) posterior mean εr field and (c) the
associated variance derived from full-domain inversion with the FDTD-DCT-DREAM(ZS) framework using d=196 DCT-coefficients, and (d)–(f) marginal prior (blue)
and posterior (red) histograms of selected parameters at locations 1, 2, and 3 marked with “*” in (b).
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0.2 m) and B (0.1m × 0.1m), respectively, that consist of a mix of
concrete and soil. The relative permittivity of these two structure de-
fects, εr=16, is much higher than the value of εr=12 for the sur-
rounding matrix. We now perform a crosshole GPR experiment using
multi-offset profiling with 11 × 26 transmitter-receiver antenna pairs.
The antenna setup is depicted graphically in Fig. 5a using 11 equidi-
stant intervals of 0.1m for the position (red dots) of the transmitter
antenna in the left borehole, and 26 equally spaced intervals for the
receiver antenna (black crosses) at the right-hand-side of the concrete
structure. We implement the 2D-FDTD model developed by Gianno-
poulos [43] and simulate the crosshole GPR experiment using a grid
size of 0.02m × 0.02m. The first-arrival traveltimes and waveforms
are computed for the 11 × 26 transmitter-antenna pairs. These data are
subsequently corrupted with artificial white noise using a measurement
error standard deviation equal to 5% of the mean value of all the si-
mulated values. This perturbed data set now serves as our measurement
data set, ∼Y , and is used to back out the relative permittivity field with
our two-stage inversion methodology. As the noise level has little im-
pact on the maximum a-posterior (MAP) or posterior mean solution
within our FDTD-DCT-DREAM(ZS) framework, it will not be discussed
herein. Detailed analysis of the noise effect on the accuracy and relia-
bility of the inversion results can be found in [41].

Before we proceed with our Bayesian inversion methodology, we
first present in Fig. 5b the relative permittivity values, εr, derived from
ray tomography using first-arrival traveltime data and a straight ray-
based forward model. This method points out correctly the presence of
a structure defect at location A, yet fails to recognize defect B.

We now present the results of the FDTD-DCT-DREAM(ZS) framework
of [41] using eight different trials with an increasing number of DCT-
coefficients. The FDTD forward model used in all these inversions im-
plements the exact same regular grid of 0.02m × 0.02m used pre-
viously to create the artificial observations, ∼Y . If a Cartesian para-
meterization were used, then a total of 50× 50=2500 values of εr
need to be estimated to characterize the relative permittivity field of the
unit square concrete structure. This equates to one unknown (para-
meter) for each individual grid cell. Instead, we use the DCT to reduce
drastically the dimensionality of the parameter space, and sample the
DCT-coefficients in the logarithmic (log 10) space using MCMC simu-
lation with the DREAM(ZS) algorithm. We calculate the posterior density
of each parameter vector, m, using a bounded Jeffreys' prior [51]
equivalent to =p m( ) [ log (10), log (18)]d 10 10U , implement the likelihood
function of Eq. (4), and use the same settings of the DREAM(ZS) algo-
rithm as in the field experiment.

Fig. 6 displays the posterior mean εr field derived by the FDTD-DCT-
DREAM(ZS) framework using (a) 36, (b) 64, (c) 100, (d) 144, (e) 196, (f)
256, (g) 324, and (h) 400 DCT-coefficients. This figure highlights sev-
eral important findings. In the first place, notice that all eight inversions
resolve correctly the relative permittivity of the main matrix of the unit
square concrete structure. Note that the inferred permittivity values of

the concrete matrix appear rather similar (smooth fields) for the fewest
number of DCT-coefficients, yet exhibit more variability with the use of
a larger number of DCT-coefficients. In the second place, all the in-
versions infer correctly the presence of structure defect A. The spatial
resolution of each parameterization is sufficient to warrant inference of
this 0.2× 0.2 m structure defect. In the third place, notice that more
than a hundred DCT-coefficients appear necessary to detect the pre-
sence of structure defect B. Indeed, this defect is impossible to delineate
successfully with a relatively low number of DCT-coefficients, as such
parameterizations do not provide the required level of detail and spatial
resolution necessary to detect the presence of concrete defects on the
order of 0.1× 0.1 m (or smaller). Finally, the larger the number of
DCT-coefficients that is used, the better the shape of both structure
defects is resolved, and the better the agreement between the posterior
mean εr values and their counterparts of the reference field. Indeed,
when going from left to right across the bottom panel of Fig. 6 the two
structure defects appear sharper and increasingly well resolved and
better match their actual shape depicted previously in the reference
permittivity field of Fig. 5a. Altogether, these results suggest that the
measured waveforms contain sufficient information to warrant an ac-
curate characterization of the relative permittivity field, εr, and em-
bedded defects of the unit square concrete structure.

The results presented in Fig. 6 have provided strong support for the
intuitive hypothesis that the use of a larger number of DCT-coefficients
should enhance the spatial characterization and resolution of the per-
mittivity values, εr, of some medium of interest. Indeed, the use of a
larger number of DCT-coefficients enhances the level of spatial detail
that can be recovered by the inversion, a necessity to recover closely
and sharply concrete defects of man-made underground structures. Yet,
the pursuit of structure defects poses two important challenges. First,
the observed GPR waveform data might not contain enough informa-
tion to warrant an accurate identification of all of the DCT-coefficients
used in the inversion. This is one of the main reasons that we implement
a Bayesian approach to characterize properly the uncertainty of the
inferred relative permittivity values. Second, the number of DCT-coef-
ficients required to recover structure defects can pose significant com-
putational challenges, as the number of FDTD simulations required by
DREAM(ZS) to converge adequately to the posterior distribution, in-
creases rapidly with increasing dimensionality of the parameter space.
In Fig. 7a we investigate in more detail the relationship between the
number of DCT-coefficients used to characterize the relative permit-
tivity values of the unit square concrete structure and the required
computational budget of DREAM(ZS) to approximate the posterior
parameter distribution. We also plot in Fig. 7b the evolution of the
normalized root-mean-square error (NRMSE)
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between the posterior mean simulated waveforms corresponding to the
relative permittivity fields of Fig. 6 and their observed counterparts,
where ∼Ymax { } and ∼Ymin { } denote the maximum and minimum value of
the measured data, respectively.

We can summarize the main findings as follows. The results in
Fig. 7a illustrate that the computational budget required by the FDTD-
DCT-DREAM(ZS) framework increases almost linearly with the number
of DCT-coefficients used to characterize the relative permittivity field of
the unit square concrete structure of interest. Closer inspection of the
data points demonstrates that the required CPU-budget approximately
doubles with a twofold increase in the number of DCT-coefficients. This
linear scaling is an encouraging result, and demonstrates that the
DREAM(ZS) algorithm scales well with increasing parameter di-
mensionality. What is more, the presented data points appear closely
aligned around the 1:1 line suggesting that our framework is well de-
signed. The results in Fig. 7b demonstrate that the NRMSE between the
N simulated and observed waveforms decreases with the use of a larger

εr (-)(a) (b)

A

B

Fig. 5. Case study I: (a) Synthetic εr field, and (b) εr field derived from ray
tomography. The red dots and black crosses mark the vertical positions of the
transmitter and receiving antennas, respectively.
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number of DCT-coefficients. This finding is not surprising and in
agreement with the common trade-off found between the goodness of
fit of a model and its associated complexity. Indeed, the level of spatial
detail that can be recovered by the FDTD-DCT-DREAM(ZS) framework
increases with the use of a larger number of DCT-coefficients. This al-
lows the inversion to describe accurately the relative permittivity va-
lues of the unit square concrete structure, and delineate sharply the
embedded structure defects. This has been demonstrated previously in
Fig. 6. Note, however that the benefits of a more complex para-
meterization decreases rapidly with the number of DCT-coefficients
that is used in the inversion. Whereas, the NRMSE decreases from about
0.068 to 0.053 (within-sample) when going from d=36 to d=64
DCT-coefficients, this improvement in the quality of fit is substantially
lower between using d=324 and d=400 parameters.

The results presented thus far demonstrate the ability of the FDTD-
DCT-DREAM(ZS) to recover successfully the relative permittivity values
of the concrete structure. Nevertheless, a substantial number of DCT-
coefficients is required to delineate sharply the structure defects (see
Fig. 6), at the expense of a relatively large computational effort (see
Fig. 7a) required to satisfy the convergence thresholds of the
DREAM(ZS) algorithm. This CPU-cost, although affordable with the use
of state-of-the-art processors, complicates somewhat practical applica-
tion of the FDTD-DCT-DREAM(ZS) framework, certainly when this

methodology is used to detect (small) defects in concrete structures
whose size extends much beyond the unit square domain used herein.
To reduce further the computational requirements of the FDTD-DCT-
DREAM(ZS) framework, we now investigate the benefits of a two-stage
parametrization approach in which a low-resolution full-domain in-
version (first step) is followed by a subsequent inversion (second step)
during which the number of DCT-coefficients is enhanced substantially,
but limited only to areas of the concrete structure that were shown to
exhibit anomalous permittivity values in the first inversion. This ap-
proach takes advantage of the fact that only relatively few DCT-coef-
ficients are required to provide a sufficient resolution necessary to
characterize adequately the nearly constant relative permittivity values
of the concrete matrix. We posit that this two-stage approach should
provide an important CPU-time savings compared to the original FDTD-
DCT-DREAM(ZS) framework, as spatial detail is restricted only to areas
of the concrete structure that have been classified as anomalous.

Fig. 8a presents the results of the first step of our two-stage ap-
proach and plots the posterior mean relative permittivity field of the
unit square concrete structure derived from full-domain inversion using
d=144 DCT-coefficients. This field is identical to the one presented
previously in Fig. 6d, and is in good agreement with the synthetic re-
ference field of Fig. 5a. Indeed, the inferred relative permittivity field
demonstrates unequivocally the presence of two structure defects

(a) (b) (c) (d)

(e) (f) (g) (h)

εr (-)

εr (-)

Fig. 6. Case study I: Posterior mean εr field derived from full-domain inversion with the FDTD-DCT-DREAM(ZS) framework using (a) 36, (b) 64, (c) 100, (d) 144, (e)
196, (f) 256, (g) 324, and (h) 400 DCT-coefficients.

(a) (b)

Fig. 7. Case study I: (a) Computational budget required for each DCT-parameterization as measured by the number of CTUs, and (b) Normalized RMSE between the
observed and posterior mean simulated GPR waveforms for each model parameterization used herein to characterize the relative permittivity values of the unit
square concrete structure.
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(yellow areas) with values of εr that are substantially higher than their
counterparts of the concrete matrix. Note, however, that the shape of
the structure defects is rather poorly resolved as their oval form de-
viates considerably from their squared counterparts of the reference
permittivity field. We therefore investigate these two anomalous areas
in more detail and divide the unit square concrete structure in four
different pieces of 0.5× 0.5 m (see dotted red lines in Fig. 8a) that each
are made up of 25×25 grid cells. We now assume posterior mean
values of εr for the upper-left and bottom-right squares, respectively,
and proceed with a second inversion that infers only the relative per-
mittivity values of the remaining two squares, using d=144 and
d=100 DCT-coefficients for AOI-1 and AOI-2, respectively. We delib-
erately use a larger number of DCT-coefficients for AOI-1 as this
anomalous area appears noticeably smaller than its counterpart AOI-2,
thus requiring a larger spatial resolution to delineate exactly this
structure defect.

Fig. 8b presents the results of our second inversion. It is evident that
this second inversion has enhanced significantly the spatial resolution
of the relative permittivity values in the bottom-left (AOI-1) and top-
right (AOI-2) 0.5× 0.5 m squares. The two structure defects are easy to
recognize with values of the relative permittivity that are much larger
than those of the surrounding matrix. The location of the structure
defects and their respective εr values have hardly changed from the full-
domain inversion in step 1. Nonetheless, the second inversion is ne-
cessary to delineate exactly both anomalous areas. Indeed, their re-
spective shapes are now in excellent agreement with their counterparts
of the reference field.

To provide further insights into the quality of fit, please consider
Fig. 9 that presents a comparison between the observed (red dots) and
posterior mean simulated waveforms derived from full-domain inver-
sion (solid blue lines) and AOI inversion (solid black lines) using a fixed
depth of z=0.5 m of the transmitter antenna and 26 different positions
of the receiver antenna. The positions of the receiver antenna are
equivalent to the depths of the plotted waveforms. Note that we show
only a small portion of the waveform data, large enough to demonstrate
the main findings.

The two different inversions exhibit an excellent fit to the observed
waveform data. This finding is perhaps not surprising as the stage-1 and
stage-2 inversions were shown to both recover the main features of the
εr reference field of the concrete structure. Some subtle differences
between both inversions are difficult to see in the “big” plot, yet appear
readily apparent in an enlarged view. Here we present a subplot in the
left-hand-side of Fig. 9, which presents a zoomed inset of the waveform
in the small black rectangle measured at a receiver antenna depth of
0.44m (other waveforms have the similar pattern). This subplot de-
monstrates that the AOI inversion provides the closest fit to the ob-
served GPR waveform data. The enhanced spatial detail of this stage-2
inversion allows the 2D-FDTD model to more accurately track the dif-
ferent features of the measured GPR waveforms.

Fig. 10 summarizes in a bar chart the CPU-efficiency of our two-
stage inversion approach. This plot presents separately the number of
CTUs required by the full-domain (stage-1: d=144) inversion (gray
bar) and the AOI (stage-2) inversion (blue bar). For completeness, we
also include in the horizontal orange bar the number of CTUs required
by the original FDTD-DCT-DREAM(ZS) framework using d=400 DCT-
coefficients. This number of DCT-coefficients is required to reach
NRMSE values which are approximately similar to those derived from
the two-stage inversion approach (see bottom panel). Altogether, the

AOI-1

AOI-2

εr (-)(a) (b)

Fig. 8. Case study I: Posterior mean εr field derived by (a) full-domain inversion
using 144 DCT-coefficients and (b) two-stage inversion using d=144 and
d=100 DCT-coefficients for AOI-1 and AOI-2.

Fig. 9. Case study I: Comparison of the observed (solid red lines) and posterior
mean simulated waveforms using full-domain inversion (dotted blue lines), and
AOI inversion (dotted black lines) for a fixed depth of the transmitter antenna at
z=0.5 m, and 26 different vertical positions of the receiver antenna. These
positions of the receiver antenna have been depicted previously in Fig. 5a
(black crosses), and correspond exactly to the depths of the plotted waveforms.

Full-domain inversion using 400 DCT-coefficients
Stage-1: full-domain inversion using 144 DCT-coefficients
Stage-2: AOI inversion using 144 + 100 DCT-coefficients

N
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CT
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33600 26800
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Fig. 10. Case study I: Bar chart which summarizes the computational efficiency
(top panel) and goodness of fit (bottom panel) of the FDTD-DCT-DREAM(ZS)

framework (in orange) and two-stage inversion approach (gray and blue).
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two bar charts demonstrate that the proposed two-stage inversion ap-
proach requires much fewer FDTD model simulations than the FDTD-
DCT-DREAM(ZS) framework to reach equivalent results and perfor-
mance.

The two-stage inversion approach uses more wisely CPU-resources
by focusing primarily on those areas of the concrete structure that have
been classified as anomalous. This approach sacrifices resolution in the
main matrix of the concrete structure, in lieu of a much more detailed
characterization of the aberrant permittivity areas. We can quantify the
spatial resolution that is used to back out the structure defects by
looking at the number of DCT-coefficients that is used in each anom-
alous permittivity area. The higher this ratio is, the more features
(spatial detail) can be recovered. The original FDTD-DCT-DREAM(ZS)

framework uses d=400 DCT-coefficients to characterize the relative
permittivity values of 2500 grid cells, that is, an average of 0.16 DCT-
coefficient per grid cell. The second inversion used in our two-stage
approach uses a total of d=144 and d=100 DCT-coefficients to de-
scribe the relative permittivity values of AOI-1 and AOI-2, respectively.
These two areas of 0.5× 0.5 m are each made up of 625 grid cells. This
results in a ratio of about 0.23 and 0.16 DCT-coefficient per individual
grid cell of AOI-1 and AOI-2, respectively. These listed ratios support
the use of a two-stage inversion approach and explain the different
findings of this case study.

4.2. Case study II: field experiment

We now evaluate the merits of our two-stage inversion approach by
application to MOG waveform data measured by crosshole GPR in the
field experiment described in the previous section.

Fig. 11a presents the results of the first step of our two-stage ap-
proach and plots the posterior mean relative permittivity field of the
front panel of the experimental structure derived from full-domain in-
version using d=144 DCT-coefficients. It is evident that this field has a
lower spatial resolution than its counterpart of d=196 DCT-coeffi-
cients (see Fig. 4b), yet the level of detail of the image is sufficient to
expose the two structure defects. Note that this inversion requires only
78,400 CTUs to satisfy the convergence thresholds of the 144 DCT-
coefficients, which is less than half the computational budget of
164,000 CTUs required for d=196 DCT-coefficients.

To further refine our results, we define two AOIs of size 0.54m ×
0.54m (AOI-1) and 0.4m × 0.4m (AOI-2), respectively (see Fig. 11a),
and proceed with our AOI inversion approach (step-2). We use d=144
and d=100 DCT-coefficients to characterize the εr values of both areas
- which equates to the use of about 0.20 and 0.25 DCT-coefficients per
individual grid cell of AOI-1 and AOI-2, respectively. This ratio is much
larger than that used by the full-domain FDTD-DCT-DREAM(ZS) fra-
mework (which is 0.03), and enhances considerably the spatial detail
that can be resolved within each anomalous area. About 60,000 CTUs

are required for this second-stage inversion to reach convergence to the
posterior distribution of the DCT-coefficients. The total computational
effort of two-stage inversion thus equates to 78,400 + 60,000 =
138,400 CTUs. Both defects now appear sharply demarcated and their
features (size and shape) well resolved and in good agreement with the
features of the two defects (A and B) in the concrete wall (see Fig. 11b).
This enhanced characterization of the relative permittivity field reduces
the NRMSE between the observed and posterior mean simulated wa-
veforms from 0.262 to 0.096. These findings are encouraging and
supports practical application of our two-stage inversion method.

We now turn our attention to the computational budget and good-
ness of fit of the original FDTD-DCT-DREAM(ZS) framework and our
two-stage inversion approach. Fig. 12 summarizes in a bar chart the
CPU-efficiency of our two-stage inversion approach. This plot presents
separately the number of CTUs required by the first-stage full-domain
inversion using d=144 DCT-coefficients (gray bar), and the second-
stage AOI inversion using d=144+100 DCT-coefficients (blue bar).
This number is 15% less than the number of CTUs required by the
original FDTD-DCT-DREAM(ZS) framework using d=196 DCT-coeffi-
cients (orange bar). Meanwhile, the two-stage inversion approach
reaches a slightly higher NRMSE value than that derived from the
original FDTD-DCT-DREAM(ZS) framework (see bottom panel). Never-
theless, the two-stage inversion approach still resolves better spatial
details (see Fig. 11b). Altogether, the proposed two-stage inversion
approach requires much fewer FDTD model simulations than the FDTD-
DCT-DREAM(ZS) framework to reach equivalent results and perfor-
mance.

5. Summary and conclusion

In a recent paper by [41] we have developed a Bayesian inversion
method of crosshole GPR experiments on man-made underground
structures to guide detection of concrete defects. This method uses as
main building blocks two-dimensional finite-difference time-domain
solution of the Maxwell's equations, the discrete cosine transform, and
MCMC simulation with the DREAM(ZS) algorithm to explore rapidly and
efficiently the posterior distribution of the relatively permittivity field
of the concrete structure of interest. The usefulness and applicability of
the FDTD-DCT-DREAM(ZS) framework was demonstrated on synthetic
test examples involving a unit square underground structure with dif-
ferent defects. In this paper, we evaluated further the merits of this
method using measured waveform data from a crosshole GPR-experi-
ment of a diaphragm wall model. The two structure defects in this wall
were successfully resolved by the FDTD-DCT-DREAM(ZS) framework.

AOI-1 AOI-2

εr (-)(a) (b)

Fig. 11. Case study II: Posterior mean εr fields derived by two-stage inversion
using the MOG waveform data. (a) Stage-1: full-domain inversion using
d=144 DCT-coefficients, and (b) stage-2: AOI inversion using d=144 and
d=100 DCT-coefficients for AOI-1 and AOI-2, respectively.

Full-domain inversion using 196 DCT-coefficients
Stage-1: full-domain inversion using 144 DCT-coefficients
Stage-2: AOI inversion using 144 + 100 DCT-coefficients
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Fig. 12. Case study II: Bar chart which summarizes the computational effi-
ciency (top panel) and goodness of fit (bottom panel) of the full-domain FDTD-
DCT-DREAM(ZS) framework (in orange) and two-stage inversion approach (gray
and blue).
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The results of this real-world case study reiterated the relatively
large computational resources required by FDTD-DCT-DREAM(ZS) fra-
mework to solve for the dielectric properties of the diaphragm wall.
Almost all of these resources are consumed by the repeated numerical
solution of Maxwell's equations necessary to extract the wall's relative
permittivity field from the measured waveform data. Of course, we can
speed-up our framework by using fewer DCT-coefficients, but this ap-
proach sacrifices spatial resolution and may not expose sufficiently
structure defects, particularly if these anomalous areas appear rela-
tively small in comparison to the surrounding structure. We therefore
introduced herein a two-stage inversion method to help delineate, at
reduced CPU-cost, the exact location and shape of small structure de-
fects. Herein, a low-resolution inversion composed of relatively few
DCT-coefficients (stage-1) is used to determine roughly the presence of
structure defects, followed by a second inversion (stage-2) with much
enhanced resolution in those areas with anomalous (suspicious) per-
mittivity values. This two-stage inversion approach uses more wisely
CPU-resources by focusing primarily on those areas of the concrete
structure that have been classified as anomalous. This approach sacri-
fices resolution in the main matrix of the concrete structure, in lieu of a
much more detailed characterization of the aberrant permittivity areas.

We illustrated the benefits of this two-stage inversion approach
using artificial waveform data from a synthetic GPR-experiment on a
unit square concrete body with two embedded structure defects, and
the measured waveform data of the diaphragm wall. Our results de-
monstrate that the proposed two-stage inversion method recovers suc-
cessfully the location and shape of structure defects, at a computational
cost that is considerably lower than the original FDTD-DCT-DREAM(ZS)

framework.
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