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ABSTRACT OF DISSERTATION 
 

Navigating the Human Epigenome through Random Forests 

by  

 

Nisha Rajagopal 

 

Doctor of Philosophy in Bioinformatics and Systems Biology 

 

University of California, San Diego, 2013 

 

Professor Bing Ren, Chair 

Professor Wei Wang, Co-Chair 

 

With the recent identification of over 100 histone modifications in 

mammalian cell-types, there is an urgent need to discover the minimal set of 

modifications that can completely characterize a genomic element. Of particular 

interest are transcriptional enhancers that play critical roles in cell-type specific 

gene expression but are difficult to characterize because they often act in a distal 

manner to the gene they regulate. We developed a Random-Forest based 

algorithm, RFECS (Random Forest based Enhancer identification from 

Chromatin State) for genome-wide prediction of enhancers which allowed us to 

identify the most informative and robust set of three chromatin marks for 

enhancer prediction. In addition, RFECS was seen to have improved accuracy of 

prediction over previous methods.  
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 Applying this method to other genomic elements, we identified the minimal 

set of histone modifications required for prediction of promoters and gene bodies. 

Further, we elucidated the distinctive localization of histone lysine acetylations at 

enhancers, promoters and gene bodies, and obtained novel insights into the 

association of chromatin modification patterns with splicing. Using our algorithm, 

we predicted enhancers and promoters in 26 human primary tissues and 6 cell-

lines, including 5 early developmental lineages. This lead us to the discovery of a 

novel class of cis-regulatory elements that can behave as enhancers in one cell-

type and promoters in another. Further, we were able to associate the 

evolutionary conservation of regulatory sequences with properties such as 

tissue-specificity. 

RFECS is a powerful algorithm with two-fold advantage. First, we can 

identify the most informative set of modifications characterizing or distinguishing 

particular genomic elements, thus enabling an insight into the biological 

mechanism of function at these regions. Second, we can make accurate 

predictions of enhancers and promoters in a genome-wide fashion, enabling the 

comparison of regulatory mechanisms across various human tissues or cellular 

conditions. Variations of histone modification patterns at the predicted tissue-

specific cis-regulatory elements may substantially influence gene expression, 

which could potentially explain the distinct phenotypes of genotypically identical 

tissues. 
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Chapter1.Introduction 
 

 
For many centuries now, people have debated the relative importance of 

the innate qualities of the individual versus the impact of personal experiences. 

With the sequencing of the human genome and discovery of many genes 

associated with several traits, the nature versus nurture debate has been brought 

to the limelight once again. While the genetic encoding in the DNA comprises of 

the “nature” side of the debate, the field of epigenetics can be said to take the 

side of “nurture”.  

Epigenetics has been defined as any heritable change in gene function 

that cannot be explained by changes in DNA sequence alone[1]. While the 

mechanism and extent of heritability is still under study[2,3], it is well-accepted 

that the epigenetic state of a cell can be dynamically regulated under the impact 

of environmental stimuli[4,5]. DNA is not found naked in the cell but is wrapped 

around histone octamers comprising of duplicate copies of 4 different types of 

histones, H2A, H2B, H3 and H4[6]. One of the major kinds of epigenetic changes 

in the mammalian cell are post-translational modifications of the tails of these 

various histones[7]. It is these patterns of histone modification patterns that form 

the basis of my thesis-work. 

As of now, over 130 histone post-translational modifications(PTMs) have 

been discovered using a modified mass-spectrometry based approach[8]. These 

include methylation, acetylation, propionylation, butyrylation, formylation, 
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phosphorylation, ubiquitylation, sumoylation, citrullination, proline isomerization, 

and ADP ribosylation at over 60 amino acid residues in histones[8]. The “histone 

code” hypothesis has been proposed stating that combinations of histone 

modifications may dictate function rather than single histone modifications[9]. 

Such a histone code may be implicated in the regulation of multiple cellular 

functions such as replication, recombination, transcription etc. Histone PTMs are 

thought to contribute to the regulation of such chromatin-templated processes in 

2 main ways[10,11]. First the histone PTMs may change the net charge of 

histone molecules or alter inter-nucleosomal interactions, thereby regulating 

chromatin structure and 2lternative2y to other transcriptional factors[10,11]. 

Second, the combination of histone modifications maybe read by a set of 

“chromatin readers”, or PTM-specific binding proteins, which allow translation 

into a particular function[12,13].  

In order to understand further the localization of histone modifications on a 

genome-wide scale, the ChIP-seq technology[7] has been used to map these 

modifications. The first large-scale study of this kind was carried out in CD4+ T-

cells, which included 20 histone methylations and 18 histone acetylations[14]. 

Later efforts such as the Roadmap Epigenomics consortium and ENCODE have 

expanded the list of cell-types and tissues under investigation[15,16,17]. 

Unsupervised methods have been applied to understand all patterns of 

combinations occurring throughout the genome or at particular genomic 

elements[18,19,20]. Even with over 10 modifications, only a small number of 

chromatin states have been observed[21] emphasizing the redundancy in 
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modifications and the tendency of certain modifications to co-occur. This has 

further lead to the question of reducing the set of modifications to a minimal non-

redundant number that could fully characterize the genome. The observation that 

some genomic elements are characterized by particular combinations of histone 

modifications have been exploited to build predictive models for genome-wide 

discovery of genomic elements such as enhancers, promoters and gene 

bodies[22,23,24,25,26,27]. While promoters and gene bodies may be identified 

based on markers of gene activity such as CAGE[28] or RNA-seq[29] 

respectively, enhancers are particular difficult to identify since they maybe many 

kilobases away from the gene they regulate. The first chapter of my thesis 

involved developing a random-forest based algorithm for genome-wide prediction 

of enhancers from chromatin modifications or RFECS[23] that out-performed 

other existing enhancer prediction algorithms[25,26,27] in terms of accuracy. The 

ability of the algorithm to rank the different variables (histone modifications) by 

their importance in the prediction task, was used to find a minimal set of 3 

modifications that could accurately predict genome-wide enhancers. In the 

second chapter of my thesis, I used this variable ranking feature of the RFECS 

algorithm to address the question of finding informative, non-redundant subsets 

of histone modifications, especially histone acetylations, associated with various 

genomic elements such as promoters, gene bodies, and splice site junctions. 

Enhancers have been shown to be marked by highly cell-type specific 

histone modification patterns that strongly relate to cell-type specific gene 

expression[30]. As a consequence, understanding the changes in enhancer 
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activity across multiple cell-types or conditions could lead to a better 

understanding of the differences between these cellular states. For instance, 

diseased and normal cell-types might vary considerably in their enhancer 

activity[31,32] and many disease-associated mutations are found to be located at 

such distal tissue-specific regulatory regions[33] potentially disrupting the 

enhancer activity in the diseased state. Changes in enhancer activity have been 

well-characterized during development in different organisms as well indicating 

their importance in lineage-specification[32,34]. The next step would be to 

understand the enhancer dynamics across multiple human tissues so as to 

understand better the determinants of cellular identity in the human body. The 

last chapter of my thesis focuses on predicting genome-wide enhancers and 

promoters across 6 cell-lines, at varying stages of development, as well as 26 

primary human tissues. This enabled a comparison of the epigenetic changes at 

tissue-specific regulatory elements across early and late lineages, as well as a 

comparison across various tissue-types and germ layers leading to several novel 

insights into mammalian regulatory dynamics. 
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Chapter 2.RFECS: A Random-Forest based algorithm for Enhancer Identification 
from Chromatin State 

 

Abstract 
 

 Transcriptional enhancers play critical roles in regulation of gene 

expression, but their identification in the eukaryotic genome has been 

challenging. Recently, it was shown that enhancers in the mammalian genome 

are associated with characteristic histone modification patterns, which have been 

increasingly exploited for enhancer identification. However, only a limited number 

of cell types or chromatin marks have previously been investigated for this 

purpose, leaving the question unanswered whether there exists an optimal set of 

histone modifications for enhancer prediction in different cell types. Here, we 

address this issue by exploring genome-wide profiles of 24 histone modifications 

in two distinct human cell types, embryonic stem cells and lung fibroblasts. We 

developed a Random-Forest based algorithm, RFECS (Random Forest 

based Enhancer identification from Chromatin States) to integrate histone 

modification profiles for identification of enhancers, and used it to identify 

enhancers in a number of cell-types. We show that RFECS not only leads to 

more accurate and precise prediction of enhancers than previous methods, but 

also helps identify the most informative and robust set of three chromatin marks 

for  enhancer prediction. 
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Introduction 
 

Enhancers are distal regulatory elements with key roles in the regulation 

of gene expression. In higher eukaryotes, a diverse repertoire of transcription 

factors bind to enhancers to orchestrate critical cellular events including 

differentiation[35,36], maintenance of cell-identity[30,37] and response to 

stimuli[24,38,39].  While enhancers have long been recognized for their 

regulatory importance, the fact that they lack common sequence features and 

often reside far away from their target genes has made them difficult to identify. 

Computational techniques relying on transcription factor motif clustering or 

comparative analyses have had some success in identifying enhancers, but 

these predictions are neither comprehensive nor tissue-

specific[40,41,42,43,44,45].  

Recently, several high-throughput experimental approaches have been 

developed to identify enhancers in an unbiased, genome-wide manner. The first 

is mapping the binding sites of specific transcription factors by ChIP-seq[46]. 

Because this approach requires the knowledge of a subset of transcription 

factors (TFs) that are not only expressed but also occupy all active enhancer 

regions in the cell-type of interest, identification of all enhancers using this 

approach is not a trivial task. The second approach involves mapping the binding 

sites of transcriptional co-activators such as p300 and CBP[24,37,47], which are 

recruited by sequence-specific transcription factors to a large number of 

enhancers[38,48,49]. Since not all enhancers are marked by a given set of co-
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activators[50,51], and ChIP-grade antibodies against these proteins may not 

always be available, systematic identification of enhancers by mapping the 

locations of co-activators is not generally feasible.  A third approach relies on 

identifying open chromatin with techniques such as DNase I hypersensitivity 

mapping[52]. However, since open chromatin regions can correspond to not only 

enhancers, but also silencers/repressors, insulators, promoters[53,54] or other 

functionally unknown sequences occupied by nuclear proteins, this approach 

lacks specificity in enhancer identification. Finally, a fourth approach interrogates 

covalent modifications of histones[21,24,25,26,27] as it was observed that certain 

histone modifications form a consistent signature of enhancers. It is on this 

approach that the present work is focused. 

Previously, we and others observed that distinct chromatin modification 

patterns were associated with transcriptional enhancers[24,54,55]. Specifically, 

active promoters are marked by trimethylation of Lys4 of histone H3 (H3K4me3), 

whereas enhancers are marked by monomethylation, but not trimethylation, of 

H3K4 (H3K4me1).  This chromatin signature has been used to develop a profile-

based method for enhancer discovery[24]. Both unsupervised[21,56] and 

supervised learning approaches have also been employed to exploit chromatin 

modification-based differences to identify enhancers. The supervised machine 

learning techniques include HMM[25,40], neural networks[26] and genetic 

algorithm-optimized SVM[27] based approaches, and have proved to be 

improvements over the profile-based method.  While these methods have led to 

identification of a great number of enhancers in the human and mouse genomes 
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[21,30,57], the current computational techniques have thus far been limited by 

the small number of the training set samples and limited number of chromatin 

modifications examined. Thus, it is possible that these approaches may not fully 

capture the entire range of chromatin modification patterns at enhancer 

elements. With the discovery of ever more histone modifications, it is likely that 

additional chromatin modifications may distinguish enhancers from other 

functional elements in the genome. This additional data should in principle allow 

us to answer the key question: what is the optimal set of modifications required 

for enhancer prediction? 

Some researchers have tried to tackle this issue by using algorithms such 

as simulated annealing[25] or genetic-algorithm optimization[27]. We sought to 

develop a method in which the selection of the optimal set is automatically built 

into the training-process and is easily adapted to a large number of features. 

As part of the NIH Epigenome Roadmap project, we have generated 

genome-wide profiles for 24 chromatin modifications and DNase-I 

hypersensitivity sites in 2 distinct cell types- human embryonic stem cell (H1) and 

a primary lung fibroblast cell line (IMR90)[17]. Additionally, we have 

experimentally determined a large number of promoter-distal p300 binding sites 

in each cell type, providing a rich training set for development of accurate and 

robust enhancer prediction algorithms. We now describe a random-forest[58] 

based method for integrative analysis of diverse histone modifications to predict 

enhancers. We show that this new algorithm outperforms the existing methods 
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and leads to the automatic discovery of an optimal set of chromatin modifications 

for enhancer predictions. 

 

Results 
 
Prediction of enhancers using random forest and multiple chromatin marks  

 

Random forests have recently become a popular machine learning 

technique in biology[59] due to their ability to run efficiently on large datasets 

without over-fitting, and their inherently non-parametric structure. Since random 

forests use a single variable at a time, they can give an automatic measure of 

feature importance [60]. Hence, we developed an algorithm based on this 

random forest technique for the purpose of enhancer prediction. Conventional 

random forests utilize a single scalar value associated with each feature at each 

node of the tree. In order to train a random-forest for enhancer prediction we 

wanted to use histone modification profiles at p300 binding sites. Because the 

spatial organization of histone modifications along a linear chromosome can be 

as informative as their actual levels, they are better represented as vectors of 

binned reads. Inspired by recent modifications to the random-forest approach 

such as discriminant random forests[61] or oblique  random forests[62] that 

utilize a linear classifier at each node, we developed a new vector-based random 

forest algorithm RFECS or Random Forest for Enhancer Identification using 

Chromatin States (see Methods). 
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Genome-wide distal p300 binding sites were found using ChIP-seq in H1 

and IMR90 cell-lines. We selected p300 binding sites overlapping DNase-I 

hypersensitive sites and distal to annotated TSS as active p300 binding sites 

representative of enhancers. We found 5899 such p300 binding sites in H1 and 

25109 such sites in IMR90, and observed several distinct and diverse chromatin 

states using an unsupervised clustering technique, ChromaSig(fig.1.1A,B). All 

clusters showed enrichment of H3K4me1 and depletion of H3K4me3 as 

previously observed[24]. However, different clusters were characterized by 

varying levels of histone acetylation, H3K4me2 or H3K27me3. Clusters with 

presence or absence of H3K36me3 may represent genic and intergenic 

enhancers respectively. In order to ensure we represented all these different 

chromatin states at active p300 binding sites, we selected a relatively large 

number of these sites(>5000) for training as compared to previous methods.  

To train the forest, active and distal p300-binding sites(BS) were selected 

as representative of the enhancer class. As non-enhancer classes, we 

considered annotated transcription start sites (TSS) that overlap DNase-I, and 

random 100 bp bins that are distal to known p300 or TSS (see Methods). The 

confidence of each enhancer prediction is given by the percentage of trees that 

predict this site to be an enhancer. In general, a genomic region is predicted as 

an enhancer if it has a background cutoff greater than 0.5 (>50% trees vote in it’s 

favor). At higher cutoffs, confidence of prediction is higher, but fewer enhancers 

are predicted.  
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We used Receiver Operating Characteristic (ROC) curves to determine 

optimal parameters for our classification algorithm[63]. In the case of enhancer 

predictions, we can only obtain an approximate measure of specificity since we 

can never be certain that the randomly selected elements of the non-p300 class 

are all true negatives.  Hence, in addition to the ROC curves generated using 5-

fold cross-validation, we also verified parameter selection by comparing the 

percentage of predicted enhancers at each cutoff that overlap markers of active 

enhancers (validation rate) or TSS (misclassification rate).  The markers of active 

enhancers include distal DNase-I hypersensitivity sites (HS), p300 binding 

sites(excluding those used in training), occupancy by CBP or sequence-specific 

transcription factors known to act at embryonic stem cell enhancers such as 

NANOG, OCT4 and SOX2.  

In the case of Random forests, the main parameter to be determined is 

the number of trees. Since the non-enhancer class is assumed to be several 

times enriched compared to the enhancer class in the genome, we select a 

greater number of non-p300 training sites as compared to p300 sites and this 

proportion is also adjusted using the above-described methods. Previous 

algorithms[25] as well as empirical observations showed a width of -1kb to +1kb 

around the p300 binding site as optimal but we further verified this selection by 

cross-validation in the H1 cell-type (fig.1.2A). The difference in cross-validation 

curves using a width of 0.5kb or 1kb is not obvious on the cross-validation curve 

while a width of 1.5kb clearly shows a sharp drop in the area under the ROC 
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curve(fig.1.2A). When we further made enhancer predictions using all three 

widths(fig.1.2B,C), it can be seen that a width of 1kb on either side shows best 

validation and misclassification rates as compared to 0.5 or 1.5 kb widths.  

 

Enhancer predictions in H1 and IMR90 cells 

 

To determine the optimal number of trees for the random-forest, we 

examined the area under the ROC curve in H1 and IMR90 and found both to be 

stable beyond 45 trees (fig.1.3A,B). This was further verified by the lack of 

change in the validation and misclassification curves upon increasing the number 

of trees (fig.1.4A-D). In the end, we selected 65 trees for training the random 

forest to obtain a sufficient number of cutoffs. This is also provided as a default 

parameter for training and prediction of our algorithm. The training-set ratio of 

p300 to non-p300 was set at 1:7 since the ROC curve did not appear to change 

much beyond this ratio.(fig.1.4E,F)  

In order to estimate the accuracy of the enhancer prediction by RFECS, 

we applied this algorithm to chromatin profiles of 24 marks obtained in H1 and 

IMR90.  We then calculated the validation rate as the percentage of predicted 

enhancers overlapping with DNase-I hypersensitivity sites and binding sites of 

p300 and a few sequence specific transcription factors known to function in each 

cell type(true positive markers). We also computed the misclassification rate as 

the percentage of predicted enhancers overlapping with known promoters. These 

overlaps were computed using a window of -2.5 to +2.5kb. Incase, both a true 
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positive marker as well as promoter lay within this window, the criteria used to 

decide if the enhancer was ”validated” or “misclassified” is discussed in detail in 

the Methods section. In H1 cells, we obtained a total of 55382 predicted 

enhancers at the lowest voting cutoff of 0.5.  Over 80% of these predicted 

enhancers overlap with distal DNase-I hypersensitive sites and the binding sites 

of p300,NANOG, OCT4 and SOX2. Upon randomly generating enhancer 

predictions in the H1 genome 100 times, we found the average validation rate to 

be 18.43% and the actual validation rate of 80% to be highly significant with a 

one-sided t-test p-value of 10^-256. Additionally, we found that 5% of them 

overlap with UCSC TSS, indicating a low misclassification rate of 5%(fig.2C,E, in 

red). A similar high level of validation rate and low misclassification rate were 

observed when RFECS was applied to IMR90 cells, where 83581 enhancers 

were predicted with a validation rate of 85%(average random validation 

rate=16.13%, pvalue=2X10^-279), and misclassification rate of 4% (fig.2D,F). 

Thus, RFECS appears to accurately predict putative enhancer sequences based 

on chromatin modification state of the genome. 

We next tried to assess the linear resolution of RFECS predictions.  We 

calculated the distance between the predicted enhancers and locations of 

enhancer markers such as DNase-I hypersensitive sites, or p300 binding sites in 

each cell type, and found that the majority of predicted enhancers are within 

200bp of these sites(fig.1.5A,B). In H1, nearly 62% of enhancers lie within 200bp 

of an enhancer marker site (fig.1.5A), while in IMR90 this value is around 70% 
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(fig.1.5B). Thus, the majority of enhancer predictions also show a high distance 

resolution in terms of proximity to the validation marker. 

We also confirmed that our enhancer predictions showed an activation of 

gene expression in the proximal TSS. In order to do this, we compared RNA-seq 

datasets(manuscript under revision, Cell) in H1 and IMR90 using 14lter[64] to 

identify H1-specific and IMR90-specific TSS. Then we identified enhancer 

predictions specific to either H1 or IMR90 using a filter distance of 2.5kb.When 

we look at the average distribution of H1-specific enhancers they are clearly 

enriched in the vicinity of H1-specific TSS as compared to IMR90-specific TSS 

(fig.1.5C) and this enrichment is found to significant at distances upto atleast 

500kb using a Wilcoxon test(p-vaue<10^-6). Similarly, in the case of IMR90-

specific enhancers, we observe them to be more enriched in the proxiumity of 

IMR90-specific TSS as compared to H1-specific TSS(fig.1.5D,p-value<10^-23). 

As further evidence that RFECS accurately predicts enhancers, chromatin 

modifications at the predicted enhancers showed presence of all chromatin 

states observed in the training sets comprised of a subset of distal p300 binding 

sites (fig.1.1). In H1, clusters 1,2 and 8 of enhancer predictions (fig.1.6) are 

similar to clusters 1-3 of the p300 binding sites (fig.1.1A), clusters 3-4 appear to 

correspond to cluster 5 of p300 BS, while clusters 5-6 look like cluster 4 of p300 

BS. In IMR90, similar trends could be observed when comparing chromatin 

states at enhancer predictions (fig.1.7) to those of p300 binding sites (fig.1.1B).  

Further, it can be observed that clusters 3-6 of the enhancer predictions in 
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H1(fig.1.6) that have weaker acetylation and/or enrichment of H3K27me3 also 

tend to have lower voting percentage of trees. 

In summary, we showed that RFECS accurately predicted enhancers in 

the two cell lines H1 and IMR90 using a set of 24 chromatin modifications. These 

enhancers showed high validation rates, low misclassification rates and sharp 

resolution. 

 

Random forest trained on one cell-type can accurately predict enhancers in 

other cell-types 

 

To make enhancer predictions, our approach requires a construction of a 

random forest trained on promoter-distal p300 binding sites. It is time-consuming 

and expensive to create a new training set for enhancer prediction in each new 

cell type, so it is desirable to use a random forest developed in one cell type to 

predict enhancers in another. To evaluate the feasibility of such approach, we 

first trained a random-forest using chromatin modification profiles obtained in H1, 

and then applied it to the IMR90 cells. Compared to RFECS predictions using 

IMR90 chromatin profiles as training set, RFECS predictions using H1 training 

dataset reduces the validation rate by ~5-8% and increases the misclassification 

rate by ~2% (fig.1.3C,E black vs red).  Similarly, we also developed a random 

forest using the IMR90 data as the training set and then applied it to H1. This led 

to an average reduction of 2-3% in validation rate (fig.1.3D,black vs red). 
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Therefore, RFECS trained using one cell type may be applied to a different cell 

type, albeit with slightly lower accuracy. 

We sought to examine if this moderate decrease in performance was 

largely due to cell-type specific differences or was within the limits of technical or 

biological variability between replicates. To this end, we trained a random forest 

on one replicate of a cell-type, and made predictions on the other replicate of the 

same cell type. RFECS trained on IMR90 and then applied to the replicate 1 of 

the H1 profiles (blue dot vs asterisk) actually showed a higher validation rate and 

lower misclassification rate than RFECS trained using replicate 2 of H1 

(fig.1.3C,E), while similar performance was observed with enhancer predictions 

on replicate 2 of H1 independent of whether the random-forest was trained on H1 

replicate 1 or IMR90 (green dot vs asterisk). Similar trends were observed when 

comparing predictions made on individual replicates of IMR90 using either H1-

training or training on the other replicate (fig.1.3D,F). In conclusion, predicting 

enhancers using the random forest built from a different cell type exhibits a 

modest decrease in performance compared to a same-cell training set. However, 

this decrease in performance is comparable to the decrease that can arise due to 

variability between two replicates of the same cell-type.  

 

Optimal set of chromatin marks required for enhancer prediction 

 

With the increasing number of histone modifications being discovered and 

mapped, determination of the relative importance of each mark in defining 
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genomic elements is important. An out-of-bag measure of variable importance is 

a natural by-product of random forest classification scheme[60] wherein the 

relative importance of each feature is assessed as the increase in classification 

error upon permutation of feature values across classes. In both H1 and IMR90, 

the variable importance was assessed for random forests trained on 5 cross-

sections of data for each of the 2 sets of replicates individually as well as the set 

of averaged replicates. Upon ranking histone modifications by variable 

importance, it is apparent that H3K4me1 and H3K4me3 are the top 2 most robust 

modifications across replicates and cross-sectional samples in both cell types, 

followed by H3K4me2(fig.1.8A, B). This indicates that these 3 modifications 

maybe the most informative in the prediction of enhancers in any unknown cell 

type as well. 

Beyond the top 3 modifications, there is variability among the cell types. In 

IMR90, the other modifications appear to contribute almost equally, while in H1 

there is a much clearer difference in variable importance. These differences are 

supported by correlation analyses in H1 and IMR90 (fig.1.8C,D). In H1, several 

modifications are highly correlated, which could explain the larger differences in 

variable importance, as only a few variables maybe needed to form a non-

redundant set. In IMR90, the correlations are lower and hence each of the 

modifications may contribute non-redundant information and thus contribute 

equally to the variable importance. Modifications that cluster together in both H1 

and IMR90 (shown in the same non-black colors, fig.1.8C,D) suggest cell-type 

independent redundancy. 
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Having established the relative importance of each histone modification in 

predicting enhancers, we next examined the accuracy of predictions using 

different sets of modifications. Validation rates obtained by using the minimal set 

of H3K4me1-3 is within 2% of that for all 24 modifications in H1 (fig.1.9A). 

Furthermore, this minimal set performs considerably better than the more 

conventionally selected set of H3K4me1 and H3K4me3[24,30] and at times, 

H3K27ac[65,66] (fig.1.9A,B, in black and blue). The set of H3K4me1-2-3 is more 

comparable to H3K4me1-H3K4me3-H3K27ac in IMR90 but does have a slightly 

lower misclassification rate (fig.1.9D). In both cases the use of the minimal set of 

3 modifications shows a much closer resemblance in performance to all 24 

modifications than to the set of 2 marks H3K4me1 and H3K4me3(fig.1.9A-D). 

It can also be observed that in conjunction with H3K4me1 and H3K4me3, 

using H3K4me2 picks up a larger proportion of enhancers with weaker 

acetylation enrichment as compared to H3K27ac (fig.1.6,fig.1.7), supporting our 

prediction of the minimal set. 

We also made enhancer predictions using all possible combinations of 3 

modifications in chromosome 1 for replicate 1 and replicate 2 of H1. The average 

validation rate for a fixed range of enhancers was compared across replicates 

and it can be seen the set corresponding to H3K4me1, H3K4me2 and H3K4me3, 

is the highest performing combination common to both replicates (fig.1.9E). We 

also found the performance of the combination of H3K27ac with H3K4me1 and 

H3K4me3 appears to be comparable in this case (3, fig.1.9E), validating the use 

of H3K27ac as a feature for enhancer prediction when H3K4me2 is not available. 
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Some of the worst performing combinations include H3K9me3 and H4K20me1 (4 

and 5, fig.1.9E), which also show up as variables with least importance in 

fig.1.8A. 

In many currently existing datasets, H3K27ac is the more commonly 

sequenced histone modification as compared to H3K4me2 due to it’s perception 

as a marker of active enhancers. While using H3K4me2 may improve enhancer 

prediction in some cell-types, use of H3K27ac in addition to H3K4me1 and 

H3K4me3 marks does show considerable improvement over using just the top 2 

marks H3K4me1 and H3K4me3 (fig.1.9A-D). Hence, for many of the currently 

existing datasets, we could use H3K4me1, H3K4me3 and H3K27ac as the 

features in our random-forest with satisfactory performance. 

Overall, these comparisons indicate the suitability of selecting 

H3K4me1,H3K4me2 and H3K4me3 as three minimal chromatin marks for 

purposes of enhancer prediction. Additional chromatin modifications required for 

improving upon enhancer predictions may depend on cell-type specific 

characteristics, as indicated by the differences in variable importance between 

H1 and IMR90 (fig.1.8A,B). 

 

Comparison of RFECS with other enhancer prediction methods 

 

We next asked if our enhancer prediction algorithm performed better than 

several other current techniques for enhancer prediction – CSIANN, 

ChromaGenSVM and Chromia [25,26,27,66]. In previous studies, CSIANN and 
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ChromaGenSVM were applied on the histone modification dataset in CD4 T-

cells[26,27,66]. In order to make a comparison of performance of our method 

with previous approaches, we applied RFECS to the CD4+ T cell dataset as well 

and determined parameters using cross-validation (fig.1.10).   Using H3K4me1, 

H3K4me3, and H3K27ac, CSIANN made 21832 predictions[66] and 

ChromaGenSVM method made 23574 predictions [27] . We made enhancer 

predictions using H3K4me1, H3K4me3 and H3K27ac with RFECS as well as 

Chromia[25]. Cutoffs were selected that yielded a similar number of enhancer 

predictions for both Chromia (21895) and RFECS (22947)(fig.1.11A), so as to 

make a fair comparison across methods.  

To compare these different sets of enhancer predictions, we computed 

validation rates by comparing them to TSS-distal DNase-I hypersensitive sites, 

p300 binding sites, and CBP binding sites and misclassification rates by 

comparing to known UCSC TSS using a window of -2.5kb to +2.5kb as described 

in the methods. (fig.1.11A). The validation rate of RFECS predictions is around 

70%, which is considerably higher than the other three methods (57% 

ChromaGenSVM, 51% CSIANN,60% Chromia). Further, the misclassification 

rates of RFECS is less than 7%, much lower than the 27%, 35% and 15% rates 

of ChromaGenSVM, CSIANN and Chromia, respectively. These results 

suggested that overall procedure for RFECS, including selection of training set 

as well as training and prediction using the vector-random-forest, performs better 

than currently available techniques for enhancer prediction. 
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In the above comparison, we selected our enhancer-representative 

training set as p300 peaks called using MACS[67] that were distal to known 

UCSC TSS and overlapped DNase-I locations while CSIANN and 

ChromaGenSVM used a training-set of p300 peaks called using SICER 

previously[68].We also wanted to compare the performance of the different 

algorithms on our own datasets using the same training-set to evaluate the 

performance of the random-forest based part of the algorithm. To achieve this, 

we ran the various enhancer prediction methods on H3K4me1, H3K4me2 and 

H3K4me3 datasets of H1, with help from the author of ChromaGenSVM[27]	  

(fig.1.11B). We tried to make the pre-processing stages of the various algorithms 

as consistent as possible by merging several replicates of each histone 

modification files and input files into single bed files and randomly selecting a 

smaller subset of p300 peaks for training, since these were the requirements of 

the other algorithms such as CSIANN and ChromaGenSVM. Incase of CSIANN, 

the selection of background was hard-coded in the software but in all other cases 

we used our own background training set as well. In fig.1.11B, it can be observed 

that RFECS shows a maximum validation rate of around 82.8% as compared to 

54.6%, 66.8%, 57.7% and 63.3% for ChromaGenSVM (with default background 

selection), ChromaGenSVM (background selected by RFECS), CSIANN and 

chromia respectively. Further, RFECS showed the lowest misclassification rate of 

4.9% as compared to 5.3%, 8.3%, 36.7% and 10.1% rates for the above-

mentioned cases. It is worthy to note that using our background training set for 

ChromaGenSVM considerably improves performance of the algorithm, indicating 
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that the improvement of performance is a combination of various stages of the 

RFECS procedure including selection of training-set. In summary, RFECS show 

considerably improved performance over existing enhancer-prediction 

algorithms. 

 

Prediction of enhancers in multiple human cell-types 

 

Comparing enhancer predictions across diverse cell-types can contribute 

to understanding differences in regulatory mechanisms between cell-types. The 

ENCODE dataset is an example of a collection of high-throughput datasets such 

as histone modifications and transcription factor binding data that are available 

for multiple cell-types[16]. Having a set of high-confidence enhancer predictions 

in these cell-types would be a valuable resource. 

  We trained our random forest on the p300 ENCODE data in H1 and made 

enhancer predictions in 12 ENCODE cell-types using the three marks H3K4me1, 

H3K4me3 and H3K27ac since these were available for all the cell-types. 

Validation rates were assessed based on overlap with existing DNAse-I 

hypersensitivity data while misclassification rates were calculated based on 

overlap with UCSC TSS. It can be seen that the majority of cell-types show high 

validation rates between 80 and 95%, while the misclassification rates lie within 

acceptable levels of 2-7% (fig.1.12A,B).   

In order to compare enhancers across cell-types, it is preferable to have 

enhancer predictions with the same level of confidence. To determine the 
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appropriate cutoff for multiple number of cell-types, we calculate a False 

Discovery rate by randomly permuting 100 bp bins across the genome and 

computing the ratio of enhancers predicted in permuted data/enhancers 

predicted in real data for various cutoffs of voting percentages. In fig.1.12C, it can 

be seen that different cell-types show a different relationship with FDR. For 

example, at an FDR of 5%, the voting percentage for GM12878(solid dark blue ) 

is 0.74, for Nhek(dashed cyan) 0.64 and for Hsmm(solid yellow) it is 0.56. 

Using an FDR of 5%, we obtained a consistent set of high-confidence 

enhancer predictions in the 12 ENCODE cell-types. In fig.1.12D, the numbers of 

enhancer predictions in each cell type is shown above the bar. The validation 

rates (in red) are above 90% for all cell-types except H1, Hepg2 and GM12878. 

In H1 and Hepg2, the numbers of DNase-I hypersensitivity sites are relatively 

less, i.e. ~150 to 177K as compared to ~230 to 380K in the other cell-lines. This 

may explain the somewhat lower validation rate in these two cell-types. 

GM12878 appears to be an outlier and we suspect that enhancer predictions 

may potentially be improved in this cell line by using a different training set. 

In summary, we obtained a high-confidence set of enhancer predictions in 

multiple ENCODE cell-lines with the same level of confidence. This will enable 

more rigorous comparisons of regulatory characteristics of these cell-types in the 

future. 
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Discussion  
 

We describe here a novel machine-learning algorithm to accurately predict 

enhancers in a genome-wide manner based on chromatin modifications.  We 

trained this algorithm using novel p300 training sets in H1 and IMR90 and 24 

chromatin modifications in each cell-type. We showed that models trained on one 

cell-type could be effectively applied on another cell-type. Random forests enable 

detection of the most informative features required for a classification task. In the 

case of enhancer prediction, we identified a set of 3 histone modifications that 

appeared to be the most informative and robust across cell-types and replicates. 

Such an approach can once again be applied when the number of genome-wide 

modification maps is expanded in various different cell types and the most 

informative set of modifications can be further refined. We show that RFECS 

outperforms other machine-learning based prediction tools in CD4+ T cells, and 

can be applied in the future to multiple cell types. We successfully applied our 

enhancer prediction tool to 12 cell-lines in the publicly available ENCODE 

database and obtained a set of enhancers with a consistently high level of 

confidence across the cell-types. 

In the future, we could potentially adapt the RFECS method to detect 

other regulatory genomic elements that can be observed to have a distinct 

chromatin signature and find the minimal set of chromatin marks for this purpose. 

The ability to detect diverse patterns of features within the training set indicates 

that the RFECS approach could be used to train on a composite training set 
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comprised of different transcription factors. Combining information from different 

enhancer-binding proteins may improve prediction of regulatory elements. 

Random forests are non-parametric hence they can integrate a large number of 

diverse features. This could suggest the addition of other discrete and continuous 

data types such as sequence or motif based information or DNA methylation to 

the prediction of genomic elements.   

 

Methods 
 

Datasets used 

The H1 and IMR90 datasets were generated as part of the NIH Roadmap 

Epigenome Project and have been released to the public prior to publication 

(http://www.genboree.org/epigenomeatlas/multiGridViewerPublic.rhtml). Briefly, 

24 chromatin modifications in human embryonic stem cell (H1) and primary lung 

fibroblast cells (IMR90) were generated by the Ren lab and deposited under the 

NCBI Geo accession number GSE16256. Additionally, two replicates of 

H3K9me3 datasets deposited under Geo accession numbers GSM818057 and 

GSM42829 were used. Genome-wide binding data for p300 in H1 and IMR90, 

and transcription factors NANOG, SOX2 and OCT4 in H1 were generated in the 

Ren lab using ChIP-seq and deposited under accession numbers GSE37858, 

GSE18292 and GSE17917 respectively. Any data mapped to hg18 was 

converted to hg19 using liftover tools[69].  The DNase-I hypersensitivity datasets 

for H1 and IMR90 were produced by the Stammatoyanopoulos group at UW[70]. 
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IMR90 DNase-I raw data may be accessed using GSM468792 and narrow peak 

calls are attached as supplemental information. Narrow DNase-I peaks in H1 

were downloaded from UCSC ENCODE page 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDn

ase/).For CD4, previously generated datasets for p300[68], CBP[68] and DNase-

I[53] data as well as histone modifications[14,71] were used. Histone modification 

data and DNase-I hypersensitivity data for the 12 ENCODE cell-lines was 

downloaded from http://genome.ucsc.edu/ENCODE/downloads.html. 

 

Data normalization for histone modifications 

The ChIP-seq reads for the histone modification as well as corresponding 

input were binned into 100bp intervals. The binned modification file was 

normalized against the binned input file using an RPKM(Reads per kilobase per 

million) measure[72].In the case of 2 or more replicates, the RPKM- level for 

each bin is averaged to get a single histone modification file, in order to minimize 

batch-related differences.  

 

Determination of binding sites for p300 and other transcription factors 

MACS[67] software was used to call peaks for p300,CBP and any other 

TF such as NANOG, SOX2 and OCT4. ChIP-seq input files were used as 

background and parameters of mfold=20 and default p-value cutoffs were used. 

Peak calls are available as supplemental files. In case of the p300 and CBP 
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binding sites used to validate enhancer predictions in CD4, we included the 

regions of enrichment that were previously published as well[68]. 

Construction of random forest 

We constructed the forest using the concept of binary classification trees, 

with each feature being a 20-dimensional vector of 100 bp bins from -1 to +1kb 

along the genomic element. At each node in the tree, a linear classifier was 

constructed using the Fischer Discriminant approach using the histone 

modification vector, allowing for utilization of shape as well as abundance 

information(fig.1.13A). The utilization of the linear discriminant at each node was 

inspired by the recent development of methods such as the discriminant random-

forests[61] and oblique random forests[62]. The Vector-Random forest algorithm 

was implemented in MATLAB (MATLAB 7.14.0.739, The Mathworks Inc., Natick, 

MA, 2012a) as the function “multiclasstree” and utilizes functions from the 

“classregtree” and “classify” functions of MATLAB, implementing decision trees 

and linear discriminants respectively. The MATLAB code used for RFECS can be 

downloaded from: http://enhancer.ucsd.edu/renlab/RFECS_enhancer_prediction/ 

 

Training the random forest for enhancer predictions 

Enhancer prediction involved two stages, which are classification of p300 

vs non-p300 and peak-calling. 

1) Classification of p300 vs non-p300 for enhancer prediction purposes 

i. Training 
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In the first stage, a forest was constructed with two classes – a class 

containing p300 binding sites and a second class with an equal number of TSS 

and x times the number in random background sequences, where x=9 for CD4 

and x=7 for H1 and IMR90.  

ii. Prediction 

In order to make predictions, each 100bp bin along a chromosome is 

assigned either enhancer or non-enhancer status. The output from the forest is in 

the form of percentage of trees predicting a 100bp bin to be one element or 

another. Only bins that have >50% trees voting for the enhancer class, are 

considered for further analysis. 

2) Peak-calling 

Using the random forest previously trained to predict whether a 100bp bin 

along a chromosome is an enhancer or not often yields values >50% for regions 

on either side of the exact location of a p300-binding site. However, the 

percentage of trees voting in favor of p300 decreases symmetrically on either 

side of the actual peak(fig.1.13.B).This property is used to select the bin with 

maximum voting percentage within a certain peak-filtering distance as the 

enhancer peak based on the assumption that the flanking regions are part of this 

same enhancer. 

 

Computation of variable importance 

A major advantage of the random forest is the inherent ability to select 

more important variables versus less important ones. In order to compute the 
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order of variable importance, in this case, the importance of individual histone 

modifications for making enhancer predictions, we use an out-of-bag measure  of 

variable importance[60] implemented in Matlab as the function oobVarImp. 

 

Application of variable importance to determine the minimal set of 

modifications required to predict enhancers 

Based on the ordering of the variable importance across 5 different cross-

sections of the training dataset of multiple replicates and cell types, certain 

modifications may always be observed to have priority. Due to the non-redundant 

nature of the ordering of variables as well as their robustness across replicates 

and samples, these modifications maybe selected as the most informative ones 

that are required to make enhancer predictions. 

 

Validation of enhancer predictions 

Cross-validated ROC curves were used to estimate parameters for use 

within the same algorithm. However, comparisons across different algorithms 

may be biased depending upon the composition of the training set, so we 

validated enhancer predictions as described below. 

Enhancer Predictions outputted from the random forest predictor have 

background enrichment scores of “voting percentage” ranging from 0.5 to 1 to 

enable detection of enhancers at different levels of confidence. At higher cutoffs, 

confidence of prediction is higher, but fewer enhancers are detected.  The 

availability of large-scale datasets such as DNase-I hypersensitive sites, p300 
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binding sites, CBP binding sites and transcription factor binding sites enabled an 

estimate of the number of true positives at every cutoff. Further, the number of 

enhancers misclassified as TSS at each cutoff was also determined. Within the 

same cell type, an enhancer prediction method that performs better, should pick 

up more true positive validation markers and fewer TSS, given the number of 

predictions are the same.  

Predicted enhancers are classified as “validated”, “misclassified” or 

“unknown” based on the criteria below. True Positive Markers (TPM) refer to 

DNase-I hypsersensitivity site, p300, CBP and Transcription factor binding sites. 

1. If the nearest TPM lies within 2.5 kb of the enhancer and the nearest TSS is 

greater than 1 kb away from the TPM, the enhancer is “validated” 

2. If a TSS lies within 2.5 kb of the enhancer, and the nearest TPM is either 

greater than 2.5 kb away from the enhancer or within 1kb of the TSS, the 

enhancer is “misclassified” 

3. If there is no TPM or TSS within 2.5kb of the enhancer, it is “unknown”. 

 

Correlation graphs 

The Pearson correlation coefficient between any two modifications was 

computed for RPKM-normalized histone modification reads between -1 to +1 kb 

for all elements within the selected training set. The correlation patterns of each 

histone modification was used to cluster the modifications and order them using 

MATLAB tools. 
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This enabled visualization of which modifications are the most similar in 

their correlation patterns. In the ordering of variable importance, if certain 

variables showed up as important in two different cell types, the redundancy 

based on their correlation plots could be used to explain away this variability. 

 

Visualization of chromatin modification patterns 

ChromaSig[19] was used to cluster histone modification patterns along 

p300 binding sites and predicted enhancers using modification width as 4kb.The 

resulting clusters were then visualized using Java TreeView[73]. 

 



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   32 

 

	  
	  
Figure 2.1. Histone modification patterns at distal p300 binding sites in H1 and IMR90 
A.) Chromatin states for p300 binding sites in H1 cells. B.) Chromatin states for p300 binding 
sites identified in IMR90 cells , identified by clustering using ChromaSig[19]. The heatmap shows 
RPKM-normalized histone modification levels in 100bp bins from -5 to +5 kb along p300 binding 
sites overlapping DHS and distal to known TSS. 
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Figure 2.2. Determination of optimal peak width for training of RFECS predictor in H1 cells 
A.)ROC curves for 5-fold cross-validation at different proportions of peak widths of -0.5 to +0.5 
kb, -1 to +1 kb and -1.5 to 1.5 kb around training set sites. B.)Percentage of enhancers validated 
by true positive markers at different numbers of enhancers determined by various cutoffs 
(Validation rate or VR curve). C.)Percentage of enhancers misclassified as TSS at different 
numbers of enhancers determined by various cutoffs. (Misclassification rate or MR curve). 
Overall, the width of 21 to +1 kb appears to show the best performance as expected based on 
previous observations. 
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Figure 2.3. Performance of RFECS for enhancer predictions in H1 and IMR90 cells 
Area under the 5-fold cross-validated ROC curve decreases with increase in number of trees 
stabilizing gradually in A.)H1 and B.)IMR90 cells. C,D.)Validation Rate of enhancer predicted in 
A.)H1 cells, as measured by overlap with DNase-I HS and binding sites of p300, NANOG, OCT4 
and SOX2.B.) IMR90 as measured by overlap with DNase-I HS or p300 binding sites in the same 
cells. E,F.) Misclassification Rate of enhancers predicted using RFECS in E.)H1, and F.)IMR90 
as measured by overlap with UCSC TSS, versus total number of enhancers determined by taking 
different voting percentage cutoffs, are shown for forest trained in the same cell type(⋅red), forest 
trained in other cell type and predictions made on modifications with averaged RPKM(⋅black), 
replicate 1 only(⋅blue), and replicate 2 only(⋅green). Training on one replicate and prediction on 
the other replicate of the same cell-type are indicated by asterisks. 
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Figure 2.4. Determination of parameters for training of RFECS predictor in H1 and IMR90 
A,B.)Percentage of enhancers validated by true positive markers at different numbers of 
enhancers determined by various cutoffs (Validation rate or VR curve) in A.)H1 and B.)IMR90, for 
different number of trees. C,D.)Percentage of enhancers misclassified as TSS at different 
numbers of enhancers determined by various cutoffs. (Misclassification rate or MR curve) in 
C.)H1 and D.) IMR90, for different number of trees. . VR and MR curves do not appear to change 
much beyond 45 trees, confirming the selection of 65 trees as valid. E,F.)ROC curves for 5-fold 
cross-validation at different proportions of training set ratios of p300:non-p300 in E.) H1 and 
F.)IMR90. ROC curves appear to be most stable beyond the ratio of 1:7. 
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Figure 2.5. Linear resolution and association with expression of genes for enhancer 
predictions in H1 and IMR90 
Distribution of distances between predicted enhancers and known markers of active enhancers 
such as DNase-I hypersensitivity sites, p300 and transcription factor binding sites in A.)H1 and 
B.)IMR90. Distribution of average number of celltype specific enhancers around the TSS specific 
to either H1 (blue), IMR90 (red) or non-specific (black) where the cell-type is C.)H1 or D.)IMR90. 
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Figure 2.6. Histone modification patterns at enhancer predictions in H1. Clustering was 
performed using ChromaSig 
Java treeview-generated Heatmap shows RPKM-normalized histone modification levels in 100 bp 
bins from -5 to +5 kb along genomic elements overlapping enhancers in Chromosome1 predicted 
using all 24 modifications. On the left panel, the state number and sizes are indicated. On the 
right panel, percentage of each state detected by different combinations of histone modifications 
or H1-trained forest are shown. Also shown are the distribution of background cutoffs associated 
with each chromatin state. 
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Figure 2.7. Histone modification patterns at enhancer predictions in IMR90 
Clustering was performed using ChromaSig. Java treeview-generated Heatmap shows RPKM-
normalized histone modification levels in 100 bp bins from -5 to+5 kb along genomic elements 
overlapping enhancers in Chromosome1 predicted using all 24 modifications. On the left panel, 
the state number and sizes are indicated. On the right panel, percentage of each state detected 
by different combinations of histone modifications or H1-trained forest are shown. Also shown,are 
the distribution of background cutoffs associated with each chromatin state. 
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Figure 2.8. Out-of-bag Variable importance of histone modifications in enhancer prediction 
The average variable of histone modifications across 5 cross-sections of data in 2 sets of 
replicates as well as averaged replicates using all 24 modifications in A.) H1 and B.)IMR90 cells. 
Out-of-bag variable importance was calculated  from the random-forest based classification of 
p300 binding sites against TSS+genomic background. Robust appearance of H3K4me1, 
H3K4me3 and H3K4me2 among the most important marks across replicates and cell types, 
indicates these may form a minimal set for prediction of enhancers. Differences observed in 
correlation clustering of the same 24 modifications in C.)H1 and D.)IMR90 explain some of the 
differences in ordering of variables in the two cell types. Same non-black colors of modifications 
indicate clusters that co-occur in both cell-types. 
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Figure 2.9. Validation rate and Misclassification rate of enhancers predicted using RFECS 
in H1 and IMR90 
A.)Validation Rate in H1 measured by overlap with DNase-I HS, p300,NANOG,OCT4 or SOX2 , 
B.) Misclassification Rate in H1 measured as overlap of UCSC TSS, c.) Validation Rate in IMR90 
measured by overlap with DNase-I HS or p300, d.) Misclassification Rate in IMR90 measured as 
overlap of UCSC TSS , versus total number of enhancers determined by taking different 
enrichment cutoffs, are shown for all 24 modifications(red), predicted minimal set of H3K4me1/ 
H3K4me2/ H3K4me3 (green)and conventionally used marks H3K4me1/ H3K4me3(black) or 
H3K4me1/ H3K4me3/H3K27ac(blue). 
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Figure 2.10. Determination of parameters for training of RFECS predictor in CD4 T-cells 
A.) Area under the 5-fold cross-validated ROC curve decreases with increase in number of trees 
41lternative gradually  B.) Percentage of enhancers validated by true positive markers at different 
numbers of enhancers determined by various cutoffs (Validation rate or VR curve) and C.) 
Percentage of enhancers misclassified as TSS at different numbers of enhancers determined by 
various cutoffs. (Misclassification rate or MR curve), for 41, 61 and 81 trees. VR and MR curves 
do not appear to change much beyond 61 trees, confirming the selection of 81 trees as valid. D.) 
ROC curves for 5-fold cross-validation at different proportions of training set ratios of p300:non-
p300. ROC curve does not appear to change much beyond a ratio of 1:9 E.) Validation Rate 
curve for training set ratios of 1:9 and 1:11. F.) Misclassification Rate curve for training set ratios 
of 1:9 and 1:11. The VR and MR curves validate the choice of 1:9 as an appropriate training set 
ratio. 
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Figure 2.11. Enhancer Predictions in CD4+ T-cells  using RFECS, ChromaGenSVM, 
CSIANN and Chromia 
True positive rates were measured as overlap with either DNase-I hypersensitive sites(DHS), 
p300 or CBP binding sites, while false positives were measured as overlap with UCSC TSS. 
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Figure 2.12. Enhancer predictions in ENCODE cell-lines using RFECS 
A.) Validation Rate in the 12 cell-types measured by overlap with DNase-I HS, B.) 
Misclassification Rate in the  cell-types measured as overlap of UCSC TSS, C.) Average false 
discovery rate(FDR) over the 22 autosomal chromosomes for each cell-type plotted as a function 
of voting percentage of trees, D.) Validation rate and misclassification rate for each cell-type at a 
FDR of 5% with number of enhancer predictions shown above the bar. 
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Figure 2.13. Training of RFECS for enhancer prediction 
A.) Example of the vector-based random-forest classifying p300 binding sites and TSS using 
histone modifications. B.) Average percentage of trees voting in favor of the enhancer class 
around a p300-binding site. Percentage of trees in the random forest predictor that vote in favor 
of the enhancer class decrease symmetrically with increasing distance from the p300-binding 
peak. This property is used to develop a peak-calling method that can predict the most probable 
location of the enhancer. 
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Chapter 3.Distinct and Predictive histone lysine acetylation patterns at 
promoters, enhancers and gene bodies 

 

Abstract 
In eukaryotic cells, histone tail lysines are frequently acetylated. However, 

unlike modifications such as methylation, histone acetylation is often considered 

redundant. As such, the functional roles of distinct histone acetylates is largely 

unexplored. We previously developed an algorithm RFECS to discover the most 

informative modifications associated with the classification or prediction of 

genome-wide enhancers. Here, we use this tool to identify the modifications most 

predictive of promoters, enhancers, and gene bodies. Surprisingly, we find that 

histone acetylation alone performs well in distinguishing these unique genomic 

regions. Further, we find the association of characteristic acetylation patterns 

with genic regions and provide novel insights into the association of chromatin 

state with splicing. Taken together, our work underscores the diverse functional 

roles of histone acetylation in gene regulation, and provides several testable 

hypotheses to dissect these roles. 
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Introduction 
 

In eukaryotes, DNA is packaged into nucleosomes, each consisting of an 

octamer of proteins called histones that can undergo a variety of post-

translational modifications[7]. Recent studies have shown that various genomic 

elements exhibit characteristic patterns of histone modifications, which have 

been exploited to predict the genomic location of cell-type specific regulatory 

elements. For instance, the combination of H3K4me1 and H3K4me3 is distinct at 

enhancers and promoters[24], which led to the development of several 

algorithms to predict them[23,25,26,27]. Similarly, H3K36me3, H3K79me1/2 and 

H4K20me1 are enriched within gene bodies[14] and the combination of 

H3K4me3 and H3K36me3 has frequently been used to discover novel genes[22]. 

In recent years, many more histone modifications have been identified 

using mass spectrometry based approaches[8] and mapped using ChIP-seq 

technology. Large-scale epigenomic maps such as those generated in CD4+ T-

cells [14,71] showed combinatorial patterns of histone modifications at various 

genomic elements. Further, several sophisticated supervised and unsupervised 

machine-learning tools have been developed to annotate the epigenome that 

could provide a deeper understanding into the combinations of modifications that 

are characteristic of certain elements[18,19,23]. But given the large number of 

histone modifications, the question remains what the minimal set of modifications 

are to identify genomic elements such as enhancers, promoters or gene bodies. 
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Histone acetylations are largely considered markers of activity at 

regulatory elements such as promoters and enhancers, but due to their tendency 

to co-occur it has been difficult to elucidate the non-redundant roles of these 

acetylations[31]. Histone acetylations are indirectly targeted in the treatment of 

diseases such as Cancer and HIV by the use of HDAC(histone deacetylase) 

inhibitors[74]. Understanding the specific role of histone acetylations at different 

genomic elements has the potential to improve such therapies by increasing the 

specificity of targeting. Certain lines of evidence have suggested non-redundant 

roles of histone acetylation such as the fact that HDACs as well as histone 

acetyl-transferases (HATs) have unique genomic distributions [68,75]. Indeed, a 

previous study found certain acetylations such as H3K9ac to be present at 

promoters and H4K16ac along gene bodies [71]. However, the extent to which 

these acetylations are predictive of particular elements is still unknown. 

While chromatin has been clearly associated with enhancers, promoters, 

and gene bodies, the discovery of co-transcriptional splicing, the finding that pre-

mRNA can be spliced during the process of transcription itself, [76,77] suggested 

that chromatin could also be indicative of alternative splicing. Subsequently, it 

was found that exons are marked by elevated levels of H3K36me3[78,79]. 

Further supporting this notion, changes in acetylation levels could lead to 

changes in alternative splicing [80,81,82]. Here, we explore this subject on a 

genome-wide scale, describing the extent of association of chromatin with 

alternative splicing and also the comparison of such associations across two 

mammalian cell-lines. 
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In a previous study, we developed a random-forest based method of 

learning (RFECS) that could effectively identify genome-wide enhancers as well 

as the most informative set of modifications required for this task[23]. Here, we 

expand the application of this tool to determine the optimal set of discriminative 

histone acetylations for accurately predicting various genomic elements. Using 

this approach, we find distinctive patterns of acetylations that are associated with 

promoters, enhancers, gene bodies and splice junctions. Also, by comparing the 

epigenomes of two very distinct cell types (H1 human embryonic stem cells and 

IMR90 fetal lung fibroblasts), we expect our findings to generally hold for other 

cell types. 

 

Results 
 

Differential histone acetylation patterns at promoters and enhancers 

 

We previously observed that H3K4me1 and H3K4me3 are the most 

distinctive marks between promoters and enhancers among a limited set of 6 

histone modifications focused on 1% of the human genome [24]. To further 

define the marks that distinguish these two regulatory elements in genome-wide 

maps of 24 histone modifications[23], we compared active TSSs (TSSs 

overlapping DNase-I HS sites) with an equal number of enhancers defined by 

TSS-distal p300 binding. After z-score normalization(Methods), we observe that 
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the mean histone modification profile of either class separates clearly into TSS-

specific and enhancer-specific groups(Fig.2.1A, positive vs negative axes). We 

confirmed that the deviations of most of the histone modifications as compared to 

a set of elements with randomly shuffled labels is statistically significant(Fig.2.1A, 

p-value <10^-5 using Wilcoxon test , except for bars marked by black dots).In 

both H1 and IMR90,we consistently find that H3K4me1, H2BK20ac and 

H2BK120ac are significantly enhancer-specific while H3K4me3, H3K4me2, 

H3K9ac, H3K56ac, H4K5ac and H3K27ac are TSS-specific (Fig.2.1B). The 

histone modification profiles between -1 to +1kb along these elements are also 

observed to be different from the random set (Fig.2.2A,B, blue vs red). 

To assess the importance of each modification in classifying promoters 

and enhancers, we constructed classifiers using each mark individually. 

H3K4me3, followed by H3K4me2 and H3K9ac, showed the highest classification 

accuracy in both H1 and IMR90 (Fig.2.1B, blue, red). Nearly all modifications 

showed a classification accuracy of atleast 55% (in H1) and 75% (in 

IMR90),which is above the classification accuracy of 50% expected at chance 

(we verified that classification accuracy upon randomly shuffling labels was found 

to be ~50%). Clearly, the most significantly TSS-specific modifications are 

H3K4me3, H3K4me2 and H3K4me1. For enhancers, H3K4me1 is the most 

distinctive, followed by H2BK20ac. In addition, we also observed cell-type 

specific contributions. To verify if the modifications specific to H1 are due to the 

distinct biology of stem cells, we repeated our analysis in H9 human embryonic 

stem cells, and observed trends resembling H1 (Fig.2.1B, green vs blue). 
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We next classified p300 and TSSs using all 24 marks. Interestingly, 

H3K4me3 alone achieved the same accuracy as all 24 modifications. Next, we 

examined whether histone acetylation alone could classify these two elements 

(Fig.2.1C). The difference in classification accuracy using all 15 acetylations is 

<1% different from using all 24 marks. Clearly, acetylations are quite distinctive 

between the enhancers and promoters. 

To identify the specific histone acetylations contributing most to the 

accurate classification of promoters and enhancers, we computed the out-of-bag 

variable importance[23,60] for each acetylation. For both H1 and IMR90, the top 

acetylation was H3K9ac (Fig.2.1D, Fig.2.2C), achieving 85 and 89% 

classification accuracy, respectively (Fig.2.1C,D). The next mark in ordering of 

variable importance of H1 was H2BK120ac, while in the case of IMR90, several 

marks including H2BK20ac shared the same position (Fig.2.1D, Fig.2.2C). 

However, correlation clustering indicates that H2BK20ac and H2BK120ac are 

highly correlated in both H1 and IMR90 (Fig.2.1E,F), suggesting that these are 

redundant modifications. Hence we selected the top two marks as H3K9ac and 

H2BK120ac, and found that this combination achieved a classification accuracy 

of within 1% of using all 15 acetylations in IMR90, while in H1, this fell short by 

~3%. Including the next mark in the ordering of H1, H3K14ac improved this 

accuracy by ~2%(Fig.2.1C).  

In summary, we observed that H3K4me3 alone could achieve the same 

accuracy of classification as all 24 modifications in H1 (~94%) and in 

IMR90(~95%). Using all acetylations could accurately separate these two classes 
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nearly as well as using all 24 modifications indicating differential enrichment of 

certain acetylations at enhancers and TSS. In particular, H3K9ac, H2BK120ac 

and H3K14ac appear to be most informative in combination, of which 

H2BK120ac is enhancer-specific while the other two are TSS-specific (Fig.2.1A).  

 

Histone Acetylation patterns accurately predict genome-wide enhancers 

and promoters  

 

Our analysis suggests that histone acetylations are distinct at promoters 

and enhancers. Next, we wondered if these acetylations could predict promoters 

and enhancers genome-wide. As a first step, we extended the application of the 

RFECS methodology, previously used to predict enhancers[23], to the prediction 

of genome-wide promoters (Methods). 

Using all 24 histone modifications, our approach can accurately predict 

promoters with ~92% true positive (TP) rate and ~1.6% false positive (FP) rate in 

H1, while in IMR90 we observed even better performance (TP ~95%, FP ~ 0.3%) 

(Fig.2.3A,B). Using the out-of-bag variable measure, we identified H3K4me3 as 

the most informative mark required to predict promoters, followed by H3K4me2 

and H3K4me1 (Fig.2.4A, B). In terms of the area under the curve (AUC), this 

minimal set performs comparably with the set of all 24 modifications in both H1 

and IMR90 (AUCmin/AUCall=0.99,Fig.2.3A,red vs blue) .While in H1, this set is 

comparable to using just H3K4me3 (Fig.2.3A,black vs red), in IMR90, the 
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addition of the two marks leads to an improvement of ~10% in TP rate as 

compared to H3K4me3 (Fig.2.3B,black vs red). 

Next, to assess if acetylation can accurately predict promoters, we 

repeated our analysis on all 15 histone acetylations. In IMR90, overall 

performance was comparable to using all 24 modifications (AUCac/AUCall 

=0.99,Fig.2.3B, green vs blue) while in H1, the TP rate was the same for FP 

rates beyond 1.3% (Fig.2.3A, green vs blue). To determine which acetylations 

are the most informative and whether these are robust across cell-types, we 

computed out-of-bag variable importance for acetylations (Fig.2.3C,D). H3K9ac 

is clearly the most informative, while the next few marks that are comparable 

across the two cell-types appear to be H2BK120ac, H2AK5ac and H3K18ac. 

Several other H2BK-ac also occur among the top ranks in IMR90(Fig.2.3D), but 

are redundant with H2BK120ac (Fig.2.1E).  

We then made predictions using just H3K9ac, the top 2 marks in variable 

importance for H1 and IMR90 and also the predicted minimal set of 4 

acetylations. In H1, there is a significant difference in the ROC(Receiver 

operating characteristic) curve between H3K9ac and the top 2 marks and an 

equivalent increase upon including the next two marks, H2AK5ac and H3K18ac 

(~8% increase in TP rate for values of FP>1%, Fig.2.3E,black vs green vs red). 

Even though the performance is not as accurate as using all 15 acetylations, 

including more marks appears to contribute incrementally to the curves, such as 

using the top 6 marks (<2% change in TP for FP>1%, Fig.2.3E, magenta vs red). 

In IMR90, there is a significant improvement from using H3K9ac compared to the 
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top 2 modifications, with difference in TP ranging between 5 to 20% at the same 

FP (Fig.2.3F, black vs cyan). Beyond this, improvements appear to be more 

incremental(<2%) such as in using the predicted minimal set of 4 modifications 

(Fig.2.3F,red dotted) or even upon including top 8 marks (Fig.2.3F, magenta). 

Applying the RFECS algorithm (Rajagopal et al, 2013) to enhancers, we 

compared validation and misclassification rates of prediction using just 

acetylations to that using all 24 marks or the minimal set of H3K4me1, H3K4me2 

(or H3K27ac) and H3K4me3 [5]. In H1, the validation rate using just acetylations 

appears to be comparable to the set of 3 marks, H3K4me1, H3K4me3 and 

H3K27ac (Fig.2.4C) while the misclassification rate appears to be within 1% of 

that using all 24 modifications(Fig.2.4E). In IMR90, the validation rate using just 

acetylations is within 3% of that using all 24 modifications (Fig.2.4D,green vs 

blue) and a misclassification rate that is within 1% using all 24 modifications 

(Fig.2.4F,green vs blue). 

Hence, enhancers can also be accurately predicted using just 

acetylations. We computed variable importance for the prediction of genome-

wide enhancers using acetylations and discovered H3K9ac, H2BK120/20ac and 

H3K14/23ac as the minimal set of acetylations for the prediction of 

enhancers(Fig.2.2A,B), which was further confirmed by comparisons of validation 

and misclassification rates with performance using all acetylations (Fig.2.2C-F). 

In summary, we found acetylations alone to predict genome-wide 

enhancers as well as promoters quite accurately, indicating that acetylations are 

not only distinct between the two elements but also predictive. The most 
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informative acetylations in the prediction of promoters were H3K9ac, 

H2BK120ac, H3K18ac and H2AK5ac while in the case of enhancers this set was 

composed of H3K9ac, H2BK120/20ac and H3K14/23ac.   

 

Minimal set of modifications to identify active genes 

 

Several histone modifications have been identified as being enriched in 

the body of active genes[14]. However, it is still an unsolved problem what is the 

minimum number of modifications required to achieve an accurate prediction of 

the active gene body. To this end, we identified active refseq genes in the H1 

and IMR90 genomes based on the overlap of their TSS with DNase-I HS sites 

and RNA-seq above log-value of 2 FPKM. Further, we only considered genic 

regions lying 2.5 kb away from an annotated TSS. As a true negative set, we 

identified intergenic regions as all those regions not lying within any annotated 

UCSC, GENCODE or Refseq TSS. We constructed a random-forest based 

classifier to distinguish these two sets using all 24 histone modifications and 

observed high sensitivity and specificity at the point of maximum accuracy in both 

H1 (sens = 89.56%, spec = 94.54%, AUC=0.97) and IMR90  (sens = 96.34%, 1-

spec = 97.09%, AUC=0.99) (Fig.2.5A,B). 

In both H1 and IMR90, the top 2 informative marks are H3K36me3 and 

H3K79me1, which rank well above all other marks (Fig.2.5C,D). By area-under-

curve (AUC) analysis, the performance of these two marks alone is equivalent to 

that of all 24 marks in IMR90 ( AUCK36me3,K79me1 / AUCall=100%) although it 
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seemed somewhat lower in H1 (AUCK36me3,K79me1 / AUCall = 96%) (Fig.2.5A-B, 

green). We found that the 2 marks ranked next that were common to both cell-

types were H3K27me3 and H3K9me3(Fig.2.5C,D). These modifications maybe 

important because of their relative depletion in genic regions and enrichment in 

larger intergenic regions (Fig.2.6D). By including these marks, our classifier 

achieved almost the same accuracy as all 24 marks in H1 (H1: AUCtop 4/AUCall = 

99%) (Fig.2.5A, magenta vs blue). Thus, we conclude that the minimal set of 

modifications required to predict genes, within 1% accuracy of the set of all 

modifications, is between 2 to 4, with H3K36me3 and H3K79me1 being the most 

informative modifications. 

 

Acetylations at the gene body 

 

Next, to assess if gene body acetylation can distinguish genic from non-

genic regions, we constructed a supervised classifier using only histone 

acetylations. Supporting this notion, acetylations show an ROC curve that is well 

above the line of no discrimination in both H1 and IMR90 (Fig.2.5A,B). However, 

the performance of acetylations is lower (H1:AUCac/AUCall=0.85,IMR90: 

AUCac/AUCall =0.92) than that achieved using all 24 marks or even the top 4 non-

acetylation marks (Fig.2.5A,B, green vs blue). For instance, in IMR90 the 

sensitivity and specificity are 81.24% and 84.94% respectively, as compared to 

95.27% and 97.5% for all 24 marks, at default parameters. 
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Given the lower proportion of genic regions predicted with acetylations, we 

wanted to ask if this was because of the lower fractions of gene bodies recovered 

by acetylations or the existence of distinct categories of genes that are either 

completely acetylated or not. To this end, we examined the distribution of 

fractions of genes recovered by either case and that using all 24 marks leads to 

90-100% recovery of most genes, while the fractions recovered by just 

acetylations appear to be more evenly distributed (Fig.2.6A,B). The partial 

recovery of certain genes using acetylations may indicate a bias towards certain 

elements within the gene. Since previous studies have found associations of 

acetylations with the splicing of certain genes[81], we tested the hypothesis that 

acetylations might have a preference for exonic regions or exon-intron 

boundaries, and  found this to be true in both H1 and IMR90 (Supplementary 

Text, Fig.2.6). 

While acetylations clearly show a bias towards exonic boundaries, there 

still exist a sizeable fraction of genes (12.7% in H1; 16.11% in IMR90), that can 

be recovered upto >90% using acetyations alone (Fig.2.6A,B). Since, distal 

regulatory elements lying within intronic regions may contribute to the acetylation 

signal as well, we filtered genic regions lying within 2.5kb of a distal DNase-I HS 

or an exon-intron boundary. Now, we calculated the classification rate of these 

filtered genic versus non-genic regions using all 24 modifications and just 

acetylations (Fig.2.7A, Fig.2.8A). It can be seen that the recovery using just 

acetylations is still well above the line of no-discrimination (significance stats), 
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with a maximum classification accuracy of ~70% in H1 and ~80% in IMR90 

(Fig.2.8A, Fig.2.7A). 

Since gene body acetylations appeared to be quite discriminative in the 

case of IMR90, we further examined which acetylations are most enriched within 

the gene body. H2AK5ac, H3K23ac, H3K14ac, H4K5ac and H2BK5ac were 

found to be among the top acetylations in order of variable importance(Fig.4B) 

and also showed enrichment in a majority of genic regions upon normalization to 

intergenic background (Fig.2.7C). We selected long genes, such as TEAD1 

(Fig.2.7D),CHRM2(Fig.2.7E) and CALD1(Fig.2.7F), that could be classified to 

over 90% against an intergenic background. It can be seen that several 

modifications such as H2AK5ac, H3K14ac, H3K23ac and H2BK5ac seem to 

cover a large proportion of the gene as compared to the neighbouring intergenic 

region. While some of this maybe accounted for by the presence of punctate 

regulatory elements, there are also regions that show diffuse enrichment of the 

above-mentioned acetylations, emphasized in Fig.2.7E n the black boxes. 

In H1, similar analysis yielded a different set of acetylations that were 

seen to be among the most enriched at gene bodies, H3K27ac being the top-

most in terms of variable importance(Fig.2.8B). Upon visualizing the enrichment 

of various histone modifications at genic regions versus intergenic ones, it does 

appear that H3K27ac has a ubiquitous but low presence (Fig.2.8C). The 

enrichment of several acetylations within the gene body can also been at the 

active gene PTPRJ, which is in sharp contrast to a neighbouring intergenic block 

with H3K9me3 enrichment (Fig.2.8D). 
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Finally, we examined if acetylations have any functional significance in 

gene bodies. Gene expression levels were slightly higher at acetylated genes 

(Fig.2.8E), showing a low but significant Pearson correlation coefficient of 0.2 in 

H1 and 0.14 in IMR90. Further, we examined if the genes with higher acetylation 

had specific associations with functional annotations. In H1 as well as IMR90, 

mRNA processing and RNA-binding were among the significantly enriched terms 

(Table 2.1). In addition, each cell-type showed different categories that were 

enriched such as that of genes involved in regulation of intracellular protein 

transport in IMR90 (Supplementary Table 2) or genes involved in mRNA splicing 

in H1 (Supplementary Table 1). 

 

Histone Modification Signatures at exon-intron boundaries 

 

Previous observations of co-transcriptional splicing suggest that specific 

chromatin signatures maybe associated with splicing[78]. As a preliminary 

investigation, we chose to analyze the predictive power of the histone 

modifications under study in predicting exon-intron boundaries from the genic 

background. Using histone modification profiles(in 100bp bins) between -2 to +2 

kb around the exon-intron boundaries, we were able to classify all known 

boundaries from genic background with an accuracy of 87% in H1 (AUCall=0.94) 

or 85.5% in IMR90 (AUCall=0.93) We then investigated the contribution of each 

histone modification under study to the prediction. Upon computing variable 

importance for each of the histone modifications with respect to the 
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aforementioned classification, we found H3K36me3 followed by H3K79me1 to be 

the most informative and H3K36me3 alone could classify the boundaries within 

3% of the accuracy achieved using all 24 modifications(AUCk36me3/AUCall~96%). 

To further investigate the association of histone modifications at exon-

introns with function, we identified various splicing events from paired-end RNA-

seq in both H1 and IMR90[34] using SpliceTrap[83]. The algorithm classified 

each local splicing decision as being one of constitutively spliced exon(CS), 

alternative donor site (AD), alternative acceptor site (AA), intronic retention (IR) 

or alternatively spliced exon (CA) with respect to its flanking exons. Based on the 

diversity of isoforms of a particular gene, this can cause one exon to be part of 

multiple different such splicing events. In each such splicing event, we may 

characterize the splicing decision in terms of the inclusion ratio, defined as the 

ratio of quantified expression level of the inclusion isoform divided by the sum of 

quantified expression levels of both inclusion and skipped isoforms. Further, 

each exon can also be quantified in terms of the exonic activity measured as 

FPKM (fragments per kilobase per million mapped reads). We aim to use these 

two quantifications at the exonic level to tease out correlations between histone 

modification signals and splicing activity.  

Since there is a wide diversity of splicing activity in the transcriptome, the 

multiple signals associated with an exon-intron boundary may lead to the 

observation of a convoluted histone modification signal. As a first step towards 

deconvolving such putative chromatin modification signals, we discover all 

possible chromatin modification patterns at exon-intron junctions using a fast k-
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means++ algorithm[84](see Methods). Six distinct clusters are observed in H1 

(Fig.2.9A), with varying levels of acetylations as well as other gene body marks 

such as H3K36me3, H3K79me1 and H4K20me1.Each of these clusters were 

characterized in terms of their distinctiveness from the genic background, by 

classifying the exons assigned to the cluster against the genic background using 

either all 24 modifications or just acetylations (Fig.2.10A,C) Overall, state 2 is 

unclassifiable against background using just acetylations indicating that the weak 

acetylation signature is comparable to the gene body while other states were 

found  to be either over-enriched (states 1,5,6) or under-enriched(states 3,4) for 

acetylations as compared to the rest of the gene (Fig.2.10A,C).It is worth noting 

that only those states with enrichment of acetylations appear to have presence of 

H3K79me1 as well. 

In IMR90, on the other hand, we observe 4 distinct chromatin modification 

patterns(fig.2.11A). In common with H1 there is an “enhancer-like” cluster, cluster 

1 (cluster 1 in H1) and “promoter-like” cluster, cluster 2 (cluster 5&6,H1), based 

on enrichment of H3K4me1 and me3 respectively. As in H1, these two are 

significantly enriched in acetylations with respect to genic background, while 

state 4 is significantly depleted (Fig.2.10B,D). 

The learnt histone modification states in H1 cells are ranked in decreasing 

order of exonic activity based on calculations of statistical significance of the 

difference of mean RNA-seq FPKM (fragments per kilobase per million) levels 

between clusters using a Student’s t-test(Fig.2.9A,panel2). In H1, there appears 

to be a positive correlation with the level of H3K36me3 which is apparent as 
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clusters 2> 3>4 that show significantly decreasing trends of activity also have 

correspondingly decreasing H3K36me3 (spearman correlation for clusters 1 to 4 

=0.59,p-value<2.2X10-308). On the other hand, “TSS”-like signatures(clusters 5 

and 6) appear to be even more highly active, irrespective of H3K36me3 

enrichment. The same trend maybe observed in IMR90, where cluster 3 with the 

lowest enrichment of H3K36me3 also has the lowest activity(spearman 

correlation for clusters 1,3 and 4=0.47,p-value<2.2X10-308), and “TSS-like” state 

2, has the maximum exonic activity (Fig.2.11A,panel 2). 

In summary, H3K36me3 can accurately classify most exon-intron 

junctions from genic background. We identified multiple distinct chromatin states 

at both H1 and IMR90 that are associated with varying levels of exonic activity. 

We found that there was considerable variation in the levels of acetylations at 

exon-intron boundaries, many of which were either highly enriched or highly 

depleted in acetylations with respect to the rest of the gene. 

 

Chromatin modification patterns predict splice site usage 

 

As described in the section above, an exon can be part of multiple 

different splicing events such as constitutively spliced exon(CS), alternative 

donor site (AD), alternative acceptor site (AA), intronic retention (IR) or 

alternatively spliced exon (CA) with respect to its flanking exons. A single exon-

intron junction can have multiple assignments of inclusion values based on the 

transcript under consideration. Hence, we further developed a metric to 
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characterize the overall splice site usage for every exon-intron boundary based 

on an expression-weighted average of its inclusion ratio in all transcripts 

(Methods). 

 

Chromatin modification clusters are ranked in decreasing order of 

retention or increasing order of splice site usage in H1 using a Wilcoxon test with 

a p-value cutoff of 10^-5 (Fig.2.9A,panel 3). A clear trend is observed where 

greater the enrichment of acetylations, stronger the tendency for retention, with 

clusters 6, 5 and 1 having the maximum tendency for retention. We asked if we 

could build a predictor for splice site usage based on chromatin modifications, as 

input features. We defined retained and constitutively spliced exons based on a 

splice site usage cutoff of  <-0.9 and >=0.999 , and filtered any exons that were 

proximal to the other category. This gives an average accuracy of classification 

of ~71% (Fig.2.9C,blue). Upon filtering the constitutive background for alternative 

exons from IMR90, we find a improvement in classification to 

~74%(Fig.2.9C,red). This indicates that some constitutive exons in H1 may be 

pre-marked for alternative splicing in IMR90. If we use just acetylations, we 

achieve a comparable accuracy of 74% (Fig.2.9C,green) indicating that these are 

sufficiently distinctive between retained and constitutively spliced exons.  

In IMR90 as well, the highly acetylated clusters 2 and 1 showed 

significantly higher retention of the boundary (ranked I and II based on a p-value 

cutoff of 10^-5). Prediction of splice sites usage from chromatin state showed a 

similar accuracy of ~74%, which only improved slightly upon eliminating retained 
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junctions in H1 from the constitutively spliced background(Fig.2.11C,blue vs red). 

Further, acetylations had sufficient information content to achieve the same 

accuracy of classification of retained junctions to constitutively spliced ones 

(Fig.2.11C, green vs red).  

Previous studies had shown H3K36me3 to be distinctive between 

alternatively-spliced exons and constitutively spliced ones[79]. We found that 

H3K36me3 was able to achieve a maximum classification accuracy of about 66% 

in both H1 and IMR90. This was ~8% less than that achieved using just 

acetylations, indicating the stronger association of alternative splicing with 

acetylation signatures, rather than H3K36me3. 

Patterns in both cell-types were also associated with specific splice 

variants to see if there were significant associations with these 

(Fig.2.9B,Fig.2.11B). Alternative donor sites or 5’ splice sites were enriched in 

the promoter-like clusters in both cell-types as compared to any other state. 

However, surprisingly all other splice variants also have a greater tendency to 

occur proximal to such promoter-like signatures. An example of a series of 

retained exon-intron boundaries in H1 and constitutively spliced in IMR90, can be 

seen in the gene PLEKH3 (Fig.2.12A) while the reverse can be seen in the gene 

VIM (Fig.2.12B). In both cases, the set of exons undergoing various types of 

retention, excluding alternative 5’ site usage, are indicated by a black box and 

can be seen to be covered by the expansion of H3K4me3 signal in the cell-type 

with alternate usage. Another observation to note was that state 4 in H1 

appeared to be preferential for exons with both ends constitutively spliced while 
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states 1,5 and 6 show preference for other events such as alternative acceptor 

sites or intronic retention (Fig.2.9A,B). 

In conclusion, acetylation-rich exon-intron junctions appear to be more 

enriched for retained boundaries in both H1 and IMR90. “Enhancer-like” and 

“Promoter-like” chromatin states are common to both cell-types that appear to be 

associated with splice site retention, of which the latter is the most strongly 

associated with a variety of splice site variants, not just alternative 5’ sites. Using 

just histone acetylation information, we were able to classify splice sites that are 

highly retained from those that are purely constitutive, upto an accuracy of about 

74% in either cell-type.  

 

Dynamics of Chromatin modification states at splice sites 

 

Certain chromatin modification clusters in H1 appear to be analogous to 

ones in IMR90 based on the patterns of modifications, such as the “enhancer-

like” state 1(H1) with state 1(IMR90), and the “promoter-like” state 5 and 6 (H1) 

with state 2(IMR90)(Fig.2.9A,2.11A). However, the other clusters are not so 

easily comparable in terms of chromatin modifications. In this regard, we 

examined if particular states in H1 have a tendency to correspond to ones in 

IMR90 based on the number of exon-intron junctions that are common to the 

states in the two cell-types. We computed the p-value of transitions between the 

6 states in H1 to the 4 states in IMR90 using a hyper-geometric 

distribution(Methods) and significant transitions, based on a p-value < 2.2X10-308, 
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are enumerated in Table 2. It appears that the chromatin state transitions are in 

keeping with the overall ranking in terms of splice site usage. For instance, state 

2 in H1 and state 4 in IMR90 show significant transitions even though their 

chromatin modification patterns do not appear to be the same. However, both 

these clusters are ranked immediately after the “promoter-like” and “enhancer-

like” states in terms of their splice site usage. Such a trend is in keeping with the 

fact that the change in splice site usage across the two cell-types is relatively 

small. For instance, if we assume any exon junction with splice site usage <0.9 to 

be called alternative, then only 1.92% of the total exons undergo any change at 

all in their splice site usage between H1 and IMR90. 

We observed previously that we could obtain a higher accuracy of 

classification of alternatively spliced exons in H1, if we considered a negative set 

that was composed of constitutive exons in both H1 and IMR90, rather than just 

H1(74% vs 71%). This suggests that certain constitutive exons in H1 maybe “pre-

marked” for alternative splicing in IMR90.In order to validate this, we created two 

sets of junctions – one that is alternatively spliced at usage levels <-0.9 in H1 but 

not IMR90, and another that is spliced at usage levels <-0.9 in IMR90 but not 

H1(Fig.2.11D,E,blue vs red). Both the acetylation rich clusters 1 and 6 in 

H1(Fig.2.9A)  are significantly enriched for celltype-specific retained junctions 

whether it is in H1 or IMR90 (Fig.2.11D). On the other hand in IMR90, the 

corresponding acetylation-rich clusters 1 and 2 (Fig.2.11A) are not significantly 

enriched for H1-exclusive retention events (Fig.2.11E). Hence, it may be that the 

states in H1 are pre-marked for alternative splicing in IMR90 since they are 



	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	   67 

 

undifferentiated cells that contain the tendency for alternative splicing in future 

differentiated cells as well. Since IMR90 is a fully differentiated cell-type, it does 

not show similar tendencies.  

Overall, it appears that only a small proportion (<2%) of exons undergo 

alternative splicing changes between H1 and IMR90.The chromatin modification 

patterns at exon-intron boundaries changes across H1 and IMR90 in such a 

manner so as to correspond to the splice site usage corresponding to the cluster, 

rather than the actual enrichment of various modifications. Also, constitutive 

exon-intron boundaries in H1 maybe pre-marked by an alternative splice site 

signature for use in later differentiated cell-types such as IMR90. 

 

Discussion 
 

Chromatin modifications distinguishing promoters and enhancers have 

previously been identified as H3K4me1 and H3K4me3[24]. Besides these two, 

we find that several modifications, including histone acetylations that can reliably 

distinguish these regulatory elements. In particular, H3K9ac, H3K23ac and 

H3K14ac are promoter-specific, while H2BK120ac and H2BK20ac are enhancer-

specific. Overall, histone acetylation is not only distinctive between the two 

regulatory elements but also informative enough to predict promoters and 

enhancers genome-wide. These observations potentially lead to several 

hypotheses regarding differences in mechanisms of functioning of these two 

regulatory elements. H2BK120 has been shown to have a ubiquitination 
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modification that is present at active promoters and exclusive of H2BK120ac[85]. 

This exclusivity may explain the presence of H2BK120ac at enhancers, and 

suggest the lack of H2BK120Ub at these elements. Understanding the dynamics 

of the H2BK120 acetylase, KAT3[85] and the H2BK120 ubiquitin ligase, 

RNF20[86,87] may lead to further understanding of differences between 

enhancers and promoters. 

Beside enhancers and promoters, acetylations were found to be quite 

informative in delineating gene bodies. Previously, only H4K16ac was 

characterized as being enriched in gene bodies [12]. [71].We find extensive 

enrichment of H2AK5ac, H2BK120ac, H3K14ac and H3K23ac along gene 

bodies, and acetylations alone can achieve 80% accuracy in predicting gene 

bodies. Some studies have shown PCAF to be regulating H3K14ac[88], also 

known to be part of an elongation-competent form of RNA-polymerase II[89]. 

This factor maybe involved in the maintenance of gene body acetylations in 

IMR90. Tip60 and HDAC6 have also been characterized as being within gene 

bodies [68], the former of which is known to acetylate H2AK5 [90]. Hence, given 

the patterns of acetylations within gene bodies, and prediction of genes enriched 

in these, there is a potential to generate hypotheses regarding the combinatorial 

localization of HATs and HDACs within specific genes. 

Acetylations within the gene body are especially enriched near exon-intron 

junctions of retained exons. Indeed, we found that histone lysine acetylations 

alone can predict cell-type specific usage of exon-intron boundaries with up to 

74% accuracy, which is ~8% higher than H3K36me3, a modification that has 
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previously been described as quite distinctive between constitutive and 

alternatively-spliced exons [78,79]. But this accuracy of 74% likely reflects an 

upper bound, as acetylation-rich states in an earlier developmental state could be 

pre-marking alternative exons in a later state. For instance, many acetylation-

rich, constitutive exons in H1 are alternatively spliced in IMR90. Such a 

hypothesis may be further tested by including detailed splicing and chromatin 

formation across many human cell-lines, both from early and late lineages. 

Further, there maybe regulatory elements distal to the actual splice-site that 

maybe regulating it’s usage, which may be discovered using a chromosomal 

conformation captures technique such as 4C[91]. 

Hence, we observed patterns of histone acetylations that are specific to 

promoters, enhancers and genic regions. Such observations can suggest 

testable hypotheses regarding the enrichment of potential chromatin modifiers at 

various genomic elements that may lead to a better understanding of the 

mechanism of functioning of these elements. 

 

Methods 
 

Datasets and Processing 

All datasets used, including 24 modifications in H1 and IMR90, various 

sequence-specific transcription factors and DNase-I hypersensitivity sites, were 

as used in the development of the RFECS algorithm[23]. In addition, the histone 

modification datasets in H9 can be accessed using GSE16256. Data 
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normalization for histone modifications, determination of binding sites of 

transcription factors, training and prediction using RFECS, correlation clustering, 

visualization of chromatin patterns are also as previously described[23]. 

 

Z-score normalization for comparing enhancers and promoters 

We created a pooled set of equal numbers of distal p300 binding sites and 

known UCSC TSS overlapping DNase-I hypersensitivite sites, representing 

active enhancers and promoters respectively. We computed average histone 

modification levels, measured as input-adjusted RPKM(reads per kilobase per 

million), between -1 to +1 kb around each of these elements. The Z-score 

normalized profile for each element was calculated against the mean and 

standard deviation of the histone modification levels of the entire set of pooled 

elements. Hence, deviations of the mean z-score profile for the TSS class would 

be positive for TSS-preferred modifications while it would be negative for p300-

preferred modifications. This would be the exact mirror image of the values of the 

mean z-score values for the p300-class.  

 

Genome-wide Prediction of promoters 

In order to perform supervised prediction of promoters, we created a 

training set comprising of a set of UCSC TSS overlapping DNase-I 

hypersensitive sites as representative of the active promoter class, and a second 

class comprising of TSS-distal p300 binding sites as well as randomly selected 

non-p300 regions as background. We used input-adjusted RPKM values of  
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histone modifications[23] measured in 100bp bins between -1 to +1 kb around 

the training set elements, as the input features for training this classifier. The 

RFECS classifier was then used to assign every 100bp bin in the genome  

“promoter” or “non-promoter” class based on a 50% voting percentage, after 

which promoter peaks were called in a genome-wide fashion as described 

previously for enhancers[23]. We validated our genome-wide promoter 

predictions by defining gold standard true positive(TP) and true negative(TN) 

sets. The former comprised of UCSC and Gencode annotated TSS overlapping 

DNase-I hypersensitivity sites in the particular cell-type while the latter (TN) 

comprised of p300 binding sites, cell-type specific TFs or  DNase-I sites lying 

within gene desert regions. The true negative set was selected so as to comprise 

the elements most likely to be mistaken for promoters, due to the enrichment of 

active modifications. Training and prediction was performed using the RFECS 

methodology previously applied to prediction of enhancers. 

 

Computation of Variable Importance 

We used the out-of-bag measure for variable importance[60] to compute 

importance of either all modifications or just acetylations for various classification 

or prediction tasks. Since not all modifications had the same replicates, we 

permuted replicates of each histone modification to create several different 

combinations and assessed the variable importance for each of these. 
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RNA-seq data processing  

We first mapped the Illumina-generated mRNA fragments (paired end 

reads) to the exon trio database TXdb, which we have previously built[83]  using 

Bowtie version 1[32] for hits with no more than 2 mismatches. Our sequence 

mapping is based upon the human genome (hg19 assembly – Genome 

Reference Consortium GRCh37). The fragments are mapped to TXdb to be able 

to handle transcriptomic variability that arises from alternative splicing. TXdb 

represents every known contiguous  sequence of exons in the human 

transcriptome as exonic trios and duos, such that mapping to this database 

allows us to quantify the splicing pattern in terms of the relative abundance of 

fragments of the different isoforms in this region, locally. 

We ran the splicing analysis tool SpliceTrap version 0.90.5, with default 

parameters, which uses a Bayesian model to estimate inclusion ratios. 

SpliceTrap uses an inclusion ratio distribution model (estimated from high-

confidence data) in order to reduce noise in the RNA Seq data without 

unnecessarily throwing away evidence from real transcriptomic events. 

Ultimately, it produces inclusion ratio estimates for all splicing events and 

classifies all local splicing decisions as constitutively spliced exon(CS), 

alternative donor site (AD), alternative acceptor site (AA), intronic retention (IR) 

or alternatively spliced exon (CA). 

We chose to use SpliceTrap instead of other RNA-Seq analysis tools due 

to the facts that the SpliceTrap model is exclusively focused on optimizing a 

local, exon-centric splicing model (which is also our main focus), and that in our 
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experience, SpliceTrap produces one of the most robust and consistent 

estimates of inclusion ratios among the tools we compared[83].  

 
 Splice Site Usage 

We created a measure of splice site usage by using labels associated with 

each exon-intron boundary to the various categories of splice sites – 

constitutively spliced exon (CS), alternative donor site (AD), alternative acceptor 

site (AA), intronic retention (IR) or alternatively spliced exon (CA). Each 

assignment is accompanied by an inclusion value of the exon with respect to the 

transcript under consideration. We assigned negative weights to all the cases 

where inclusion values represent increased inclusion such as IR, AA (3’ end), 

AD(5’ end) , and positive weights to the inclusion values that represent 

decreased inclusion such as AA(5’ end), AD(3’ end), CA and CS. The splice site 

usage value was defined as a weighted mean of the inclusion values, with the 

weights being the activity of the transcript under consideration. That is, splice site 

usage for a particular exon-intron boundary is:  

SS =  

€ 

− Incli
i∈Tj
∑ *FPKMi

j∈A
∑ + Incli

i∈Tj
∑ *FPKMi

j∈B
∑           

I is a particular assignment of an exon with respect to a transcript Tj 

Incli is the inclusion value of exon-intron boundary in instance i 

FPKMi is the RNA-seq FPKM value of the transcript I belonging to set Tj 

A =[IR, AA (3’ end), AD(5’ end)] 

B=[AA(5’ end), AD(3’ end), CA ,CS] 
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If there was no assignment for any of the seven cases due to weak coverage in 

that region, that term was set to 0. 

 

Identification of chromatin modification patterns at exon-intron boundaries 

Using splice-trap, we obtained annotations for 286368 exon-intron 

boundaries in H1 and 246657 such boundaries in IMR90, of which 232919 

boundaries had annotations in both cell-types. In each cell-type, we randomly 

selected a subset of 50000 sites (~25%) for unsupervised classification as larger 

number of sites required many more rounds of selection of the number of 

clusters to filter out the outliers. We performed fast k-means++ algorithm[84] at 

the exon-intron boundaries using RPKM-normalized histone modification levels in 

100 bp bins between -2 to +2kb around the boundary as features, and 

determined the accurate number of clusters using the minimum value of the 

Davies-Bouldin measure[92]. We tested different randomly selected subsets of 

the data to ensure the results were robust. Further confirmation of the 

distinctiveness of each of these states was obtained by constructing RFECS 

classifiers for each cluster against all exon-intron boundaries not assigned to that 

cluster. We were able to show a 100% out-of-bag classification accuracy in H1 

and over 95% in IMR90, for each cluster as compared to all others. We used 

these classifiers to assign all the boundaries that had not been used in the 

clustering to assign them to the appropriate state. 
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Significance calculations for transitions of chromatin state at exon-intron 

boundaries between H1 and IMR90 

For computing the significance of the transition from cluster I in H1 to 

cluster j in IMR90, we use a hyper-geometric distribution. Thus we model the 

probability by using the following analogies to the standard hyper-geometric 

distribution framework: 

total exon-intron boundaries, N = total population 

exon-intron boundaries belonging to cluster I in H1, m= elements having desired 

characteristic 

exon-intron boundaries belonging to cluster j in IMR90, n=elements drawn 

without replacement from the population 

exon-intron boundaries common to cluster I in H1 and cluster j in IMR90, x= 

number of elements drawn from the total population with the desired 

characteristic.  

 

In Matlab, the p-value of transition from cluster I in H1 to cluster j in IMR90 

was calculated as: p-value = 1 – hygecdf(x,N,n,m).  
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Figure 3.1. Classification of distal enhancers and promoters 
A.) Preference of various histone modifications for either enhancer or promoter using a Z-score 
normalized score of histone modification levels measured as Input-subtracted RPKM(reads per 
kilobase per million). H1(blue) and IMR90(red) B.) Classification accuracy achieved using each of 
the 24 histone modifications individually to separate enhancers from promoters using RFECS in 
H1(blue), IMR90(red) and H9(green) cell-lines. C.) Comparison of classification accuracy of 
acetylations with that of all 24 modifications D.) Ordering of histone acetylations by their out-of-
bag variable importance in classification of enhancers against promoters in H1. E,F.) Correlation 
clustering of histone acetylations at promoters and enhancers in E.) H1 and F.) IMR90. 
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Figure 3.2. Differential histone modifications between enhancers and promoters 
A,B.) Preference of various histone modifications from -1kb to +1kb around an enhancer or 
promoter using a Z-score normalized score (blue) as compared to the randomly shuffled class 
labels (red) in A.) H1 B.) IMR90 C.) Ordering of histone acetylations by their out-of-bag variable 
importance in classification of enhancers against promoters in IMR90.  
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Figure 3 3. Genome-wide prediction of promoters 
A,B.) Receiver operating characteristic(ROC) curves for prediction of promoters in A.) H1 and B.) 
IMR90 using all 24 modifications(blue),H3K4me3(black), H3K4me1/2/3 (red) or all 15  
acetylations(green). C,D.) Out-of-bag variable importance for acetylations in making genome-
wide prediction of promoters in C.) H1 and D.) IMR90. E,F.) ROC curves for prediction of 
promoters using minimal combinations of acetylations in E.) H1 and F.) IMR90. 
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Figure 3.4. Genome-wide prediction of promoters and enhancers 
A,B) Ordering of all 24 histone modifications by their out-of-bag variable importance for the 
prediction of promoters in A.) H1 and B.) IMR90. C,D) Validation rates and E,F) misclassification 
rates for enhancer predictions  at various voting percentage cutoffs in C,E.) H1 and D,F.) IMR90 
using all 24 modifications(blue), H3K4me1/2/3 (red), H3K4me1,H3K4me3 and H3K27ac(cyan) 
and 15 acetylations(green). 
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Figure 3.5. Classification of genic from intergenic regions 
A,B.) ROC curves for classification of genic regions in A.) H1, B.) IMR90 using various 
combinations of modifications. C,D) Out-of-bag variable importance of all modifications in 
separating genic from intergenic regions in C.) H1 and D.) IMR90. 
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Figure 3.6. Recovery of genic regions using acetylations 
A,B.) Fraction of gene body predicted in A.) H1 and B.) IMR90 using all 24 modifications(blue) or 
just acetylations(red). C,D.) Fraction of predicted 100bp bins lying at various distances from exon-
intron boundaries using all 24 modifications(blue) or just acetylations(red) in C.) H1 and D.) 
IMR90. E,F.) Distance  of predicted 100bp bins from exon-intron boundaries versus activity of 
exons in E.) H1 and F.) IMR90. 
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Figure 3.7. Acetylations within the gene body distal to exon-intron boundaries and DNAse-
I hypersensitive sites in IMR90 
A.) ROC curves showing classification of distal genic regions using all 24 modifications(blue) or 
only 15 acetylations(green). B) Variable Importance of acetylations in classification of distal genic 
regions C.) Heatmap showing enrichment of acetylations in genic regions as compared to 
intergenic ones using a Z-score normalized measure. D,E,F.) UCSC genome browser snapshot 
of genes D.) TEAD1, E.) CHRM2, and F.) CALD1,showing enrichment of acetylations as 
compared to neighboring intergenic regions. 
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Figure 3.8. Acetylations within the gene body distal to exon-intron boundaries and DNAse-
I hypersensitive sites in H1 
A.) ROC curves showing classification of such distal genic regions using all 24 
modifications(blue) or only 15 acteylations(green).B.) Variable Importance of acetylations in 
classification of distal genic regions C.) Heatmap showing enrichment of acetylations in genic 
regions as compared to intergenic ones using a Z-score normalized measure. D.) UCSC genome 
browser snapshot of gene PTPRJ showing enrichment of acetylations as compared to 
neighbouring intergenic region. E,F.) Gene expression levels versus fractional enrichment of 
acetylations within the gene body in E.) H1 and F.) IMR90. 
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Figure 3.9. Associations  of chromatin modification patterns with splicing in H1 
A.) 6 distinct chromatin modification patterns at exon-intron junctions with corresponding levels of 
exonic activity(panel2) and splice site retention(panel3). B.) Association of various types of splice 
variants with each chromatin state C.) Maximum classification accuracy of each state against 
genic background using all 24 modifications(blue) or 15 acetylations (red). 
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Figure 3.10. Enrichment of acetylations at exon-intron boundaries for each chromatin state 
(Fig.5A,6A) with respect to genic background 
A,B.) Maximum classification accuracy of each state against genic background using all 24 
modifications(blue) or 15 acetylations (red) in A.) H1 and B.) IMR90. C,D.) Histone acetylation 
RPKM levels at exon-intron boundaries Z-score normalized against levels at distal genic regions 
in C.) H1 and .D) IMR90. 
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Figure 3.11. Associations of chromatin modification patterns with splicing in IMR90 
A.) 4 distinct chromatin modification patterns at exon-intron junctions with corresponding levels of 
exonic activity and splice site retention. B.) Association of various types of splice variants with 
each chromatin state C.) Maximum classification accuracy of each state against genic 
background using all 24 modifications(blue) or 15 acetylations (red) D,E) Negative logarithm of 
the p-value of enrichment of alternatively spliced exons exclusive to H1(blue) or IMR90(red) in D.) 
H1 and E.) IMR90. 
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Figure 3.12. “Promoter-like” chromatin states are associated with various splice variants 
Snapshots from UCSC genome browser of A.) PLEKH3 showing alternative splicing of several 
exons in H1 as compared to IMR90 B.) VIM showing 87lternative splicing of several exons in 
IMR90 as compared to H1. 
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Table 3.1. GO terms for Acetylation-rich genes in H1 and IMR90 
 

GO term description H1 p-value IMR90 p-value 

GO:0006397 mRNA processing 5.90E-09 7.19E-04 

GO:0010467 gene expression 4.79E-05 4.79E-05 

GO:0003723 RNA binding 3.21E-04 1.03E-05 

 
 
 
 
 
Table 3.2. Significant chromatin state transitions at exon-intron junctions between H1 and 
IMR90 
	  

 IMR90 clust 1 IMR90 clust 2 IMR90 clust 3 IMR90 clust 4 
H1 clust 1 Yes No No Yes 
H1 clust 2 No No No Yes 
H1 clust 3 No No Yes No 
H1 clust 4 Yes No Yes No 
H1 clust 5 Yes Yes No No 
H1 clust 6 No Yes No No 
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Chapter 4.Dynamic epigenetic signatures at regulatory elements in human 
tissues 

 

Abstract 
 

 Covalent histone modifications play important roles in embryonic lineage 

specification and development. Recent studies have shown diversity of such 

marks in various primary cell types. Here, we expanded the scope of available 

data by generating genome-wide maps of chromatin marks in 17 somatic tissues 

isolated from 4 human subjects. Combined with previously published datasets, 

we conducted comprehensive analyses to elucidate epigenetic differences and 

their potential function across an array of diverse cell types and tissues. We 

employed a unique random-forest based algorithm developed in-house to identify 

transcriptional promoter and enhancer elements in over 45 human cell types and 

tissues based on their chromatin states. We uncovered several novel features 

regarding the dynamics of regulatory sequences across tissues and along 

development lineages. Intriguingly, we discovered dual property cis-regulatory 

elements, which harbor the capacity to function both as promoters and 

enhancers in different cell types. Over 60,000 such elements exist among all 

analyzed cell types and tissues, some of which could give rise to cell type-

specific isoforms. Furthermore, we observed significant differences between 

tissue-specific regulatory sequences as opposed to ubiquitous elements in the 

context of evolutionary conservation and association with disease variants. 
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Taken together, our results reveal variations of histone modification patterns 

between somatic tissues, namely at tissue-specific cis-regulatory elements. The 

dynamics of these epigenetic marks could substantially influence gene 

expression, which could potentially explain the distinct phenotypes of 

genotypically identical tissues. 
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Introduction 
 

The human body is comprised of more than 200 cell types. Although 

possessing essentially the same genome, these cells have vastly diverse 

transcriptional profiles, which allow them to have distinct properties relevant to 

their functions. Transcriptional regulation of particular sets of genes play critical 

roles in driving differentiation and providing cell type specification[93]. Until 

recently, few studies have done systematic profiling of the transcriptome and the 

factors, which shape cell identity. The work done by the ENCODE consortium 

recently elucidated much of this aspect in an array of human cell types[16]. 

Specifically, when analyzing all transcripts by RNA-seq, Djebali et al. discovered 

that although three quarters of the genome is transcribed, a large proportion of 

transcripts are restricted to particular cell types[94]. Much of the previous studies 

regarding tissue or cell type specific transcriptional regulation have focused on 

networks of transcriptional factors (TFs), which activate target genes by binding 

to regulatory sequences[95]. However, in recent years mounting evidence has 

shown in addition to TF binding, epigenetic factors such as histone modifications 

and DNA methylation also play critical roles in the process of cell-type 

specification[34,96,97,98].  DNA accessibility at regulatory sequences, which has 

strong correlations with chromatin state[99], was found to predict cell-type 

specific expression quite accurately [100]. 

It has been shown that activity of cis-regulatory elements can be 

delineated by analyzing the enrichment of covalent histone modifications. For 
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instance, histone H3 lysine 4 trimethylation (H3K4me3) is associated with active 

transcriptional promoters whereas trimethylation of histone H3 lysine 27 

(H3K27me3) and lysine 9 (H3K9me3) are associated with repression[101]. H3K4 

monomethylation (H3K4me1) was discovered to indicate enhancer elements[24]. 

In addition, active enhancers are also marked by H3K27 acetylation 

(H3K27ac)[102,103]. Recently, several studies have employed genome-wide 

techniques to investigate the role of epigenetic modifications in gene regulation in 

the context of cellular differentiation.  

As a part of the Roadmap Epigenome project, our group studied the 

epigenomic changes that are associated with early embryonic differentiation by 

analyzing the chromatin states, DNA methylomes and transcriptomes of H1 

human embryonic stem cells (ESC) and derived mesendoderm (ME), neural 

progenitors (NPC), trophectoderm and mesenchymal stem cells (MSC)[34]. As in 

our study, Gifford et al. also independently found that differentiation of human 

embryonic stem cells results in lineage-specific epigenetic remodeling[96].  

Furthering these findings to in vivo tissues, Zhu et al. produced chromatin 

state maps for multiple histone modifications in many diverse cell types and 

tissues, which demonstrated global chromatin state changes which occur as a 

response to developmental or environmental cues[98]. Consistent with the 

diverse profiles of stem cells and various differentiated cell types, the chromatin 

states are highly dynamic between tissue types as well. Although histone 

modifications have been analyzed in certain somatic tissues and early embryonic 
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cell types, the epigenetic differences at cis-regulatory elements across various 

somatic tissues have not been thoroughly studied.   

In this study, we focused on the differential histone modifications of cis-

regulatory elements across distinct cell and somatic tissue types. We generate 

extensive datasets profiling 6 core histone modifications across 17 human 

tissues isolated from 4 individual human donors. Combining previously generated 

datasets of the Roadmap Epigenome consortium[98], we conducted 

comprehensive analyses to elucidate epigenetic differences and their potential 

function across an array of 32 cell types, including 6 cell-lines and 26 primary 

tissues. These cell-types included early as well as late lineages, and have 

representation in all 3 germ layers (Fig.3.1,Table 3.1). Using the RFECS 

algorithm[23], we predicted transcriptional enhancers and promoters from histone 

modification profiles in all 32 cell-types. 

One of the major distinctions between promoters and enhancers was 

considered to be the ability of promoters to serve as the point of assembly of the 

transcriptional machinery and initiation of transcription[104]. Recent years have 

shown that enhancers (whose chromatin is marked by high levels of H3K4me1 

and low levels of H3K4me3) may also be transcribed to produce short 

bidirectional transcripts, called eRNAs[39] which may or may not be 

polyadenylated[105]. Interestingly, a study in mouse showed the production of 

elongated polyA+ transcripts from intragenic enhancers giving rise to additional 

isoforms for the gene within which the enhancer lay[106]. Such findings of 

transcription at enhancers blurs the lines between the strict definitions of 
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enhancers and promoters, and provokes the question if the same regulatory 

sequence cannot function as an enhancer and promoter under different 

circumstances. Upon comparing enhancer and promoter predictions among the 

32 cell-types mentioned above, we discovered over 60000 dual property cis-

regulatory elements, which harbor the capacity to function as a promoter in one 

cell-type and an enhancer in another.  

Evolution of regulatory DNA sequences may underlie the morphological 

diversity of animal species[107,108]. Hence, understanding the association of 

evolutionary conservation of regulatory sequences with tissue function could be 

particularly beneficial in understanding what distinguishes humans from other 

species. Based on the cis-regulatory map of 32 cell-types, we report novel 

associations of evolutionary conservation with tissue-specificity and disease-

causing mutations.  

Overall, our results reveal variations of histone modification patterns 

between somatic tissues, at tissue-specific cis-regulatory elements, which could 

potentially explain the distinct phenotypes of genotypically identical tissues.  

 
 

Results 
 

Genome-wide prediction of enhancers and promoters 

RFECS[23] was used to predict enhancers and promoters in the 6 cell-

lines and 26 human tissues(Fig.3.1) under consideration using the 6 profiled core 

histone modifications. Further, we filtered any enhancer prediction that had a 
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promoter prediction lying with 2.5 kb of it within the same cell-type. This gave us 

a total of 311032 enhancers and 174805 promoters across 32 cell-types (Table 

3.2). 

We identified highly active enhancers using the enrichment of H3K27ac 

modification. We used fast k-means++ clustering[84] of all predicted enhancers 

using the H3K27ac profile as the input feature to assign “present” and “absent” 

values of H3K27ac to each enhancer in each cell-type. Enhancers have been 

known drive cell-type specific gene expression[30] hence similarities among 

enhancers in various lineages can reflect the similarities of the lineages 

themselves. With this in mind, we performed hierarchical clustering and optimal 

ordering of the 32 cell-types using the overlap between the highly active 

enhancers(as defined by H3K27ac) in each cell-type as a similarity 

measure(Fig.3.2A,Table 3.1).At the top-most level in Fig.3.2A, 3 broad clusters 

are observed- an early lineage cluster with H1, Mesendoderm ,NPC and 

Trophoblast (in blue); a cluster with all 5 brain tissues (in red); and the largest 

cluster with all mesoendodermal late lineages (in green). At the next level, the 

mesendodermal cluster clearly separates into the one cluster with cell-lines 

MSC(mesenchymal stem cells) and IMR90; and another with all the primary 

tissues. Going further down the tree, various compartments of the heart such as 

Right auricle(RA),Right ventricle(RV) and Left ventricle(LV) can be seen to 

cluster together, while other sets of endodermal or mesodermal lineages can 

also be either clustered or ordered together(Fig.3.2A). Hence, clustering of 
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enhancers reflects many known similarities among the cell-types and maybe 

further considered to reflect hitherto unknown similarities among lineages. 

Tissue-specific enhancers were defined as those enhancers where 

H3K27ac was “present” in atmost 2 cell-types. We obtained 126950 number of 

tissue-specific enhancers and 13218 tissue-specific promoters, defined in the 

same way as enhancers (Table 3.2). It is worth noting that while nearly 41% of 

enhancers are tissue-specific, only about 8% of promoters are tissue-specific, 

which is in keeping with prior beliefs regarding the highly tissue-specific nature of 

enhancers as compared to promoters. A heatmap showing enrichment of 

H3K27ac, H3K4me1 and H3K4me3 at all of these tissue-specific enhancers 

confirms that we did indeed detect enhancers with H3K27ac and H3K4me1 

signal that is highly specific to the cell-type under consideration. (Fig.3.2B). We 

searched for transcription factor binding motifs enriched at the tissue-specific 

enhancers using HOMER[109]. At a p-value cutoff of 10^-10, we discovered 

significant motifs at tissue-specific enhancers, several of which associated with 

terms that would be expected to belong to the tissue type based on previous 

literature. For instance, Nr5a2 was among the top motifs in pancreas[110] and 

ovary[111], HNF4A in liver[112],TBX20 in heart right ventricle[113] and so on. 

The remaining list of enriched motifs in each cell-type maybe downloaded from 

enhancer.ucsd.edu/nisha/human_tissue_motifs . 

Overall we predicted 311032 genome-wide enhancers and 174805 

promoters in 32 cell-types using chromatin modification profiles . We clustered 

cell-types based on the enhancer-predictions and were able to observe several 
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expected groupings such as those of the brain tissues, early lineages or heart 

tissues. Further, we also found lists of tissue-specific enhancers and promoters 

that can be further examined for tissue-specific properties such as enrichment of 

cell-type specific transcription factor binding sites. 

 

Identification of dual Property cis-regulatory elements 

 

A previous study in mouse had shown that intragenic enhancers could act 

as alternative promoters[106]. Upon comparison of the genome-wide predictions 

of enhancers and promoters, we found that nearly 20% of enhancers active in 

one cell-type or tissue, were predicted as promoters in another tissue, and about 

36% of predicted promoters were enhancers in another cell-type(Fig.3.3A). 

Based on the total number of switches between enhancers and promoters, we 

tried to identify cell-types where switches were significant using a hyper-

geometric distribution(p-value<10^-3). We found that enhancers in skeletal 

muscle, spleen and lung tissues showed significant switches to promoters in over 

10 cell-types. Enhancers undergoing switches in the skeletal muscle, spleen and 

lung were 28%,27% and 19% of the total enhancers in the cell-type, indicating 

this might be a dominant mechanism for enhancer creation within these 3 cell-

type. This is in keeping with the heatmap showing enrichment of modifications at 

tissue-specific enhancers(Fig.3.3B), where substantial subsets of tissue-specific 

enhancers in lung(LG), spleen(SX) and skeletal muscle(Sk.Mu) appear to have 

enrichment of H3K4me3 in other cell-types. However, in order to obtain a more 
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accurate view of this phenomenon, we consider as examples all predicted 

enhancers in lung and skeletal muscle that undergo switches to predicted 

promoters in other cell-types. The patterns of enrichment of H3K4me1 and 

H3K4me3 in 32-celltypes for these enhancers in skeletal 

muscle(Fig.3.3B,panel1) and in lung(Fig.3.3B,panel 2) show an enrichment of 

H3K4me1 and depletion of H3K4me3 in skeletal muscle and lung, respectively 

as would be expected for enhancers. However, H3K4me3, which is a promoter-

preferred mark, is strongly enriched for a majority of these sites in nearly all other 

cell-types or tissues(Fig.3.3B). This provides visual confirmation for our 

predictions of dual property elements based on chromatin modification patterns. 

If indeed enhancers are being used as promoters, they should be 

accompanied by changes in transcript levels or creation of new isoforms based 

on the creation of a new promoter. We used cufflinks[29] to identify changes at 

the isoform level  for H1 and IMR90 cell-types. We found that among 112 

enhancers in H1 that underwent a switch to promoters in IMR90 at a resolution of 

500bp, 36% were accompanied by the creation of novel isoforms, and another 

34% showed atleast 2-fold increase in the isoform level upon switching to 

promoters. On the other hand, among the 110 enhancers in IMR90 that were 

previously promoters in H1, 51% showed loss of the isoform, and 14% showed a 

2-fold loss in the isoform level upon switch to enhancer in IMR90. As an 

example, we show the creation of a novel isoform of ALDH3B1 in IMR90, upon 

switching of an enhancer in H1 to promoter in IMR90, as indicated by the gain of 

H3K4me3 in IMR90(Fig.3.3C,black box). The reverse in seen in SLCA12A8, 
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where a transcript in H1 is lost in IMR90, upon conversion of the promoter in H1 

to an enhancer  in IMR90 (Fig.3.3D,black box). 

In summary we observe a novel class of dual-property elements that can 

act as enhancers in one cell-type and promoters in another. These elements are 

often involved in the creation of novel isoforms in the cell-type where the element 

acts as a promoter. Further, certain cell-types such as lung and skeletal muscle 

show a significant proportion of enhancers that are derived from promoters in 

other cell-types. 

  

Factor involved in the switching between enhancers and promoters 

The observation that the same regulatory sequence can have different 

functions in different cell-types leads to the question of how this is achieved. In 

order to understand the mechanism involved in this, we need to identify potential 

transcriptional regulators that maybe involved in the process. First, we looked for 

motifs that maybe enriched at each of these elements. For each cell-type, we 

looked for motifs that were enriched at the enhancers switching to promoters as 

compared to other enhancers that were active within the cell-type. In Fig.3.4A, 

the motifs that showed up as significant at enhancers in over 15 cell-types are 

shown. Similarly, among the set of promoters active in each cell-type, we 

considered the differential enrichment of motifs at promoters that behave as 

enhancers in other cell-types and also found a strong enrichment for motifs at 

these elements. This discovery is noteworthy as promoters are usually quite 
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motif-poor. In Fig3.4B, the motifs that showed up as significant at promoters in 

over 15 cell-types are shown. Since the motifs in Fig.3.4A,B are present in a 

majority of cell-types, the associated transcription factors may have a 

fundamental role to play in the mechanism of switching. 

The CTCF motif is found to be enriched in all 32 cell-types for promoters 

that switch to enhancers as compared to those that do not(Fig.3.4B).It is also 

significantly enriched at enhancers switching to promoters as compared to those 

that don’t in over 25 cell-types. This indicates that CTCF maybe playing an 

important role in the in the specification of dual-property elements. We performed 

ChIP-seq to identify genome-wide binding sites of CTCF in H1 and IMR90.It can 

be seen that over 25% dual-property enhancers in both H1 and IMR90 are bound 

to CTCF, as compared to less than 15% of the remaining enhancers(Fig.3.4C). 

This difference was found to be highly significant using a hypergeometric 

distribution(p-value<2.2X10^-308). On the other hand at promoters, there was no 

significant difference in CTCF binding between promoters with dual property 

versus those without at a p-value cutoff of 10^-5(Fig.3.4C). This indicates that 

CTCF binding maybe playing a role in marking enhancers that have the potential 

to be promoters but not the other way round.  

CTCF has been known to bind upstream of CPG island promoters which 

have a distinct transcription-associated chromatin organization as compared to 

non-CPG promoters[114].In order to see if our dual property-elements were also 

enriched within CPG islands, we obtained predictions from the UCSC genome 
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browser[69] made using the sensitive criteria[115]. We found that 19% of 

enhancers with the potential to act as promoters were enriched within CPG 

islands as compared to 2% of enhancers that did not. (fig.3.4D). On the other 

hand, 23% of dual-property promoters overlapped CPG islands as compared to 

12% of the remaining promoters(Fig.3.4D).This increased association of dual 

property-elements with CPG islands was found to be highly significant using a 

hyper-geometric distribution(p-value<10^-5), but this overlap was not significant 

for enhancers or promoters that did not have the dual-property(p-value=1). 

Another observation of interest was that 11 motifs belonging to the ETS 

family of transcription factors[116] were enriched at enhancers with the potential 

to be promoters in other cell-types. While 3 of these motifs, Elk1, Elk4 and Elf1 

were observed at dual-property enhancers in over 15 cell-types, the remaining 

such as ETV1,EWS,ERG,GABPA,FLI-1 etc were enriched at dual-property 

enhancers in atleast 1 cell-type 

A recent study investigated the binding of KDM5C, a histone lysine 

demethylase that binds to enhancers as well as promoters, allowing for the 

maintenance of enhancer status, while preventing over-activation of promoters. 

We compared our motifs at dual-property elements with motifs found at KDM5C 

sites in the paper (Fig.3.4E) and found that 5 out of the 8 motifs identified at 

KDM5C binding sites were also enriched at our dual-property elements in atleast 

1 cell-type. These motifs included NRF1,SP1 and ELK1 present enriched at over 

15 dual-property elements as compared to other enhancers(Fig.3.4A vs 
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Fig.3.4E), and cMyC enriched at dual-property elements as compared to 

promoters in over 15 cell-types as well(Fig.3.4B vs Fig.3.4E).  In addition GABPA 

was found to be enriched in 3 cell-types at dual property elements with respect to 

remaining enhancers. In order to verify that KDM5C was indeed playing a role at 

dual-property elements, we performed ChIP-seq for KDM5C in H1 and computed 

the average normalized profile surrounding dual-property elements versus the 

remaining enhancers and promoters(Fig.3.4F).H1 enhancers that switch to 

promoters in other cell-types have a significant enrichment for KDM5C within -1 

to +1 kb around the enhancer, as compared to the enhancers that do 

not(Fig.3.4F,panel1,p-value=4.2X10^-75,Wilcoxon test).This may indicate a 

mechanism to ensure that sequences with the potential to act as promoters are 

prevented in doing so by the presence of a histone lysine demethylase. On the 

other hand, dual-property promoters in H1 are not differentially bound by 

KDM5C(Fig.3.4,panel2,red vs blue). 

In summary, dual-property elements have a significant overlap with CPG 

islands and show binding of CTCF. CTCF binding appears to differentially mark 

enhancers with the potential to act as promoters. Motifs belonging to the ETS 

family of transcription factors were strongly enriched at dual-property enhancers. 

Several motifs enriched at the dual-property elements were seen to be 

associated with the recruitment of a lysine demethylase, KDM5C. Indeed, 

significant enrichment of KDM5C binding was observed around enhancers that 
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have the potential to act as promoters as compared to the enhancers that do not 

show such potential. 

Evolutionary conservation, tissue-specificity and disease 

Evolution of regulatory DNA sequences may underlie the morphological 

diversity of animal species[107,108]. Hence, understanding the association of 

evolutionary conservation of regulatory sequences with tissue function could be 

particularly beneficial in understanding what distinguishes humans from other 

species. 

At first, we compared the evolutionary conservation of tissue-specific and 

ubiquitous regulatory elements to find which type of function arose earlier in 

evolution. Based on the concept of founder gene formation, a technique called 

phylostratigraphy has been developed that can assign human genes to their 

evolutionary strata[117,118] .We used this assignment to determine if tissue-

specific promoters were assigned to a particular strata as compared to ubuqitous 

ones. In Fig.3.5A, 19 phylostrata have been defined based on the species 

assigned to each of them[118]. Tissue-specificity at genes assigned to each of 

these strata was measured using enrichment of either H3K4me3 (panel1, 

Fig3.5A) or H3K27ac(panel 2,Fig3.5A) a the 26 human tissues.The strata 

showing most significant enrichment of ubiquitous promoters (promoters with 

highest fraction of tissues in which it  shows enrichmhent of an active mark) as 

compared to all other strata was strata 2 or the eukaryota stage(Fig.3.5A), 
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whether the active mark considered was H3K4me3(Wilcoxon test p-value<10^-

169) or H3K27ac(Wilcoxon test p-value<10^-182). The strata showing most 

significant enrichment of tissue-specific promoters (promoters with lowest fraction 

of tissues in which it shows enrichment of an active mark) as compared to all 

other strata was strata 19 or the primates stage.(H3K27ac:p-value<10^-

175;H3K4me3:p-value<10^-186). A general trend of progressive increase of the 

median tissue-specificity of promoters is seen between eukaryota and mammalia 

stages, when tissue-specificity is measured as the inverse of the fraction of 

tissues in which a promoter shows enrichment of H3K27ac(panel 2,Fig3.5A).  

Next, we measured evolutionary conservation at predicted enhancers and 

promoters using a phastCons measure based on sequence comparisons of 44 

vertebrates[119,120]. Tissue-specific enhancers or promoters were defined as 

those that showed enrichment of H3K27ac in atmost 2 among the 32 cell-types, 

Ubiquitous promoters were defined as those that showed enrichment of H3K27ac 

in all cell-types while ubiquitous enhancers were those that showed enrichment 

in over 15 cell-types. We computed the average phastCons score from -0.5 to 

+0.5kb surrounding either promoter or enhancer and examined the distribution of 

the scores for tissue-specific(red) and ubiquitous categories(Fig.3.5B,C).It is 

quite clear in promoters, that the distribution of tissue-specific TSS are biased 

towards the lower end of the phastCons scores, while the ubiquitous promoters 

are biased towards the higher end of the phastCons scores(Fig.3.5B,red vs 

blue). In enhancers on the other hand, the same trends are seen for phastCons 
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scores less than 400 with the tissue-specific enhancers being biased towards the 

lower conservation end. However, there is a distinct enrichment of tissue-specific 

enhancers at high phastCons scores between 400 and 600 that is absent in 

ubiquitous enhancers. We performed Fast k-means++ clustering[84] and 

observed separation of the high conservation category described above from the 

rest of the enhancers at the number of clusters k equal to 2. We examined 

enrichment of various tissue-specific enhancers within that category, and found 

that enhancers specific to the early lineages H1, mesendoderm and 

neuroprogenitor cells as well as to the brain were enriched in the highly 

conserved category at p-value <10^-3 using a hypergeometric distribution. 

Skeletal muscle and stomach muscle were also significantly enriched in this 

highly conserved category. Enhancers specific to multiple tissues were observed 

to have significantly lower conservation levels than average. We found left and 

right ventricles of the heart to be among these tissues with significantly lower 

conservation levels(Wilcoxon test p-value<10^-3), which is in keeping with 

previous observations of heart enhancers being weakly conserved[121]. 

Diseases are often studied using animal models. Hence, the extent to 

which the causative mutations related to a genetic disease maybe recapitulated 

in an animal model is a question of great interest. We begin to probe this 

question by considering the distribution of SNPs(single nucletide polymorphisms) 

associated with disease based on genome-wide association studies(GWAS) 

[122] within the tissue-specific enhancers. In Fig.3.5D, it is seen that tissue-
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specific enhancers containing GWAS SNPs are biased towards lower levels of 

phastCons scores as compared to the tissue-specific enhancers without these 

SNPs. Enhancers with the GWAS SNPs also lack the distinctive enrichment 

between phastCons scores 400 to 600 that is observed with other tissue-specific 

enhancers(Fig.3.5D). On the whole, it appears that disease-associated SNPs 

localize within lowly conserved enhancers and may have a tendency to be more 

human-specific.  

Overall, we found that tissue-specific enhancers and promoters are less 

conserved than ubiquitously active ones. However, a distinct category of highly 

conserved tissue-specific enhancers exists that is enriched for enhancers 

specific to early lineages, brain and muscle tissues. Phylostratigraphic analysis 

revealed that ubiquitous promoters probably evolved during the eukaryota stage 

while the tissue-specific ones arose in the later stages with the maximum 

concentration in the primate stage. Tissue-specific enhancers associated with 

disease mutations appear to be lowly conserved, possibly arising in human-

specific enhancers. 
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Discussion 
 

In this study, we predicted enhancers and promoters in 26 human primary 

tissues and 6 cell-lines, including 5 early developmental lineages. Further we 

identified enhancers that were highly specific to each of these cell-types and 

provided evidence for the accuracy of our predictions by examining enrichment of 

motifs at tissue-specific enhancers, which associated with terms that would be 

expected to belong to the tissue type based on previous literature. 

We discovered a novel class of dual property cis-regulatory elements that 

could function as enhancers in one cell-type and promoters in another. We 

verified the observation by noting that several novel transcripts and isoforms 

arose from the cell-type in which the element was a promoter, but did not exist or 

were present at low levels in the cell-type that was an enhancer. Further 

validations that the dual property elements can function as enhancers will be 

carried out using reporter assays[24]. We discovered the association of such 

elements with CTCF and CPG islands as well as histone demethylase, KDM5C. 

Many binding motifs for the ETS family of transcription factors were found to be 

enriched in the dual-property elements. The ETS family has a lot of redundancy 

in it’s binding sites and mainly achieves specificity through it’s binding 

partner[123]. This leads to a multitude of co-regulators that can drive gene-

specific responses in many different cell-types[116]. As a next step, we should 

validate the localization of these ETS transcription factors at dual-property 

elements using ChIP-seq, as well as find their binding partners in the enhancer 
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as well as promoter state. A comprehensive examination of other components 

involved in this mechanism maybe carried out by performing ChIP-seq for the 

various motifs discovered. Mass spectrometry and co-immunoprecipitation 

experiments maybe performed to find the components of the various complexes 

that are bound to the dual-property elements both in their enhancer as well as 

promoter states. 

Phylostratigraphic analysis[117] revealed that ubiquitous promoters 

probably evolved during the eukaryota stage while the tissue-specific ones arose 

in the later stages with the maximum concentration in the primate stage. Overall, 

we found that tissue-specific enhancers and promoters are less conserved than 

ubiquitously active ones. However, a distinct category of highly conserved tissue-

specific enhancers exists that is enriched for enhancers specific to early 

lineages, brain and muscle tissues. Tissue-specific enhancers associated with 

disease mutations appear to be lowly conserved, possibly arising in human-

specific enhancers. Further analysis will be carried out to determine which 

diseases have SNPs localized within lowly conserved enhancers and which of 

them have SNPS within the highly conserved enhancers. This would be coupled 

with the knowledge of the cell-type in which these enhancers are active and 

potentially any known transcription factor binding motif that the disease-causing 

mutation maybe disrupting. 
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Methods 
 

Data normalization of histone modifications was as described in chapter 1. 

Enhancer and promoter predictions were carried out as described in 

chapter 1 and 2 respectively using the RFECS algorithm trained on p300 binding 

sites in H1 with 6 histone modifications as features – H3K27ac, H3K4me1, 

H3K4me3, H3K27me3, H3K36me3 and H3K9me3. 

Presence or  absence of a modification at a regulatory element (enhancer 

or promoter) in a particular cell-type was computed by clustering all the 

enhancers or promoters predicted in 32 cell-types. The input feature was the 

normalized RPKM(reads per kilobase per million) level in 100 bp bins of the 

modification from -2 to +2 kb around the regulatory element We performed fast k-

means++ clustering[84] on the list of all predicted regulatory elements and 

discovered the optimal number of clusters using the Davies-Bouldin measure[92]. 

All elements within the cluster that had the maximum positive enrichment of the 

modification were assigned a “present” value. In order to measure the tissue-

specificity of a particular element, H3K27ac was used as the active modification. 

Here, each enhancer or promoter was assigned a “present” or “absent” value 

based on the method above. If an enhancer or promoter had H3K27ac present in 

atmost 2 cell-types of the 32 investigated, we considered this as tissue-specific to 

the cell-types in which it had H3K27ac present. 
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Figure 4.1. Cell-types and tissues showing stage of development and germ-layer 
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Figure 4.2. Tissue-specific enhancers and similarity of cell-types 
A.) Hierarchical clustering of cell-lines and tissues based on overlap of strong enhancers 
predicted in each cell-type. B.) Heatmap showing enrichment of H3K27ac, H3K4me1 and 
H3K4me3 at tissue-specific enhancers in each cell-type. 
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Figure 4.3. Identification of dual property cis-regulatory elements 
A.) Overlap between predicted enhancers and promoters across 32 cell-types. B.) Heatmap 
showing enrichment of H3K4me1 and H3K4me3 across 32 cell-types at enhancers in Skeletal 
muscle(panel 1) and lung tissue(panel 2) that are predicted as promoters in other cell-types. 
C,D.) UCSC genome browser snapshot showing histone modification changes accompanying the 
switching of C.) an enhancer in H1 to promoter in IMR90 accompanied by creation of a novel 
isoform of gene ALDH3B1. D.) a promoter in H1 to enhancer in IMR90 accompanied by loss of 
expression of an isoform of gene SLCA12A8. 
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Figure 4.4. Factors involved in the functioning of dual property cis-regulatory elements 
A,B.) Number of cell-types in which a motif is significant for A.) an enhancer that can behave as 

promoter as compared to a background of enhancers that cannot. B.) a promoter that can behave 
as enhancer as compared to a background of promoters that cannot. C.) Fraction of dual-property 
elements(red) in H1 and IMR90 that are bound by CTCF as compared to remaining enhancers or 
promoters(blue).D.) Fraction of dual-property elements(red) in all 32 cell-types that overlap CPG 
islands as compared to remaining enhancers or promoters(blue).E.) Motifs found to be enriched 
at KDM5C binding sites in mouse embryonic stem cells with varying levels of H3K4me3[124].F.) 

Input-adjusted levels of KDM5C binding (in reads per kilobase per million) at dual-property 
elements(red) in H1 as compared to remaining enhancers(panel1,blue) or 

promoters(panel2,blue).
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Figure 4 5. Association of evolutionary conservation with tissue-specificity and disease 
A.) Tissue-specificity of TSS associated with each evolutionary strata assigned using the 
phylostratigraphy method(ref,panel 3). Tissue specificity maybe defined as the inverse of the 
fraction of tissues in which the TSS is active based on either enrichment of H3K4me3(panel 1) or 
H3K27ac(panel 2). B,C.) Differences in distribution of average vertebrate phastcons score 
between B.)enhancers and C.) TSS that are either ubiquitous and those that are tissue-specific 
as measured based on the enrichment of H3K27ac around the element. D.) Differences in 
distribution of average vertebrate phastcons score between tissue-specific enhancers containing 
GWAS SNPs and those lacking GWAS SNPs. 
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Table 4.1. Abbreviations for the 32 cell-types 
 

Abbrev Full name 
H1 Embryonic stem cell 

Mes Mesendoderm 
NPC Neural progenitor cell 
Tro Trophoblast 

MSC Mesenchymal stem cell 
IMR90 Fetal lung fibroblast 

AD Adrenal Gland 
AO Aorta 

CD34 CD34+ blood cells 
BN.HMP Brain hippocampus 
Sk.Mu Skeletal muscle 
St.Mu Stomach muscle 

ADI.Nu Adipose nuclei 
BN.AG Brain An 
BN.AC Brain anterior caudate 
BN.CC Brain cerebral cortex 
BN.ITL Brain 

Duo.Sm.Mu Duodenum smooth muscle 
EG Oesophagus 
GA Gastric 
LG Lung 
LI Liver 
LV Left ventricle 
OV Ovary 
PA Pancreas 
PO Psoas 
RA Right auricle 
RV Right ventricle 
SB Small Bowel 
SG Sigmoid tissue 
SX Spleen 
TH Thymus 

 

Table 4.2. Predicted enhancers and promoters in 32 cell-types 
 

 
 

Total 
 

Tissue-specific 
 

Enhancers 
 

311032 
 

126950 
 

Promoters 
 

174805 
 

13218 
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Chapter 5.Future Directions 
 

In this thesis, we developed a random-forest based algorithm with two-fold 

advantage. First, we were able to accurately predict genome-wide enhancers 

and promoters from chromatin modifications. Second, we were able to identify 

the most informative set of modifications required for characterizing any genomic 

element. The latter enabled us not only to find the minimal set of modifications 

required to predict enhancers, promoters and gene bodies, but also helped 

elucidate the distinctive localization of histone acetylations at each of these 

regions. 

For purposes of enhancer prediction, we used p300 binding sites as a 

training-set. Comparisons with using CBP, another well-known enhancer-binding 

coactivator[125], in CD4+ T-cells showed no significant difference in the 

prediction of genome-wide enhancers(data not shown). While these two co-

activators are generally considered to be representative of genome-wide 

enhancers, there are also other transcriptional co-activators that are known to be 

part of enhancer binding complexes[126]. In addition to p300 and CBP, these 

could potentially be used to train the RFECS classifier. We may potentially 

discover other classes of enhancers with different patterns of modifications. 

Recent studies have shown the existence of a class of enhancers termed 

“super-enhancers” that cover much larger genomic regions than regular 

enhancers and have a much higher density of transcription factor binding density. 
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They are characterized by binding of the mediator complex and seem to play key 

roles in the control of mammalian cell identity[127,128]. In our method of 

enhancer prediction, we defined a point location as the peak of a predicted 

enhancer, by assuming any region within a -2 to +2 kb window that was predicted 

as an enhancer, could potentially be part of the same enhancer[23]. Extending 

the algorithm to include the width of the enhancers in the output could be useful, 

as it may allow us to define super-enhancers that that are involved in the control 

of cellular state in a multitude of cell-types. This could potentially be achieved by 

measuring the density of transcription factor binding along the genome by 

integrating additional sources of data such as cell-type specific transcription-

factor binding and DNase-I hypersensitivity. Further, the width of histone 

modification domains associated with enhancers such as H3K4me1 and 

H3K27ac[24,102] could also associated with the density of binding of known key 

regulators of the cellular state. 

Recent years have shown that enhancers maybe transcribed to produce 

short bidirectional transcripts, called eRNAs[39] which may or may not be 

polyadenylated[105]. A study in mouse also showed the production of elongated 

polyA+ transcripts from intragenic enhancers[106]. It would be of interest to use 

the RFECS algorithm to find if there are distinctive chromatin modification profiles 

associated with transcription at enhancers.  

A major finding of our study was the association of histone acetylation 

patterns with various genomic elements. In particular, we found that retention of 

exon-intron junctions was significantly associated with the presence of histone 
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acetylations. However, such a pattern of modifications could be pre-marking 

splice sites that are currently constitutive but maybe alternatively spliced in later 

developmental cell-types. It would be valuable to understand to what extent this 

pre-marking can occur. We can do this by comparing changes in splice site 

retention across multiple cell-types of early and late lineages with matched 

chromatin and RNA-seq datasets. Further, adding stimulus to a particular cell-

type and measuring transcriptomic as well as epigenomic changes 

simultaeneously, could enable the association of changes in chromatin 

modification patterns with changes in splice-site usage, at different genomic 

locations. 

Upon comparing enhancers and promoters across a large panel of 26 

primary tissues and 6 cell-lines, we discovered a significant proportion of 

enhancers were promoters in other lineages. Further, we found certain 

characteristics associated with this class such as the presence of CPG islands, 

binding of CTCF and possible enrichment of KDM5C. We also obtained lists of 

other motifs of transcription factors that maybe potentially involved. The next 

stage in this study would be to understand the mechanism by which such a 

switch occurs. This might be learned by knocking out various factors suspected 

to be involved in facilitating the switch and determining which of them are 

necessary. Either by applying a stimulus to a particular cell-type, or by studying 

various stages of a developmental pathway, we may even be able to obtain a 

temporal dimension to the transition of enhancer to promoter state which could 
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further enable understanding the order of recruitment of various factors involved 

in the process.  
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