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ABSTRACT A thermophilic methanogen was enriched in coculture from Washburn
Hot Springs (Yellowstone National Park, USA), grown on carbon dioxide and hydro-
gen, and subsequently sequenced. The reconstructed 1.65-Mb genome sequence for
Methanothermobacter thermautotrophicus WHS contributes to our understanding of
hydrogenotrophic, CO2-reducing methanogenesis in geothermal ecosystems.

Methanogenesis is thought to be one of the earliest evolved microbial metabo-
lisms (1, 2), and the production of methane, a potent greenhouse gas, has had a

significant impact on the Earth’s climate history (3). Carbon for canonical methanogen-
esis pathways derives from one of three primary sources: carbon dioxide, acetate, or
methylated compounds (i.e., methanol, methylamines, methylsulfides) (4). The
order Methanobacteriales is subdivided into two families, the Methanobacteriaceae
and the Methanothermaceae. The genus Methanothermobacter falls within the fam-
ily Methanothermaceae and is represented by the thermophilic, CO2-reducing,
hydrogenotrophic type strain M. thermautotrophicus DH, which was isolated from
sewage sludge (5).

A coculture containing primarily M. thermautotrophicus WHS (99.6% relative abun-
dance) was enriched from sediments obtained from Washburn Hot Springs (Yellowstone
National Park [YNP], USA) and subsequently sequenced. M. thermautotrophicus WHS grew
at an optimal temperature of 65°C in reduced medium (NaS2) with CO2 as the sole carbon
source and H2 as an energy source. H2 decreased in the headspace from 95% to 0%, while
CH4 increased in the headspace from 0% to 46% over 128h. The coculture medium stead-
ily increased in optical density but only to a maximum of 0.04 at 80h. Scanning electron
microscopy and epifluorescence microscopy (using SYBR green DNA stain) demonstrated
that the enriched methanogen formed long, thin (;3-mm-diameter) filaments similar to a
methanogen previously cultivated from YNP (6).

Coculture genomic DNA was extracted using the FastDNA spin kit for soil from MP
Biomedicals according to the manufacturer’s procedure. Paired-end DNA sequencing
(2� 150bp) was performed on the Illumina MiSeq platform with the v2 reagent kit.
Sequence library preparation was performed with the NEBNext DNA library prep kit.
Using the Illumina-utils method with default parameters (7), 317Mb of raw reads was
quality filtered and assembled using SPAdes v3.11.1 (8). Of the total quality-filtered reads
(n = 801,518 pairs), 98.11% mapped to contigs belonging to M. thermautotrophicus WHS,
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and the remaining 1.89% mapped to a smaller metagenome-assembled genome (MAG)
belonging to the phylum Firmicutes (no quality-filtered reads were unmapped). The
assembled contigs were imported into anvi’o v4 (9) for coverage- and nucleotide fre-
quency-based separation of the archaeal and bacterial genomes. Analysis of tetranucleo-
tide frequencies and the mean coverage values of contigs resulted in two easily distin-
guishable bins, which were confirmed as members of the genera Methanothermobacter
and Caldanaerobacter by Centrifuge v1 taxonomy identification software (10). Hidden
Markov Models were used in anvi’o to estimate completeness and redundancy for both
MAGs based on the presence of single-copy genes (162 for Archaea [11] and 139 for
Bacteria [12]) and resulted in 99.38% completeness and 6.79% redundancy for M. thermau-
totrophicusWHS and 15.11% completeness and 0.72% redundancy for Caldanaerobacter. A
full-length 16S rRNA gene sequence was recovered from the draft genome sequence of M.
thermautotrophicus and was also recovered by cloning and sequencing from a separate
DNA extraction; these two sequences were identical to one another, and phylogenetic
analyses established their placement next to M. thermautotrophicus. We designated this
strain of M. thermautotrophicus “WHS” for Washburn Hot Springs in Yellowstone National
Park. The draft genome sequence was comprised of seven scaffolds (N50, 343,349bp)
with a G1C content of 49.75% and a cumulative length of 1,654,216bp, compared to
1,751,377bp for the type strain,M. thermautotrophicus DH.

In anvi’o, open reading frames were identified using Prodigal v2.6.3 (13), and func-
tional annotations were performed using the NCBI Clusters of Orthologous Groups of
proteins (COGs) database (14). The potential for autotrophic CO2 reduction was
confirmed by the presence of genes essential to the methyl branch of the Wood-
Ljungdahl pathway, including formate dehydrogenase, formyl-H4F synthase, methenyl-
H4F cyclohydrase, methylene-H4F dehydrogenase, methylene-H4F reductase, and meth-
yltransferase. CH4 production was confirmed by the presence of genes for methyl
coenzyme M reductase subunits, including mcrABGCD. Hydrogenotrophic metabolism
was confirmed by the presence of multiple hydrogenase genes, including F420-nonre-
ducing [NiFe]-hydrogenase, heterodisulfide reductase, and F420-reducing hydrogenase.

Nota bene, in 1980, prior to the wide availability of sequencing methods, three new
strains of M. thermautotrophicus, YT1, YTA, and YTC, were isolated from Octopus Spring,
Firehole Pool A, and Washburn Hot Springs, respectively, in Yellowstone National Park (6).
Because each of these was cultivated on the same H2/CO2 medium and each displayed
similar morphology and temperature optima, only the strain from Octopus Spring, M. ther-
mautotrophicus YT1, was deposited in a culture collection (ATCC 29183). To our knowl-
edge, however, there is no available genome sequence for this organism. Here, it is possi-
ble that we have cultivated and sequenced the genome of a population highly similar to
M. thermautotrophicus YTC, which we are callingM. thermautotrophicusWHS.

Data availability. The raw sequence files (NCBI BioSample accession no.
SAMN16969497) and the draft genome sequence of Methanothermobacter thermau-
totrophicus WHS (NCBI BioSample accession no. SAMN09381010) are available
under NCBI BioProject accession no. PRJNA475154.
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