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REVIEW Open Access

Targeting phosphoinositide 3-kinase (PI3K)
in head and neck squamous cell carcinoma
(HNSCC)
Kyungsuk Jung1* , Hyunseok Kang2 and Ranee Mehra2

Abstract: The landscape of head and neck squamous cell carcinoma (HNSCC) has been changing rapidly due to
growing proportion of HPV-related disease and development of new therapeutic agents. At the same time, there
has been a constant need for individually tailored treatment based on genetic biomarkers in order to optimize
patient survival and alleviate treatment-related toxicities. In this regard, aberrations of PI3K pathway have important
clinical implications in the treatment of HNSCC. They frequently constitute ‘gain of function’ mutations which
trigger oncogenesis, and PI3K mutations can also lead to emergence of drug resistance after treatment with EGFR
inhibitors. In this article, we review PI3K pathway as a target of treatment for HNSCC and summarize PI3K/mTOR
inhibitors that are currently under clinical trials. In light of recent advancement of immune checkpoint inhibitors,
consideration of PI3K inhibitors as potential immune modulators is also suggested.
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Background
Head and neck squamous cell carcinoma (HNSCC)
arises from mucosal epithelium of oral cavity, pharynx
and larynx. An estimate of 61,000 new cases of HNSCC
were diagnosed in the US in 2016, with 13,190 deaths at-
tributable to the disease [1]. Traditional risk factors in-
clude tobacco smoking, alcohol consumption, betel nut
chewing and genetic predisposition such as Fanconi
anemia [2–4]. Human papillomavirus (HPV) has re-
cently emerged as a major and distinct risk factor for
HNSCC. HPV-related HNSCC most commonly arises in
oropharynx and has been associated with younger age of
disease onset, less smoking history, better performance
status and favorable prognosis [5]. The proportion of
HPV-positive oropharyngeal squamous cell cancer has
significantly increased for the past decade regardless of
sex and race [6], raising the need for a separate thera-
peutic strategy.
Comprehensive genomic analysis of HNSCC revealed

frequent alterations in genes encoding molecules in
phosphoinositide 3-kinase (PI3K) pathway including
PIK3CA, PTEN and PIK3R1 [7, 8]. In particular, HPV-

related HNSCC frequently harbors mutations in the hel-
ical domain of PIK3CA, yet its biological significance
has not been fully elucidated. In the era of precision
medicine, it is becoming more important to understand
key genomic alterations and their therapeutic implica-
tions [9]. This review will focus on the role of PI3K-Akt-
mTOR pathway in relation to epidermal growth factor
receptor (EGFR) and their clinical applications in
HNSCC.

Phosphoinositide 3-kinase (PI3K) and PI3K-Akt-
mTOR pathway
PI3K is a family of phospholipid kinase that is divided
into three classes based on structure, function and sub-
strate specificity. Class I PI3K is a heterodimer that con-
sists of a regulatory and a catalytic subunit. It is further
divided into class IA and IB. For class IA PI3K, there are
three variants of catalytic subunit, p110α, p110β and
p110δ (encoded by PIK3CA, PIK3CB and PIK3CD), and
five variants of regulatory subunit, p85α, p55α, p50α
(encoded by PIK3R1 and splice variants), p85β and p55δ
(encoded by PIK3R2 and PIK3R3). p85 regulatory sub-
unit contains Src homology 2 (SH2) domain which binds
to phosphorylated Y-X-X-M motif in receptor tyrosine
kinase [10]. It was found that five isoforms of regulatory
subunit express different affinities to tyrosine kinases
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[11], and each p110 subunit is selectively recruited to re-
ceptor activation [12, 13]. These findings are consistent
with selective mutation of p110 in various types of can-
cer and provides important prospect for targeted ther-
apy. PIK3CA is one of the most commonly mutated and
extensively studied oncogenes in various types of human
cancer. An analysis of The Cancer Genome Atlas
(TCGA) data showed that PIK3CA was the most fre-
quently mutated gene in breast cancer samples, second
most frequently mutated gene in uterine corpus endo-
metrial cancer and third most commonly mutated gene
in HNSCC [14]. PIK3CA is also heavily mutated in lung
squamous cell carcinoma, urothelial carcinoma of blad-
der and colorectal adenocarcinoma [14]. Molecular com-
position of p110α, the product of PIK3CA, and p85α are
illustrated in Fig. 1.
Class IB PI3K consists of p110γ catalytic subunit

(encoded by PIK3CG) and p101 or p87 regulatory sub-
unit (encoded by PIK3R5, PIK3R6). Class IA and IB
PI3K phosphorylate 3-hydroxyl group of phos-
phatidylinositol (PI), phosphatidylinositol 4-phosphate
(PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2),
producing phosphatidylinositol 3-phosphate (PI-3-P),
phosphatidylinositol 3,4-bisphosphate (PI-3,4-P2) and
phosphatidylinositol 3,4,5-triphosphate (PIP3), respect-
ively [15]. Expressions of p110δ and p110γ are found
exclusively in lymphocytic immune system whereas p110α
and p110β are expressed ubiquitously [16]. Idelalisib, a
drug used for treatment of lymphoma, is a selective inhibi-
tor of p110δ which is abundantly expressed in malignant
B cells [17].

Class II PI3K is a monomer of catalytic isoforms, C2α,
C2β and C2γ (encoded by PIK3C2A, PIK3C2B and
PIK3C2G), and lacks regulatory subunit. Class II lipid
kinase produces PI-3,4-P2 from PIP and PI-3-P from PI.
C2α isoform found in endosomes was suggested to play
a role in angiogenesis and vascular barrier formation
[18]. Class III PI3K is a heterodimer of a regulatory
(Vps15, encoded by PIK3R4) subunit and a catalytic sub-
unit (Vps34, encoded by PIK3C3), which converts PI to
PI-3-P. Little is known about physiologic role of class III
PI3K, but it was implicated in induction of autophagy in
the state of nutrient deficiency [19].
The family of PI3K proteins mainly regulates cellular

growth and cycle. Its activation is triggered by upstream
receptor tyrosine kinase such as ErbB family receptor
(including EGFR), platelet-derived growth factor re-
ceptor (PDGFR), insulin-like growth factor 1 receptor
(IGF-1R) or G protein-coupled receptor (GPCR). PI3K
attaches a phosphate group to the 3′ hydroxyl of the in-
ositol head of PIP2, converting it to PIP3 [20]. Inositol
phospholipids constitute a minor part of the cellular
membrane and phosphorylation of inositol head has little
effect on membrane structure. However, phosphorylated
inositol head protruding from the membrane provides an
anchoring site for secondary signaling molecules that are
floating in the cytosol. Once PIP3 is formed by PI3K, cyto-
solic molecules such as Akt/Protein kinase B localize to
plasma membrane and become tethered to the head of
PIP3 via Pleckstrin homology (PH) domain in N terminal
[21]. Activated Akt, in turn, phosphorylates a series of
molecules including mechanistic target of rapamycin

Fig. 1 Linear composition of p110α and p85α molecules. Red arrowheads in p110α indicate ‘hotspot’ mutations. C2 in p110α is a putative
membrane-binding domain. Breakpoint cluster region-homology (BH) domain in p85α has shown GTPase activating protein (GAP) activity toward Rab
family. Rab GTPase induces degradation and deregulation of activated growth factor receptors, and mutated Rab GAP induces cell transformation
[148]. However, it is unclear if this function is still active in complex with p110α [149]. BH domain in p85α is flanked by proline-rich domain, implying
an auto-regulatory mechanism in interaction with its SH3 domain [150]
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(mTOR) that promotes cell survival, proliferation and mo-
tility. The action of PI3K, conversion of PIP2 to PIP3, is
negatively regulated by reverse phosphatases, such as
phosphatase and tensin homolog (PTEN). Other cytoplas-
mic molecules that contain PH domain and interact with
PIP3 include Rho-guanine nucleotide exchange factor
(GEF). Rho family proteins, when activated by GEF, re-
model cytoskeleton, decrease contact inhibition and in-
crease cell motility, all of which elevate invasiveness in
cancer cells [22].

Implications of PI3K pathway alteration for EGFR
pathway in HNSCC
EGFR is a cell surface receptor tyrosine kinase in ErbB
family and has been an attractive therapeutic target for
various human cancers including HNSCC. The receptor
becomes activated by ligand binding which transitions
EGFR monomers to the allosteric homodimer. Receptor
dimerization stimulates tyrosine kinase activity in C ter-
minal domain and initiates downstream phosphorylation
cascade through PI3K-Akt-mTOR, Raf-MEK-MAP kin-
ase or JAK/STAT pathways (Fig. 2).
It has been well known that EGFR overexpression is in-

volved in carcinogenesis of HNSCC [23, 24], and associ-
ated with poor prognosis [25, 26]. EGFR-targeting strategy
with a monoclonal antibody, cetuximab, has prolonged
survival of patients with locally advanced HNSCC in

combination with radiotherapy [27]. Cetuximab is cur-
rently used with platinum-based chemotherapy as the first
line treatment for HNSCC or for recurrent or metastatic
(R/M) disease [28, 29]. However, efforts to develop a pre-
dictive biomarker for EGFR-targeting treatment have not
been successful. In particular, overexpression of EGFR
assessed by immunohistochemistry (IHC) could not be
correlated with the level of treatment response to cetuxi-
mab [30–32]. Additionally, resistance to cetuximab has
been widely observed in various types of cancer including
HNSCC. Several evasive mechanisms may serve to restore
original oncogene dependence, circumventing the initial
targeting treatment. Receptors can potentially abrogate in-
hibitory action of therapeutic agents as they obtain second
mutations that result in pharmacokinetic changes [33]. A
well-known mutation of EGFR, T790M, enhances affinity
of the kinase pocket for ATP, which competitively blocks
binding of tyrosine kinase inhibitors [34]. Copy number
gains of target genes also reactivate dependent pathway
and counteract the treatment effect. For example, amplifi-
cation of BRAF via copy number gains was found in 8% of
the tumor samples from metastatic melanoma treated
with BRAF inhibitors [35]. Studies with HNSCC demon-
strated as well that copy number alteration by amplifica-
tion of 7p11.2 accounts for a number of cases of EGFR
activation [36–38]. It was also hypothesized that ligand
overexpression or receptor cross phosphorylation triggers

Fig. 2 Interactive signaling pathway of EGFR-PI3K-mTOR. PI3K binds to cytoplasmic tail of receptor tyrosine kinase via SH domains within p85
regulatory subunit. Activation signal can also be transferred through Ras-binding domain in p110 catalytic subunit which tethers PI3K molecule to
Ras protein in growth receptors. p110 activation by Ras binding is inhibited by p85 subunit which can be released by co-stimulation of SH do-
main by tyrosine kinase [151]
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uncontrolled EGFR hyperactivity. A genetic profiling of
HNSCC samples with EGFR activation revealed that
EGFR ligands (including TGFα) were highly expressed in
a subset, suggesting an establishment of an autocrine loop
[39].
Alternatively, the function of target gene can be

bypassed by activating downstream molecules of the sig-
naling cascade or switching dependence to an alternative
pathway for cell growth and proliferation [40]. As the
tumor progresses and develops genomic heterogeneity,
cells with genetic survival benefit outgrow through evo-
lutionary selection pressure. In consistent with this the-
ory, whole-exome sequencing of melanoma cells that are
resistant to BRAF inhibitor revealed diverse genetic al-
terations in the downstream MAPK pathway [41]. Simi-
larly, KRAS amplification or mutation was found in
tumor samples from colorectal cancer patients who de-
veloped resistance to EGFR inhibitors [42]. Relevant to
our review, compensatory activation of downstream
pathway, mainly PI3K, has been proposed as one of the
major resistance mechanisms to EGFR inhibitors in
HNSCC. Gene expression of the molecules in PI3K
pathway was elevated in cetuximab-resistant strains
compared to cetuximab-susceptible cells [43], and
addition of mTOR/PI3K inhibitor effectively achieved
control of cell growth in HNSCC that acquired resist-
ance to EGFR inhibitors [44, 45].

PI3K-mTOR alteration in HNSCC
66% of HNSCC harbor genomic alterations in one of the
major components of PI3K pathway [46]. An analysis of
whole-exome sequencing of 151 HNSCC tumors re-
vealed that PI3K is the most commonly mutated mito-
genic pathway among PI3K, JAK/STAT and MAPK and
that presence of multiple mutations in PI3K signaling
pathway is correlated with more advanced disease [8].
Physiologic data confirms that an aberrant PI3K-mTOR
pathway is associated with cell motility, invasion and
metastasis. PI3K-PTEN balance has a direct effect on
chemotaxis and cell motility as it controls actin cytoskel-
eton via Rho family proteins, such as Rho, Rac and
CDC42 [22, 47]. PIP3 and PIP2 determine epithelial po-
larity in individual cells, thus dysfunctional PI3K results
in epithelial-mesenchymal transition, a critical event in
tumor invasion [48].
PI3KCA is among the most frequently mutated genes

in HNSCC, affected both in HPV-positive and negative
diseases (56 and 34%, respectively) [7]. PIK3CA muta-
tions in HPV-positive HNSCCs are concentrated in hel-
ical domain, whereas mutations are more spread out in
HPV-negative diseases [9, 49]. TCGA data presents that
73% of PIK3CA mutations are located at E542, E545 in
the helical domain and in H1047 in the kinase domain

[7]. Frequency of these ‘hotspot’ mutations is also higher
in HPV-positive oropharyngeal cancers [50].
Targeting PIK3CA alteration in human squamous cell

xenografts has demonstrated susceptibility to treatment
in vitro and in vivo, leading a path for its clinical impli-
cation. Inhibition of PI3K by competitive blockage of
ATP binding site led to decreased phosphorylation of
Akt in several studies [51–54]. In a number of the
patient-derived xenografts harboring E545K and
H1047R mutations, PI3K inhibitors were effective in
achieving control of tumor growth [43, 55, 56]. Add-
itionally, activation of PI3K/mTOR pathway from either
mutation or gene amplification was positively correlated
with tumor susceptibility to PI3K inhibitors in xenograft
models [52, 57–59]. However, preclinical data also sug-
gested that additional molecular change should interact
with PIK3CA alteration for tumorigenesis. Cell lines
engineered to harbor PIK3CA mutations in the ‘hot-
spots’ responded more favorably to PI3K/mTOR dual in-
hibition than PI3K inhibition only, indicating that tumor
survival is not strictly dependent on the activated PI3K
[60]. In a similar sense, PI3K inhibition demonstrated
markedly synergistic effect when combined with EGFR
or MEK inhibition [61]. Interestingly, PIK3CA activation
in HPV-positive HNSCC did not necessarily lead to in-
creased Akt target phosphorylation, but instead, led to
increased mTOR activity and showed more sensitivity to
PI3K/mTOR dual inhibition than Akt inhibition [62].
This finding can be extended to more favorable efficacy
of PI3K/mTOR inhibitors over Akt inhibitors in clinical
settings [63].
Locations of mutations affect PI3K structure and func-

tion, resulting in different responsiveness to inhibition and
clinical outcome. Regulatory subunit p85 normally sup-
presses catalytic function of p110 at resting stage. Conse-
quently, C terminal truncation or internal deletion of p85
releases p110 from negative regulation and constitutively
activates the PI3K pathway [64, 65]. Additionally, as fre-
quently mutated E542 and E545 in p110 are located at a
distance from the kinase domain, it is plausible that muta-
tions at these spots alter regulatory control of p85. Indeed,
E545K mutation in the helical domain of p110 changes
acid-base charge and disrupts inhibitory interaction be-
tween p85 and p110 [66]. H1047R mutation in the kinase
domain, on the other hand, shifts orientation of the resi-
due and changes conformation of the two loops of kinase
that contact cell membrane. This allows for kinase access
to phospholipid that is less regulated by p85 [67].
Independently from p110, p85 as a monomer also

down-regulates PI3K activation: p85 is naturally more
abundant than p110 and excess p85 monomers can se-
questrate insulin receptor substrate 1 (IRS-1), an adaptor
molecule that mediates signal transduction between
IGF-1R and downstream PI3K [68]. Thus, in wild-type
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cells, the p85 monomer competes with the p85-p110
dimer for IRS binding and signal transduction. In het-
erozygous knock out cells, the amount of p85 monomers
decreases more than p85-p110 dimers which up-
regulates the PI3K pathway [69]. However, in null cells,
complete absence of regulatory subunit to stabilize p110
leads to significantly decreased signal transduction caus-
ing cell apoptosis [69]. Although not as frequent as in
PIK3CA, mutations in PIK3R1 (encoding p85α) can be
found in 3% of HPV-positive HNSCC and 1% of HPV-
negative HNSCC according to TCGA data [7].
Alteration of PTEN tumor suppressor gene is among

the frequently found somatic mutations in human can-
cers as well as germline mutations causing hereditary
cancer syndromes. PTEN dephosphorylates PIP3 to
PIP2, inhibiting mitogenic signal transduction in the
PI3K pathway. PTEN also interacts with PI3K, which
plays a key role in chemotaxis and tumor metastasis
[47, 48]. Clinical data has shown that loss of PTEN ex-
pression is a poor prognostic marker in oral squamous
cell cancer [70]. However, PTEN loss was found in only
a small number of HNSCC (8.16%), implying that it is a
relatively minor component in PI3K pathway activation
[8].

Targeting PI3K-Akt-mTOR pathway in clinic
PI3K inhibitor
Buparlisib (BKM120)
Buparlisib is an orally bioavailable pan-PI3K inhibitor,
targeting the ATP binding site of p110 kinase domain.
Its inhibitory potency is equitable on class IA isoforms
of p110α, β and δ, but slightly less against class IB p110γ
[51]. An in vitro study demonstrated IC50 values for Akt
inhibition of 104 ± 18, 234 ± 47 and 463 ± 87 nmol/L
for PI3Kα, β and δ, respectively [51]. Buparlisib is rapidly
absorbed orally and its serum concentration increases
proportionately to dosage [71]. The molecule also pene-
trates blood brain barrier and administration of buparli-
sib by gavage effectively controlled metastatic growth of
human breast cancer in mouse brain [72]. Based on pre-
clinical data, its antitumor activity was also attributed to
suppression of microtubular dynamics [73], and antian-
giongenic effect [51]. A combination of buparlisib,
cetuximab and radiation exerted a synergistic antiprolif-
erative effect on human head and neck cancer cell lines
[74, 75]. In vivo, buparlisib inhibited PI3K activity in cell
lines with wild-type PIK3CA as well as mutant form har-
boring any hotspot mutation of E542K, E545K or
H1047R [76]. In a phase I dose-escalation study for ad-
vanced solid tumors, most common side effects included
rash, abnormal hepatic function, alteration in glucose
metabolism and fatigue [71]. In a recent randomized
phase II trial with R/M HNSCC, adding buparlisib to
paclitaxel improved progression-free survival (PFS) to

4–6 months compared to 3–5 months in the placebo
plus paclitaxel group (p = 0.011) [77]. In this trial, com-
parable proportions of the patients had a mutation in
PIK3CA, 11% and 13% in the buparlisib and control
arm, respectively. Patients taking buparlisib also main-
tained stable quality of life and demonstrated good toler-
ance to the treatment compared to the placebo group, as
similar proportions of patients discontinued the treat-
ment due to adverse effects [77]. However, this study
failed to demonstrate significant improvement in overall
survival (OS) with buparlisib partly because of insuffi-
cient power. There are several ongoing clinical trials to
evaluate the efficacy and safety of buparlisib with or
without additional therapy (Table 1).

PX-866
PX-866 is an analog of wortmannin that irreversibly in-
hibits class I PI3K by binding to Lys in ATP catalytic site
[78]. Potent and irreversible binding of PX-866 enables
sub-nanomolar IC50 values of 0.1, 1.0 and 2.9 nmol/L for
PI3Kα PI3Kγ and PI3Kδ, respectively, in contrast to
much higher IC50 of > 300 nmol/L for PI3Kβ [79]. In
vivo studies revealed antitumor activities of PX-866
against human colon cancer, ovarian cancer and lung
cancer xenografts [80]. It enhanced antitumor activities
of cisplatin and radiation treatment in colon cancer and
ovarian cancer cells, respectively [80]. PX-866 also ef-
fectively overcame resistance to EGFR inhibitor in hu-
man lung cancer cells lacking expression of ErbB-3 [79].
PX-866 induced cessation of tumor growth in xenograft
models of human HNSCC which included one case of
PIK3CA gene amplification and another case of E545K
[43]. However, clinical trials of PX-866 failed to show
promising results. In phase II clinical trials, combined
use of PX-866 with either cetuximab or docetaxel failed
to achieve improved PFS or OS compared to each treat-
ment alone [81, 82].

Alpelisib (BYL719)
Theoretically, a selective inhibitor of PI3Kα can achieve
antitumor activity without affecting other isoforms of
PI3K, allowing for a more favorable side effect profile.
Alpelisib was designed as a specific inhibitor of PI3Kα,
the product of frequently mutated PIK3CA [83]. The
molecule inhibits wild-type PI3Kα (IC50 = 4.6 nmol/L) as
well as PI3Kα with common PI3KCA mutations, such as
E545K or H1047R (IC50 = 4 nmol/L), more potently than
PI3Kδ (IC50 = 290 nmol/L) or PI3Kγ (IC50 = 250 nmol/L)
[52]. Preclinical data also suggested that PIK3CA mutation
makes cancer cells more vulnerable to PI3K inhibition by
alpelisib. In vitro pharmacologic sensitivity screen among
a broad panel of cancer cell lines revealed that sensitivity
to alpelisib was positively associated with the presence of
PIK3CA mutation, amplification or copy number gain
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[84], which was confirmed by an in vivo study using
mouse models [52]. In a HNSCC cell line (Cal-33) and a
patient-derived xenograft model, both harboring H1047R
mutation in PIK3CA, administration of alpelisib using
nanoparticles induced inhibition of tumor growth and

sensitization to radiation [55]. Compared to HNSCC cell
lines with wild-type PIK3CA, cell lines with PIK3CA
H1047R mutation were more susceptible to antiprolifera-
tive effect of alpelisib [56]. In another in vivo study,
PIK3CA mutation, regardless of its location, was the

Table 1 Clinical trials evaluating PI3K or mTOR inhibitor in patients with HNSCC

Agent Clinical Trial
Identifier

Other Targeted
Agent

Additional
Therapy

Conditions Phase Status

PI3K inhibitor

Alpelisib (BYL719) NCT02145312 – – R/M HNSCC, failed to respond to
platinum-based therapy

II Not yet recruiting

NCT02537223 – Cisplatin,
radiation

Locoregionally advanced HNSCC, not
previously treated

I Active, recruiting

NCT01602315 Cetuximab – R/M HNSCC I/II Terminated (sponsor
withdrawal)

NCT02298595 Cetuximab Cisplatin HPV-associated oropharyngeal SCC I/II Not yet recruiting

Buparlisib
(BKM120)

NCT01816984 Cetuximab – R/M HNC I/II Active, not recruiting

NCT01737450 – – Recurrent or progressive HNC II Active, recruiting

NCT02113878 – Cisplatin,
radiation

Locally advanced HNSCC I Active, recruiting

PX-866 NCT01252628 Cetuximab R/M HNSCC II Completed

NCT01204099 Docetaxel Locally advanced or R/M HNSCC II Completed

Copanlisib NCT02822482 Cetuximab – HNSCC with PI3KCA mutation/
amplification or PTEN loss

I/II Active, recruiting

INCB050465 NCT02646748 Itacitinib Pembrolizumab Advanced solid tumors I Active, recruiting

mTOR inhibitor

Sirolimus NCT01195922 – – Advanced HNSCC, not previously
treated

I/II Completed

Temsirolimus NCT01172769 – – R/M HNSCC II Completed

NCT01009203 Erlotinib – Advanced HNSCC, refractory to
platinum

II Terminated (high patient
withdrawal rate)

NCT01016769 – Paclitaxel,
carboplatin

R/M HNSCC I/II Active, not recruiting

NCT02215720 Cetuximab – Advanced or metastatic solid tumors I Active, recruiting

NCT00703625 – Docetaxel Resistant solid malignancies I Completed

Everolimus
(RAD001)

NCT01332279 Erlotinib Radiation Recurrent HNC, previously treated with
radiation

I Withdrawn (sponsor
withdrawal)

NCT01313390 – Docetaxel R/M HNSCC I/II Terminated (lack of
recruitment)

NCT01009346 Cetuximab Cisplatin,
carboplatin

R/M HNSCC I/II Terminated (toxicity)

NCT01051791 – – R/M HNSCC II Active, not recruiting

PI3K/mTOR dual
inhibitor

SF1126 NCT02644122 – – R/M HNSCC II Active, recruiting

Gedatolisib NCT03065062 Palbociclib – Advanced HNSCC I Active, recruiting

Dactolisib
(BEZ235)

NCT00620594 – – Advanced solid tumors I Completed

PI3K/HDAC dual
inhibitor

CUDC-907 NCT02307240 – – Advanced or relapsed solid tumors I Active, recruiting
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strongest predictive feature that correlated with favorable
response to alpelisib [52]. Compensatory hyperactivation
of PIK3CA is one of the major mechanisms of treatment
resistance, thus PI3K inhibitors are being tested with other
targeted therapies, such as EGFR inhibitors. Inhibition of
PI3K with alpelisib enhanced tumor sensitivity to
cetuximab in HNSCC xenograft models [85]. A phase I
trial of alpelisib combined with cetuximab in R/M
HNSCC resulted in one partial response (PR), three
unconfirmed PRs and five stable diseases (SDs) among
32 cases with relatively good patient tolerance [86].
PI3K activation status was unknown in this trial. In a
more recent phase I trial of alpelisib, any of complete
response (CR), PR or SD was achieved in 13 out of 19
study participants with PIK3CA-mutant HNSCC
(NCT01219699) [87].

Copanlisib
Copanlisib is a potent inhibitor of class I PI3K with sub-
nanomolar IC50. The molecule exhibits preferential ac-
tivity against PI3Kα and PI3Kδ over PI3Kβ and PI3Kγ
(IC50 values of 0.5 and 0.7 nmol/L over 3.7 and 6.
4 nmol/L, respectively) [57, 88]. It demonstrated super-
ior inhibitory effect in cells with PIK3CA activating
mutations over wild-type in breast cancer and non-
small cell lung cancer xenografts [57]. Phase I trials in
patients with advanced or refractory solid tumors
presented good patient tolerance and evidence of dis-
ease control [89, 90]. Efficacy and safety of combined
copanlisib and cetuximab for HNSCC is under study
(NCT02822482).

mTOR inhibitor
Sirolimus (rapamycin)
Sirolimus was initially developed as an antifungal metab-
olite, extracted from the bacterium Streptomyces hygro-
scopicus [91]. However, since its immunosuppressive and
antiproliferative properties were revealed, this macrolide
molecule has been more widely used for oncologic treat-
ment and for prevention of graft rejection or coronary
stent blockage. Sirolimus binds with FKBP12 (12 kDa
FK506-binding protein) to form a gain-of-function com-
plex that function as an inhibitor of mTOR complex 1
(mTORC1) [92]. This compound, as a result, inhibits
metabolic alteration and cell proliferation which is trig-
gered by upstream gain-of-function mutations, such as
PI3K and Akt. Sirolimus demonstrated antiproliferative
activity in HNSCC cell lines inducing synergistic effect
with chemotherapeutic agents or radiation [93, 94]. In
HNSCC xenograft models with activated PI3K-Akt path-
way, administration of sirolimus induced marked inhib-
ition of tumor growth and cell apoptosis [58, 59]. It also
suppressed lymphangiogenesis in HNSCC xenograft
models and prevented spread of the cancer cells to

adjacent lymph nodes [95]. In a phase I trial of sirolimus
and bevacizumab for patients with advanced malignan-
cies, no objective response was observed among the par-
ticipants with HNSCC [96]. However, among the
patients with stage II-IVA, untreated HNSCC, neoadju-
vant trial of sirolimus followed by definitive therapy (sur-
gery or chemoradiation) demonstrated significant clinical
responses (one CR, one PR and 14 SDs among 16 pa-
tients) with good patient tolerance [97]. Sirolimus is
known for poor bioavailability and low predictability of
serum concentration after intestinal absorption, thus its
narrow therapeutic window and a long half-life require
regular drug concentration monitoring [98]. Based on
these concerns, analogs of sirolimus have been developed
to improve pharmacokinetic properties.

Temsirolimus
Temsirolimus is a water-soluble analog of sirolimus and
can be administered parenterally [99]. It undergoes hy-
drolysis after administration to form sirolimus, but the
medication itself is also capable of inhibiting mTOR.
Temsirolimus is currently FDA approved for the treat-
ment of advanced renal cell carcinoma [100]. Several pre-
clinical studies proved that a combination of temsirolimus
and cetuximab induces synergistic antitumor effect, as it
mitigates or prevents compensatory downstream mTOR
over-activation induced by EGFR inhibitor [101–105].
There have been a number of phase I/II trials using tem-
sirolimus in patients with HNSCC. In a phase I study of
temsirolimus used with carboplatin and paclitaxel in R/M
HNSCC, 22% of the patients exhibited objective PRs
[106]. The information regarding PI3K activation status
was lacking in this study. In TEMHEAD trial, a phase II
study of temsirolimus in R/M HNSCC refractory to plat-
inum and cetuximab, tumor shrinkage occurred in 39.4%
of the patients mostly within the first six weeks of the
treatment. However, no objective response was achieved,
nor did PI3KCA mutational status (H1048Y and G1050S)
predict treatment success [107]. In another trial including
a broad range of advanced malignancies, the combination
of bevacizumab, cetuximab and temsirolimus was effective
in achieving PRs in 25% of the patients with HNSCC, but
a few patients were withdrawn from the trial because of
toxicities [108]. In this study, treatment-responders did
not carry PIK3CA mutation in HNSCC cells. A trial com-
bining temsirolimus with erlotinib for R/M HNSCC was
closed early due to toxicity and patient death [109]. In a
phase I pharmacokinetic study of temsirolimus, dose-
limiting toxicities occurred such as thrombocytopenia,
stomatitis or mucositis, asthenia, manic-depressive syn-
drome and rash [110]. Thus, the treatment effect of tem-
sirolimus should be evaluated against potential toxicities
and more clinical trials are ongoing.
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Everolimus (RAD001)
Everolimus is a hydroxyethyl derivative of rapamycin, of-
fering improved oral bioavailability. The medication has
a short half-life, allowing for quick establishment of
stable status and improved drug safety [111]. After intes-
tinal absorption, everolimus is not converted to rapamy-
cin, instead forms a complex with FKBP12 and inhibits
mTOR [112]. It is currently approved by the FDA for
treatment of multiple malignancies including advanced
breast cancer, kidney cancer, neuroendocrine tumor
(NET) of pancreas, progressive NET of GI and lung, tu-
berous sclerosis-associated renal angiomyolipoma and
subependymal giant cell astrocytoma [113]. Although
everolimus was effective in arresting tumor growth in
HNSCC xenograft models [114, 115], clinical data was
not as encouraging. Several phase I studies demon-
strated PRs among patients with HNSCC [116–119], but
the doses of everolimus used were different depending
on other treatments combined, such as platinum, doce-
taxel, cetuximab or radiation. Phase II trials with everoli-
mus also failed to demonstrate clinical benefit for
HNSCC. Either as monotherapy or combination with er-
lotinib, treatment with everolimus was not successful in
achieving objective response in patients with previously
treated R/M HNSCC [120, 121]. There is a currently ac-
tive clinical trial testing everolimus monotherapy in pa-
tients with R/M HNSCC (NCT01051791).

PI3K/mTOR dual inhibitor
SF1126
SF1126 is a peptide-conjugated prodrug of LY294002, with
improved water solubility and pharmacokinetics. RGDS
conjugation enables the molecule to bind to specific integ-
rins within the tumor, enhancing drug permeability [53].
LY294002 is a pan-PI3K inhibitor, with IC50 values of
720 nmol/L, 306 nmol/L, 1.33 μmol/L and 1.6 μmol/L for
PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ respectively, and similar
IC50 for mTOR (1.5 μmol/L) [53, 122]. In a phase I trial,
SF1126 as a single agent was effective in maintaining
stable diseases in patients with GIST and clear cell renal
cancer, and in combination with rituximab decreased ab-
solute lymphocyte count and lymph node/spleen size in
CLL [123]. SF1126 monotherapy is now being evaluated
for treatment of R/M HNSCC (NCT02644122).

Gedatolisib
Gedatolisib is a potent and reversible inhibitor of class I
PI3K and mTOR. IC50 values for PI3Kα, PI3Kβ, PI3Kδ,
PI3Kγ and mTOR are 0.4 nmol/L, 6 nmol/L, 8 nmol/L,
6 nmol/L and 10 nmol/L, respectively [124]. The inhibi-
tory activity against PI3Kα with hotspot mutations, such
as E545K and H1047R, are comparatively low (0.6 nmol/
L and 0.8 nmol/L) [124]. Its antitumor activity was dem-
onstrated in in vitro studies using mutant cells harboring

E545K or H1047R in PIK3CA as well as wild-type [124,
125]. Gedatolisib also inhibited cell proliferation and in-
creased radiosensitivity of human nasopharyngeal cancer
cells with PI3K/mTOR hyperactivation [126]. Addition-
ally, use of gedatolisib in EGFR inhibitor-resistant
HNSCC suppressed cell survival and induced apoptosis
[45]. Phase I trials with gedatolisib for patients with ad-
vanced cancer demonstrated potential antitumor activ-
ities with PRs and acceptable tolerance [127, 128].
However, no apparent relationship between PIK3CA al-
teration and treatment response was observed in these
trials. There is an ongoing phase I trial of gedatolisib
combined with palbociclib (CDK4/CDK6 inhibitor) for
advanced solid tumors including HNSCC (NCT0306
5062).

Dactolisib (BEZ235)
Dactolisib is an ATP-competitive dual inhibitor of PI3K
and mTOR, exerts more potency on PI3Kα, PI3Kδ, PI3Kγ
and mTOR (IC50 values of 4, 7, 5 and 21 nmol/L, respect-
ively) than PI3Kβ (IC50 = 75 nmol/L) [54, 129]. Dactolisib
exhibited potent antiproliferative activity, halting cell cy-
cles at G1 [54] and attenuating VEGF expression [129].
HNSCC cell lines with H1047R mutation were more sus-
ceptible to inhibition with lower IC50, whereas E545K con-
ferred only slightly increased sensitivity [60]. In clinical
settings, however, there has been little evidence to support
drug efficacy and safety. When dactolisib was used for
patients with castration-resistant prostate cancer or
everolimus-resistant pancreatic NET, the trials were dis-
continued due to dose-limiting toxicities, such as stoma-
titis, vomiting, diarrhea or hyperglycemia [130, 131].
Combination of dactolisib and everolimus tested in pa-
tients with various advanced solid tumors, including one
case of HNSCC, failed to demonstrate objective response
[132]. Another phase I trial of dactolisib treatment for
various, advanced solid tumors is now complete and the
result is being awaited (NCT00620594).

PI3K/HDAC dual inhibitor
CUDC-907
CUDC-907 is an orally administered inhibitor of class I
PI3K isoforms and histone deacetylase (HDAC). IC50 values
for PI3Kα, PI3Kβ, PI3Kδ and PI3Kγ are 19, 54, 38 and
311 nmol/L, respectively [133]. Simultaneous inhibition of
PI3K and HDAC has demonstrated synergistic effect com-
pared to the combined level of growth suppression
achieved by single compound of HDAC inhibitor, vorino-
stat, and PI3K inhibitor, GDC-0941 [133]. CUDC907 has
proved to be therapeutic against B cell lymphoma by de-
creasing MYC protein levels [134]. The effect of dual inhib-
ition synergistically induced apoptosis of MYC-altered cells
in diffuse large B-cell lymphoma (DLBCL) [135]. For cancer
cells that developed resistance to PI3K inhibition through
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alternative pathway activation, concurrent inhibition of
HDAC can down-regulate other signaling proteins and cir-
cumvent treatment resistance. This potential benefit of dual
inhibition was supported by an in vitro finding which dem-
onstrated that administration of HDAC inhibitor success-
fully overcame resistance to mTOR inhibitor in lymphoma
cells [136]. An in vivo study has also revealed that dual in-
hibition of PI3K and HDAC can defeat cancer resistance to
platinum-based treatment by suppressing multidrug resist-
ance transporters and DNA repairs [137]. The first phase I
trial of CUDC-907 for the treatment of relapsed/refractory
lymphoma achieved two CRs and three PRs in patients
with DLBCL [138]. There is an actively ongoing phase I
trial of CUDC-907 for the patients with advanced or re-
lapsed solid tumors (NCT02307240), and another phase I
trial for the patients with metastatic or locally advanced
thyroid cancer (NCT03002623).

Inhibition of PI3K pathway and immune system
It has been well known that inhibitors of mTOR, such
as sirolimus, modulate immune system. Clinically, they
have been used as immune suppressive agents to prevent
rejection for patients who had undergone organ trans-
plant. In fact, PI3K family controls many aspects of cell
development, differentiation and function in both innate
and adaptive immune system [139]. Especially, PI3Kγ
and PI3Kδ are highly expressed in all subtypes of
leukocyte, and inhibition of PI3Kγ suppressed progres-
sion of breast cancer in an animal model by inhibiting
tumor inflammation and myeloid cell-mediated angio-
genesis [140]. Furthermore, it has been revealed that
PI3Kγ in macrophage has a critical role in the interplay
between immune stimulation and suppression during in-
flammation or cancer development [141]. Class I PI3K
signaling becomes activated by antigen receptors
expressed by T and B cells, altering adaptive immune
system. Therefore, inhibition of PI3Kδ dampens regula-
tory T cells, enhances activity of cytotoxic T cells and in-
duces tumor regression as shown in animal models of
melanoma, lung cancer, thymoma and breast cancer
[142]. Various mutations in genes encoding PI3Kδ may
as well lead to immunodeficiency syndromes [143].
Immune checkpoint inhibitors such as anti-programmed

death 1 (anti-PD1) antibodies have demonstrated remark-
able activities in HNSCC [144, 145]. Interestingly, the level
of immune checkpoint ligands such as programmed death
ligand 1 (PD-L1) appears to be regulated by the PI3K-Akt-
mTOR pathway: inhibition of PI3K, Akt or mTOR de-
creased expression of PD-L1 in a non-small cell lung cancer
model in vitro and in vivo [146]. Furthermore, combination
of PI3Kγ blockade and immune checkpoint blockade with
anti-PD1 therapy induced a synergistic growth inhibitory
effect in animal models of both HPV-positive and negative
HNSCC [141]. In this study, the authors showed that PI3Kγ

in macrophages plays a key role in inducing immune sup-
pression by inhibiting NFκB pathway. Inhibition of PI3Kγ
in macrophages, therefore, stimulated NFκB activation and
promoted an immunostimulatory transcriptional program,
restoring T cell activation. Another report suggests that
PI3K-Akt pathway activation may mediate Tim-3 expres-
sion in HNSCC, which is associated with more exhausted
phenotype of tumor infiltrating lymphocytes, and cause re-
sistance to immune checkpoint blockade [147]. However,
the role of PI3K pathway in cancer immunology needs to
be clinically investigated further. There are phase I trials of
combining PI3Kδ inhibitor (INCB050465) with pembroli-
zumab in advanced solid tumors (NCT02646748), and
combining PI3Kβ inhibitor (GSK2636771) with pembroli-
zumab in advanced melanoma (NCT03131908). With re-
cent approvals of immune checkpoint inhibitors for the
treatment of R/M HNSCC, effects of adding PI3K inhibi-
tors to immune checkpoint inhibitors will be further
explored.

Conclusions
PI3K plays a key role in the progression of HNSCC and
development of resistance against cetuximab. Genomic
alterations affecting PI3K are common among both
HPV-positive and HPV-negative diseases and serve as an
attractive target for the treatment of HNSCC. Early clin-
ical trials evaluating PI3K inhibitors have shown disap-
pointing results, but further evaluation with more potent
agents and careful patient selection might lead to devel-
opment of effective PI3K inhibitors in HNSCC. In light
of recent success of immune checkpoint inhibitors, po-
tential impacts of PI3K inhibition on immune system
should be considered in the future development of
PI3K-targeted therapy.
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