
UC Irvine
ICS Technical Reports

Title
Improved update/query algorithms for the interval valuation problem

Permalink
https://escholarship.org/uc/item/6960b86p

Authors
Hirschberg, D. S.
Volper, D. J.

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6960b86p
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyri.ght-taw
(Title 17 U.S.C.)

IMPROVED UPDATE/QUERY ALGORITHMS
FOR THE INTERVAL VALUATION PROBLEM

D.S. Hirschberg and D.J. Volper
U niv~rsity of California, Irvine

Technical Report No. 85-30

November, 1985

f\

(c/JCf
c ~3
hO I

D

IMPROVED UPDATE/QUERY ALGORITHMS FOR THE INTERVAL VALUATION PROBLEM

---'=-- ::· ·· · D.S. Hirschberg and D.J. Volper
University of California, Irvine

2 November 1985

Abstract

Let I be the set of intervals with end points in the integers 1 ... n. Associated with each element in I
is a value from a commutative semigroup ·S. Two operations are to be implemented: update of the value
associated with an interval and query of the sum of the values associated with the intervals which include
an integer.

H the values are from a commutative group (i.e., inverses exist) then there is a data strncture which
enable~ both update and query algorithms of time complexity O(log n). For the semigroup problem, the use
of range trees enables both update and query algorithms of time complexity O(log2 n).

Data structures are presented with (update,query) algorithms of complexities (log2 n, log n), (log n,
log2 n), (log nlog log n, log nlog log n).

Introduction

Let I be the set of intervals with end points in the integers 1 ... n. Associated with each element in I is a .::
value from a commutative semigroup S. Let sum refer to the semigroup operator. Examples of such operators
over the integers are addition, multiplication and minimum. Two operations are to be implemented, update
and query. An update of an interval changes the value associated with that interval. A query of integer k
returns the sum of values associated with the intervals which include k.

We consider solutions of the class that involves variables storing values in S. Each variable stores the
sum of values associated with some subset of I. A query is answered by summing a subset of these variables.
An update is accomplished by recomputing the values of the appropriate variables. This class has been used
by Fredman and others [F80, BFK81, F81, F81bJ for analysis of query problems. -

H the values associated with the interval are from a commutative group (i.e., inverses exist) then there
is a data structure which enables both update and query algorithms of time complexity O(log n) [F79J. For
the semigroup problem, the use of range trees [LW82) enables both update and query algorithms of time
complexity O(log2 n) [W78, 178, LW82].

We present data structures with update and query algorithms of the following complexities.
Update Time Query Time
log2 n logn
logn log2 n
lognloglogn lognloglogn

Conceptual Model

We associate each ~terval [i, jJ with a point in a two dimensional plane whose horizontal (.x) and vertical
(y) coordinates are i and :j, the values of the endpoints of the interval, respectively. These points lie within
the upper left triangular region of an n by n square. A query of k needs to retrieve the sum of the values
associated with all points whose x coordinate is :::; k and whose y coordinate is ~ k. That is, the query
region consists of all points which lie in a rectangle whose upper left comer is at (1, n) and whose lower right
corner is at (k, k), as illustrated in Figure 1.

1

n

- - - .--'":'"-- ~-

Yf

1 -------------------1 x-+ n

Figure 1 - Query Region of le

To clarify membership of a rectangle we use the convention that rectangle boundaries are midway
between points, and thus no points can occur on the boundary of a rectangle. Variables may be represent~d
by a region on the graph which covers the set of points corresponding to the intervals whose values are
included in the variable. A query may be answered by summing variables whose regions form a disjoint
cover of the rectangle associated with the query. Updating an interval involves recomputing the value of.:
each variable w h~e region includes the point associated with the interval.

For ease of explanation, we assume that n is 2m - 2. We partition the triangular region (which cor
responds to the universe of intervals) into L-shaped subregions. Each subregion on the diagonal includes
exactly three intervals [le, le}, [k + 1, k + 1), and [le, k + 1], for odd le. Note that there are 2m-l -1 L's on the
diagonal, each having unit width. Behind each diagonal of L's is another diagonal of L's having the same
shape and orientation but of twice the size. There are 2m....;l-i - 1 L's of width 2i. In Figure 2, there are 7
L's of unit width, 3 L's of width 2, and one L of width 4.

Figure 2 - Partition of Interval Universe into L's

An aggregate is a rectangular region that begins from a leg 'of an L region, has the width of that L; and
extends through that L across the universal region. There is an aggregate in both the horizontal and vertical
directions for each L. Shown below is a vertical aggregate of size 1 and one of size 2. There are an equivalent
set of aggregates with orientations in the horizontal direction. For our diagram below there would be a total
of 14 aggregates of width 1, 6 of width 2 and 2 of width 4.

2

Figure 3 - Sample aggregates

Any query region may be covered by an appropriately chosen set of aggregates. These are chosen as
follows. Given a query k:, it lies in a sm'"1 L. Select the aggregate of width 1 associated with that L and
having the proper orientation. There remains to be covered a rectangular region whose lower left corner is
in an L of size 2. Select the aggregate of width 2 associated with that L and having the proper orientation.
There now remains a rectangle whose corner is in an L of size 4. Such a selection is shown in Figure 4. Any
rectangle can be disjointly covered by such a recursive selection using log n aggregates.

Figure 4 - Covering a query with 3 aggregates

A point is in at most one horizontal and one verticle aggregate of each size. Thus the value of a point
affects O(log n) aggregates. Ea.ch query uses at most one aggregate of each size, that is O(log n) aggregates.
The update and query times are O(log n) times the time to, respectively, update and query an aggregate.

H inverses exist within the semigroup, we can utilize the aggregates themselves as our variables. A mod
ification of the value associated with an interval results in a similar modification of the variables associated
with the appropriate aggregates. A query is achieved by summing the variables associated with appropriate
aggregates. This yields a structure which has both query and update times of O(log n).

For the general case (with no inverses) we must supply additional structure. We partition the aggregates
into part.! by splitting them whereever they cross the boundary of an L. Because the size of the L's grow
exponentially, an .aggregate is split into at most log n parts. Queries will use the parts of each aggregate -to
compute the sum of the values within the aggregate. An update now affects only the parts within a single
L, and there 81"e O(log n) such parts. We develop a structure within ea.ch L to permit all these parts to be
updated in O(log n) time reg81"dless of the size of the L.

We divide ea.ch of the L's into overlapping rectangular regions which we will call strips. There are
vertical as well as horizontal strips.

We describe vertical strips which are shown in Figure 5; horizontal strips are symmetric in description.
The strips have width 1. A point lies in exactly one vertical strip. The points within each strip are organized
into range query tree, which is a binary tree with the leaves holding the values of the points and each internal
node holds the sum of the values of the leaves in its subtree. The root of the tree holds the value of the strip
(sum of the values of all points within the strip). Thus, we can update the value of a strip by recomputing
the sums along the path from the updated point to the root in time O(log n). The vertical strips themselves,
or more particularly the variables associated with the root of the range tree within each strip, are also

3

organized into a range tree, called the L range tree. After a strip has been updated, the L range tree can
be updated in O(log n}'. We observe that the part associated with an aggregate of width 1 ia a strip and
so ia a leaf in thia ·range. tree;-t.he ·pan associated with an aggregate of width 2 ia the combination of two
adjacent strips and so forth. Thu, the nodes in the L range tree contain the values of the parts within the
L. Therefore, in response to a query, the value asaociated with any part can be delivered in constant time
by accessing the appropriate node in the L range tree.

Figure 5 - Strips within an L of size 16

We now present three structures based upon the above construction. The parts of each aggregate can
be formed into a range query structure called the aggregate range tree. A. previously discussed, the update
and query time are O(log n) times the update and query time for the aggregate range tree plus, in 'the case
of an update, an additional O(log n) to update the strip and L range trees. The aggregate range tree has_,.
O(log n) leaves. Instead of using a binary tree as the range query structure, we could use the structures
presented in [F8·2) and obtain the following times for range queries over an aggregate.

Update Time Query Time
O(log n) 0(1)
0(1) O(log n)
O(log logn) O(log log n)

Thus yielding the results in the previous table.

&ferencea

[BFK81) Burkhard, Walter. A., Michael L. Fredman, and Daniel J. Kleitman, Inherent complexity trade-offs
for range query problems, Theoretical Computer Science, 16, 1981, 279-290.

[F82) Fredman, Michael L., The complexity of maintaining an array and computing its partial sums. Journal
of the Asaociation of Computing Machinery, 29:1, January 1982, 250-260.

[F81) Fredman, Michael L., Lower bounds on the complexity of some optimal data structures SIAM Journal
on Computing, 10, 1981, 1-10.

[F80) Fredman, Michael L., The inherent complexity of dynamic data structures which accomodate range
queries. Proceedinga of the 1980 IEEE Symposium on Foundations of Computer Science, 191-199.

[F79) Fredman, Michael L., A near optimal data structure for a type of range query problem, Proceedinga of
the 11th Annual Sympoaium on the Theory of Computer Science, 1979, 62-66.

[F81b] Fredman, Michael L., The spanning bound as a measure of range query complexity, Journal of
Algorithma, 2, 1981, 77-87.

[L78] Lueker, George S., A data structure for dynamic range queries. Proceedings of the 1978 IEEE Sympo
aium on Foundationa of Computer Science.

[LW82) Lueker, George S., and Dan E. Willard, A data structure for dynamic range queries. Information
Proceasing Lettera, 15:15, December 1982, 209-213.

[W78] Willard, Dan E., New data structures for orthogonal queries. Technical Report TR-22-78, Center for
Research in Computing Technology, Harvard University.

4

