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Abstract

Contrary to a widely held belief, experts recall random
material better than non-experts. This phenomenon, predicted
by the CHREST computational model, was first established
with chess players. Recently, it has been shown through a
meta-analysis that it generalises to nearly all domains where
the effect has been tested. In this paper, we carry out
computer simulations to test whether the mechanism
postulated with chess experts – the acquisition and use of a
large number of chunks – also applies to computer
programming experts. The results show that a simplified
version of CHREST (without the learning and use of high-
level schemata known as templates) broadly captures the skill
effect with scrambled programs. However, it fails to account
for the differences found in humans between different types of
randomisation. To account for these differences, additional
mechanisms are necessary that use semantic processing.

Keywords: chunk; computer programming; expertise;
memory recall; random material

Introduction
Computer programming involves a variety of skills: the
ability to understand programs written by others, to design,
write and debug one’s own programs, and to use problem-
solving strategies to turn a set of constraints and desiderata
into a correct and running program. Several general theories
have been proposed to account for these abilities. Some
authors (e.g., Adelson, 1981; McKeithen, Reitman, Rueter
& Hirtle, 1981; Ye & Salvendy, 1994) have proposed that
semantic knowledge plays an essential role. Others have
proposed that expertise in programming, like in other
domains, stems from the acquisition of a large number of
perceptual chunks, which are the building blocks on which
later semantic and procedural knowledge is constructed
(e.g., Chase & Simon, 1973; Simon & Gobet, 2000).

Using a variety of chess-related tasks including a recall
task, Chase and Simon (1973) gathered good evidence for
the psychological reality of perceptual chunks. In addition,
they found that there was a massive skill effect for the recall
of positions taken from Masters’ games, but that this effect
disappeared with random positions. It was later shown that
chess Masters keep a small, but reliable, superiority with
random positions (Gobet & Simon, 1996). This result was
actually predicted by CHREST (Chunk Hierarchy and RE-
trieval STructures), a computer model based on the idea of

chunking (De Groot & Gobet, 1996; Gobet, 1993). The rea-
son is simple: an expert, who has acquired more chunks than
a weak player, is more likely to recognise a few chunks in a
given position fortuitously, and thus obtains a better recall.
Crucially, Sala and Gobet (2016) have recently demon-
strated in a meta-analysis that this effect is present in nearly
every domain of expertise reviewed. The overall correlation
between expertise and recall of random material was moder-
ate but statistically significant (r = .42, p < .001).

Chase and Simon’s (1973) chunking theory spawned a
large number of experimental studies. Several of these
studies have been carried out in the domain of computer
programming, and the importance of chunking in
programming is generally accepted (e.g., Adelson, 1981;
Barfield, 1986; McKeithen et al., 1981). In addition,
Schmidt (1986) found that recall of computer programs
correlates with their comprehension. Since high
comprehension is a distinguishing feature of expertise in
programming, this correlation suggests that chunks, as
measured by the recall task, may play a causal role.

To our knowledge, no computational model has been
developed so far to simulate the empirical data about
memory for computer programs. The goal of the present
paper is to fill in this gap, using the CHREST architecture as
a modelling environment. Given Sala and Gobet’s (2016)
recent finding that the skill effect with random material
generalises to many domains of expertise, the focus will be
on the recall of randomised programs and the role played by
perceptual chunks.

The paper is organised as follows. First, we briefly review
research on memory for computer programs. Second, we
describe a computer simulation using CHREST. Third, we
compare the results of the simulations with those obtained
with humans. Finally, we reflect on the impact of our results
upon research into expertise.

Memory for Programs
Several studies have been carried out to investigate memory
for computer code by individuals of different levels of
expertise. While some of the studies were also interested in
cognitive processing differences, this review will focus upon
the studies where the recall task has been used—that is, a
brief presentation of material taken from the domain of
expertise, and a subsequent test of memory. In selecting the
studies, we have also used the criterion that the experiment
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should compare memory recall ability between expert and
novice programmers, and that some measure of performance
(e.g., percentage of lines correctly recalled) was provided.
These criteria resulted in the selection of four studies:
Adelson (1981), Barfield (1986), Bateson, Alexander and
Murphy (1987), and Guerin and Matthews (1990). Important
features in these experiments include the participants’ skill
level and the type of stimulus given to them.

Assessing Programming Ability
Unlike similar endeavours into chess, there is no standard
rating scale measuring a computer programmer’s level of
expertise. For the four experiments to be reviewed, each
participant’s level of expertise with a particular language
was determined by their experience with it.1 In general, the
participants in the novice group had some experience with
the programming language used in the experiment. The ex-
pert group usually consisted of programmers that had com-
pleted, or lectured on, courses in the language. Some pro-
grammers were rated as experts because they had experience
in more languages than the target one in the experiment.

Experimental Material
For all experiments, the materials were examples of real
computer code. Each experiment only used one program-
ming language to draw its examples from, even if some of
the participants knew more than one language. But unfortu-
nately, there are no two experiments using the same lan-
guage so as to allow direct comparison of results. Indeed,
differences in the languages, experimental designs, and
scoring methods make detailed comparisons awkward. Some
authors (e.g., Guerin & Matthews, 1990) even criticised
other experimenters for their choice of target programming
language.

Summaries of Experiments
Adelson (1981). This experiment addressed the question of
how experts represent and use programming concepts. It
tried to show that experts use a hierarchy to organise their
information and base its structure upon functional aspects of
programming. This is opposed to novices who organise in-
formation based on the program syntax.

The experiment used the Polymorphic Programming Lan-
guage (PPL). PPL is a variant of PL/I, which is a combina-
tion of FORTRAN, ALGOL and COBOL (see Schmidt,
1986). The novices were five undergraduates who had com-
pleted a course in PPL, and the experts were five lecturers in
that language. Sixteen lines of PPL code taken from three
separate, complete programs were used as stimuli. Each line
of code was presented separately on a screen. Lines were
presented in a random order and each line was visible for 20
seconds. After all lines had been presented, the participants

1This is far from being a foolproof method. From research
into other expertise domains, it is known that experience
correlates only imperfectly with expertise (Gobet, 2016).

had 8 minutes to recall the code. This procedure was re-
peated for nine trials.

Experts recalled more than the novices (see Figure 1).
Adelson suggests that the discrepancy between Chase and
Simon’s (1973) chess data and her data comes from the fact
that the code consists of lines taken from three complete
programs and not of lines randomly selected from 16 dif-
ferent programs.

Adelson also looked at the size of chunks used in recall,
defining a chunk as a sequence of items recalled in succes-
sion with less than a 10-second pause between them. Ex-
perts’ chunk size was greater than novices’ (on average 3.5
and 2.4 items, respectively). Based on these and additional
results, Adelson concluded that experts organise information
using functional principles, while novices categorise on a
more syntactic (surface) basis.

Barfield (1986). Barfield was interested in being able to
distinguish novice from expert problem solving behaviour
and knowledge acquisition, and concentrated on chunking as
the main process that discriminates individuals of different
skill levels. He suggested that programmers take in the com-
plex stimuli as meaningful chunks before they are processed.

Four levels of expertise were used. Naïve participants (n =
42) had not completed any programming courses. Novices
(n = 80) had completed just one course in BASIC. Interme-
diates (n = 73) had completed a minimum of one BASIC
course plus two or three courses in other languages. Experts
(n = 26) were graduates in computer science as well as
having at least one course in BASIC.

The material consisted of one 25-line program written in
BASIC. The experimenters identified likely modules within
the program, but no visible boundaries were marked (i.e. no
spaces between lines). The experiment had three conditions:
the stimulus could be presented either (a) in executable
order, (b) with the order of lines randomised, or (c) with the
order of modules randomised (in that case, the lines within a
module preserved their order). The participants were
allowed three minutes to study the stimulus and four minutes
to recall it.

The results are summarised in Figure 1. Naïve and novice
participants obtained the same level of performance
regardless of stimulus type, indicating that little, if any, of
the chunk knowledge possessed by experts is present with
novices. According to the results, intermediates can chunk
together lines of code as long as they are in executable
order. As expected, randomising the lines did negatively af-
fect the performance of the experts, although they still did
better than Novices and Naïve participants. The randomising
of modules did not affect the performance of experts and
this was taken as support for Barfield’s chunking ex-
planation. However, Guerin and Matthews (1990) argue that
Barfield is measuring recall and not comprehension, so even
though the semantic structure of the program is tampered
with, it will not affect the results because BASIC
programmers are not as sensitive to the semantic complexity
as programmers using other languages. They also criticise
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Barfield for not randomising lines within modules to
complete his experimental design.

Bateson, Alexander and Murphy (1987). This paper
aimed to expose expert-novice differences in syntactic and
semantic memory, along with tactical and strategic skill. The
gist of Bateson’s experiment is to demonstrate the
importance of semantics in gauging programmers’ differ-
ences over tasks that use measures of memory and chunk
size in syntactic recall. We discuss only the first of Bateson
et al.’s battery of tasks, the syntactic memory task.

Two groups were used for this task: novices (n = 20), who
had completed no more than three programming courses,
and experts (n = 30), who had completed more than three
courses. All participants had completed 12 weeks in an
introductory FORTRAN class. The material used for the
experiment was four short programs of equal length written
in FORTRAN. Two of the four programs had lines
randomised.

Participants were given only one normal and one random
program, and were given three minutes to study a program
and then allowed four minutes of free recall to write down
what they remembered. The means for the proportion of
total program recall are shown in Figure 1. As with Adelson
(1981), there is a skill effect even when the order of the lines
is randomised.

Guerin and Matthews (1990). This study aims to
demonstrate the role of semantic knowledge in expert
programmer ability. Only the first of their three experiments
is described here. Guerin and Matthews used COBOL as
their target language, and a genuine 116-line COBOL
program was used as material. Two groups were used; the
novices (n = 52) had an average of 0.5 years of
programming experience and the experts (n = 52) had an
average of 4.7 years. The participants were given 10 minutes
to study the stimulus and then 8 minutes of free recall. There
were four conditions: (a) Normal program; (b) Random lines
within program modules; (c) Random modules; and (d)
Random lines within program modules and random
modules. A module is described by Guerin and Matthews as
being a chunk of a program; however, they do not go into
detail as to whether they are describing a functional section
of a program or an amount of information thought capable
of being memorised in one go. Nor do they specify how
large these modules are.

Guerin and Matthews used a unique method to score
recall trials. Instead of counting correctly recalled items, a
system of points based on positional and lexical accuracy
was devised in order to better describe recall performance.
For each line, one point was earned if more than half of the
components of the line were recalled correctly; an additional
point was added if it was recalled in the correct sequence in
the program, and a final point was added if it was recalled
exactly as the original. Thus, a maximum of three points
could be earned for each line.

In all four conditions, experts were better than novices.
The ordering of the conditions was as follows: Normal >
Random modules > Random lines within program modules
> Random Lines and Modules (see Figure 1). Finally,
Guerin and Matthews found that recall correlated highly
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Figure 1. Memory for computer code as a function of level
of expertise and type of randomisation. Adelson (1981) and

Barfield (1986) used the number of lines correct, and
Bateson et al. (1987) used the number of items correct (to
facilitate comparison, we have converted these absolute
numbers into proportion correct). Guerin and Matthews

(1990) devised their own scoring method.
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with comprehension, which was measured by having partici-
pants write a summary of the purpose of the program and
how this purpose was achieved. The authors conclude that
the superior semantic knowledge and comprehension skills
of experts that allowed them to obtain better performance
than novices could not be used when the lines of the
program were randomised.

Summary. Several phenomena clearly stand out from these
experiments. First, as expected, experts always do better
than non-experts with executable code. Second, there is a
robust correlation between recall and comprehension. Third,
some evidence has been uncovered that experts have larger
chunks than novices. Finally, the expertise effect is also
present when the code has been scrambled in various ways.
In the remainder of this article, we describe simulations with
CHREST showing that this cognitive architecture captures
the skill effect with randomised computer programs.

The CHREST Architecture
As mentioned above, the chunking theory has often been
proposed, in its informal form, as an explanation of the skill
effect found in memory tasks for computer programs. In the
remainder of the paper, we wish to explore to what extent a
computational implementation of the theory, which
emphasises perceptual chunking, can account for the em-
pirical data we have just reviewed.

CHREST (Chunk Hierarchy and REtrieval STructures; De
Groot & Gobet, 1996; Gobet, 1993; Gobet & Lane, 2005;
Gobet & Simon, 2000) is an expansion of the EPAM
(Elementary Perceiver And Memorizer) cognitive
architecture (Feigenbaum & Simon, 1984; Richman,
Staszewski & Simon 1995). At the core of EPAM and
CHREST lie mechanisms for encoding chunks into long-
term memory (LTM) through the construction of a
discrimination net and mechanisms for handling information
in short-term memory (STM). Together, EPAM and
CHREST have been used to account for domains such as
verbal behaviour, chess memory, expert digit-span memory,
use of multiple representations in physics, letter perception,
spelling and acquisition of language (see Gobet et al., 2001,
Gobet & Lane, 2005, for reviews).

CHREST consists of the following components:
discrimination network, semantic LTM, and STM. STM,
which consists of at most four chunks, is mostly a queue
(first-in, first out). However, the largest chunk met at any
point in time (the hypothesis), is kept in STM until a larger
chunk is met or constructed (see Gobet & Simon, 2000).

The net is grown by two EPAM-like learning mechanisms,
familiarisation and discrimination. When a new object is
presented to the model, it is sorted through the
discrimination net. When a node is reached, the object is
compared with the image of the node, which is its internal
representation. If the image under-represents the object, new
features are added to the image (familiarisation). If the
information in the image and the object differ on some
feature or some sub-element, a new node is created
(discrimination).

Table 1 shows the key time parameters used with
CHREST. These parameters are taken from previous work
(Feigenbaum & Simon, 1984; De Groot & Gobet, 1996;
Gobet & Simon, 2000) and are important in that they impose
stringent constraints on how much information processing
can be performed both during the training phase and during
the presentation of the stimulus in the test phase. Note that
creating an LTM chunk, adding a new link to a chunk, or
familiarising a chunk occurs in parallel with the other
operations.

CHREST incorporates mechanisms for incrementally
creating schemas (known as templates in the theory), al-
lowing information to be rapidly encoded in slots (Gobet &
Simon, 2000). In this paper, we are primarily interested in
how far perceptual chunks can account for skill effect in the
recall of scrambled programs. Therefore, we did not use
templates in the simulations.

Table 1: Main time parameters used in CHREST

Cognitive operation Duration

creating an LTM chunk 8 s

familiarising an LTM chunk 2 s

placing a chunk into STM 50 ms

comparing two chunks 50 ms

carrying out a test in the discrimination net 10 ms

Simulations
For training and testing the model, a large collection of data
was gathered from a variety of sources. Using the internet
and some reference books, a corpus of about one hundred
different FORTRAN programs was built.

Training Phase
During training, CHREST is given programs in
FORTRAN—a naturalistic material—as input so that the
vocabulary of the language as well as some sequences of
items can be learnt. The lines of code had a mean length of 7
words. Elements (e.g. numbers, punctuation and other
special characters) are recognised as distinct, individual
items by the model. This type of input allows the model to
build a discrimination net that encodes both the primitive
items and legal strings from the computer language.

The same basic model is used to simulate different levels
of ability; that is, only the amount of input is varied, and no
other mechanisms or parameters are altered. This study will
focus on the difference between novices and experts, who
are simulated by passing CHREST either one program or a
corpus of eighty-eight programs during training (these
numbers were chosen arbitrarily).
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As each item is passed to CHREST, the model constructs
its discrimination net. The net initially starts with an empty
root node. Primitive items are usually the first to be added to
the net. Then, after a period of learning, the images at the
nodes will come to represent sequences of items.

Test phase
Once the appropriate training had been undertaken (study of
one program for novices and eighty-eight for experts), the
novice and expert level models were tested using twelve new
FORTRAN programs that were not included in the training
set. Test programs were selected that did not include too
many “print” statements and so that they were all of roughly
the same number of lines and words. The simulations were
run like an experiment with human participants, with a
presentation time of five seconds per line. Various levels of
randomisation were applied to the test programs before they
were passed to the models. In addition to the conditions used
in the studies reviewed above, we also thought it interesting
to use a condition in which all elements of a program were
randomised. There were therefore five conditions in total:

1. Normal. The sequence of the program is unaltered.
2. Random Modules. Segments of the program are
randomised, but the line order within a segment is retained.
3. Random Lines. The lines of the program are ran-
domised. Information within a line is unaltered.
4. Modules and Lines. Both modules and lines within
modules are randomised.
5. All Random. All elements within a program are
randomised, yielding a total randomisation.

To create the Random Modules, lines of code that acted as a
meaningful unit of instruction were grouped. For example,
lines belonging to declaration statements would be retained
together as a module. For the All Random condition, the
maximum and minimum line lengths of the original program
were first noted; then, all the elements in the program were
randomised and lines of random length were constructed,
with the condition that the values fell between the original
lengths.

Each model received two “practice” problems which were
always the same. The first practice program was a Normal
type and the second was an All Random type. The test pro-
grams were then presented. In addition to the practice prob-
lems, each model received two examples of each condition,
thus making a total of 12 test programs. To control for ran-
dom variation due to the order of programs in the learning
set, CHREST was run with 40 simulations per skill level.
The random order in which the programs appeared, the ran-
dom order of the conditions and the randomisation of pro-
grams were all reset for each simulation.

For each program, CHREST read the program line by
line, storing recognised chunks into STM, and, when
applicable, using the following learning mechanisms. First,
as described before, CHREST can add a chunk as a test to
another chunk. It takes 8 seconds to carry out this dis-

crimination operation. Typically, a new test is added to the
hypothesis. Second, for chunks that have been in STM for at
least 8 seconds, a new branch is added to access them by a
novel path; this essentially means that episodic cues that
permit access to this node are added to the discrimination
net (Gobet & Simon, 2000). Such nodes can be recalled
during the reconstruction phase even if they are no longer in
STM.

During the recall phase, CHREST could output the
information held in STM and in the nodes that had been
created or for which new access links had been created.
Recall was scored in the following way. A list of items that
CHREST had recalled, in the order they were retrieved, was
collected from the model. This recall list was matched
alongside the original stimulus that was presented to
CHREST. The first line in the stimulus was compared to the
recall list and if the first items matched, then the lines were
compared to find out how many of the items were recalled
correctly before a mismatch occurred; both lines were then
discarded and the next stimulus line compared to the recall.
If the stimulus line did not match the recall line, then the line
was discarded and the next one matched against the recall
list, until all the stimulus lines were used. Not only does this
method show how many items were recalled correctly, but it
shows how many errors of commission the model made.

Results
Figure 2 illustrates the results of the simulations. We can see
that for all cases, CHREST predicts a skill effect. These
predictions are borne out by the data, with the exception of
Guerin and Matthews’ (1990) Module+Line condition,
where no effect was found with the human participants.
None of the studies reviewed incorporated the All condition,
where the order of all elements of the code is randomised.
Although the difference between the Novice and Expert
models is small for the All condition, it is statistically
reliable (t(78) = 3.71, p < .001). To test this counter-
intuitive prediction of the model, we collected data with C
programmers (n = 9) and novices (n = 9); the results have
supported the prediction. Given that we found a skill effect
with full randomisation, it is unclear why no such effect was
found with Guerin and Matthews’ Module+Line condition,
which destroys less structure than our method.

While the simulations show a differential effect for the
type of randomisation, this effect is limited to the All
conditions vs. the other conditions. The model fails to
capture the differential recall shown by humans from the
Normal condition to the Module+Line conditions. It is likely
that humans pick up semantic information from the modules,
as proposed for example by Adelson (1981), which are
beyond the essentially perceptual knowledge that this
simplified version of CHREST can store.

Conclusion
The experimental studies reviewed in this paper clearly

show that randomisation of aspects of computer code affects
recall, while still preserving a skill effect in most cases. In
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order to account for these data, we have described a
simplified version of the CHREST simulation model, where
emphasis was given to perceptual chunking. We have shown
that the model accounts for the skill differences with
scrambled programs, which supports Simon and Gobet’s
(2000) contention that theories based on chunking
mechanisms can account for skill effects in memory for
computer programs. However, the model did not show
differences between the randomisation conditions, as
humans did. In this respect, the results differ to those
obtained with chess, where it has been shown that CHREST
is able to successfully capture recall differences with chess
positions that were randomised in different ways (Gobet &
Waters, 2003). A difference between the simulations in the
two domains is that CHREST used templates with chess, but
not with computer programs.

The presence of a skill effect even with randomised
material has been demonstrated not only in chess and
computer programming, but also in nearly all domains of
expertise where this has been studied (Sala & Gobet, 2016).
This finding strongly suggests that theories of expertise
cannot only propose high-level and holistic mechanisms, but
must also include some low-level mechanisms such as
chunking to account for the empirical data. In this respect,
CHREST is obviously on the right track. Further work will
establish whether the presence of templates (Gobet &
Simon, 2000) can help the model capture the differential
recall of different types of scrambled programs, which is
often claimed to tap into differences in high-level, semantic
knowledge (e.g., Adelson, 1981).
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Figure 2. CHREST’s memory for computer code as a
function of level of expertise and type of

randomisation.
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