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Dark Matter Freeze-in Production in Fast-Expanding Universes
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1Dipartimento di Fisica ed Astronomia, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
2INFN, Sezione di Padova, Via Marzolo 8, 35131 Padova, Italy

3Department of Physics, 1156 High St., University of California Santa Cruz, Santa Cruz, CA 95064, USA
4Santa Cruz Institute for Particle Physics, 1156 High St., Santa Cruz, CA 95064, USA

(Dated: December 20, 2017)

If the dark matter is produced in the early universe prior to Big Bang nucleosynthesis, a modified
cosmological history can drastically affect the abundance of relic dark matter particles. Here, we
assume that an additional species to radiation dominates at early times, causing the expansion rate
at a given temperature to be larger than in the standard radiation-dominated case. We demonstrate
that, if this is the case, dark matter production via freeze-in (a scenario when dark matter interacts
very weakly, and is dumped in the early universe out of equilibrium by decay or scattering processes
involving particles in the thermal bath) is dramatically suppressed. We illustrate and quantitatively
and analytically study this phenomenon for three different paradigmatic classes of freeze-in scenarios.
For the frozen-in dark matter abundance to be as large as observations, couplings between the dark
matter and visible-sector particles must be enhanced by several orders of magnitude. This sheds
some optimistic prospects for the otherwise dire experimental and observational outlook of detecting
dark matter produced by freeze-in.

I. INTRODUCTION

Thermal freeze-out is an attractive mechanism for dark
matter (DM) genesis [1–4]. Within this paradigm, DM
particles are in thermal equilibrium at high temperatures;
as the plasma temperature eventually drops below the
DM mass, the Hubble expansion rate becomes larger than
the rate for processes that keep the DM species in ther-
mal equilibrium; DM particles thus freeze-out, with an
approximately fixed comoving number density. Remark-
ably, such a relic density depends only on masses and
couplings that can be, in principle, independently mea-
sured in a laboratory, and it therefore does not depend on
the uncertain cosmological history of the universe. The
jargon used to express this fact is to say that DM freeze-
out is “IR-dominated”.

The above statement has, however, a well-known
caveat: it is true only for a standard thermal history
(i.e. an energy density dominated by radiation at early
times, T � 1 MeV) all the way up to the freeze-out tem-
perature, approximately a factor of 20 below the DM
mass. Although this has to be the case at tempera-
tures below Big Bang Nucleosynthesis (BBN), TBBN '
few MeV [5, 6], we have no direct information for the ex-
pansion rate and energy density make-up of the universe
at higher temperatures.

A motivated alternative history is an early matter
dominated (MD) era, for example during inflationary re-
heating or moduli domination; The DM relic density in
this case depends on two unknown temperatures: TM ,
the temperature where the new form of matter takes over
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‡Electronic address: profumo@ucsc.edu

the energy budget, and TR, the “reheat temperature” be-
low which we recover the standard history (for details
see e.g. Refs. [7, 8]). The resulting effect is a deple-
tion of the DM relic density due to the entropy dumped
in the plasma [7, 9–14]. As a consequence, for an early
MD epoch the observed DM abundance is reproduced for
smaller interaction rates between DM and plasma parti-
cles, with a consequent reduction of all detection signal
strengths in DM searches.

The opposite conclusion applies to alternate cosmo-
logical histories where the universe expands very fast,
as in presence of a new species φ whose energy density
red-shifts as ρφ ∝ a−(4+n) (with a the scale factor and
n > 0). If equality between the energy density associated
with the species φ and with radiation happens below the
freeze-out temperature, DM is produced during this new
cosmological phase. The relic DM density from freeze-
out is then significantly larger than the one obtained
by a standard calculation [15–18], as a result of equal-
ity between the (faster) expansion rate and the thermal
processes rates occurring at earlier times (i.e. at higher
temperatures, when the comoving DM density is larger).
The key consequence for DM phenomenology is that that
larger couplings (and therefore larger predicted experi-
mental signals, for example for the annihilation rate of
dark matter pairs in the late universe) are needed to pro-
duce the observed DM abundance. Moreover, Ref. [17]
identified a completely new phenomenon that happens
for large enough n: unlike the standard case, DM parti-
cles keep annihilating even long after the departure from
chemical equilibrium. This novel behavior was dubbed
relentless DM, and it was later confirmed by Ref. [18].
Relentless DM also generically features larger-than-usual
DM interaction rates with ordinary particles [17].

The subject of this work is DM freeze-in, another moti-
vated mechanism for DM genesis where the relic density,
in a standard cosmological setting can be calculated di-
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rectly from the DM particle physics properties [19]. The
same caveat as above applies to this case: a modified,
non-standard thermal history will affect the predicted fi-
nal density of DM from freeze-in. Our goal here is to per-
form a general analysis of DM freeze-in in a fast expand-
ing universe, similarly to what we performed for freeze-
out in Ref. [17], and to draw the critical phenomenologi-
cal consequences of such scenario. DM particles produced
through freeze-in are very weakly coupled with the pri-
mordial plasma and never attain thermal equilibrium in
the early universe. Although very weak, the interactions
with bath particles Bi are enough to create DM parti-
cles χ through reactions Bi → χ. After χ is produced, it
simply red-shifts away and it is still present today con-
tributing to the observed DM energy density.

The set of cosmological histories considered in this
work is phenomenologically described by the two-
dimensional parameter space (Tr, n). Here, Tr is the
temperature where the energy density of φ equals the
one of the radiation bath, whereas n > 0 is the in-
dex describing how the fluid red-shifts through the re-
lation ρφ ∝ a−(4+n). These two parameters cannot
take arbitrary values, since they are bound by BBN con-
straints [17] which constrains the Hubble expansion rate,
and hence the energy density of the universe at temper-
atures around when BBN operates to be close to pure
radiation-domination.

In the spirit of a very general analysis, we consider the
following freeze-in scenarios to produce DM particles χ
through reactions involving bath particles Bi:

1. Decay B1 → B2χ: a bath particle B1, heavier
than χ, decays to a final state involving one DM
particle and other bath particles (which we indi-
cate generically with the symbol B2). While we
consider a two-body decay for illustration, our re-
sults are valid for general n-body decays. The dis-
cussion for decay channels involving more than one
DM particle (e.g. B1 → χχ) in the final state is
analogous.

2. Single Production B1B2 → B3χ: Collisions be-
tween two bath particles lead to one DM particle in
the final state. This reaction happens, for example,
when one initial state bath particle shares the same
discrete quantum number with χ, e.g. when both
B1 and χ are odd under a Z2 symmetry.

3. Pair Production B1B2 → χχ: Collisions be-
tween two bath particles lead to two DM particles
in the final state. We separate this case from the
one above since it happens in different theories. As
an example, χ can be the only particle odd under
a Z2 symmetry, and it thus needs to be pair pro-
duced.

A consistent picture emerges from our analysis of dif-
ferent cosmological histories and of various freeze-in sce-
narios: the observed DM abundance is reproduced for

g/gstandard early MD era fast-expanding universe

DM freeze-out smaller larger

DM freeze-in larger larger

TABLE I: Comparison between couplings needed to produce
the observed DM abundance in a standard versus modified
cosmological setting, for the two cases an early MD era and
of a fast expanding universe. We consider both DM freeze-
out and freeze-in, and for each case we identify whether the
required coupling to the plasma is smaller or larger than the
standard case.

larger couplings between DM and plasma particles com-
pared to standard cosmological histories. This conclusion
was also reached for freeze-in in an early MD epoch [20–
22]. A comparison among different cases is provided in
Tab. I. The general, key conclusion of our study is that
DM genesis in a fast expanding universe, be it via freeze-
out or via freeze-in, always requires larger couplings, with
the inescapable prediction of enhanced signals for DM de-
tection.

We note that freeze-in through pair production of DM
particles (case 3 above) but limited to the specific case
n = 2 (kination domination) was studied in Refs. [23, 24].
The goal of this paper is to present, instead, a general
analysis for different cosmological histories and freeze-in
scenarios. For the particular case of n = 2 our results are
consistent with those presented in Refs. [23, 24].

The reminder of this study has the following outline:
After reviewing the Boltzmann equation for freeze-in
with the modified cosmological background in Sec. II, we
consider freeze-in production of DM in the early universe.
As explicitly stated, we only focus on IR production (i.e.
production dominated by processes occurring at low tem-
peratures, close to the bath particle masses). While this
is always the case for decays, we identify under which
circumstances IR production occurs from scattering as
well. By focusing on IR production, we avoid issues re-
lated to the uncertain history of the universe before the
time of φ-domination. We then divide the following dis-
cussion into two parts: we deal with decay in Sec. III and
with scattering in Sec. IV. Wherever relevant, we high-
light the most prominent possible experimental signals
associated with freeze-in within a non-standard cosmo-
logical history with faster-than-usual expansion rates at
early times. We summarize our results in Sec. V.

II. BOLTZMANN EQUATION FOR FREEZE-IN

The number density of DM particles χ evolves in an
isotropic and homogeneous early universe according to
the Boltzmann equation

dnχ
dt

+ 3Hnχ = Cα . (1)
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The second term on the left-hand side accounts for the
Hubble expansion, whereas number-changing reactions
which, here, produce DM particles are accounted for by
the collision operator on right-hand side. This collision
operator Cα depends on the specific reaction under con-
sideration (e.g. α = B1 → B2χ). It also generically
depends on time, or, equivalently, on the temperature of
the radiation bath.

The boundary condition we assume for the Boltzmann
equation (1) is a vanishing DM number density at very
early times. In other words, we are assuming here that
physics at high scale (e.g. inflation) produces a negli-
gible number of χ particles, which are then exclusively
produced in the later universe by the freeze-in reactions
listed in the Introduction.

It is convenient to re-cast the Boltzmann equation fac-
toring out the effect of expansion. To this end, as custom-
ary, we define the comoving number density Yχ = nχ/s,
where s is the entropy density. Using the definition of
the comoving density, together with the assumed conser-
vation of entropy, sa3 = const, we rewrite the Boltzmann
equation as

dYχ
d log T

= −
(

1 +
1

3

∂ log g∗s
∂ log T

)
Cα
H s

. (2)

Finally, we introduce the dimensionless “time variable”
x = mB/T , where mB is typically the mass scale of some
bath particles that we will specify for each case. Upon
using the general relation df/d log T = −df/d log x, we
find the final form of the Boltzmann equation

dYχ
d log x

=

(
1− 1

3

∂ log g∗s
∂ log x

)
Cα(x)

H(x) s(x)
, (3)

where we make explicit the x-dependence (i.e. time, or
inverse temperature) of the Hubble parameter H, the
entropy density s and the collision operator Cα.

In the next Sections, we specify each time our choice
for x and what reaction α we are considering. Before
discussing the freeze-in process, we conclude this Section
with a brief review of the cosmological background and
a comparison between IR and UV production.

A. The cosmological background

We are interested in DM production for cosmologi-
cal histories where the universe is dominated by a new
species φ, whose red-shift behavior is ρφ ∝ a−(4+n). Since
entropy is conserved, during the time of φ-domination
the energy density scales as ρφ ∝ T−(4+n), where T is the
temperature of the radiation bath. The Friedmann equa-
tion allows us to identify the relation H ∝ T−(2+n/2).
Motivated theories leading to this faster Hubble expan-
sion are discussed in detail e.g. in Refs. [18, 25–34].

When the universe is dominated by φ, the Hubble pa-
rameter at a fixed temperature is always larger than its

associated value for a standard history at the same tem-
perature. This is why the cosmological histories con-
sidered in this work are the ones for a fast expanding
universe. A complete description of these histories and
how BBN bounds the parameter space can be found in
Ref. [17]. Here, we summarize the key results.

The cosmological background is identified by two pa-
rameters: (Tr, n). The temperature Tr is set by some
boundary condition, and we choose it to be the tempera-
ture where the energy density of φ and radiation are the
same. The index n described the red-shift behavior. The
energy density of φ as a function of the radiation bath
temperature is given by

ρφ(T ) = ρφ(Tr)

(
g∗s(T )

g∗s(Tr)

)(4+n)/3(
T

Tr

)(4+n)

. (4)

The total energy density at any temperature reads

ρ(T ) = ρrad(T ) + ρφ(T ) =

ρrad(T )

[
1 +

g∗(Tr)

g∗(T )

(
g∗s(T )

g∗s(Tr)

)(4+n)/3(
T

Tr

)n]
,

(5)

where we factor out the energy density of the radiation
bath. The Hubble parameter as a function of the tem-
perature can be computed using Friedmann’s equation

H =

√
ρ

√
3MPl

, (6)

where we define the reduced Planck mass to be MPl =
(8πG)−1/2 = 2.4 × 1018 GeV. This is the expression for
the Hubble parameter, with the energy density ρ as given
in Eq. (5). The Hubble parameter H(T ) enters the Boltz-
mann equation (3), which we use to compute the DM relic
density. All results in this paper are obtained via a nu-
merical calculation with this complete expression for the
Hubble parameter. However, in order to perform simple
analytical estimate, it is useful to give an approximate ex-
pression for the Hubble rate at temperatures larger than
Tr

H(T ) ' π g
1/2
∗

3
√

10

T 2

MPl

(
T

Tr

)n/2
, (T � Tr) , (7)

where we take g∗s(T ) = g∗(T ) = g∗ = const. The full
matter content of the Standard Model gives g∗ = g∗SM =
106.75. Finally, as found in Ref. [17], BBN bounds the
cosmological parameters to be

Tr >∼ (15.4)1/n MeV . (8)

B. IR vs. UV production

A remarkable feature of freeze-in is that DM produc-
tion, with a standard cosmological history, is always IR
dominated [19]. In this section we show that this is al-
ways the case for freeze-in from decays, even in the case
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of a modified cosmological history with a fast-expanding
universe at early times. If DM particles are produced
via scattering processes, instead, the production with a
standard cosmological history is IR dominated as long as
the interactions between DM and the bath particles are
renormalizable. We conclude this Section with a compar-
ison between IR and UV production for the cosmological
histories considered in this work.

Our assumption through this work is that at very high
temperatures the abundance of χ is negligible. As the
temperature drops down, DM particles are created via
processes involving the plasma particles. At a given tem-
perature T , much higher than the DM and the bath par-
ticles masses, the comoving abundance of χ particles ap-
proximately reads

Yχ(T ) ' γ(T )H(T )−1 . (9)

Here, γ(T ) is the (temperature dependent) rate for the
process under consideration, whereas the inverse Hubble
parameter is about the age of the universe. This simple
relation allows to establish whether the production is IR
or UV dominated.

We start from the case of decays, B1 → B2χ, where
the rate scales as γB1→B2χ(T ) ' ΓB1→B2χmB1/T . The
partial width computed in the rest frame of B1 is cor-
rected by the Lorentz time dilatation factor. Upon using
the approximate Hubble parameter in Eq. (8), and ne-
glecting numerical factors, we find for decays

Yχ(T )|B1→B2χ
' ΓB1→B2χ

mB1MPl T
n/2
r

T 3+n/2
. (10)

Thus freeze-in from decays is always dominated at low
(IR) temperatures.

For the case of scattering, the temperature dependence
of the rate stems from the type of interaction under con-
sideration. If we take an operator of mass dimension d
as responsible for the scattering process, the rate scales
γB1→B2χ(T ) ∝ T 2d−7/M2d−8

∗ , whereM∗ is the mass scale
appearing in the operator. The comoving density scales
with the temperature as

Yχ(T )|B1B2→B3χ
∝ T 2d−9+n/2

M2d−8
∗

MPl

T
n/2
r

. (11)

The scaling for the case B1B2 → χχ is identical. Thus for
freeze-in via scattering the production is IR dominated
only for operators whose mass dimension satisfies

d < 4.5 +
n

2
. (12)

The case n = 0 corresponds to a standard history, and
for this case freeze-in is IR dominated only for renormal-
izable interactions, as correctly identified in Ref. [19].

We always consider IR production in this work. And in
doing so we avoid the complication of specifying how the
cosmological phase of φ domination arises at very high
temperatures. All we assume here is that at temperatures

above the plasma particle masses φ domination sets in,
and DM particles are produced at around the mass scale
of the bath particles. As discussed above, this is auto-
matic for decays, whereas for scattering IR production
only applies for interactions satisfying Eq. (12). The co-
moving number density at any “time” x can be computed
from Eq. (13) by solving a numerical integral

Yχ(x) =

∫ x

0

dx′

x′

(
1− 1

3

∂ log g∗s
∂ log x′

)
Cα(x′)

H(x′) s(x′)
. (13)

Here, the lower integration extreme (x′ = 0) is justified
by IR production. The final DM density is given by tak-
ing x→∞ in the above equation.

III. FREEZE-IN FROM DECAYS

We start with the case where DM particles are pro-
duced through the decay process

B1 → B2χ . (14)

We provide a complete derivation of the collision operator
for this process in Eq. (A7) of App A. Here, we only quote
the final result,

CB1→B2χ = neqB1
ΓB1→B2χ

K1[mB1
/T ]

K2[mB1/T ]
. (15)

For the case of decays, it is convenient to choose x =
mB1

/T . Furthermore, we take the equilibrium distribu-
tion from Eq. (A3), and we rewrite the collision operator
for decays as a function of the variable x

CB1→B2χ =
gB1 m

3
B1

2π2

K1[x]

x
ΓB1→B2χ . (16)

The comoving density at any temperature can be com-
puted by applying the general result in Eq. (13). After
plugging the explicit expression for the entropy density,
the freeze-in comoving density reads

Yχ(x) = gB1

45

4π4
ΓB1→B2χ×∫ x

0

dx′
(

1− 1

3

∂ log g∗s
∂ log x′

)
K1[x′]x′

g∗s(x′)H(x′)
.

(17)

This is our master equation to compute freeze-in pro-
duction via decays. The only assumption so far is that
entropy is conserved, thus this equation is also valid for
the case of a standard thermal history. The details of
the thermal history under consideration enter through
the Hubble parameter H(x′) in the denominator of the
integrand.

A. Number Density Evolution

We parameterize the partial decay width with the ex-
pression

ΓB1→B2χ =
λ2d
8π
mB1

. (18)
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FIG. 1: Numerical solutions for the comoving number density
Yχ for the case of freeze-in from decays. We choose gB1 = 2,
mχ = 10 GeV, mB1 = 1 TeV, and λd = λrad

d = 1.22 × 10−11.
We always set Tr = 20 MeV.

Here, λd � 1 is a very small coupling mediating the de-
cay process, whereas the factor of 8π in the denominator
accounts for the phase space of the two-body final state.

The freeze-in number density of χ particles is deter-
mined by Eq. (17) once we specify the mass of the decay-
ing particle and the coupling λd. The asymptotic value
for the number density is found by taking the x → ∞
limit, whereas the energy density is obtained by just mul-
tiplying the previous result by the mass of χ. As an illus-
trative example, we fix (mB1

,mχ) = (1000, 10) GeV, and
we also fix gB1

= 2. The observed DM abundance for a
standard cosmological history is achieved if we choose
λradd = 1.22 × 10−11. In Fig. 1 we keep these parti-
cle physics parameters constant, and we show numeri-
cal solutions for different modified cosmological histories.
We always take Tr = 20 MeV, consistently with BBN
bounds, and we show solutions for different values of n.

Fig. 1 illustrates well our findings: the asymptotic co-
moving density consistently decreases as we increase the
value of the index n. In a fast expanding universe, the
freeze-in production from bath particle decays is less ef-
fective than in the case of a standard cosmological history
(red line). As a result, larger couplings are required to
reproduce the observed DM density. Moreover, for each
given temperature the comoving density is always lower
as we consider larger values of n. Correspondingly, the
same freeze-in yield is achieved at lower temperatures.

The results in Fig. 1 are readily explained by an ap-
proximate solution to the Boltzmann equation. (We re-
mind the Reader that what shown in the plot was ob-
tained by numerically solving the integral in Eq. (17)).
It is helpful to recall the asymptotic behavior for the

Bessel function appearing in the integrand

K1[x′] '

{
1
x′ x′ � 1√
π
2x′ e

−x′
x′ � 1

(19)

The physics behind the suppression at large x′, namely
at temperature much lower than the decaying particle
mass, is clear: decaying particles are exponentially rare
at temperatures below their mass, thus freeze-in produc-
tion in this range of temperatures is negligible. As a
result, in Fig. 1 the comoving yields are just horizontal
lines at x′ � 1: the integral in Eq. (17) is saturated
around x′ ' 1.

For all cases in Fig. 1 we also have Tr � mB1
, thus

freeze-in production happens entirely during the phase
of φ-domination. If we additionally neglect the temper-
ature variation for the number of relativistic degrees of
freedom, namely we set g∗s(x) = g∗(x) = g∗, we can
rewrite Eq. (17) as follows

Yχ(x) ' gB1

g
3/2
∗

135
√

10

4π5

ΓB1→B2χMPl

m2
B1
x
n/2
r

×∫ x

0

dx′K1[x′]x′ (3+n/2) ,

(20)

where we introduce xr = mB1
/Tr. The asymptotic value

for the comoving density can be computed analytically.
We write it as follows:

Y∞χ = Y∞χ
∣∣
rad
×Fdecay(Tr, n) , (21)

where we calculate the suppression factor Fdecay with
respect to the result in a pure radiation dominated early
universe [19]

Y∞χ
∣∣
rad

=
gB1

g
3/2
∗

405
√

10

8π4

ΓB1→B2χMPl

m2
B1

, (22)

and we define the function accounting for the correction

Fdecay(Tr, n) ≡ 8

3π

(
2

xr

)n/2
Γ

[
6 + n

4

]
Γ

[
10 + n

4

]
.

(23)
Here, Γ [x] is the Euler gamma function. This result is

valid only for n > 0. Notice that we do not recover the
radiation case result for n = 0: this is consistent with
the expression for the energy density in Eq. (5) where
setting n = 0 does not get rid of φ, but, rather, it adds
a new species that red-shifts like radiation. From the
explicit expression for F(n) we immediately see that the
main source for the difference among the horizontal lines

location in Fig. 1 is the factor x
n/2
r in the denominator,

since for the case we consider we have xr = 5× 104.
The slope of the numerical solutions at x <∼ 1 can also

be derived analytically by taking the appropriate limit for
the Bessel function (see Eq. (19)). We consider Eq. (20)
in the x� 1 regime, where the integral is straightforward
and we find

Yχ(x) ∝ x(3+n/2) (x� 1) . (24)
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FIG. 2: Numerical solution for the comoving number density
Yχ with mχ = 10 GeV, mB1 = 1 TeV. Now λd is changed
in order to reproduce the observed abundance (λd1 = 2.0 ×
10−10, λd2 = 2.6× 10−9, λd3 = 3.3× 10−8, λd4 = 4.0× 10−7).
We set Tr = 20 MeV for all n.

The freeze-in solutions are steeper for larger n. The pre-
dicted asymptotic behavior is indeed what we find with
our full numerical treatment in Fig. 2, where we take the
same mass values for B1 and X but this time we choose
the coupling λd to reproduce the observed DM density.
The steepness of the lines with larger n allows freeze-in
process to start later and to be dominated at slightly
lower temperatures.

B. Relic Density Suppression

Within the modified cosmological setup we consider
in this work, DM is always under-produced with respect
to the case of a standard history. We quantify by how
much the relic density is suppressed in Fig. 3, where we
keep the particle physics parameters fixed to the same
values we used in the previous section. We calculate the
DM relic density for each point in the (Tr, n) plane, and
we take the ratio between the observed DM relic den-
sity in the radiation case and the relic density in our
modified cosmological setup. In other words, we show
iso-countours for the function

rdecay(Tr, n) ≡
Ωχh

2
∣∣
rad

Ωχh2
. (25)

For Tr as large as mB1
, the effect of the fast expanding

universe phase is less important and we are back to a
“standard” freeze-in scenario. For lower values of Tr, but
still consistent with the BBN bound in Eq. (8), the factor
can be as large as 1010. For these low values of Tr we
can approximate the result by using the semi-analytical

solution found above

rdecay(Tr, n) ' Fdecay(Tr, n)−1 (Tr � mB1
) .
(26)

FIG. 3: Contour plots of the reduction in the relic density in
the case of Freeze-in by decay.

One could turn the argument around, and state that
stronger interactions are needed to reproduce the ob-
served DM density. The enhancement of the dimension-
less coupling λd defined in Eq. (18) is easily obtained from
Fig. 3, since the final relic density is always proportional
to the decay width. We find the relation

λd(Tr, n) = rdecay(Tr, n)1/2 λradd , (27)

with λradd the coupling for the case of a standard history.
This enhancement to the couplings required to produce
the right DM density today can thus be as large as 105

with modified fast-expanding thermal histories.

C. Displaced Events at Colliders

We conclude this Section by commenting on the conse-
quences of the coupling constant enhancement required
for successful freeze-in DM production in modified cos-
mological settings. Once we fix the mass of the particles,
the requirement of reproducing the observed relic den-
sity fixes the decay width for each point in the (Tr, n)
plane. The inverse decay width gives the scale for the
decay length τB1

= Γ−1B1
if B1 particles are produced at

colliders. As we will see shortly, a typical prediction in
the (Tr, n) plane is the observation of displaced B1 de-
cay vertices at particle colliders. This is opposed to the
case of a standard cosmology, where the decay width is
too large and for collider purposes B1 is a stable par-
ticle [19]. Displaced events at collider are also typical
is DM is produced via freeze-in during an early matter
dominated era [7].
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A convenient variable to express the observed DM den-
sity is the comoving energy density

ξobsχ =
mχnχ
s0

= mχYχ = 0.44 eV , (28)

with s0 the current entropy density. We can find an ap-
proximate expression for the expected decay length by
taking the solution in Eq. (21) and compare it with the
value above

τB1 ' 3.4× 107 F(Tr, n)
( mχ

10 GeV

)(1 TeV

mB1

)2

cm ,

(29)
where we also fixed g∗ = 106.75 (accounting for the full
SM degrees of freedom). The scale 107 cm, way above
the size of any detector, is typical for freeze-in during a
radiation dominated era. However, as observed above,
for the cosmologies we consider in this work we typically
have F(Tr, n) � 1, thus we can potentially get back to
the detector size. We actually know how much we can
reduce this decay length, since the inverse of F(Tr, n) is
what is shown in Fig. 3. This suppression can be as large
as 1010 and the decay length can get as small as 10−3 cm.

The parameter space for displaced decays is explored
in Figs. 4 and 5. We start from Fig. 4, where we ana-
lyze the behavior of τB1 as we change the particle physics
properties. The cosmological parameters (Tr, n) are fixed
for each panel, and we show the contours for τB1 on
the (mχ,mB1) plane. The blue region corresponds to
102 cm ≤ τB1 ≤ 104 cm, whereas the dark blue region
corresponds to 10−2 cm ≤ τB1

≤ 102 cm. There are
benchmarks for displaced signatures at colliders. The
gray region in the bottom right corner is excluded by
kinematics. We observe that isocontours follow the lines
where mχ ∝ m

2+n/2
B1

, consistently with the approximate

solution given in Eq. (29).1 Moreover, we see that the de-
cay length is reduced by a factor of ∼ (Tr/mB1

)n/2 with
respect to the radiation case. For example, if we take
mχ = 10 GeV and mB1

= 3 TeV, the expected decay
length for radiation case τB1

∼ 3× 106cm. In our modi-
fied cosmological histories, the decay length expands into
a range where its values vary from 10−2 cm to 104 cm.
This range is accessible to present or future colliders.

In Fig. 5 we study the decay length τB1 as we change
the cosmological parameters, offering a complementary
view of our results. The value of mB1 and mχ are fixed
now for each panel, and we show iso-contours for τB1

in
the (n, Tr) plane. The bottom left corner grey area is the
region excluded by BBN.

1 It is important to remember that there is a power of mB1
in

F(Tr, n) through xr, since for each panel this time Tr is the
fixed quantity, see the definition in Eq. (23).

IV. FREEZE-IN FROM SCATTERING

We now focus on models where DM is produced out of
equilibrium via 2 → 2 scattering processes. As already
explained in the Introduction, we divide the discussion
into two classes of models, according to the number of
DM particles produced for each reaction. We study the
DM number density evolution for both scenarios, and we
then discuss the implications for experimental searches.

A. DM Single Production

We start our analysis from models where DM parti-
cles are produced in the early universe via bath particle
scattering of the form

B1B2 → B3χ . (30)

This is the leading production mechanism for several DM
models. For example, the supersymmetric partner to the
axion, the axino, in supersymmetric Peccei-Quinn theo-
ries, is a motivated DM candidate [35–40] produced via
scattering as in Eq. (30). The bath particles producing
the axino depend on the specific implementation of the
PQ symmetry. For KSVZ theories [41, 42], the axino is
produced via scattering of gluons and gluinos, whereas
for DFSZ theories [43, 44] the processes can also be ini-
tiated by Higgs bosons and higgsinos.

The general collision operator for this class of models
is derived in App A, where we find the two equivalent
expressions in Eqs. (A27) and (A28). In our numerical
analysis, we choose each time the most convenient one
according to the mass spectrum of the theory (see the
Appendix for details).

We observe that the process in Eq. (30) is not the only
channel for DM production. The two reactions obtained
by taking a permutation of the bath particles are allowed
by crossing symmetry, and we must account for them as
well. The way crossing symmetry is implemented de-
pends on the specific model. Here, we study benchmark
models where the matrix element is left unchanged under
crossing symmetry. Moreover, we assume that the ma-
trix element for this process is independent on the kine-
matics. We parameterize the squared matrix elements as
follows 2

λ2Bχ = |MB1B2→B3χ|
2

=

|MB2B3→B1χ|
2

= |MB1B3→B2χ|
2
.

(31)

For models satisfying these assumptions, the collision
operator takes the simple form in Eq. (A42), which we

2 Notice that this happens exactly, for example, when the particles
involved in the reaction are scalar fields and the interaction is of
the type L = λBχB1B2B3χ.
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FIG. 4: Contours of the B1 decay length (in cm) on the (mχ,mB1) plane corresponding to coupling values which produce the
observed DM abundance, for different values of n and Tr. The blue region corresponds to 102cm ≤ τB1 ≤ 104cm and the dark
blue region corresponds to 10−2cm ≤ τB1 ≤ 102cm. The first (second) row corresponds to Tr = 1 GeV (Tr = 100 MeV) and
the first (second, third and fourth) column corresponds to n = 1(n = 2, n = 3 and n = 4).

report here in the final form

CBiBj→Bkχ =
λ2Bχ T

512π5

∫ ∞
smin
single

ds

s3/2
K1[
√
s/T ]×

λ1/2(s,mBi ,mBj )λ
1/2(s,mBk ,mχ) ,

(32)

where the function λ(x, y, z) is defined in Eq. (A14)
and the lower integration limit is set by the kinemati-
cal threshold for the reaction

smin
single = max

{
(mBi +mBj )

2, (mBk +mχ)2
}
. (33)

We analyze the number density evolution for the class
of models introduced above. We fix the masses to be
(mB3 ,mχ) = (1000, 10) GeV, whereas bath particles B1

and B2 have negligible masses. As an example, this is the
case where χ is the axino, B3 is the gluino and B1,2 are
gluons. For this choice of the parameters, the observed
DM abundance is reproduced for the standard cosmology
if we choose λradBχ = 1.5× 1010.

Numerical results for the number density evolution are
shown in Fig. 6, where we set Tr = 20 MeV and we con-
sider a few different values of n as indicated in the cap-
tion. We plot the solution as a function of the “time
variable” x = mB3

/T . The behavior is similar to the one
already seen for freeze-in via decays: the asymptotic co-
moving density decreases as we increase the value of the
index n. The net effect is that DM is underproduced,
which in turn requires larger cross sections to reproduce
the observed DM abundance. The asymptotic number
density is reached for x ' 4, or equivalently for temper-
atures T ' mB3

/4. This is not surprising, since B3 is

the heaviest particle involved in the reaction. In order to
produce a DM particle, we either need a B3 particle in
the initial state or enough kinetic energy to produce B3

in the final state. At the temperature drops below mB3 ,
these processes become exponentially rare.

As in the decays of freeze-in via decays, the behavior of
the numerical solutions can be reproduced analytically.
In order to do so, we only keep the finite mass of B3.
This is well justified for the spectrum under considera-
tion: mB3

= 100mχ, whereas B1 and B2 are massless.
Once we make this approximation, the collision operator
in Eq. (32) simply reads

CBiBj→Bkχ =
λ2Bχ T

512π5

∫ ∞
m2
B3

ds
s−m2

B3

s1/2
K1[
√
s/T ] =

λ2Bχm
4
B3

128π5

K1[x]

x3
,

(34)

where we remind the Reader that x = mB3
/T . This re-

sult is valid for any permutation of the bath particles,
thus the total collision operator is obtained by multiply-
ing the above result by a factor of three.

The freeze-in yield is obtained from the general result
in Eq. (13). Upon neglecting as usual the temperature
variation of g∗, we find the approximate solution

Yχ(x) '
λ2Bχ

g
3/2
∗

405
√

10

256π8

MPl

mB3
x
n/2
r

∫ x

0

dx′K1[x′]x′ (1+n/2) ,

(35)
where, in this case, xr ≈ mB3

/Tr. Considering early
times, x � 1, we can Taylor-expand the Bessel function
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FIG. 5: Contours of the B1 decay length (in cm) on the (Tr, n)
plane that reproduces the observed DM abundance for dif-
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mB1 = 300 GeV for the first and second row respectively and
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FIG. 6: Numerical solutions for the comoving number density
Yχ as a function of x = mB3/T . We choose mB3 = 1 TeV,
mχ = 10 GeV and λBχ = 1.5× 10−10. We consider different
values for n, whereas we always set Tr = 20 MeV.

and calculate the slope of the lines in Fig. 6

Yχ(x) ∝ x(1+n/2) (x� 1) . (36)

This scaling is different from the result we found for de-
cays in Eq. (24). Consistently, the slopes of the curves in
Fig. 1 and Fig. 6 are different.
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FIG. 7: Numerical solution for the comoving number den-
sity Yχ with mB3 = 1 TeV and mχ = 10 GeV. Now λB3χ

is changed in order to reproduce the observed abundance
(λ1
B3χ = 3.3 × 10−9, λ2

B3χ = 5.4 × 10−8, λ3
B3χ = 8.0 × 10−7,

λ4
B3χ = 1.1× 10−5). We set Tr = 20 MeV for all n.

The asymptotic value for the yield can be computed
by evaluating the approximate solution in Eq. (35) for
x → ∞. As done before, it is convenient to normalize
our solution with respect to the result in a radiation-
dominated “standard” early universe

Y∞χ
∣∣
rad

=
λ2B3χ

g
3/2
∗

405
√

10

512π7

MPl

mB3

. (37)

We express the asymptotic value as it follows

Y∞χ = Y∞χ
∣∣
rad
×FBχscatt(Tr, n) , (38)

where we define the function

FBχscatt ≡
2

π

(
2

xr

)n/2
Γ

[
2 + n

4

]
Γ

[
6 + n

4

]
. (39)

In Fig. 7, we use the same mass and Tr values, but
we choose this time λB3χ to reproduce the observed DM
abundance for each n. The enhancement in the matrix
element can be as large as ∼ 105. Such enhancements for
the couplings translate into a quadratically larger effect
in the cross sections for potential DM detection processes,
which can be enhanced by a factor of 1010.

For freeze-in via scattering B1B2 → B3χ, the DM relic
abundance is always suppressed in the (Tr, n) plane. We
quantify this suppression in Fig. 8, where we keep the
same mass values for B3 and χ. More specifically, we
show iso-contours of the function

rBχ(Tr, n) ≡
Ωχh

2
∣∣
rad

Ωχh2
. (40)
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FIG. 8: Reduction in the relic density in the case of Freeze-
in by scattering B1B2 → B3χ for mB3 = 1 TeV and mχ =
10 GeV compare with the observed DM density in the stan-
dard case (radiation)

The suppression factor can be analytically understood
by using the equations derived above

rBχ(Tr, n) ' FBχscatt(Tr, n)−1 '
(xr

2

)n/2
. (41)

The associated enhancement in the required matrix ele-
ment λB3χ reads

λBχ(Tr, n) = rBχ(Tr, n)1/2 λradBχ , (42)

indicating that increasing n and/or decreasing Tr leads
to larger values for the necessary coupling constant to
reproduce the observed DM density of the universe.

B. DM Pair Production

We consider in this section the third and final freeze-in
case: DM pair production

B1B2 → χχ . (43)

This process is the leading production mechanism for all
models where the DM particle belongs to a dark sector
very weakly coupled to the visible sector. Notable exam-
ples include Higgs portal models with small mixing angle
and dark photon models with small kinetic mixing.

General results for this case are also given in App A,
where the two equivalent forms are in Eqs. (A34) and
(A35). We focus also for this case on models where the
matrix element is a constant

λ2χχ = |MB1B2→χχ|
2
. (44)
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FIG. 9: Numerical solution for the comoving number density
Yχ with mχ = 100 GeV and λχχ = 3.41 × 10−11 in the case
of Freeze-in by scattering B1B2 → χχ. We set Tr = 20 MeV
for all n.

The collision operator then takes the simple form in
Eq. (A43). We write it here in the final form

CB1B2→χχ =
λ2χχ T

512π5

∫ ∞
smin
pair

ds

s3/2
K1[
√
s/T ]×

λ1/2(s,mB1 ,mB2)λ1/2(s,mχ,mχ) ,

(45)

with λ(x, y, z) defined in Eq. (A14) and the lower inte-
gration limit set by kinematics

smin
pair = max

{
(mB1

+mB2
)2, (2mχ)2

}
. (46)

Numerical results for the comoving yield are presented
in Fig. 9. We choose mχ = 100 GeV, we neglect the bath
particle masses and we set λχχ = λradχχ = 3.41 × 10−11.
This is the value that reproduces the correct abundance
for a standard cosmological history. We plot the co-
moving number density as a function of the “time vari-
able” x = mχ/T . The freeze-in abundance is largely
suppressed compared to the standard case also for DM
pair production, forcing markedly larger couplings to ex-
plain the observed abundance. Quantitatively, this is il-
lustrated in Fig. 10, where we keep mχ and Tr fixed and
we set the couplings λnχχ needed for a modified cosmolofy
featuring a given n > 0. The figure shows how the needed
couplings are larger than in the standard case by up to
more than four orders of magnitude, for large n ∼ 4.

The analytical estimates are analogous to the previous
case, and we therefore only quote the final results here.
First, the collision operator neglecting the bath particles
mass reads

CB1B2→χχ =
λ2χχm

4
χ

128π5

K1[x]2

x2
. (47)
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FIG. 10: Numerical solution for the comoving number density
Yχ with mχ = 100 GeV. Now λχχ is changed in order to
reproduce the observed abundance (λ1

χχ = 4.7×10−10, λ2
χχ =

4.8 × 10−9, λ3
χχ = 4.6 × 10−8, λ4

χχ = 4.1 × 10−7). We set
Tr = 20 MeV for all n.

The comoving density as a function of the temperature
is obtained by computing the integral

Yχ(x) '
λ2χχ

g
3/2
∗

135
√

10

256π8

MPl

mχx
n/2
r

×∫ x

0

dx′K1[x′]2 x′ (2+n/2) .

(48)

The slope of the different curves is the same as the one
found for single DM production (see Eq. (36)).

We normalize again the asymptotic value with respect
to the radiation case

Y∞χ = Y∞χ
∣∣
rad
×Fχχscatt , (49)

which in this case it reads

Y∞χ
∣∣
rad

=
λ2χχ

g
3/2
∗

405
√

10

8192π6

MPl

mχ
. (50)

The suppression we find in this case reads

Fχχscatt ≡
8

3
√
π

Γ
[
2+n
4

]
Γ
[
6+n
4

]
Γ
[
10+n

4

]
x
n/2
r Γ

[
8+n
4

] . (51)

We quantify the DM relic abundance suppression rχχ
in the (Tr, n) plane in Fig. 11 for the same values of the
DM particle mass. Also in this case, suppression factors
can be as large as ten orders of magnitude.

C. Implications for Dark Matter Detection

Our general finding is that when the universe is dom-
inated, at the time of DM production through freeze-
in, by a species that produces a larger Hubble rate a

FIG. 11: Relic density suppression in the case of freeze-in
by scattering B1B2 → χχ, compared with the observed DM
density in the standard case (radiation)

given temperature than in the radiation-dominated case
(what we dub a “fast-expanding” universe), the couplings
needed to produce the observed DM abundance are larger
than in a radiation-dominated, standard scenario. As
a result, quite generically, DM detection prospects im-
prove.

Besides the general conclusion above, it is however
hard to solidly quantify how DM detection prospects are
affected in a general, model-independent way for freeze-
in via scattering in modified, fast-expanding cosmologies.
A first difficulty stems from the impossibility of per-
forming a cross-symmetry prediction for, e.g., the cross
section for the B1B2 → χχ process versus the cross-
symmetric χB1 → χB2 process (and similarly for the
single-production scattering case).

With that caveat in mind, however, for simple in-
stances where for example the matrix element squared
is a constant, as we considered above, we can attempt to
draw a few general statements. Let us consider first the
DM single-production case, B1B2 → B3χ. In this case,
let us assume that for instance B3 is some visible-sector
species which is abundant in the late universe, for in-
stance an electron or a photon. As long as the inverse re-
action to the process leading to freeze-in χ production is
kinematically allowed for non-relativistic processes, i.e.,
approximately,

mχ +mB3
> mB1

+mB2
≡ m12 , (52)

and as long as χ’s stability is not jeopardized by decays
to B1 +B2 +B3, i.e.

mχ −mB3 < m12 , (53)

then, the reaction

B3χ→ B1B2 (54)
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would be generically allowed, leading to potential com-
pletely novel indirect detection signals, involving a single
DM particle in the initial state. Rates for this type of
reaction are much larger in the fast-expanding universes
we entertain here. If B3 is a particle species abundant in
direct detection targets, the reaction B3χ→ B1B2 would
also possibly produce striking signals at direct detection
experiments.

In the case of DM pair production, B1B2 → χχ,
and again assuming a simple form for the matrix ele-
ment squared, modified cosmologies would give a strik-
ingly large enhancement to late-time DM pair annihila-
tion rates, χχ → B1B2. The relevant pair-annihilation
cross sections, however, would presumably be quite small,
unless mχ �∼ GeV, since one would naively estimate,
given what we find above,

σχχ→B1B2 ∼
λ2χχ
m2
χ

>∼ 10−13 GeV−2
(

GeV

mχ

)2

, (55)

while indirect detection is usually sensitive to pair-
annihilation cross sections on the order of 10−10 GeV−2.
Strong constraints from annihilation effects on the CMB
would however apply in the case of light dark matter
masses.

The cross-symmetric process, χB1 → χB2, is instead
rather promising, as the implied rates (which again, in
general do depend on the underlying model) might be
large enough to be of interest for direct detection, pro-
vided a modified cosmology affects DM freeze-in pair pro-
duction.

We postpone a more general and comprehensive anal-
ysis of implications of a modified cosmology with a fast-
expanding universe at DM freeze-in, including the dis-
cussion of specific models, to future studies.

V. CONCLUSIONS

The cosmological history of the universe is observation-
ally and quantitatively tested only up to temperature of
around 1 MeV: at larger temperatures, it is customary
to assume a radiation dominated universe, which is thus
the canvas on which pictures for dark matter production
in the early universe are usually drawn. However, cosmo-
logical histories where at a given temperature the expan-
sion rate, and thus the Hubble rate, was much larger are
possible, and yield dramatic consequences for the predic-
tion of the amount of dark matter produced in the early
universe by thermal or non-thermal processes.

Here, we focused on the case of dark matter produc-
tion via freeze-in: the dark matter is “dumped” by a
decay or scattering process in the early universe, and
never reaches thermal equilibrium. As is well known,
given a certain cosmological history, and similarly to the
case of thermal freeze-out, it is possible to compute the
relic dark matter yield for freeze-in from a few particle
physics input parameter characterizing the dark matter

sector. Also in analogy to what we recently pointed out
for the case of freeze-out in Ref. [17], in the presence of
a modified cosmological history at temperatures above
Big Bang nucleosynthesis, such relic dark matter yield
can be profoundly affected, and the ensuing phenomeno-
logical and observational consequences for a given dark
matter particle setup drastically changed.

To outline a simple yet comprehensive picture of the
effects of a rapidly expanding pre-BBN universe, here
we parameterized the additional energy density respon-
sible for the modified expansion history with only two
parameters, Tr and n, effective describing the normaliza-
tion and the power-law temperature/redshift dependence
of the extra species (concrete models for the cosmologi-
cal history might feature a more complicated functional
dependence for the energy density and thus the Hubble
rate, see e.g. the recent Ref. [18], but the resulting effects
fall within the range of parameters we study here).

We focused our study on three specific mechanisms of
dark matter freeze-in: (i) the production from decay of
some other particle species in the early universe, (ii) the
production of a single dark matter particle in the final
state of a 2 → 2 scattering process, and (iii) the pro-
duction of a dark matter pair from a scattering process.
For each case, we provided complete expression for the
relevant collision operators, reducing the task of calculat-
ing the resulting freeze-in abundance to a simple integral.
The general and universal finding is that in a faster-than-
standard expanding universe, freeze-in production is sup-
pressed, implying that to produce enough dark matter
to match observations, larger couplings, and thus larger
detection rates, are in order.

For each of the three cases, we illustrated the freeze-in
production suppression, for various values of the param-
eters defining the cosmological background; We derived
analytical expressions that accurately capture and illus-
trate our numerical results; We then specialized our anal-
ysis to simplified expressions for the decay or scattering
rates, translating the freeze-in production suppression in
the enhancement needed in the relevant particle coupling;
Finally, for each of the three cases, we scanned the pa-
rameter space of background modified cosmologies, and
calculated for each parameter space point the resulting
freeze-in production suppression.

Our results are remarkable first for their generality: we
demonstrated that in a fast-expanding universe, freeze-in
dark matter production is systematically, and dramat-
ically suppressed. Secondly, our results quantify such
suppression, which, we find, can be as large as ten orders
of magnitude in some cases. Thirdly, and perhaps most
importantly, our work outlines the range of potential im-
plications for collider studies and for direct and indirect
dark matter detection, which can drastically affect detec-
tion strategies for entire classes of particle dark matter
candidates.
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Appendix A: Collision Operators

The explicit expression for the collision operator Cα
appearing in the Boltzmann equation (1) depends on the
specific freeze-in process α under consideration. In this
Appendix, we derive its expression for the reactions con-
sidered in this work.

Bath particles always have an equilibrium phase space
distribution f eqBi(E, t) that depends on time and energy,
under the assumptions that the universe is homogeneous
and isotropic. Equilibrium number densities are defined
as follows [45]

neqBi(t) = gBi

∫
d3p

(2π)3
f eqBi(EBi(|p|), t) . (A1)

Here, gBi accounts for internal degrees of freedom (e.g.
spin or color) and the dispersion relation reads

EBi(|p|) =
√
|p|2 +m2

Bi
. (A2)

From now on, we leave the time dependence implicit. In
the early universe we are always away from Bose con-
densation or Fermi degeneracy. This allows us to use
f eqBi(EBi) = exp[−EBi/T ] for both bosons and fermions
in thermal equilibrium, and the number density of bath
particles reads

neqBi =
gBi
2π2

m2
BiT K2[mBi/T ] , (A3)

where K2 is the modified Bessel function. Another useful
quantity for the analysis of this Appendix is the Lorentz
invariant phase space

dΠBi =
d3pi

2EBi(2π)3
. (A4)

1. Collision Operator for Decays

We start with the derivation of the collision operator
for the decay processes considered in Sec. III. The number
density of χ can change both due to decays and inverse
decays. Here, we only consider decays since DM particles
never thermalize and the reaction goes only toward one
direction. The collision operator is thus

CB1→B2χ =

∫
dΠB1

dΠB2
dΠχ f

eq
B1
|MB1→B2χ|

2

(2π)4δ4(pB1
− pB2

− pX) .

(A5)

The decaying bath particles B1 are in thermal equilib-
rium. It is important to emphasize here that the squared

matrix element in the above equation in summed over
initial and final states. In particular, we do not average
over initial polarizations. We identify the partial decay
width for the channel B1 → B2χ computed in the rest
frame of B1 and we rewrite the collision operator 3

CB1→B2χ = gB1
ΓB1→B2χ

∫
d3p

(2π)3
mB1

EB1

f eqB1
. (A6)

We perform the last integration and we find

CB1→B2χ = neqB1
ΓB1→B2χ

K1[mB1
/T ]

K2[mB1/T ]
, (A7)

where the equilibrium number density of the decaying
bath particle is given in Eq. (A3).

2. Collision Operator for Scattering

The other freeze-in process we consider in this work is
production via scattering. As done in Sec. IV, we distin-
guish between single and double production.

a. Single Production

For single production the collision operator reads

C(a)B1B2→B3χ
=

∫
dΠB1

dΠB2
dΠB3

dΠχ f
eq
B1
f eqB2
×

|MB1B2→B3χ|
2

(2π)4δ4(pB1
+ pB2

− pB3
− pχ) .

(A8)

The initial state bath particles are in equilibrium and
the squared matrix element is summer over both initial
and final polarizations, without taking any average as
before. Before we further develop the expression above,
we observe that it can be rewritten into an equivalent
form. Conservation of energy enforces the equality

f eqB1
f eqB2

= exp[−(EB1 + EB2)/T ] =

exp[−(EB3 + Eχ)/T ] = f eqB3
f eqχ .

(A9)

Moreover, if we assume CP invariance, we have the equal-
ity between the squared matrix elements

|MB1B2→B3χ|
2

= |MB3χ→B1B2 |
2

(A10)

Putting these two results together, we have

C(b)B1B2→B3χ
=

∫
dΠB3 dΠχ dΠB1 dΠB2 f

eq
B3
f eqχ ×

|MB3χ→B1B2
|2 (2π)4δ4(pB3

+ pχ − pB1
− pB2

) .

(A11)

3 The partial width ΓB1→B2χ can be different from the total width
ΓB1

if other decay channels for B1 are allowed.

http://arxiv.org/abs/de-sc/0010107
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The expressions in Eqs. (A8) and (A11) are equivalent
forms for the collision operator and they give the same
result. In spite of f eqχ appearing in the second one, DM
particles never reach thermal equilibrium. Conservation
of energy as expressed in Eq. (A9) brings f eqχ into the
game, but we are still averaging over initial state bath
particles. Although the two expressions are equivalent,
it is computationally advantageous to use the one for the
reaction allowed at zero kinetic energy: in other words,
if mB1 + mB2 > mB3 + mχ we use Eq. (A8), otherwise
Eq. (A11). This strategy isolates thermal suppressions
in the distribution functions rather than phase space in-
tegrals. In what follows, we develop both expressions.

We present the derivation starting from Eq. (A8); the
one correspondent to the definition in Eq. (A11) is anal-
ogous. We define the Lorentz invariant relative velocity
between the two initial state particles

vB1B2
≡

√
(pB1

· pB2
)2 −m2

B1
m2
B2

pB1
· pB2

. (A12)

Here, pBi (with i = 1, 2) are Lorentz four-vectors de-
noting initial state four-momenta, and the only consider
Lorentz invariant products. Once we put particles on-
shell (p2Bi = m2

Bi
), the relative velocity reads

vB1B2
=
λ1/2(s,mB1

,mB2
)

2 pB1
· pB2

, (A13)

where we introduce the (square of the) center of mass

energy s = (pB1
+ pB2

)
2

and we define the function

λ(x, y, z) ≡ [x− (y + z)2][x− (y − z)2] . (A14)

The Lorentz invariant cross section for each individual
binary collision is defined as it follows [46]

σB1B2→B3χ(s) =
1

gB1
gB2

1

4 pB1
· pB2

vB1B2∫
dΠB3

dΠχ |MB1B2→B3χ|
2

(2π)4δ4(pB1
+ pB2

− pB3
− pχ) .

(A15)

According to our conventions, the squared matrix ele-
ment appearing in Eq. (A8) is only summed over initial
states, and this is why we divided the expression above
by an overall factor of gB1

gB2
. This allows us to express

the collision operator in Eq. (A8) in terms of a thermally
averaged cross section

C(a)B1B2→B3χ
= 2gB1

gB2

∫
dΠB1

dΠB2
f eqB1

f eqB2

λ1/2(s,mB1
,mB2

)σB1B2→B3χ(s) ,

(A16)

where we use Eq. (A13) for the relative velocity.
The last task left for us is the phase space integration.

The integrand depends only on the energies EB1
and EB2

and on s, thus the only non-trivial angular integration is

the one over the angle θ between the initial momenta.
The integration over the remaining angles is straightfor-
ward. After plugging in the definition in Eq. (A4), the
integration measure reads

dΠB1
dΠB2

=
|pB1
|2 d|pB1

| dΩB1

16π3EB1

|pB2
|2 d|pB2

| dΩB2

16π3EB2

=

|pB1 | |pB2 |
32π4

dEB1
dEB2

d cos θ ,

(A17)

where in the second row we perform the straightforward
integration over the angles and we we use the dispersion
relation in Eq. (A2). In order to proceed, it is convenient
to use the following variables [4]

E+ =EB1 + EB2 , (A18)

E− =EB1 − EB2 , (A19)

s =m2
B1

+m2
B2

+

2 (EB1EB2 − |pB1 ||pB2 | cos θ) . (A20)

The Jacobian for this transformation reads

dEB1dEB2d cos θ =
dE+dE−ds

4|pB1
||pB2

|
, (A21)

and the integration measure expressed in terms of the
new variables takes a much simpler form

dΠB1 dΠB2 =
dE+dE−ds

128π4
. (A22)

Before computing the integral, we need to identify
the integration domain. The Mandelstam variables s is
bound to be in the region

s ≥ smin
12 ≡ (mB1 +mB2)2 . (A23)

Once we fix s, the variable E+ can take the values

E+ =

√
s−

(
pB1

+ pB2

)2 ≥ √s . (A24)

The allowed values for E− are found after imposing that
the absolute value of cos θ as expressed in Eq. (A20) is
always smaller than one. We find the range∣∣∣∣E− − E+

(m2
B1
−m2

B2
)

s

∣∣∣∣(
E2

+ − s
)1/2 ≤ λ1/2(s,mB1 ,mB2)

s
. (A25)

Finally, we perform the integrations. The product
f eqB1

f eqB2
= exp[−E+/T ] depends only on E+, therefore

we can always perform the integration over dE−

C(a)B1B2→B3χ
=
gB1gB2

32π4
×∫ ∞

smin
12

ds
λ(s,mB1

,mB2
)

s
σB1B2→B3χ(s)∫ ∞

√
s

dE+ exp[−E+/T ]
(
E2

+ − s
)1/2

.

(A26)
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The integral over dE+ gives a Bessel function

C(a)B1B2→B3χ
=
gB1

gB2

32π4
T ×∫ ∞

smin
12

ds
λ(s,mB1

,mB2
)

s1/2
σB1B2→B3χ(s)K1[

√
s/T ] .

(A27)

This is our final expression. The last integral over s can
be performed only after we specify the explicit cross sec-
tion, and it is in general model dependent.

We conclude with two additional results. First, we
quote the final expression for the collision operator as
defined in Eq. (A11). After a similar derivation to the
decay case, we find

C(b)B1B2→B3χ
=
gB3

gχ
32π4

T ×∫ ∞
smin
3χ

ds
λ(s,mB3

,mχ)

s1/2
σB3χ→B1B2

(s)K1[
√
s/T ] ,

(A28)

where this time smin
3χ = (mB3

+ mχ)2. Second, we intro-
duce a compact form to express the collision operator

C(a)B1B2→B3χ
= 〈σB1B2→B3χv〉n

eq
B1
neqB2

, (A29)

C(b)B1B2→B3χ
= 〈σB3χ→B1B2

v〉neqB3
neqχ , (A30)

as a combination of equilibrium number densities and a
thermally averaged cross section. The explicit forms for
the latter can be obtained by identifying the equilibrium
distribution as defined in Eq. (A3), and they result in

〈σB1B2→B3χv〉 =
1

8K2[mB1
/T ]K2[mB2

/T ]m2
B1
m2
B2
T∫ ∞

smin
12

ds
λ(s,mB1

,mB2
)

s1/2
σB1B2→B3χ(s)K1[

√
s/T ] .

(A31)

〈σB3χ→B1B2
v〉 =

1

8K2[mB3/T ]K2[mχ/T ]m2
B3
m2
χT∫ ∞

smin
3χ

ds
λ(s,mB3

,mχ)

s1/2
σB3χ→B1B2(s)K1[

√
s/T ] . (A32)

The equality between the collision operators expressed as
in Eqs. (A8) and (A11) can be also written as

〈σB1B2→B3χv〉n
eq
B1
neqB2

= 〈σB3χ→B1B2v〉n
eq
B3
neqχ . (A33)

b. Pair Production

The collision operator for the case of DM pair produc-
tion can be derived by employing similar techniques. As
usual, the collision operator can be written in two equiv-

alent forms. Here, we report the final results

C(a)B1B2→χχ =
gB1

gB2

32π4
T ×∫ ∞

smin
12

ds
λ(s,mB1 ,mB2)

s1/2
σB1B2→χχ(s)K1[

√
s/T ] .

(A34)

C(b)B1B2→χχ =
g2χ

32π4
T ×∫ ∞

smin
χχ

ds
λ(s,mχ,mχ)

s1/2
σχχ→B1B2(s)K1[

√
s/T ] . (A35)

As already done before, we give expressions for both cases
of direct and inverse reactions. We can also write the
collision operators in the form

C(a)B1B2→χχ = 〈σB1B2→χχv〉n
eq
B1
neqB2

, (A36)

C(b)B1B2→χχ = 〈σχχ→B1B2
v〉neqχ neqχ , (A37)

where the thermally averaged cross sections result in

〈σB1B2→χχv〉 =
1

8K2[mB1/T ]K2[mB2/T ]m2
B1
m2
B2
T∫ ∞

smin
12

ds
λ(s,mB1 ,mB2)

s1/2
σB1B2→χχ(s)K1[

√
s/T ] , (A38)

〈σχχ→B1B2
v〉 =

1

8K2[mχ/T ]2m4
χT∫ ∞

smin
χχ

ds
λ(s,mχ,mχ)

s1/2
σχχ→B1B2(s)K1[

√
s/T ] . (A39)

c. Some Limiting Expressions

All results derived in this Appendix so far did not
rely upon any approximation. Here, we conclude by pro-
viding some limiting expressions that are useful for the
analytical estimates found in this work. The scattering
analysis in Sec. IV always assumes a constant matrix ele-
ment for the collision. In other words, we always consider
matrix element independent on the kinematics. Within
this assumption, the cross section for binary collisions
in Eq. (A15) can be immediately computed because the
phase space integral is straightforward.

For single DM production, and within this assumption,
the binary cross section reads

σB1B2→B3χ(s) =
|MB1B2→B3χ|

2

gB1
gB2

16πs

λ1/2(s,mB3
,mχ)

λ1/2(s,mB1 ,mB2)
.

(A40)
Likewise, the cross section for the inverse reaction reads

σB3χ→B1B2
(s) =

|MB3χ→B1B2
|2

gB3gχ 16πs

λ1/2(s,mB1
,mB2

)

λ1/2(s,mB3
,mχ)

.

(A41)
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The collision operator can be computed from Eqs. (A27)
or (A28). Both expressions give the same result

C(a)B1B2→B3χ
= C(b)B1B2→B3χ

=

|MB1B2→B3χ|
2
T

512π5

∫ ∞
smin
single

ds

s3/2
K1[
√
s/T ]×

λ1/2(s,mB1
,mB2

)λ1/2(s,mB3
,mχ) ,

(A42)

where the lower integration limit is set by the kinematical
threshold for the reaction smin

single = max
{
smin
12 , smin

3χ

}
. The

remaining integral depends on the spectrum of the model

and it can be computed numerically.

For DM pair production, an analogous calculation
leads to the result

C(a)B1B2→χχ = C(b)B1B2→χχ =

|MB1B2→χχ|
2
T

512π5

∫ ∞
smin
pair

ds

s3/2
K1[
√
s/T ]×

λ1/2(s,mB1
,mB2

)λ1/2(s,mχ,mχ) ,

(A43)

where this time smin
pair = max

{
smin
12 , smin

χχ

}
.
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