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Abstract

Giving the Void Its Colors:

Meta-statistics of the Eternal Inflation Scenario

by

Ross Norman Greenwood

The possibility of everlasting cosmological inflation – and the resulting unbounded

number of causally disconnected post-inflationary regions – has gained more far-

reaching implications since it was uncovered early in the history of inflation theory.

This is owing to the growth in acceptance of theory landscapes and anthropic

arguments weighing on the origins of cosmological parameters and low-energy

particle physics. To what extent does inflation generically produce an eternal

“multiverse,” without apparent fine-tuning with respect to probability measures

over the space of inflationary cosmologies driven by a single, minimally coupled

scalar field? We address this and related questions with numerical simulations of

inflationary dynamics across populations of randomly generated inflation models,

instantiating a few particular simply-defined measures. We go on to explore the

toy landscapes sampled from these measures, correlating eternal inflation with

observables and characterizing fractal dimension of inflating topological defects.
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Chapter 1

Introduction

1.1 Precedence for Naturalness in Cosmology

As the community comprising a field of natural science approaches consensus

with respect to modeling the bulk of available data, aesthetically- and philosophic-

ally-motivated problems of naturalness come out of the woodwork of the emerging

theoretic edifice. Naturalness problems address a clash between assumptions that

must be taken on post hoc for a model to continue to account for observations

(upon reflection or new data) and arguments that supported the model’s orig-

inal adoption. They often pertain to model parameters or setup assumptions

that require a seemingly unwarranted degree of fine-tuning, or to a glut of valid

predictions among which none matching the data are unambiguously preferred.
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Naturalness plays an inflated role in cosmology because we only have a sample

size of One (and much curious energy to expend on that one sample). The Infla-

tionary Universe scenario was proposed as a solution to the perceived unnaturalness

of a highly correlated configuration spanning cosmological distance scales without

a mechanism for past causal connection, and the high degree of fine-tuning of

primordial densities in the hot Big Bang model needed to achieve the present-day

small value of the asymptotic spatial curvature. Both could have been accepted

as uncanny but ultimately unproblematic features of the universe; yet at a human

level, they begged for an origin story grounded in some physical mechanism. The

resolution of both problems stems from a reduction of the Friedmann equations

H2
”

ˆ

dpln aq

dt

˙2

“
8πG

3
ρ´

kc2

a2

dH

dt
`H2

“ ´
4πG

3

ˆ

ρ`
3p

c2

˙

(1.1)

governing the evolution of a Friedmann-Lamâıtre-Robertson-Walker (FLRW) space-

time

ds2
“ dt2 ´ aptq2

ˆ

dr2

1´ kr2
` r2 dΩ

˙

(1.2)

under particular conditions on the energy density ρ and pressure p to simply

9H ” :a´p 9a{aq2 “ 0 – describing a sustained exponential growth of the scale factor

aptq. No longer settling for an extraordinary degree of homogeneity and flatness

as a given, we invoke an early bout of incredibly rapid expansion – cosmological

inflation – to connect present-day distant regions in the past and dilute away any

2



initial spatial curvature.

1.2 New Problems of Naturalness

With the standard model of cosmology firmly established and inflation widely

accepted as a core component of that model, we have come to a peculiar place.

After addressing the Flatness and Horizon Problems following from past itera-

tions of the hot Big Bang picture, inflation leaves open questions of naturalness

pertaining to the initial conditions and theoretic superstructure needed to give

rise to it [1]. Some examples include: How do the scalar field(s) that may drive

inflation fit into our fundamental theories? Do we need to introduce new sectors

to the Standard Model in an ad hoc fashion? What is the origin of the poten-

tial governing the field(s)? Is it anthropic? How finely must we tune the initial

conditions? What does that mean?

Measurements from ESA’s Planck survey mission broadly favor minimally cou-

pled single-field models of inflation, but disfavor the simplest among them that

may have the firmest foundations from the standpoint of particle physics [2]. For

example, adopting a free massive scalar field as the inflaton generates too much

power in tensor perturbations of the metric, beyond the upper bound on the

tensor-to-scalar ratio from Planck 2018 [3]. The most favored models are single-

field with plateau-like potentials initialized atop the plateau, which come across

3



as highly fine-tuned to give inflation with precisely the features needed to account

for observation. Meanwhile, various conceptions of a landscape of realizable low-

energy effective theories have taken hold in the academy as well as the popular

press (as a “multiverse” or “theory of anything”), motivated primarily by devel-

opments in string theory [4, 5, 6]. The landscape calls into question the necessity

and uniqueness of the conditions that manifest in our observable universe, open-

ing the door to anthropic reasoning1 at a grander scale than had been admitted

previously [7].

Coincident with this line of reasoning is the early discovery that inflation can

be eternal or everlasting [8, 9, 10]. This means that there is a coordinate system

in which the 3-volume of the Universe increases quasi-exponentially forever, there

are future-directed worldlines of infinite proper time threading inflating regions,

and there are an unbounded number of thermalized post-inflationary regions – po-

tentially with different cosmological properties (see, e.g. [11] for a review). Eternal

inflation thus adds another population layer for anthropic selection, in the form

of infinite variable histories leading up to the end of inflation as well as conditions

for subsequent cosmological evolution.

While it is sufficient for progress of a historical science that a prevailing model

merely accounts for the available data, one aspires to a model that is both ex-

1Anthropic arguments infer large unobserved populations subject to selection effects in order
to explain apparent fine-tuning of an observed state-of-affairs.
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planatory and prescriptive. By this we mean yielding a set of retrodictions in

which the actual state of the world is well represented, using much less informa-

tion than is entailed by just knowing all of the data. Eternal inflation and the

landscape appear to undermine a pursuit of a prescriptive cosmological model,

and reflect a modern trend in some areas of theoretical physics that welcomes

anthropic selection and emergent structure “all the way down.”

1.3 Aims and Structure of this Study

Many of inflation’s architects hold [12, 13, 14] that a generic consequence of

inflation is that it is eternal in the meaning outlined above, and via the mechanisms

discussed in Chapter 2. If interminable proliferation really were a difficult-to-avoid

consequence of inflation, then this would make the “multiverse”2 the de facto

standard cosmology, ushering in a host of difficulties [15, 16] (or opportunities, to

those so inclined [17, 18, 19]) in the interpretation of cosmological predictions.

Let us suppose that in a past Hubble volume coincident with our observable

universe, a single minimally coupled scalar field is responsible for driving infla-

tion and governed by an effective potential. Further suppose that we are ignorant

of the process determining the form of that potential.3 Subject to conceivable

2Our use of “multiverse” here and henceforth refers to the Level II multiverse in Tegmark’s
classification scheme – causally-disconnected regions situated within the same base manifold.

3The author takes this to be an uncontroversial position given the present state of the field.
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probability measures over the shape and scales of the effective potential, it would

be worthwhile to discover how “often” this setup leads to eternal inflation, and

how eternal behavior correlates with observables. With few firm constraints from

theory on the shape the effective potential can take, such measures would admit

variability that need not be so simple as to be encapsulated in just a few model

parameters. Furthermore, one can reasonably argue for different priors on initial

conditions in such models – the field configuration, its derivatives, and metric per-

turbations in an initial volume – which can dramatically affect both the likelihood

of successful inflation and of inflation being eternal.

Any conclusive statements on the likelihood of eternal inflation conditioned on

observations of the Cosmic Microwave Background (CMB) and large-scale struc-

ture (or even inconclusive ones derived from a more rigorous analysis than has

yet been brought to bear) would inform the credibility of the multiverse picture

and anthropic reasoning at a cosmic scale. The present dissertation investigates

the degree to which eternality should be considered a generic or finely-tuned con-

sequence of inflation, with respect to various measures one might adopt over the

combined space of model parameters and “initial conditions” for the Universe.

Our primary research questions include:

‚ Is eternal inflation a generic consequence of inflation conditioned on obser-

vations?

6



‚ By what mechanisms and to what extent is it generic?

‚ How is genericity to be defined? On what can we base our prior beliefs

regarding the structure of an inflation model and its initial state, from which

to construct a measure?

‚ How much freedom do we have, in specifying the measure, to affect whether

and to what extent eternal inflation is generic?

This dissertation is organized as follows: In Chapters 2-3, we review theoretic

treatments and establish criteria for the three modes of eternal inflation – stochas-

tic, false-vacuum, and topological – and present analytical arguments as to whether

eternal behavior might or might not be generic. We then outline the structure

of measures over single-field inflation models, and how one would term certain

properties generic or fine-tuned. In Chapters 4-5, we employ Monte Carlo simula-

tions to assess the typicality of eternal inflation, computing inflationary dynamics

across an ensemble of randomly generated potential functions, in the tradition of

Tegmark’s “What does inflation really predict?” [20]. We adopt several simple,

more-or-less physically justifiable measures defined by a sampling procedure that

lends itself to computational efficiency. We apply statistics to the simulated data

to inform rates of incidence of eternal inflation, in its various instantiations, in

partitions of the space of observables and scales of the potential. In Chapter 6,

we discuss our findings from the Monte Carlo analyses in terms to the research

7



questions listed above, as well as implications for interpretation of eternal infla-

tion in the landscape and avenues for further research on this topic. Chapter 7

summarizes our conclusions and reflects on themes discussed in this introduction.

Appendix A presents a further exploration of the simulated data output by the

sampling scheme established in Chapter 4 (a “toy landscape”) for insights that

do not directly relate to the questions listed above, including inference of eternal

behavior from the scalar perturbation spectrum, and the self-reproducing fractal

dimension of inflating domain walls.
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Chapter 2

Three Roads to Eternal Inflation

We restrict our attention to models in which inflation is driven by a scalar

field ϕ that is subject to an effective potential V pϕq and minimally coupled to the

metric, with a standard kinetic term. The general form of the action is then

Srϕ, gµνs “

ż

d4x
?
´g

„

1
2
gµνBµϕBνϕ´ V pϕq `

M2
P

2
Rpgµνq



where MP ”
a

~c{8πG is the reduced Planck mass. (We generally assume natural

units in which ~ “ c “ G ” 1.) For those models characterized by a suitable

effective potential and initialized such that inflation can end (after at least 70 e-

folds to be observationally viable), is the inflating physical 3-volume on space-like

hypersurfaces in the future of a finite initial volume bounded in every coordinate

system? If not, then inflation is “eternal.”

Accounting for quantum and thermal effects, this statement must be inter-

9



pretted probabilistically, concerning the 4-volume coincident with a suitably large

population of initial Hubble volumes tracked over many elapsed Hubble times.1 In

place of global statements pertaining to inflating 3-volume and number of causally

disconnected themalized regions, one substitutes probabilistic criteria that can be

evaluated from the potential, related to three well-established mechanisms by

which eternal inflation might come about. The corresponding modes are termed

stochastic, false-vacuum, and topological eternal inflation. More than one of these

modes may manifest in a given model, but only one of the associated sets of criteria

and setup assumptions need be satisfied to all but ensure ever-lasting inflation.

2.1 Stochastic Inflation

Departing from Guth’s inflationary universe [21] in which semi-classical phase

transitions played a central role, the “slow roll” scenario that gained preeminence

after its 1982 proposal [22, 23] does not explicitly rely on quantum effects in order

to solve the Horizon and Flatness Problems. But because Hubble-sized regions

during inflation are of a size at which quantum effects are important, and one

should expect phenomena at those scales to be manifest at cosmological distance

scales after inflation, one must treat perturbations to the slowly-rolling inflaton

1As inflation proceeds, the sample size of Hubble volumes descending from any initial volume
grows exponentially – bringing statistical and deterministic statements into arbitrarily good
agreement.
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expectation value quantum mechanically if one hopes to validate the model against

observations. Doing so provides an excellent account of the statistics of tempera-

ture fluctuations in the CMB [24], but opens the door to more than was bargained

for: an unbounded, self-reproducing inflationary Universe.

In this section, we briefly review treatment of coupled perturbations to a sin-

gle scalar field and linearized metric perturbations atop a Friedmann-Lamâıtre-

Robertson-Walker background, discuss treatment of the quantum-to-classical tran-

sition and freeze-out for perturbation modes blown up to larger than the Hubble

scale, and establish criteria for self-reproducing configurations during slow roll.

2.1.1 Scalar Perturbations During Inflation

It is expedient to decompose the inflaton into a homogeneous background

expectation value and a perturbation atop that value: ϕpτ,xq ” ϕ0pτq` δϕpτ,xq.

Employing a semi-classical coupling to gravity (taking the Einstein field equations

to uniquely determine the background geometry in terms of ϕ) results in correlated

perturbations to the metric gµν . To the coupled perturbation at each point is

assigned a Hermitian operator acting on the quantum state space. Atop a curved

de Sitter background, we derive an equation of motion for the Fourier components

of the coupled perturbations, which is then quantized in a similar manner to the

harmonic oscillator analogue in Minkowski space. Adopting the conformal time

11



coordinate dτ “ aptq´1dt and comoving spatial coordinates dxi, we parameterize

the perturbed FLRW line element as

gµνdx
µdxν “ a2

“

p1` 2Aq dτ 2
´ 2BiB dτ dxi ´ pp1´ 2ψqδij ` 2BiBjEq dxidxj

‰

where we have omitted vector and tensor perturbative degrees of freedom.

The Mukhanov-Sasaki variable vpτ,xq ” a δϕ ` z ψ, with z ” aϕ10H
´1, is

a parameterization of the coupled perturbations of the inflaton and metric that

is invariant to first order under arbitrary coordinate transformations. Here a

prime denotes a derivative with respect to conformal time, and ψ is the comoving

curvature perturbation. The equation of motion for the co-scaled perturbation

field vpτ,xq is then

1

a2ε

B

Bτ

ˆ

a2ε
Bpz´1vq

Bτ

˙

´∇2
pz´1vq “ 0;

in terms of the Fourier coefficients vk parameterizing vpτ, xq, this becomes

0 “ v2k `
`

k2 ´ z2

z

˘

vk « v2k ` pk
2 ´ 2τ´2p1`Opεq `Opηqqq vk (2.1)

where

ε ” ´
9H

H2
and η ” ε´

:ϕ

H 9ϕ
(2.2)

are the first and second slow roll parameters, respectively, taken to be much less

than unity during inflation. Adopting the Bunch-Davies solution corresponding

to the assumption of no particles at τ Ñ ´8, and taking kτ ! 1 for fluctuations

12



larger than Hubble scale, we have to zeroth order in ε,η for τ “ ´paHq´1p1´ ε`

Opε2qq

vk «

c

1

2k

ˆ

1`
i

kτ

˙

eikτ , |vk|Ñ
c

1

2k

aH

k
(2.3)

We then promote the scalar field vpτ,xq to a bosonic field operator v̂pτ,xq. From

the equal-time two-point correlation function, we identify the dimensionless power

spectrum Pvpkq for gauge invariant perturbations

xΩBD| v̂pτ, x1qv̂pτ, x2q |ΩBDy ”

ż

d3k
Pvpkq
4πk3

eikpx1´x2q

and find that is scale-invariant2 for kτ ! 1

Pvpkq “
k3 |vk|2

2π2
“ a2

ˆ

H

2π

˙2

(2.4)

In applying a statistical treatment to the distribution of colored volume (la-

beled with particular characterisitics, e.g. eternally vs. terminally inflating) during

inflation, it is useful to treat worldlines undergoing a consistent rate of volumetric

expansion as future-directed. For this, we work in a gauge in which the volumetric

expansion rate is homogeneous on spatial hypersurfaces (at least within a region

2The true spectrum is nearly so; we have neglected the contributions of ε and η to the spectral
index in the interest of quickly finding the amplitude. Accounting for them, we can express (2.1)
as a Bessel’s equation for the rescaled quantity

?
´τv, keep terms up to first order in ε,η, and

find the dimensionless power spectrum to be

Pvpkq “ a2

ˆ

H

2π

˙2 „

p1´ εq
Γpνq

Γp3{2q
p2p1´ εqq

ν´3{2

2

pkτq
3´2ν

where ν ” 3{2` 3ε´ η. For Hubble-scale modes with k “ aH, the amplitude therefore is only
affected when ε and η are non-zero up to the factor in square brackets. The author expresses
gratitude to [25] for clear pedagogic presentation of this material.
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of a few Hubble volumes). Departure from this condition is captured by the per-

turbation to the number of elapsed e-folds Ne ” lnpa{a0q along a congruence of

future-directed worldlines, which takes the form [26]

δNe “ ´ψ ` 1
3
∇2
pE 1 ´Bq

Adopting the uniform-Ne gauge, in which δNe “ 0, is equivalent to asserting

ψ “ 1
2
∇2E when B “ 0; spatial hypersurfaces will only be flat to the extent that

∇2E vanishes, as it does over large regions during slow roll. So taking ψ « 0 and

therefore v « a δϕ is a reasonable approximation to the uniform-Ne gauge. With

this approximation we find from (2.4) that the amplitude of perturbations to the

inflaton at the Hubble scale is

δϕq ”
@

δϕ2
D1{2

« H{2π (2.5)

From considerations of the ladder operator algebra for the single field, it is clear

that the third moment x0| δ̂ϕpτ, x1qδ̂ϕpτ, x2qδ̂ϕpτ, x3q |0y vanishes, the fourth is

equal to 3 xδϕ2y2, and so on – consistent with the amplitude of Hubble-scale modes

behaving as Gaussian distributed with standard deviation δϕq.
3 The first moment

is of course the expectation value ϕ0, which evolves according to the unperturbed

3Non-Gaussianities in the density perturbations can arise in models with multiple interacting
fields.
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classical equation of motion.

∇t 9ϕ`
dV

dϕ
“ :ϕ0 ` 3H 9ϕ0 `

dV

dϕ
“ 0 (2.6)

Quantum-to-Classical Transition We demonstrated above that the Fourier

coefficients of field perturbations of wavelength on the order of the Hubble scale

H´1 undergo Gaussian fluctuations of width H{2π about a classical background

trajectory that satisfies (2.6). From (2.3), the time evolution of Fourier compo-

nents of the field perturbations goes like

ap 9aδϕk ` a 9δϕkq «

c

1

2k

ˆ

ik ´ τ´1
´

i

kτ 2

˙

eikτ ùñ 9δϕk «

ˆ

k2

a3H2
´ 2

˙

H δϕk

(2.7)

implying that new perturbations are not introduced for k ! aH (where the equa-

tion of motion for the mode coefficients corresponds to exponential decay). The

only contributions at those scales are the originally sub-Hubble and Hubble-scale

modes that have since expanded to much larger than the physical Hubble radius,

thereafter “frozen out” until after the end of inflation. A similar statement applies

to curvature perturbations, and conveniently lets us identify the distribution pro-

duced during inflation with the distribution as modes re-enter the Hubble horizon

during a radiation dominated epoch to affect the last scattering surface for the

CMB.

However, freeze-out alone does not account for how the quantum superposition
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becomes a classical distribution over field configurations; one hopes for a consistent

account of what constitutes a “measurement” in this system. The hand-wavy

account of the quantum-to-classical “transition” invokes causal disconnectedness

of separated regions in de Sitter space. Because the coordinate system with respect

to which vk is defined contains a horizon, it cannot be claimed that the Fourier

coefficients pertain to coherent field perturbations spanning a scale larger than the

Hubble radius. The amplitude vk describes modes varying with spatial frequency

k locally ; modes in a Hubble volume far away must be described by different

quantum variables. We must do a partial trace over the degrees of freedom that are

not measureable in principle; this yields a mixed state, and from the standpoint of

observers in any given Hubble volume constitutes a measurement on the Hubble-

sized fluctuations. Alternative approaches carried out with more mathematical

rigor come to the same conclusion – that the “Separate Universes” picture is most

sensible.4

4 One can also imagine the Hubble horizon producing a thermal bath of particles with the
de Sitter temperature, and interaction of long wavelength modes with that bath constituting
a measurement. Following from (2.7), the conjugate momentum to the generalized coordinate
δϕk tends to be constant, and the quantum state must reflect an ever shrinking probability of
momentum values away from zero [27]. The field perturbation is therefore described by a highly
squeezed state during inflation [27]. In [28], it is suggested that no need to trace over the degrees
of freedom of an environment to get decoherence of super-Hubble scale modes; but their method
also involves taking an ~Ñ 0 limit, which seems contradictory.
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2.1.2 Self-reproducing Inflation

Stochastic eternal or self-reproducing inflation occurs when quantum fluctua-

tions of the inflaton field – in conjunction with a quantum-to-classical transition

yielding a stochastic distribution over Hubble-sized field configurations – domi-

nate over its classical evolution according to the slow roll equation of motion (2.6),

delaying the end of inflation indefinitely in a non-decreasing physical 3-volume.

Under conditions when fluctuations are significant, the inflaton’s evolution is gov-

erned by a Langevin equation from the perspective of individual Hubble volumes,

or by a Fokker-Planck equation giving a time-dependent probability distribution

over field values, from which the conditions in population members in the Separate

Universes approach are sampled.

Langevin Picture Inflation accounting for stochastic fluctuations of the long-

wavelength modes discussed in Section 2.1.1 is equivalent to a system undergoing

Brownian motion, in which the number of elapsed e-folds takes the place of the

time or step parameter. The corresponding Langevin equations for the long-

wavelength field ϕ and its conjugate momentum π in the uniform-Ne gauge are

dϕ̂

dNe
“ π̂ `

H

2π
ξ̂ϕpNeq

dπ̄

dNe
“ ´p3´ εqπ̄ ´

V,ϕpϕ̄q

H2
` ξ̄πpNeq (2.8)

where a bar indicates that a variable is stochastic, and ξ̄ϕ and ξ̄π are Gaussian

distributed noise contributions [26]. During slow roll (ε ! 1), dynamics are domi-
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nated by Hubble friction, with deviations of the field velocity from 9ϕsr “ ´V,ϕ{3H

quickly dying out (a consequence of the attractor behavior of the full equations of

motion [29]). So Brownian fluctuations of the field momentum do not “stick”; π̄

is effectively a function of the field value ϕ̄. and (2.8) reduces to a single Langevin

equation

dϕ̄

dNe
“ ´

V,ϕpϕ̄q

3H2
`
H

2π
ξ̄ϕpNeq (2.9)

Over the passage of a Hubble time H´1, the field’s expectation value changes

by an amount ∆ϕ “ | 9ϕ|H´1 “ V,ϕ{3H
2 as it slowly rolls. During the same time

interval, quantum fluctuations with wavelength H´1 and amplitude drawn from a

Gaussian distribution of width H{2π may drive the field in a given Hubble volume

up or down the potential slope relative to its classical trajectory. If in that time,

the probability for the field to move higher up the slope is greater than the ratio

of initial to final physical volumes (1{e3), then at least one Hubble volume is likely

to continue inflating.

The probability that after a time ∆t the slowly rolling field sampled from its

stochastic Gaussian distribution is found to be higher on the slope is expressed
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as5

P pϕpt`∆tq ą ϕptqq “
1

a

2πδϕ2
q

ż 0

ϕ´

exp

„

´
pϕ´ |V 1pϕq|∆t{p3Hqq2

2δϕ2
q



(2.10)

where we assume that the potential gradient is negative, and ϕ´ is the location

of the nearest local maximum in the uphill direction. In terms of this probability,

the stochastic eternal inflation criterion is

P pϕpt`∆tq ą ϕptqq ą e´3H∆t

Taking ∆t to be the natural time-scale for the problem H´1 and ϕ´ as effectively

´8 at Á 4σ fluctuations away from the maximum, this amounts to the constraint

V 1pϕq{p3H2
q À pH{2πq

?
2 erfc´1

p2e´3
q

In terms of the potential and its derivative, this becomes

V pϕq3{2 Á 6.6 |V 1pϕq|M3
P (2.11)

5 If the slow roll conditions ε, η ! 1 are met but classical evolution is dominated by the
second derivative term in the equation of motion :ϕ „ V,ϕ " H 9ϕ (as is the case when initializing
with a small field velocity at an inflating local maximum), then the field excursion becomes

∆ϕp2q « 1
2 :ϕ∆t2 « ´ |V,ϕ| {H2 “ 3∆ϕp1q

In that case, the argument of the exponential in the integrand of (2.10) becomes

pϕ´ |V 1pϕq| {H2q2

2pH{2πq2

When 9ϕ " :ϕ{3H, the first-derivative form of the field excursion takes over.
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Fokker-Planck Picture Stochastic inflation may also be described by a Fokker-

Planck equation for the time-varying distribution ρpϕ, tq, describing the probabil-

ity density per comoving volume at time t for measuring the field value ϕ.

B

Bt
ρpϕ, tq “

H3

8π

B2ρ

Bϕ2
`

1

3H

B

Bϕ

ˆ

ρ
dV

dϕ

˙

(2.12)

This approach allows one to follow a population from some initial distribution

over field values, enforce boundary conditions, and characterize a subpopulation

of inflating Hubble volumes. For the example of an inverted quadratic potential

V pϕq “ V0 ´
1
2
M2ϕ2 with the field initially localized at the peak, ρpϕ, 0q “ δpϕq,

the solution to (2.12) is a Gaussian distribution with a time-varying variance.

ρpϕ, tq “
1

a

πσptq2
exp

ˆ

´
ϕ2

2σptq2

˙

σptq2 ”
3H4

4π2M2

„

exp

ˆ

2M2t

3H2

˙

´ 1



Equation (2.12) does not account for the expansion of inflating regions. In the

late-time limit, the criterion (2.10) for self-reproducing inflation takes the form

ż

inf

dϕρpϕ, t`∆tq Á e´3H∆t

ż

inf

dϕρpϕ, tq (2.13)

where the integral is taken over the interval of field space in which inflation occurs.
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2.2 Long-lived Meta-stable de Sitter Vacua

A general effective potential can feature multiple local minima. In the false-

vacuum eternal inflation scenario, the inflaton comes to occupy a local minimum

with a positive vacuum energy – the same initial setup as Guth’s original infla-

tion scenario [21]. As long as the field remains in that vacuum, spacetime is de

Sitter with Hubble parameter HF “ pV pϕFq{3M
2
Pq

1{2. Either by non-perturbative

quantum effects (tunneling through the barrier to a new field configuration and

geometry) or by ascending the barrier wall by a sequence of perturbative quantum

and/or thermal fluctuations, the field may “escape” to continue its descent toward

a lower minimum. If the transition rate is small, then the volume of space that

exits the false vacuum in these ways is recouped by the expansion of neighboring

regions that do not.

Consider worldlines that pass through a flat hypersurface of the false-vacuum

de Sitter space characterized by Hubble parameter HF at an initial time t0. The

fraction of those worldlines that pass through a locally still-inflating patch of a

similarly defined hypersurface at time t ą t0 is

finf “ exp

„

´
4π

3

λpt´ t0q

H3
F



(2.14)

where λ is the nucleation rate per 4-volume. The physical inflating volume goes
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like vinf9 finf e
3HFt, so a transition rate

λ ă 9H4
F{4π (2.15)

ensures that the 3-volume of inflating space never decreases in the 4-volume co-

incident with a statistically large population of initial Hubble volumes [11]. The

transition rate is determined by the type of transition and the shape of the poten-

tial, as discussed in the following sections. If a transition is followed by enough

slow roll inflation to hide any otherwise observable relics of bubble nucleation

and solve the horizon problem, then it may have occurred in the past of our own

observable universe.

The case of tunneling through the barrier is treated by the Coleman-de Luccia

(CDL) formalism; the single-field case is reviewed below. The case of stochastic

fluctuation of Hubble volumes up the barrier wall (or equivalently, thermal fluctu-

ation with a characteristic de Sitter temperature) was first explored by Hawking

and Moss as the limiting case of a CDL instanton in which both termini are

identified with the top of the barrier; we outline this important case in § 2.2.2.

2.2.1 Coleman-de Luccia Instanton

By treating a single scalar field governed by a one-dimensional potential with

two local minima as analogous to a particle in a double potential well, we can
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compute instanton solutions in the absence of gravity using the imaginary time

formalism. Coleman and de Luccia [30] took this a step further to account for the

effects of gravity in the transitions between de Sitter or Minkowski minima.

The geometry of de Sitter space can be represented as that of a 4D hyper-

boloid embedded in a 5D Minkowski space, with the metric carried over from

the embedding space. After Wick rotation, the time coordinate becomes imagi-

nary, and the hyperbolic geometry becomes a compact spherical geometry. The

squared line element ds2 on that 4-sphere is dξ2 ` ρpξq2dΩ3, where ξ is a radial

coordinate measured along the surface with respect to an arbitrary point therein

(the 4-origin) and ρpξq is the cylindrical radius (measured through the embedding

space) of the 3-sphere made up of all points at a given sphere-distance ξ from the

4-origin. At the 4-origin, the Euclidean radius ρp0q “ 0 by definition. On the

4-sphere, ρpξq “ w´1 sinpwξq, where w is the inverse Hubble radius. For Hubble-

sized regions that depart from de Sitter (like the bubble solutions we consider),

the Wick-rotated Euclidean space is not a 4-sphere, but the action-minimizing so-

lutions we consider are still symmetric under Op3, 1q rotations of the embedding

space that preserve ξ, so we can use the same metric to describe it.

The Euclidean analogue to the Einstein-Hilbert action in thisOp3, 1q-symmetric

space is

SE “ 2π2

ż

dξ

„

ρ3
`

1
2
ϕ12 ` V pϕq

˘

`
3

κ

`

ρ2ρ2 ` ρρ12 ´ ρ
˘



(2.16)
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The second derivative term can be eliminated with integration by parts6, which

also changes the sign of the ρρ12 term. We assume that classical general relativity

specifies ρpξq in terms of ϕpξq (no quantum gravity here), and substitute the

Einstein field equations (EFE). The ξξ component of the EFE give an expression

for ρ12, which rearranges to

3

κ
ρρ12 “

3

κ
ρ` ρ3

ˆ

1

2
ϕ12 ´ V pϕq

˙

ùñ dSE “ 2π2ρ3 dξ

ˆ

2V pϕq ´
6

κρ2

˙

Instanton solutions extremize the Euclidean action with respect variation in ϕpξq

and ρpξq; they are solutions to the Euclidean equations of motion

ϕ2 `
3ρ1

ρ
ϕ1 “

dV

dϕ
ρ2 “ ´

8π

3M2
Pl

`

ϕ12 ` V pϕq
˘

(2.17)

with the condition that ϕ1pξq and ρpξq vanish at the poles of the compact sphere.

Generally, instanton solutions with gravity do not interpolate between the false

vacuum and the true vacuum, but rather terminate on the walls of the barrier

in the two basins. In the “thin wall” limit, the instanton terminates very close

to the minima, with a well localized bubble radius that is much smaller than the

Hubble scale.

Semi-classical Thin-wall Case In the thin wall limit, the bubble history is

for all intents completely defined by its initial radius R0, surface tension σ, and

6We assume that the instanton solution and the indefinitely metastable solution have the
same geometry at the boundary, so that the surface term vanishes.
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Figure 2.1: (Left) Illustration of the Euclidean geometry of a de Sitter-Minkowski bubble
in a higher dimensional embedding space (image source: [31]). (Right) Space-time
diagram depicting nucleation and evolution of an Op3, 1q-symmetric thin-wall bubble.
We can define n spatially open coordinate system in the light cone enclosed by the
dashed lines, entirely within the bubble interior.

energy density ∆V of the interior relative to the surrounding space. The action

then consists of surface and volume contributions

S̄E “ S3pR0qσ ´ V3pR0q∆V “ 2π2H´3 sin3 θ0 σ ´
8π2

3
H´4

p2` cos θ0q sin4 θ0
2

∆V

where the bubble wall tension is computed as dσ “ dφ pVF ´ V pφqq. Minimizing

this Euclidean action with respect to geometric parameters for constant σ, H, and

∆V yields the semi-classical bubble radius

R0 “ H´1 sin θ0 “ 3σp9H2σ2
` p∆V q2q´1{2
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With θ0 determined we obtain the leading order contribution to the transition

rate

expp´SEq “ exp

„

´
2π2

3H4

„

9H2σ2 ` 2p∆V q2

p9H2σ2 ` p∆V q2q1{2
´ 2∆V



To obtain the full transition rate, we must account for perturbations to that

trajectory that add next to leading order contributions, appending a pre-factor A

to the rate exponentially suppressed by the Euclidean action: Γ “ Ae´SE .

We can consider these to be perturbations to the shape of the bubble in a 5D

Euclidean embedding space, parameterized by a scalar field φ with support on the

4D bubble wall history, taken to obey the equation of motion Ôφ “ 0 for

Ô “ R2
0p´∆`M2

q, M2
“ ´3R2

0

Expanding φ in terms of spherical harmonics with coefficients CLJ , the partition

function for a single bounce is

Z1 ”

ż

e´S
p2q
E rφsDφ “ e´S̄E

ż

exp

˜

´
1

2

ÿ

LJ

pµCLJq
2

µ2pM2 ´ λLq´1

¸

ź

LJ

µ
dCLJ
p2πq1{2

where µ is a mass scale for the field. Treating the bubble as a thermodynamic

system with characteristic parameter β ” 1{kBT , we then express the equilibrium

number of bubbles sN in terms of the Euclidean partition function Z constructed

by integrating over small perturbations to the bubble shape, as

N “ β´1
Bµ̃ lnZ

∣∣
V
“ eµ̃βZ1
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where Z “ exppeµ̃βZ1q is the partition function accounting for any number of

bounces, and µ̃ is a fictitious chemical potential. Since no strictly per-bubble

energy cost is actually incurred, we may set µ̃ to zero, and obtain

dN “ dZ1 “

”

det1
”

pµR0q
´2Ô

ıı´1{2 ´
σS3pR0q

8π

¯2

e´S̄E dtE dV

The first factor is the closed form Gaussian integral giving quantum corrections

to second order in φ. (The prime indicates that the zero eigenvalues for the

L “ 1 spherical harmonic coefficients are excluded from the determinant – since

the integral over the L “ 1 coefficients remains as an integral over dtE dV .) The

second factor is the Jacobian associated with converting from spherical harmonic

coefficients C1J of the wall perturbation field φ to Minkowski coordinates as the

variables of integration. These two terms make up the prefactor. Evaluating the

determinant with zeta function regularization, we have

det1rpµR0q
´2Ôs “

pµR0q
´2ζOp0qe´ζ

1
Op0q

pM2 `N2R2
0q

4

where ζOpzq is a generalized zeta function customized for Ô

ζÔpzq ”
ř

L gLΛ´zL “
ř

L gL r´R
2
0pλL ` 3R2

0qs
z

gL is the degeneracy of spherical harmonics with a given L, and ζ 1pzq ” dζ{dz.

Despite gL ą 0 @L, the regularized ζOp0q evaluates to zero.

For bubble nucleation in 3`1 dimensions, ζp0q “ 0, and we can express ζ 1pzq
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in terms of the derivative of the Riemann zeta function ζRpzq and constants.

∣∣det1
“

pµR0q
´2O

‰
∣∣1{2 “ 4ipπR2

0q
´2 eζ

1
Rp´2q

Substituting S3pR0q “ 2π2R3
0 and eζ

1
Rp´2q “ 0.9700, this becomes

dN
dt dV

“
Γ

V
“

ˆ

σπR3
0

4

˙2
4R´4

0

π2
ˆ 0.97ˆ e´S̄E « p1

2
σR0q

2 e´S̄E (2.18)

In a de Sitter background, this gives the transition rate per physical four-volume.

A more complete treatment of the pre-factor calculation for membrane nucleation

in curved spacetime may be found in [32].

Viability Old bubbly inflation does not work [8] because the rate of bubble

nucleation is generically too slow; even as differential pressure pushes the bubble

walls to expand at a speed approaching c, bubbles cannot coalesce within the

inflating background to form large homogeneous post-inflationary regions in the

true vacuum.

Figure 2.2: An example of a “designer” potential in which a Coleman-de Luccia transi-
tion could precede slow roll inflation and avoid the slow bubble nucleation problem in
false vacuum eternal inflation. Original image source: [2]
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A Coleman de Luccia transition must be followed by a period of slow roll to

produce an observationally viable cosmology. This tends to require “designer”

potentials that feature both a sharp barrier with a large second derivative and a

flat region in which slow roll can take place, in adjacent intervals in field space.

See [33] for an overview of open universes from bubble nucleation during inflation.

2.2.2 Hawking-Moss Instanton

As seen with Coleman de Luccia, when gravity is included the instanton ter-

minates on the walls of the true and false vacuum basins, rather than at the

minima. As we widen the barrier, the starting point on the true-vacuum side and

the ending point where ρ “ 0, 9ϕ “ 0 on the false-vacuum side both approach the

maximum.

If the peak is too broad, then the Hubble friction acting during a long excursion

near the maximum of the potential pulls too much kinetic energy out of the

field, preventing it from closing the compact geometry with non-singular boundary

conditions [34]. Or equivalently, if we evolve the equations of motion backward

from the true-vacuum side, the Hubble friction acts in reverse, adding to 9ϕ the

more time is spent in the region around the maximum. The integration always

overshoots the false vacuum; at some point a minimum of 9ϕ evaluated when the

field obtains ϕF is reached, and bringing the final condition closer to the maximum
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on the true-vacuum side translates to a higher 9ϕ at the false vacuum. Taken to

the extreme of a nearly flat barrier V 2pϕq Á M2
P, the only non-singular solution

to the Euclidean equations of motion is one in which the Euclidean geometry is

spherical (de Sitter) and the field sits atop the barrier everywhere. This Hawking-

Moss instanton [35] can be seen as the limit opposite to the thin-wall limit, in

which the “thickness” of the “bubble” exceeds the Hubble scale.

Since the CDL and HM solutions make contact with neither the true nor false

vacua, in what sense can it be considered a transition between de Sitter minima? If

perturbative quantum or thermal fluctuations in the false vacuum basin produce a

distribution of field values that reaches to the instanton’s terminating point in that

basin, then instanton-mediated tunneling between the two basins can proceed. In

the Hawking-Moss case, the terminating points of the instanton are both at the

top of the barrier, so the burden falls entirely on thermal or quantum diffusion to

carry the field – initially well localized at the minimum – to the top of the barrier.

In the late-time limit, the diffusion equation (2.12) leads to a nearly time-

independent distribution for field values around an inflating false minimum, and

the probability of a field value sampled from that distribution being found at

the peak matches the semi-classical Hawking-Moss calculation, with the tunnel-

ing rate exponentally suppressed by the difference between Euclidean actions for

the two configurations. Because the Wick rotation of de Sitter space is compact
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and periodic in imaginary time, we can think of it as having a temperature with

thermodynamic-β proportional to H. A Hawking-Moss instanton is best con-

ceptualized as a thermal fluctuation to the top of the barrier, which happens to

coincide with the rate computed from the zero-temperature quantum calculation.

2.3 Inflating Topological Defects

A third mechanism for eternal inflation operates even in a classical setting:

what if conditions for inflation cannot end everywhere, due to topological con-

siderations? Take a potential with two vacua, separated by a local maximum at

ϕ “ 0

V pϕq “
λ

4

ˆ

ϕ2
´
m2

λ

˙2

(2.19)

as illustrated in Figure 2.3. If in different regions of space the field has settled

into different vacua at ϕ “ ˘η, with η ” m{
?
λ, then by continuity the field must

obtain the local maximum of the potential somewhere in between – forming a

domain wall with a possibly large positive energy density. Such a configuration

cannot classically evolve into a true vacuum solution with the field everywhere

sitting at one or the other minimum, as that would require the energy to increase

as the field in one region traverses the central maximum.

The next best move is for the domain wall to minimize the potential energy of

the configuration by collapsing; however, doing so increases the gradient energy.
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In three spatial dimensions, for the above potential there exist static solitons in

which the gradient and potential energies are balanced. Neglecting gravitational

effects, the static solution is

ϕpt,xq “ η tanh

ˆ

b

λ
2
η x

˙

When the characteristic width of domain walls is comparable to the Planck scale,

gravitational effects become important, and can lead to topological eternal infla-

tion.

Figure 2.3: Representative potential in which topological defects can form for single field
models; studied in [36]. Also shown is the static domain wall solution when gravitational
effects are neglected in the limit η !MP.

Let Regions I and III occupy different vacua of (2.19), with a Region II in-

terpolating between ˘η. The Hubble scale at the top of the potential barrier

is

H “

c

2πλ

3

η2

MP
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If the displacement of the minima in field space η is comparable to the Planck

mass, or if the physical width of the domain wall is larger than the Hubble scale,

then even a large thermal fluctuation of Region III into Region I’s vacuum could

not propagate to bring down the wall. If the space occupying the middle ground is

inflating at a rate sufficient to compensate for the inward collapse of its boundaries

in comoving coordinates, then it will undergo topological eternal inflation. These

results are generic for distortions of the barrier (2.19) and for defects with other

co-dimensions (monopoles, strings).

Topological inflation can occur only when ϕ obtains a spatially inhomoge-

neous configuration around a local maximum. Per the setup assumptions we have

adopted, we consider one Hubble volume initialized with a homogeneous field ex-

pectation value. Inhomogenity then originates with quantum fluctuations, which

are assumed to behave classically after being stretched to scales much larger than

H´1; so initially the field has not obtained a time-independent classical back-

ground solution. If the scale at which V pϕq varies near the maximum is much

less than mP, then domain walls are more or less unchanged by including gravity,

and approximately static solutions exist. The question is then whether an initial

configuration with ϕpt, xq having a large wavelength around the peak quickly col-

lapses into that static solution, before inflation produces many Hubble volumes

with field values at the peak.
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Initially Homogeneous atop the Barrier Suppose a nearly static domain

wall (necessarily of a thickness much less than the Hubble radius associated with

the potential energy at the peak) is a solution of a given double well potential.

Given an initial Hubble volume not containing a domain wall, but in which ϕ is

nearly homogeneous around the top of the barrier, it is of interest to determine

under what conditions the domain wall that forms as a consequence of the field’s

classical descent from the peak is nearly static and sub-Hubble in scale. An

alternative might be that despite the existence of such a solution, the nearly

homogeneous initial configuration results in inflation of what will become the

domain wall core, and a localized solution is precluded by the ensuing expansion.

A necessary but insufficient condition for a sub-Hubble defect to form is that

the gradient of the field configuration around the top of a potential barrier is

initially increasing in physical coordinates. Assume that ϕpt, xq is initially linear

in its spatial dependence in a small region around which it obtains the peak

value, with a small proportionality factor kptq, defined with respect to the physical

distance xeH0t:

ϕpt, xq « kptqaptqxH0

where H0 is the Hubble parameter at the peak (a convenient mass scale), x is a

comoving coordinate, and aptq « eH0t. In the vicinity of the maximum we take

the potential to be approximately quadratic: V pϕq « V0 ´
1
2
µ2ϕ2. The equation
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of motion for kptq is then

:k ` 5H 9k ` p4H2
` 9H ´ µ2

qk “ 0

If the expression in parentheses is positive, then kptq behaves like an overdamped

harmonic oscillator, and the domain wall grows (k(t) vanishes at late times) even if

a nearly static sub-Hubble-scale domain wall solution exists. Using the Friedmann

equations (1.1) sourced by the scalar ϕ, this occurs when

V 2pϕpeakq À
1

M2
P

p1
2

9ϕ2
` V pϕpeakqq ´

1

3M2
P

p1
2

9ϕ2
´ V pϕpeakqq

So if the potential is sufficiently flat near the maximum

1

κV0

∣∣∣∣d2V

dϕ2

∣∣∣∣
ϕ“0

ă
4´ ε

3
(2.20)

where ε is the first slow roll parameter from (2.2), then the domain wall grows

even if a nearly static sub-Hubble-scale domain wall solution were possible. Oth-

erwise, kptq grows monotonically within the validity of this approximation, leading

potentially to a collapse.7

When considering ϕpxq centered at the maximum and neglecting metric fluc-

tuations, ε “ 0 and this criterion is weaker version of the second potential slow roll

condition (ηV ! 1). Though not required for some quasi-exponential expansion

to occur, the latter is almost always needed to solve the horizon problem. Thus,

7A full collapse can be thwarted by Hubble friction lower on the potential.
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any instance of inflation starting at a maximum leads to topological inflation. If

ϕ is dropped only near the maximum and the stochastic inflation criterion is not

met, then it is not guaranteed that ϕ will end up straddling the potential peak,

and topological inflation may be avoided. Even if ϕ does not initially interpolate

between the two basins of attraction, if it inflates from its initial configuration,

then stochastic fluctuations in the population of Hubble volumes produced near

the peak may be enough to drive the field in some regions over the hilltop – a less

pronounced version of Hawking-Moss transition – creating a topological defect.
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Chapter 3

How Generic is Eternality?

A widespread belief in the inflation community is that an eternal “multiverse”

is a generic prediction of inflation [13, 37] – a free side effect arising without a need

for additional fine-tuning of model parameters or initial conditions (beyond that

which might be required for viable inflation). However, the basis for that belief

as it is commonly held is to a large extent qualitative – justified in terms of an

informal, heuristic sampling of named classes of inflation models with substantial

representation in the literature, and not the conclusions of a direct, comprehensive

analysis. As inflation continues to gain empirical support as an explanatory ac-

count of our cosmic history, it remains an open question whether eternal inflation

should be considered generic or fine-tuned among candidate models consistent

with observation.

37



In Sections 3.1 and 3.2, we discuss the implications of eternal inflation that

motivate its intrigue, and survey arguments as to whether eternal behavior might

or might not be generic. In § 3.3, we outline the structure of measures over single-

field inflation models, argue how one would term certain properties generic or

fine-tuned, and discuss merits and shortcomings of a few candidate measures over

the space of inflationary cosmologies.

3.1 The Case for Generic

To emphasize the strength of consensus around the characterization of infla-

tion as generically eternal: the first sentence of [15] reads “Inflation is generically

eternal.” It is in good company among similar statements in the opening para-

graphs of many articles on the topic. Surely this assertion is well motivated, but

what precisely is the basis for it?

By inspection of Eq. (2.11), stochastic fluctuations outpace slow roll in models

in which the inflaton is initialized near an inflating local maximum or saddle point

where V 1pϕq vanishes and for those in which the potential is unbounded from

above with a wide dispersion of initial field values (e.g. inflation in a quadratic

potential with mass parameter m and field excursion ∆φ Á 4pM3
P {mq

1{2). Slow

roll already requires a very flat potential, and stochastic inflation requires only

somewhat flatter or more energetic sites of inflation. Plausible extensions to the
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standard treatment of fluctuations, like warm inflation [38] with its account of

thermal effects, increase the amplitude of fluctuations of the inflaton – shrinking

the gap between sufficient conditions for successful inflation and eternal behavior.

If we are assumed to occupy a region of model space in which inflation is generic,

it seems to follow from the above considerations that eternal inflation should not

be much less difficult to avoid. And generally, if the end of inflation is a stochastic

process with a large dispersion in the prior distribution on the rate at which that

process proceeds, for inflation to end everywhere “all at once” comes across as

rather implausible.

The topological inflation criterion given by Eq. (2.20) is always satisfied for

a single inflaton initialized at a maximum where the second potential slow roll

condition ηV ! 1 is met. The latter condition – though not required for some

quasi-exponential expansion to occur – is almost always needed to solve the hori-

zon problem1. Quantum fluctuations dominate the slow evolution of xϕy near the

peak, resulting in an inhomogeneous field configuration with xϕy descending to-

ward the minima of both conjoining half-basins in Separate Universes, separated

in space by an inflating topological defect that can never be excised. Even if ϕ

is initialized only near the maximum, stochastic inflation always occurs within a

neighborhood of the potential peak, and fluctuations can drive some regions over

1This is relevant even when initializing at a maximum, as quantum or thermal fluctuations
render finite the expected time and e-folds elapsed in the vicinity of the peak.
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the top of the peak to descend toward the adjacent minimum, producing a topo-

logical defect. This can occur by chance even if the formal stochastic inflation

criterion is not met at the initial field value.

If we take the setting of inflation to be a vast landscape potential and populate

the presumably large number of false vacua therein, then we get eternal inflation

no matter what. The difficulty lies in connecting eternal inflation occurring in

these false vacua with the last 60 e-folds that must explain our data. Given

an infinite elapsed time to wait in the false vacuum, we are guaranteed to see

transitions from one metastable de Sitter minimum to another; but to produce

large homogeneous regions in the true vacuum basin, a transition must be followed

by a period of slow roll inflation.

If the barrier is broad pV 2 ! V {m2
Pq, then the largest contribution to the tran-

sition comes from the Hawking-Moss (HM) instanton – a naive interpretation of

which paints a picture of the entire history of the field configuration in the “final”

state sitting on top of the barrier, with the background geometry fixed for all time.

Rather, we adopt the interpretation the HM calculation [35] as yielding the rate

at which Hubble volumes occupying the false vacuum basin thermally fluctuate

into the true vacuum basin (essentially a consequence of stochastic inflation), with

energy comparable to the height of the barrier [39]. Since this picture of the HM

instanton invokes stochastic inflation as a necessary ingredient, all models with a
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Hawking-Moss transition are necessrily eternal.

3.2 The Dissent

Two schools of criticism of eternal inflation are represented in the literature:

one accepts the established treatments outlined in § 2 but questions the pre-

dominance of the associated criteria in conceivably representative measures on

model-space (which we address); and another attacks the foundational assump-

tions on which those established treatments are based. Of the three instantiations,

stochastic eternal inflation is most susceptible to the latter, as the topological and

false vacuum varieties appear quite unassailable once the setup assumptions are

granted (or at least avenues for departure from the usual treatment are much less

evident). We begin by noting some of the claims made by the latter school.

Adjudicating on the status of stochastic eternal inflation requires careful con-

sideration of the back-reaction of quantum fluctuations on the metric. In § 2.1.1,

we quantized a gauge-invariant small perturbation to the field and the metric in

a fixed background; the fully rigorous treatment would account for both field and

metric perturbations separately in the full nonlinear theory, in which the per-

turbations can substantially change the background metric. It is unsettled as to

whether the calculations presented in the literature paint an accurate picture of

this interaction.
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For example, [40] argues that back-reaction becomes important well before

the stochastic regime in chaotic inflation and similar models, so that the latter is

not well characterized by assuming small perturbations to a background metric

fixed at the scale of a Hubble volume or more. In [41], it is argued that applying

the appropriate adiabatic regularization procedure in calculating the amplitude

of quantum fluctuations of the inflaton (presented in [42]) dramatically reduces

that amplitude2 relative to the commonly cited result of H{2π, and in so doing

increases the energy scale needed to achieve stochastic eternal inflation. Other

modifications to the story of how the quantum-to-classical transition comes about

could alter the probability of eternal inflation.3

Even taking the established treatment as given, several factors make eternal

inflation potentially less likely to be well represented in the measure over models

and initial conditions producing observationally viable cosmologies.

Scale Discrepancies The primordial perturbation spectrum inferred from mea-

surements of the CMB implies a significant scale discrepancy between a regime

of stochastic inflation, in which curvature perturbations δR{R are of order unity,

2The proposed amplitude is given by δϕ2 – 0.01V 2pϕq.
3For example, [43] presents a calculation of explicit decoherence of modes for inflaton fluc-

tuations via interaction with metric perturbations suggests that Hubble-scale modes do not
decohere until Op10q Hubble times after they have left the horizon, in tension with the widely
accepted Op1q figure; in [44], it is demonstrated that taking this delay into consideration alters
the criterion for stochastic eternal inflation. However, if we do not alter the rate at which we
“update” the branching distribution, but only a change in the size of fluctuations relative to the
classical field excursion (both of which change slowly during inflation), then it does not greatly
affect the probability of eternal inflation.
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and horizon exit of modes of observational interest. Suppose we parameterize the

inflaton potential in terms of the vertical and horizontal mass coefficients mv and

mh, along with a dimensionless function fpxq of order unity defining its shape:

V pϕq ” pmvmPq
4fpϕ{pmhmPqq

Here mP is the Planck mass. With Qs „ Op10´5q, the quantity fpxq3{2f 1pxq´1

appearing in both the expression for Qs and Eq (2.11) must shrink by a factor

Op10´3q between a scale of stochastic eternal inflation and the horizon exit scale.

In this sense the sufficient conditions for inflation consistent with the data do not

strongly constrain the part of the potential relevant for stochastic inflation.

In [45], this scale discrepancy is cast as a negative upper bound on the running

of the spectral index as a sufficient condition for non-eternal inflation, assuming

higher order runnings-of-the-running can be neglected. The criterion Eq. (2.11)

may be expressed in terms of the power in curvature perturbations for modes

crossing the horizon:

1 À
δϕ

∆ϕ
“

H2

2π 9ϕ
“ PRpkq

∣∣∣
k“aH

(3.1)

Neglecting dnplnPRq{dpln kq
n for n ą 2, we may use this relation to compute a

lower bound on the running α (evaluated at horizon exit) for which Eq. (2.11) is

satisfied, or an upper bound for non-eternal inflation. The negation of constraint
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(3.1) expressed in terms of lnPR may be written as follows:

lnPRpkq “ lnPR,‹ `

„

ns ´ 1`
1

2
α ln

k

k‹
` ¨ ¨ ¨



ln
k

k‹
ă 0

where PR,‹ and k‹ are evaluated at horizon exit. Plugging in the value kmax that

maximizes lnPR, one obtains

lnPRpkmaxq “ lnPR,‹ ´
p1´ nsq

2

4α
ă 0

Accepting this as a bound on lnPR yields an upper bound on the running; Kinney

and Freese found this bound to be negative but quite small in magnitude relative

to current observational bounds on the running:

α ă
p1´ nsq

2

4 lnPR,‹
« ´4ˆ 10´5 (3.2)

We will investigate the relation between the running of the scalar spectral

index and presence of stochastic eternal inflation in Appendix A – whether (3.2)

is in “practice” a useful bound and to what extent α is an informative detection

statistic for stochastic inflation. Here we merely note that if the field history does

not traverse intervals on the potential with vastly different characteristics before

the end of inflation, then there are large portions of parameter space consistent

with observation that preclude stochastic eternal inflation.
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Run Aground in the Swampland The de Sitter Swampland Conjecture [46,

47] is a proposal that a large proportion of consistent-looking low-energy scalar

effective field theories presenting in the string landscape are in fact inadmissible,

owing to incompatibility with UV completion to an (as-yet unformulated) theory

of quantum gravity. The criteria for the remaining admissible low-energy theories

is that the field excursion ∆ϕ and potential must satisfy

∆ϕ Á ∆ and |V 1| ą cM´1
P V (3.3)

or possibly

V 2 ą ´c̄M´2
P V (3.4)

for constants 0 ă t∆, c, c̄u À Op1q. Numerous authors have worked out the

implications for inflation, and indicate that the conjecture and its variants rule

out sites of stochastic inflation [48, 49, 50, 51], or not [52]. If the proposal is

found to withstand scrutiny, then some loophole or exception must be indentified

to allow for ordinary inflation. Since stochastic inflation tends to violate the first-

derivative criterion in (3.3) more severely than ordinary inflation, it is plausible

that any such scheme for selecting viable inflation models would penalize those

with stochastic inflation.

Extremely Steep and Incredibly Flat The scenario proposed in 1981 had

inflation take place in a false vacuum, invoking a phase transition with bubbles
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nucleating near the true vacuum and coalescing to form large post-inflationary

regions. But bubbles could not coalesce fast enough in the inflating background;

to be consistent with observation; a transition must be followed by a period of

slow roll inflation.

If the barrier turns over sharply, the largest contribution to the transition is

a Coleman-de Luccia instanton, which tends to terminate very close to the true

minimum with a thin-walled bubble. While instanton transition rates are generi-

cally much smaller than the upper bound in (2.15), one would need an instanton

that terminates atypically high on the slope of a nearly-Minkowski half-basin,

separated from the minimum by an interval of field space in which the potential is

remarkably flat by the standards of the potential barrier (for example, a potential

like that shown in Figure 2.2). However, the rarity of coincidence of such features

in a measure over potential shapes may be balanced by conditioning on inflation

producing enough e-folds to begin with. Even if the inflaton is initialized in a

false vacuum, our prior on the number of e-folds is already high, and the fact

that successful inflation following a CDL transition is rare is for the most part

counterfactual.

Before conditioning on a small final vacuum energy, one might suspect models

with successful inflation following a Hawkiing-Moss transition of being unnatural,

as the potential featuring a broad barrier must also vary quickly before the mini-
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mum in order to give a clean exit from inflation. This is alleviated only somewhat

if we fix the energy of the true vacuum to be very small, so that inflation always

ends close to the minimum where εV „ 1. This puts a Hawking-Moss transition

among field histories yielding sufficient inflation with a viable scalar amplitude

and spectral index, but typically too high of a tensor-to-scalar ratio.

Nonvanishing Spatial Curvature A positive spatial curvature is difficult to

achieve with eternal inflation [53, 54]. Inflation naturally leads to a reduction in

spatial curvature over time, bringing the density Ωk asymptotically close to its

critical value for a flat universe. Cosmological histories that prescribe much more

inflationary expansion than the minimum needed to account for the CMB greatly

disfavor departures from flatness. With the new results from Planck 2018 Legacy

suggesting a small but measurable positive curvature with high confidence level

[55], eternal inflation may be in trouble.

3.3 Making of a Measure

What would it mean for eternal inflation to be generic? As a matter of history,

it has meant that of the inflation models that have been devised, many appear

to be eternal in most regions of the space of model parameters and initial con-

ditions that have warranted scrutiny. More properly, it should mean that given
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some representative measure (or class of measures) over inflation models and ini-

tial conditions, those combinations resulting in eternal inflation comprise a large

fraction of the measure, or perhaps of the measure over combinations that lead to

observationally viable cosmologies.

A measure is a recipe we adopt for assigning probabilistic weight to partitions

of a space of inputs. The measure over potential functions and initial conditions

should be informed by details of the process by which the form of those models is

determined, stemming from e.g a theory valid at higher energies. It might account

for selection effects based on future boundary conditions relating to the existence

and properties of reference objects (e.g. protons, galaxies, observers), and ordering

effects related to how one defines a population of equivalent reference objects on

which to base that selection. (See [20, 56] for in-depth discussions of these issues

confronting all would-be measure bearers.) The first is rather open-ended in the

absence of a prescriptive theory of the origin of the inflaton potential. The latter

two overlap with the notorious Measure Problem in eternal inflation – pertaining

to the absence of a physically preferred scheme for identifying a population of

equivalent reference objects in an infinite multiverse.

One might make the argument that even if eternal inflation does not dominate

the measure over model-space, those models with eternal inflation produce vastly

more thermalized regions than those without, and so an observer is warranted in
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assuming that the conditions for eternal inflation are in their region’s past. This

volume weighting stance is sensible only if one grants that a population of models

(or of initial conditions on a vast potential with both eternal and non-eternal

inflation) is in fact realized, so that they are in effect competing with one another

dynamically for representation in a final ensemble.

As the focus of this study, we rather assume that one potential is actually real-

ized, and ask about the likelihood that a Hubble volume sampled with particular

initial conditions leads to eternal inflation. To distinguish this from the Measure

Problem of Eternal Inflation, let us denote this separate-but-related issue as the

Measure Question of Model Selection and Initial Conditions. The two difficulties

in working with measures in cosmology interact when it comes to making predic-

tions, as once the model is given, assuming eternal inflation is possible one still

must make choices regarding the measure on observable outcomes in that space.

The furthest we go in meddling with observer selection effects is to discard models

for which observables from inflation do not match the data.

Defining Genericity Genericity might refer to a posterior distribution over a

collection of parameters peternal characterizing eternal inflation, given priors on

those parameters, observational data d, and a dictionary of correlations between

the parameters modeling the data and the necessarily hidden parameters in peternal

(we only have access to our one observable universe). Let the full vector of pa-
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rameters be denoted by

p “ ppeternal,pobsq (3.5)

where pobs includes those parameters modeling observables from any successful

inflation model that are accessible to our instruments:4

pobs “ pQ, r, ns, α, nt, δρ{ρ, log |Ωtot ´ 1| , ρΛq (3.6)

Since our model of the data only connects d to pobs, the posterior distribution

over the hidden parameters in peternal is determined entirely by how they correlate

with those in pobs; this in turn depends on the choice of a measure.

For each measure m, there is a distribution fmpp | pobsq connecting the hidden

eternal sector to parameters that make contact with the data. The probability

associated with the full parameter vector p is then

pmpp | dq “

ż

fmpp | pobsq `ppobs | dq dpobs (3.7)

To estimate pmpp | dq, one could generate a population of simulated models

reflecting the measure, and from that population bootstrap a number of sub-

populations for which the distribution over pobs is consistent with the likelihood

`ppobs | dq. (Since `ppobs | dq is the primary deliverable in observational cos-

mology, we take it to be well modeled.) From those samples pi, we estimate

4Qs and ns are the scalar amplitude and spectral index, respectively; α is the running of ns;
r is the tensor-to-scalar ratio; nt is the tensor spectral index; Ωtot is the critical density fraction;
ρΛ is the vacuum energy in the potential basin where inflation ends.
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parameters Θ to maximize the joint likelihood

Θ Ð argmax
Θ

LmpΘ | tpiu,dq LmpΘ | tpiuq ”
ź

i

`mpΘ | pi,dqpppiq

where `mpΘ | pi,dq is the likelihood of parameters Θ modeling pmpp | dq and

pppiq is the prior on p. Since the choice of distribution to model pmpp | dq

is not obvious from expectations of the variability of some parameters in p, a

more plausible approach is to take the population of models as representing the

distribution, without attempting the final likelihood-maximizing step.

Generic eternal inflation would mean that pmpp | dq nearly vanishes outside

of the region of parameter space spanned by peternal that corresponds to eternal

inflation, invoking the concept of almost everywhere from measure theory – “the

set for which the property holds takes up nearly all possibilities.”

Frequentist (Less-Bayesian) Definitions Here our use of frequentist refers to

more direct consideration of rates of eternal behaviors manifesting in populations

of models sampled from the measure. From this point-of-view, we are concerned

with estimating rates of incidence of a quantity characterizing eternal inflation

meeting a predefined threshold, rather than the distribution over that quantity.

Considered in these terms, generic could also mean that an estimate of the rate or

probability of occurance of eternal inflation is close to 1. This has the advantage

of not requiring one to presume a model for the distributions of parameters in

51



peternal, but rather only of a rate parameter which can be taken to be binomial-

distributed. Providing the means to do this (in a crude form, at least) is in large

part the aim of this study. A disadvantage is that the output meshes less well with

the inputs of the Measure Problem of Eternal Inflation, which is better informed

by being fed representations of the distributions over p that are as complete as

possible.

3.4 Candidate Measures

Which considerations have passed muster in the literature, in informing pro-

posed measures over cosmological models? Are simpler measures always better?

In order to avoid the impression of being finely-tuned ab initio, the measure should

not encode too much a priori knowledge about the kinds of universes it is to pro-

duce. Here we briefly discuss three possible measures on the effective potential,

initial conditions, or both; and

No-Boundary The No-Boundary proposal presented in [57] establishes criteria

for spacetime to behave classically at late times – a prerequisite for the project

of interpreting early universe cosmology in terms of an inflationary epoch. It

attempts to assign a “wave function of the Universe” – the No-Boundary Wave

Function (NBWF) – derived from simple arguments in such a way as to evade

52



specification of past boundary conditions. It yields a measure over the classical

history of the inflaton given a pre-defined potential function.

The authors draw a distinction between bottom-up versus top-down probabili-

ties – those prescribed by quantum theory and the NBWF versus those further con-

ditioned on conditions needed to reproduce observational data, respectively. (We

generally direct our attention to the top-down variety.) The No-Boundary Mea-

sure [58] assigns higher weight to models with very few e-folds of inflation beyond

the minimum required to solve the horizon problem. Saddle points with sharp

curvature are disfavored; broad saddle points can behave classically at late times.

To evade the preference for few e-folds, the authors advocate a volume weighting

of expp3NEq in their calculation of top-down probabilities – after this adjustment,

a large number of e-folds is slightly preferred in approximately quadratic models.

The criterion for volume weighting to outpace suppression from the action in the

NBWF is equivalent to that for stochastic eternal inflation to within a factor of

order unity. The No-Boundary Measure ties the presence or absence of eternal

inflation in our past with the Gaussianity of scalar density perturbations.

Refined de Sitter Swampland The “refined” de Sitter Swampland Conjecture

[59] relaxes the requirements of the original somewhat, by allowing either the

first derivative constraint in (3.3) or a new second derivative constraint (3.4) to

satisfy the criterion. We can take the constraints as specifying a rudimentary
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measure over potentials and initial conditions: the field is sampled from regions

of a potential in which these conditions are satisfied, while potentials with any

or more of such regions are favored by the measure. This can be viewed as using

the landscape itself as a measure, keeping only the basins of attraction for which

completion to quantum gravity is attainable.

The de Sitter swampland measure is too general, and does not give a natural

prescription for probabilities apart from whether a small number of constraints on

the potential are valid. It seems like an additional constraint to be administered

to a broader measure, cutting away a large portion of parameter space.

QFT Plausibility/Complexity A possibility not discussed in the literature –

though the motivation is often recognized as a value – is to weight effective poten-

tials in terms of the complexity to reproduce them from allowed interaction terms

in quantum field theory. In this measure, a quadratic potential – corresponding

to a simple massive scalar field – would have high weight; a Higgs-like potential

with quadratic and quartic contributions would not be far behind. Potentials with

terms of a single field taken to a power greater than 4 are disallowed, etc. Unnat-

ural potential shapes with wiggles and scaling discrepancies from one interval of

field space to another would be heavily penalized.

A QFT complexity measure would require many priors assigned to the var-

ious parameters characterizing each term in the Lagrangian, and a mixture of
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continuous (parameters) and discrete (terms present or not) outcome spaces.

Takeaways Each of the measures discussed above presents problems when it

comes to sampling from the distribution to compute statistics of eternality and

observables. How does one draw random samples from the No-Boundary Measure,

for instance? We are limited to the most general statements about the behavior

of late-time classical configurations, of which quick work has been made in the

literature. We are in search of a measure that both prescribes well defined prob-

abilities and can be easily sampled numerically; to accomplish this may mean to

sacrifice on aesthetic qualities of realism or sophistication.
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Chapter 4

Sampling the Measure-verse

Supposing a minimally coupled scalar field responsible for driving inflation is

governed by an effective potential of whose origin we are ignorant, it would be

worthwhile to discover with what probability (and what observational correlate)

we encounter eternal behavior, subject to measures admitting variability in the

potential that is not so simple as to be encapsulated in just a few model pa-

rameters. With a well behaved distribution over potentials, we could make some

headway with a purely analytical approach, extending the results of works like

[49]. But having a veritable trove of simulated data comes with the freedom to

make arbitrary cuts on observables.

Since we are ultimately most interested in distributions for models that come

close to producing observationally viable cosmologies – with parameters in pobs
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landing in the ballpark of their measured values – we find a numerical statistical

approach to be a useful tool for complementing and subverting our intuitions.

In this chapter, we describe a collection of computationally feasible measures

defined by draws of a potential and initial conditions, as well as a Monte Carlo

methodology for simulating inflationary dynamics and recording observables and

eternal inflation metrics.

4.1 Desperate Measures

The measures described in the previous chapter are well motivated, but would

be difficult to sample in practice. If there is a “true” measure over inflaton po-

tentials and initial conditions, it is of course unknown; nonetheless, we argue that

just as observables inform inflation, even simple measure prescriptions can offer

insight into what might be deemed ”generic” versus ”fine-tuned.” From a stance

of humility in light of the considerations discussed in § 3.3, we aim to travel a

middle road of devising measures that are easily computable and provide adequate

coverage of the space with a high degree of variability, while at least not flying in

the face of possible physical justifications.
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4.1.1 Sampling Potential Functions

Following the example of Tegmark [20], we draw effective potential functions as

one-dimensional Gaussian random fields (GRFs). The GRF has several properties

that make it suitable for this role: it is smooth and continuous, bounded from

above and below, and its statistics are translation invariant. (The last stands in

contrast to the one-parameter space of quadratic potentials, for example, which

is guaranteed to have special behavior near ϕ “ 0.) Furthermore, the GRF

assigns ”natural” versus ”unnatural” potential shapes appropriate weights largely

in agreement with commonly held notions of such.

We express the potential V pϕq in terms of a dimensionless GRF

fpxq “
a0
?

2
`

kmax
ÿ

k“1

ak cospkxq `
kmax
ÿ

k“1

a´k sinpkxq (4.1)

and constants defining the mass scales of the potential (mv) and the inflaton (mh).

V pϕq “ pmvmPq
4fppmhmPq

´1ϕq (4.2)

Each coefficient ak is sampled from a Gaussian distribution such that

Varpakq “ qγe´q
2{2, q ” k{

a

kmax (4.3)

Tegmark found that varying the scale dependence of ak through the parameter

γ did not produce any interesting discrepancies in the resulting distributions, so

we take γ “ 0 for our analyses unless otherwise specified. We generally take
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kmax “ 30.

The function fpxq defines the shape of the potential, but we must also impose

priors on the vertical and horizontal mass scales – mv and mh, respectively –

to enact the full measure, and to compute statistics in subsamples aggregated

from multiple mass pairings and binned with respect to the values of observables.

For most results, we assume a prior that is uniform on a log-scale within the

designated mass ranges; but we also consider a straight uniform prior, which of

course gives greater weight to larger mass scales. Beyond this base prior, we adopt

two schemes for constructing measures from arrays of mass scales:

‚ The epektacratic weighting scheme (rule by expansion) samples an equal

number of potentials for each pairing of mass scales mv and mh, and lets

them succeed or fail at producing sufficient e-folds of inflation. The total

population is aggregated from successful inflation models at all mass scales,

and that population is used to determine rates. Naturally this scheme will

tend to give more representation to large field models.

‚ The democratic scheme gives every mass pairing within the specified range

equal weight in informing fmppeternal | pobsq in (3.7), regardless of how com-

mon or rare it is for models comprising each to produce enough inflation.

From each pairing, we sample as many potentials as it takes to get an equal

number of successful models, or we give lower-expansion mass pairings extra
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weight to the same effect. (We only want to simulate one set of batches,

so to get the democratic estimates we effectively treat the uniform distribu-

tion over mass scales as an importance distribution, and weigh contributions

from each by 1{P pNe ą 70 | tmv,mhuq.)

In consideration of observational viability, we would ultimately condition on

the smallness of the vacuum energy in the stable minimum where inflation ends.

Rather than sampling the full distribution and then conditioning on ρΛ being many

orders of magnitude smaller than the scale of the potential, we aim for a shortcut

to approximate such a move without covering the vast regions of parameter space

in which the vacuum energy is negative or significantly too large. Very simply, we

first check whether any minimum in the search space has a vacuum energy within

˘0.01m4
vm

4
P; if so, then we shift the whole potential to bring the vacuum energy

in that basin to zero. Inflation must end in that basin in order for that model to

be counted.

To justify the above procedure, we need not assert that the properties of

each model are unchanged, but only that we can identify populations of models

with statistics corresponding to those in the original measure. When we shift

the potential down to make the vacuum energy less positive, to first order the

statistics of the starting point are comparable to that of unshifted potentials with

a smaller vertical mass scale. So we must densely pack the starting mass scale
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and then re-bin based on the effective mv after the shift. If the shift is too large,

then we start to see divergence from the effective-mv approximation as the shape

of V pϕq appears noticeably stretched in the vertical.

We found a 1% shift in the potential to be an suitable compromise between

distorting effects and sample size. For dynamics high on the potential, a shift is

like a few percent scaling. Low on the potential, the effect is to make quadratic

minima less convex, reducing the mean of f2pxq by 2% and variance by 6% –

increasing the effective horizontal mass scale.

4.1.2 Sampling Initial Conditions

Within the scope of our Monte Carlo analysis on the prevalence of eternal in-

flation, we are concerned with field configuration over one initial Hubble volume.

Since this initial Hubble volume is situated in a larger inflating bulk, any mea-

sure must entail assumptions about nearest neighbor Hubble volumes; to address

this, we assume nearly homogeneous initial conditions at the Hubble scale. Over

homogeneous initial values of the inflaton ϕ, Tegmark adopted two measures:

A Sample field values maximizing V pϕq, weighted by the distance in field space

between the two adjacent minima. (This is equivalent to sampling uniformly

and then going uphill to the peak.) Discard instances in which |ηV | ą 1 at ϕ0.
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B Sample field values uniformly. Discard instances in which εV ą 1 or |ηV | ą 1

at ϕ0.

We agree in broad strokes with the rationale for these measure choices in the

context of a Monte Carlo analysis, and furthermore wish to compare our results

with Tegmark’s for repeatability and debugging purposes. Accordingly we adopt

these two measures and add a third:

C Sample field values a distance in field space equal to H{2π from local maxima

of V pϕq, weighted by the distance in field space between the two adjacent local

minima. Discard instances in which εV ą 1 or |ηV | ą 1 at ϕ0.

Measure C is equivalent to sampling from Measure A and then adding a standard

deviation of the slow roll stochastic fluctuation of Hubble-scale modes to that

sampled value.

All three measures as framed above require that both slow roll conditions are

satisfied at the starting point, and then take

:ϕ “ 0 9ϕ “ ´MPV
1
pϕq{

a

3V pϕq (4.4)

More properly, we would sample from a well-motivated distribution over 9ϕ and

higher derivatives, and integrate the full equations of motion; ϕ could then barrel

through a short enough interval where the potential slow roll conditions are met
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without inflation taking place. As Tegmark pointed out, if

9ϕ À
a

2V pϕq (4.5)

in an interval where εV , |ηV | ă 1, then the full equation of motion exhibits an

attractor behavior leading quickly to the slow roll profile (4.4) [29]. Sampling 9ϕ

from a distribution and then conditioning on slow roll, the population of surviving

models would be those that approximate the above measures, with additional

weighting like m2
v{x 9ϕ2y1{2. Since we are drawing from an array of mass scales,

we can model such effects without simulating the fully dynamics by adjusting the

prior on mv.

Inflation Below the Peak Stochastic inflation occurs in every model sampled

to reflect Measure A that produces observables, since there is always an inflating

interval contiguous with the maximum where V 1pϕq vanishes. If we waive the

requirement that inflation continues through 70 e-folds from the maximum, and

instead let inflation start lower on the potential if the potential slow roll conditions

are met with ϕ varying slowly enough at the start of a slow roll interval, we allow

for the possibility of non-stochastic inflation initialized at a non-inflating peak.

We only require that 9ϕ is below the bound of the slow roll attractor when it

reaches the top of an interval in which εV , |ηV | ă 1. With these considerations,

we adopt the following modified version of Measure A:
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A˚ Sample field values maximizing V pϕq, weighted by the distance in field space

between the two adjacent minima. If ηV ą 1 at the peak, then assume inflation

starts where εV , |ηV | ă 1 first becomes valid pϕsrq, if 9ϕsr ă
a

2V pϕsrq along a

trajectory approaching the peak as tÑ ´8.

To determine if 9ϕ comes in below the attractor bound, we integrate the coupled

equations of motion for the homogeneous scalar field and the metric (only the scale

factor aptq)

:ϕ “ ´3Hpa, 9aq 9ϕ´ V 1pϕq (4.6)

:a “ 8πGa
`

9ϕ2
´ V pϕq

˘

(4.7)

backward in time, with initial conditions ϕ “ ϕsr, 9ϕ “ sgnpϕsr´ϕ0qˆ
a

V pϕsrq. If

the solution overshoots the peak in the past, it would correspond to a velocity in

the direction of ϕsr at some finite initial time. If the system were conservative, we

could assume that as we dial that initial velocity at the peak to zero, 9ϕ approaches

a value less than
a

V pϕq at ϕsr. The presence of Hubble friction complicates

things somewhat, as it becomes possible that reducing this initial field velocity

also reduces friction to the point that one gets a greater field velocity where slow

roll begins. This can be tackled iteratively by a method of overshoot-undershoot,

integrating backward in time trying to land with ϕ atop the peak at t Ñ ´8.

More expeditiously, in the case of an overshoot we can then initialize with a small

64



field velocity at the peak in the direction of the true-vacuum basin, and assume

nothing changes as that small velocity vanishes.

4.2 Simulation Design

We characterize the evolution of the inflaton – including up to one Coleman-

de Luccia or Hawking-Moss transition event – accurately enough to inform the

distributions fmpp | pobsq from Eq. (3.7), while exploiting what we argue are

justifiable shortcuts in order to economize on computing time. For each instance

toward building up the distribution, the steps are as follows:

1. Initialization

(a) Sample a 1-D Gaussian random field fpxq according to (4.1). From

this and constants mv, mh construct the potential V pϕq according to

(4.2).

(b) Initialize the inflaton at ϕstart according to one of the Measures A, B,

or C outlined above.

(c) Determine the potential energy ρΛ of the minimum of the starting basin

and in one neighboring basin in both directions. (For Measure A, the

starting basin adjacent to the initial peak is chosen randomly weighted

by width.) If |ρΛ| in any basin in this search space is below a threshold,
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shift the potential so that ρΛ “ 0 in that basin. If ρΛ is negative and

less than this threshold in the starting basin, abort.

2. Instanton Pre-selection

Computing instanton profiles is time consuming, so we take the following

steps to determine if a tunneling event is likely to be followed by sufficient

inflation to produce a possibly observable universe in another basin of the

potential.

(a) If initialized in the true vacuum with ρΛ “ 0, continue to (4).

(b) If the thin-wall or Hawking-Moss approximations hold, continue to (3).

(c) Taking the cutoff CDL instanton terminus on the true-vacuum side

ϕedge to coincide with V pϕedgeq “ 0.05VT`0.95Vbar, compute the maxi-

mum number of e-folds of inflation accrued over any field space interval

in which the potential slow roll conditions are met between ϕedge and

the true minimum. If the maximum e-fold count is less than 70, abort.

3. Check for Quantum Tunneling

(a) If the thin-wall approximation is strongly valid or mh " mP (Hawking-

Moss eminent), compute the transition rate, otherwise

(b) Compute the Coleman-de Luccia tunneling profile; determine the in-

stanton terminus on the true-vacuum side; compute the number of e-
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folds of inflation, assuming inflation takes place anywhere below the ter-

minus where the potential slow roll conditions are weakly met (εV , ηV ă

1q.

4. Characterize Slow Roll

(a) Look downhill from ϕstart for breakdown of the slow roll approximation,

ϕend.

(b) Compute the number of e-folds Ne in the current basin. If Ne ă 70,

skip to (6).

(c) Find ϕexit, the field value at the horizon exit scale for CMB fluctuations,

taken to be 55 e-folds before the end of inflation.1

5. Check for Eternal Inflation

(a) Evaluate the stochastic inflation criterion (2.11) between ϕstart and ϕend

in each basin.

(b) Check the second potential slow roll condition at all local maxima along

the trajectory; compare to the upper bound for topological inflation

(see 2.3).

1Our e-fold cutoffs (70 for successful inflation, 55 for imprinting of CMB fluctuations) of
course depend on the fiducial reheating model. One could include those models in the input
space, but we opt not to include that freedom in this analysis as doing so would likely obscure
our conclusions.
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(c) If a transition into the basin with ρΛ “ 0 is followed by enough e-

folds, compute the transition rate λ and compare to the upper bound

in Eq. (2.15).

6. Data Collection

Record observables if inflation ends with Ne ą 70 in a vacuum with ρΛ ! 1,

along with indicators for eternal inflation:

pobs “ pQs, r, ns, α, nt, δρ{ρ, log |Ω´ 1|q (4.8)

peternal “ pNs, xNe,stochy, bt, λfv, HF, bHMq (4.9)

The parameters in Eq. (4.8) are the same as those defined in Footnote 4. In

(4.9), Ns is the number of contiguous field space intervals in which the stochastic

eternal inflation criterion is valid for at least one elapsed e-fold; xNe,stochy is the

sum of the ratios of the widths of stochastic inflating intervals in field space to

the amplitudes of quantum fluctuations characteristic to those intervals; bt is a

Boolean flag for topological eternal inflation; λfv is the rate of quantum diffusion

from a meta-stable false vacuum; HF is the Hubble parameter in that false vacuum;

and bHM is a Boolean flag indicating whether the transition is dominated by the
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Figure 4.1: A flowchart illustrating our simulation process. Starts in the top left.
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Hawking-Moss instanton.

Q2
s “ V pϕexitq{p150π2 εV κm

2
Pq

r “ 16εV

ns “ 1´ 6εV ` 2ηV

α “ 16εV ηV ´ 24ε2V ´ 2ξ2
V

nt “ ´2εV

δρ{ρ “ log10pV pϕexitq{V pϕendqq

ln |Ω´ 1| “ lnpV pϕstartq{V pϕexitqq ´ 2Ne,before

4.3 Algorithm for Instanton Solving

To treat transitions between de Sitter minima in our Monte Carlo simulations,

we need the instanton profile pϕpξq, ρpξqq – to determine where the field is initial-

ized on the true-vacuum side of the barrier. We also need the transition rate – to

compare the rates of bubble nucleation or stochastic ascent of the peak with the

expansion rate.

Instanton Pre-selection As discussed in § 2.2 and illustrated in Figure 4.2

from simulated data, the Hawking-Moss instanton dominates the transition be-
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tween de Sitter minima if the top of the barrier is sufficiently flat [39]:

V pϕq{m2
Pl " V 2pϕq ùñ mh " p8πq

´1{2 (4.10)

Well above the scale mh “ p8πq´1{2, it is safe to assume that the transition is

Hawking-Moss; so the transition rate is closed-form and easy to compute. At field

Figure 4.2: Fraction of models in which a Coleman-de Luccia instanton solution exists.
At larger horizontal mass scales (flatter potential peaks), the Hawking-Moss instanton
is dominant.

scales much smaller than MP , we enter the thin-wall regime in which the CDL

instanton dominates. The thin-wall instanton tends to terminate very near the

true vacuum, traversing the barrier over a small interval in the Euclidean radial

coordinate relative to H´1
F .

In the intermediate regime around mh “ p8πq´1{2, it may not be an easy

determination which instanton contributes most to the transition, and we must

compute the profile to find out. In order to reduce program time allocated to

computing transition rates in this regime, we first perform a check that inflation

can start and end in the adjacent basin and that the maximum amount of inflation

likely to occur is sufficient to produce Ne ą 70. If the effective mass is such that
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0.1 ă pm2
h,eff ” V {V,ϕq ă 1, we determine ϕedge such that

V pϕedgeq “ 0.05VT ` 0.95Vbar

and take it as our trial starting point in the new basin. We search down the slope

for the start (if the potential slow roll conditions are not already met at ϕedge)

and end of slow roll (εV , |ηV | ă 1), and compute the number of e-folds that elapse

in that interval assuming slow roll. If it is greater than the 70 e-folds needed to

obscure any potentially observable relics of the transition, then we proceed with

the full instanton calculation to determine where precisely the field is deposited.

Otherwise, we assume that a transition does not result in a potentially observable

universe, and so does not inform fmpp | pobsq; we discard and continue to the next

randomly drawn potential function.

Obtaining the Profile To determine the action-extremizing instanton profile

for a given potential V pϕq, we use the algorithm employed in the CosmoTransi-

tions package published with [60], modified to accommodate parallel processing

in Matlab. The algorithm assumes initial conditions 9ϕp0q “ ρp0q “ 0 with ϕp0q

on the true-vacuum side, and takes the endpoint of the trajectory to occur at

pϕ, 9ϕq “ pϕF, 0q (came to rest at the false vacuum) or pρ, 9ϕq “ p0, 0q (geometry

closed with no discontinuities). The former stopping criterion is only possible in

the absence of gravity, though it can be approached in the thin-wall limit. If the
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geometry closes (ρpξ ą 0q “ 0) with 9ϕpξq ‰ 0, then that solution is singular and

not admissible. The steps of the algorithm are as follows:

Figure 4.3: An example thick-wall instanton profile without gravity. (Left) The potential
with stable and metastable minima. (Right) The instanton profile.

1. Guess a starting field value on the true-vacuum side of the barrier.

2. Integrate equations of motion (2.17) for the scalar field ϕpξq and Euclidean

radius ρpξq of the bubble as a function of the radial coordinate ξ.

3. Stop integrating when one of the follow events occurs:

(a) ϕpξq approaches ϕF with 9ϕpξq « 0 (Converge)

(b) 9ϕpξq approaches 0 with ϕ « ϕF or 9ρpξq « 0 (Converge)

(c) 9ϕpξq changes sign with ϕ ‰ ϕF (Undershoot)

(d) ϕpξq passes ϕF (Overshoot)

(e) 9ρpξq approaches ´1 with 9ϕpξq « 0 (Converge) or 9ϕpξq ff 0 (Overshoot)
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(f) ρpξq changes sign (Converge)

4. If converged, we’re done; return the profile.

5. If within a tolerance value of the top the barrier, report a single data point

that fully characterizes the Hawking-Moss profile.

tϕ, 9ϕ, ρ, 9ρ, :ρu
`

π
2
w´1

top

˘

“
 

ϕtop, 0, w´1
top, 0, ´wtop

(

6. If the integration overshoots, move the guess closer to the maximum; if it

undershoots, move the guess closer to the true minimum.

7. Go to Step 2.

Transition Rates with Gravity The tunneling rate in terms of the Euclidean

action for the bubble and for the de Sitter background is computed as

λH4
F « p

1
2
σR̄q2 exppSE,bkg ´ SE,bubbleq (4.11)

where we take R̄ “ pR0 ` R1q{2 for the purpose of computing the prefactor, σ

is the bubble tension, and p1
2
σR̄q2 is the approximate (thin-wall) prefactor from

Eq. (2.18). Beyond the outer radius R1, the bubble and the de Sitter background

have the same geometry and field configuration, so those contributions cancel out

when computing the transition rate.

For thin-wall bubbles, the initial bubble radius R0 defines the whole geometry;
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for all bubbles, there is a finite radius inside of which 9ϕ “ 0. To compute the

transition rate from the profile, we first compute the curvature of the bubble

interior

wint ”

b

κ
3
V pϕpR0qq

When wint “ 0 the geometry of the interior is Minkowski. (The instanton profile

typically terminates at a value ρ ą 0, where the field velocity dϕ{dξ effectively

vanishes.) The vacuum in the tunneled-to basin is always Minkowski for the

simulation settings chosen for this analysis; however, large-H de Sitter bubbles

are also supported in the code, and may result when a sharply peaked barrier

is adjacent to a flat interval on the potential in which the potential slow roll

conditions are satisfied. When the vacuum energy in the interior is positive, the

radius ρpξq of an anulus on the 4-sphere as a function of the distance from the pole

goes like ρpξq “ w´1
int sinpwintξq. The term contributing to the Euclidean action

from the bubble interior are then

SE,int,ϕ “

ż R0

0

dξ 2π2ρpξq3 V pϕp0qq “
3VintpR0qw

2
int

κ
(4.12)

for the field, and in the de Sitter case

SE,int,ρ “

ż R0

0

2π2 dξ

κwint

sinpwintξq
`

´ sinpwintξq
2
` cospwintξq

2
´ 1

˘

“ ´
6VintpR0qw

2
int

κ

for the background geometry. But this is twice the magnitude and opposite in sign
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to the field contribution, so within the inner radius of the bubble the contribution

is equal to ´SE,int,ϕ. For Hawking-Moss instantons, the “bubble interior” covers

the whole compact space, and we leave out the prefactor in (4.11) as there is no

analogue to a bubble wall to be perturbed in the standard calculation. Likewise,

the background de Sitter configuration consists entirely of the bubble “exterior.”

With the interior and exterior covered, we add the contribution from the bub-

ble wall where V pϕq is not constant and ρpξq takes a different form. We integrate

the full form of the Euclidean action (2.16) from the inner radius to the outer

radius.
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Chapter 5

Meta-statistics of Eternal

Inflation

In Chapter 4, we described in detail a numerical methodology for assessing the

prevalence of eternal inflation under measures with a programatically defined sam-

pling procedure. It calls for computing inflationary dynamics across an ensemble

of randomly generated potential functions, following the example of Tegmark’s

analysis of more general observable consequences of inflation in “What does infla-

tion really predict?” [20]. Using a Gaussian random field to capture variability in

the potential shape, we investigate simple measures over initial conditions and the

characteristic scales of the single inflaton ϕ and its potential V pϕq, reporting rates

of incidence of viable models that manifest eternal inflation, and their correlations

77



with observables.

5.1 Our Scope

Our goal is not to compute a single value for the likelihood of eternal inflation

for each measure, but rather to investigate the prevalence of each mode of eternal-

ity in regions of the joint subspace of hyperparameters and of values for observables

not yet ruled out by cosmological surveys. We have framed the mathematical for-

mulation of genericity in Bayesian terms, but for our numerical approach adopt

a mix of Bayesian and frequentist methods to analyze populations of simulated

models. After binning models in the space of mass scales and/or observables, we

take the number of models observed in each bin with or without eternal inflation

to be a binomial-distributed random variable, with a deterministic but unknown

probability of occurance λ for each bin. Our task is then to estimate the rate λ

characterizing the bin population based on the number of observed events s in

our sample of size n.

We would like to adopt something like a uniform prior on the rate of incidence

of eternal inflation in each bin. However, it is not obvious whether we should

work in terms of λ or log λ. (Are we ambivalent with respect to the rate itself,

or with respect to its order of magnitude?) As a middle road, we adopt the

Jeffreys uninformative prior pJpλq 9 Betapλ; 1
2
, 1

2
q for the rate parameter of the
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binomial distribution, which is invariant under reparameterization of the rate

parameter between the linear and log domains. We would then take the maximum

likelihood value (using the uninformative prior) as our estimate of the incidence

rate. However, for bins in which the number of models with or without a mode

of eternal inflation is zero, the maximum likelihood rate is 0 or 1, and does not

account for information we have from the sample size of that bin. For this reason,

we often report a 95% confidence upper and/or lower bound on the incidence

rate λ in our contour plots, which includes sample size information and makes

for smooth contours in regions of parameter space in which positive events may

be scarce. (Naturally, in the case of zero positive events the bound is determined

entirely by the sample size.)

The hyperparameters defining the distribution functional over effective poten-

tials are the masses identifying the scales of the field (ϕ „ mh) and the energy

density (V „ m4
v), along with the shape parameter γ. We sample mh from within

a few orders of magnitude of the Planck mass, which of course limits the scope

of applicability of our results to a small subspace of conceivable models. This

choice was informed by noting for which field scales we are likely to get sufficient

statistics to make meaningful statements about the prevalance of eternal infla-

tion, in a subpopulation of successful inflation models (Ne ą 70) that are also

observationally viable.
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Figure 5.1: Success rates for matching model characteristics among the population of
all simulated models in Measure B, binned by field scale mh. Lower bound on the total
number of e-folds alone, and combined with constraints on the scalar index and tensor-
to-scalar ratio. The low success rate for small field scales is reflected in the high upper
bounds (assuming binomial statistics) in Figure 5.3.

Constraints on the scalar spectral index ns and the running α pressure mh from

below this range in Measure A, and the upper bound on the tensor-to-scalar ratio

r pressures mh from above. This is also where we expect to encounter interesting

behavior departing from the limiting cases where we are justified in extrapolating –

e.g. in the large field limit.1 Figure 5.1 shows rates of successful inflation (minimal

e-fold count achieved) in Measure B, as well as success in conjunction with various

CMB observables falling within Planck 68% confidence intervals; note that all rates

drop precipitously in the small field regime. Taking the potential to vary on field

scales within the range Op10´2q À mh À Op10q, we sample mv from a range in

which the amplitude of scalar perturbations Qs is most likely to be consistent with

data from the Planck mission: Op10´5q ă mv ă Op10´2q.

1Furthermore, at scales much larger than mP our confidence in accurately modeling inflation
wavers in light of likely confounding effects from an as-yet unformulated theory of quantum
gravity.
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5.2 Matching Observables

Since we are most concerned with the subpopulation of observationally vi-

able inflation models (for consideration of top-down probabilities), we should get

acquainted with how those models are distributed within our mass-scale-shaped

window onto model space. (These results have only to do with ordinary inflation

with slight changes to Measures A, so they are roughly commensurate those pre-

sented in [20].) Figure 5.2 shows constraints on CMB observables as well as the

potential slow roll parameters. We use these constraints to stand in for observa-

tional viability.

Measure A Figure 5.3 depicts the 95% confidence upper bounds on marginal

rates of incidence for parameters describing the CMB power spectrum falling

within Planck 2018 68% confidence intervals, calculated by the procedure de-

scribed in 5.1. Comfortably in the super-Planckian regime: note the positive corre-

lation of mass scales along tightly spaced contours defining equal rates of incidence

for matching of the scalar amplitude Qs. With Qs going like m2
vmhˆOp10´2q, one

might expect that correlation to be negative – why the inversion? Since we select

for potentials with a small vacuum energy in the final basin and then shift ρΛ to

zero, inflation always ends. At this scale inflation almost always ends very close to

the minimum, where the potential is approximately quadratic and perturbation
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Figure 5.2: Table of confidence intervals for cosmological observables, reported in Planck
2018 Constraints on Inflation. θMC , angular size of the sound horizon at recombination;
Ωb, baryon density; Ωc, cold dark matter density; As power of scalar perturbations at
pivot scale; ns, scalar spectral index; r, tensor-to-scalar ratio; nt, tensor spectral index.
Source: [3].
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spectral parameters take their familiar forms for V pϕq „ ϕ2. In this regime, we

more efficiently retain small fluctuations as mv increases by delaying the end of

inflation – drawing the horizon exit scale closer to the minimum where

fpxq3{2 |f 1pxq|´1
„ fpxq

is already very small – rather than reducing mh to make small values of Qs „

m2
vmh more likely far from the minimum where V pϕq „ m4

v. Furthermore, larger

field scales are more likely to yield large inflating intervals contiguous with the

maximum – bridging multiple smaller disjoint intervals, and giving a slow roll

streak starting from the peak access to lower regions of V pϕq where small Qs can

occur.

The constraints on ns are easily satisfied for large mh in Measure A, as they

encompass the quadratic limit at 55 e-folds before inflation’s end; but a sufficiently

small tensor-to-scalar ratio is hard to come by in that regime.

Quadratic limit (Ne “ 55): ns « 1´ 2N´1
e “ 0.963 r « 8N´1

e « 0.15

At intermediate scales 0.1 À mh À 1, it is no longer guaranteed that inflation

continues all the way from the maximum to the quadratic neighborhood of the

minimum; peaks must be low enough that horizon exit occurring high on the

potential can still produce small curvature perturbations. For field scales more

than an order of magnitude smaller than mP, we run into issues of sample size
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Figure 5.3: Marginal distributions of spectral parameters in Measures A (left) and B
(right). Foreground (magma): 95% confidence upper bound on the rate of incidence of
Qs falling within Planck 2018 68% confidence interval. The vertical striation pattern
emerging on the left-hand side reflects the shortage of samples with successful inflation
at low mh – due to slower accrual of e-folds and the second slow roll criterion not being
met at the peak – resulting in a weaker bound. Background: rates of incidence of ns
(blue, upper) and r (green, lower) falling within Planck’s 68% confidence intervals, with
higher color saturation (darker gray) indicating a higher rate.

that limit our ability to assign a small upper bound on the rate estimate, reflecting

the difficulty of finding potentials varying on sub-Planckian scales that produce

enough e-folds of inflation. This is acceptable for our purposes in Measure A,

as only one in „ 104 successful models at that scale fall in the confidence region

for the spectral index, and so models from smaller field scales are unlikely to

significantly affect results close to home in the space of observables.

Measure B Measure B produces similar distributions to Measure A in the large

field regime, as whether or not inflation starts at a maximum makes no difference
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if it persists along most of the potential slope to end close to the minimum.

Approaching the Planck scale mh “ 1, we do not see a pronounced entry of models

with smaller potential scales producing sufficiently small scalar perturbations as

in Measure A. Inflation is highly concentrated around extremal points of the

potential, and with no guarantee of starting in one of those intervals, we do not

get much inflation with horizon exit occurring in the intervening part of the slope,

where small mv would give small Qs.

Small sample size due to low rates of successful inflation becomes limiting at a

larger field scale than in Measure A, since we are no longer initializing in a slow roll

interval in every case. Among the successful models, the scalar tilt is significantly

more likely to fall in the observed range at small field scales, as most Measure B

models in that regime feature an extended slow roll plateau rather than merely

a gently curved quadratic peak. (This is because the probability of sampling the

initial field value within a slow roll interval is proportional to its width, and the

number of e-fold counting toward the horizon problem threshold is not taken to be

infinite as in Measure A.) Meanwhile, the small tensor amplitude becomes slightly

harder to come by at large mh, as there is some probability of large-field potentials

eligible for inclusion in Measure A to be omitted from Measure B if the field value

is sampled too close to the minimum.
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Measure C When it comes to observables, Measure C departs from Measure

A only in cases for which fewer than 55 e-folds elapse beyond a 1-σ deviation for

Hubble-scale fluctuations in the direction of the Minkowski basin, so that horizon

exit occurs in the excluded interval around the peak. Since the size of those

fluctuations is typically much smaller than the field scale in this range, in those

models inflation is almost entirely localized at the maximum. So we may expect a

departure in the far end of the small-field regime, where inflation is localized at the

peak and the scalar amplitude computed in that neighborhood can be sufficiently

small (lower left corner of Figure 5.3).

5.3 Measure A: Summits

Many of the named classes of inflation models studied in the literature assume

an inflaton initialized in a fairly homogeneous configuration atop a potential bar-

rier or plateau; the most natural choice for codifying this trend is to initialize at

the maximum with zero expected field velocity. (Another instantiation is exam-

ined with Measure C.)2

In Measure A, we sample half-basins of the potential with a nearly vanishing

2Other justifications for initializing at the top of a potential barrier – such as invoking
a first order phase transition in the past, or Hawking-XXX’s proposal based on arguments
from Hawking-Moss instantons – have merit but rely on additional structure (extra fields and
interactions, or dynamics in the past of our inflating volume) that goes beyond the scope of this
study.
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vacuum energy, weighted by the distance in field space from local maximum to

minimum. Since this tends to be of order mhmP in our space of Gaussian random

fields, our draw of Minkowski half-basins does not differ appreciably from uniform

sampling. We account for slow roll inflation that takes place in the true-vacuum

basin contiguous with the local maximum. If slow roll is not sustainable at the

peak (due to ηV ą 1), we count inflation contiguous with a slow-roll interval lower

on the potential, if at the top of the first such interval the attractor bound (4.5)

is satisfied along a classical trajectory approaching the maximum as tÑ ´8 (as

described in § 4.1.2).

Regarding the prevalance of eternal inflation, the first result (starting with

row 1 in Table 5.1) can be obtained by inspection, at least valid within the scope

of this analysis. If the second potential slow roll condition is met at the peak,

then inflation will always thwart the collapse of any initially near-homogeneous

field configuration into a quasi-static domain wall, and so continue in perpetuity.

In those models, inflation is eternal by both stochastic and topological modes:

quantum fluctuations dominate near the peak where V 1pϕq vanishes, and causally

disconnected regions descending toward different minima of the potential are sep-

arated by an inflating domain wall.

If M2
P V

2{V À ´4{3 in a suitably large neighborhood around the top of the

potential barrier, then small inhomogeneities around the peak tend to grow with
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Result
1 X Stochastic and topological eternal
2 7 7 No successful inflation
3 7 3 7 No successful inflation
4 7 3 3 Stochastic eternal at all mh

5 7 3 3 Qs Stochastic eternal at large mh, small mv

6 7 3 3 ns, α Successful inflation less often stochastically
eternal than with no conditioning on CMB
observables; generically eternal for mh Á 0.3.

7 dS False-vacuum and topological eternal
8 7 3 3 M 3 Always topological
9 7 3 3 AdS 3 Always topological
10 7 3 3 M 7 Maybe topological
11 7 3 3 AdS 7 Maybe topological

Table 5.1: Summary of Measure A results.
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time in physical coordinates, as follows from the argument presented in § 2.3. The

field’s potential energy will not tend to dominate its kinetic energy for a sustained

bout of inflation. Slow roll does not persist at the peak; but the model has a

chance to accrue many e-folds lower on the slope of the Minkowski half-basin, if

the field velocity is small enough in a field space interval in which εV , |ηV | ă 1, and

go on to produce a viable cosmology. Absent these latter conditions, and if the

scale of the domain wall around the sharp peak is sub-Hubble, the model lands

in rows 2 and 3 in Table 5.1, with no thermalized regions preceded by enough e-

folds of inflation to solve the horizon problem. For notational convenience, let us

identify nested subsets of models belonging to a sample population from Measure

A:

‚ Let A denote the set of all models in the sample from Measure A.

‚ Let S Ă A denote the set of models in the sample that have successful

inflation, meaning greater than 70 e-folds accrued in an interval in which

the potential slow roll conditions are satisfied.

‚ Let D Ă S denote the set of models that are successful AND in which the

only sustained bout of inflation starts below the peak (delayed inflation).

‚ Let D1 Ă D denote the set of models with successful delayed inflation, in

which the stochastic inflation criteria are never satisfied. (All models in S
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but not in D1 are stochastically eternal.)

5.3.1 Stochastic Eternality with Delayed Inflation

Rows 4-6 in Table 5.1 include models with both potential slow roll conditions

met only below the potential maximum, and enough inflation in that interval to

solve the horizon problem. (All such models belong to the sample subset D.) Only

if Eq. (2.11) is satisfied on the slow roll interval lower on the potential do we get

conventional stochastic eternal inflation; if not, then the model is a member of the

subset D1. It is typical for classical trajectories initialized a 1-σ fluctuation away

from the peak with zero field velocity to undergo slow roll for several e-folds along

the descent, despite the potential slow roll conditions not being met. Avoiding

stochastic eternal inflation near the peak relies on fluctuations superposing around

the peak to produce inhomogeneities, which are amplified by the large second

derivative of the potential and result in a terminal, short-lived bout of inflation

within that interval of field space.

In Figure 5.5, we depict the rates of incidence of models with ηV ă ´4{3

at the initial peak, in which successful slow roll inflation could begin lower on

the potential without meeting the stochastic inflation criterion. Considered as a

frequentist ratio, the numerator and denominator for each data point in Figure 5.5

are the sizes of D1Xtmv,mhu and SXtmv,mhu, respectively, where tmv,mhu P A
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Figure 5.4: Examples of models drawn from Measure A that fall into subset D. The
potential on the left represents the spirit of delayed inflation – a flat site for slow roll
below a sharp peak. The potential on the right has ηV ă ´4{3 at the peak, but the
curvature quickly shrinks to within the slow roll attractor; initialized with a small field
velocity, inflation really continues uninterrupted between the peak and the interval in
which the potential slow roll conditions are met, with the kinetic energy never rivaling
V pφq.

is the subpopulation simulated with a particular pairing of mass scales. Stochastic

eternal inflation is generic at large field scales mh ą 1, where ηV „ pmhmPq
´2 is

easily within the bound of the slow roll approximation at the peak. This continues

to low rates of possibly non-stochastic delayed inflation in Figure 5.5 for large mh.

The probability of ultimate interest is that of a model undergoing delayed infla-

tion that is not stochastically eternal below the local maximum, given successful,

viable inflation:

P pm R D1 | m P S X tQ, ns, α, r, nt, . . . uq

where the latter set contains models that satisfy constraints on observables. The

probabilities represented by the purple data points in the left plot of Figure 5.5
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are

P pm P D1 | m P S X tmv,mhuq

Below the Planck scale mh „ 1, incidence of non-stochastically-eternal models

among those with enough e-folds goes roughly as a power law with the scale of

the inflaton, before conditioning on spectral features. The data points indicate

95% confidence upper bounds for those mass bins in which at least one non-

stochastic model was observed. (Since this data is binned with respect to field

scale, the epektacratic and democratic mass scale weightings do not come into

play.)

Conditioning on Spectral Shape What is the effect of requiring that the

angular scale dependence of the scalar CMB spectrum is consistent with Planck

data, resulting in a scalar index ns and running α within their respective 95%

confidence intervals? At all field scales shown in Figure 5.5, the upper bound on

rates of non-stochastic delayed inflation is greater by 1 to 2 orders of magnitude

after conditioning on ns and α; these data represent the conditional probabilities:

P pm P D1 | m P S X tmv,mhu X tns, αuq

(The running α is generically within the bounds from measured data after condi-

tioning on ns.)

It looks as though varying mv has no effect on the rate of stochastic eternal-
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Figure 5.5: Incidence rate of models with slow roll starting below the peak with no
stochastic inflation, among models in Measure A with 70+ e-folds. Each data point
represents one batch of simulations with particular mv,mh (only showing batches with
at least one positive event per sample). All models within a vertical stratum have the
same value of mh (the center of the stratum on the left axis); vertical position within
the stratum reflects log10mv (range shown on the right axis). Data points reflect 95%
confidence upper bounds. In the left plot, green data points are derived from samples
conditioned on ns and α; purple data points are conditioned only on minimal e-folds;
the shaded bars indicate 90% confidence intervals taking models from all values of mv

as belonging to one sample. In the right plot, the blue lines show 90% confidence
intervals derived from samples of successful models conditioned further on Qs. Darker
lines reflect samples that have at least one non-stochastic model in the sample, whereas
lighter points are determined only by sample size.
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ity among models with successful inflation and those further conditioned on ns

and α. This would mean that once we have the primary inflation epoch starting

on a “shelf” below the peak, it is never borderline between stochastically eternal

and non-eternal; if it were, then increasing mv while holding mh constant would

have the effect of lowering the non-eternality rate represented in the left of Fig-

ure 5.5. We cannot infer independence of mv without doing a statistical test;

let our competing hypotheses be (H0) for given mh, all batches conditioned on

mh with varying mv have the same rate, with deviations owing to chance; and

(H1) the rate parameter varies with mv. We test this hypothesis using likelihood-

ratios, with the numerater the likelihood maximized over a single rate parameter

for all mv, and the denominator maximized over separate rate parameters for

each batch.3 We found that generally we cannot reject the null hypothesis with

an alpha of 0.01.

Since we cannot conclude that changing the scale of the potential in this range

has an effect on the rate of stochastic inflation, we also depict combined results

taking models from the full range of mv (including mass bins with no positive

3If si events are observed in a sample of size ni, with i indexing values of mv, then we have
for the log-likelihood ratio

τ “ 2 log
`0
`1

`h “

$

&

%

max
p

ś

i Betapp, si ` 1, ni ´ si ` 1q, h “ 0

max
tpiu

ś

i Betappi, si ` 1, ni ´ si ` 1q, h “ 1
(5.1)

We then compute the distribution over likelihood ratios in samples with the same sample sizes
as the original batches, given the single rate that maximized likelihood in the null hypothesis.
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Figure 5.6: Distributions of log likelihood ratios, comparing maximizing over one rate
parameter versus independent rate parameters for each mv, from Monte Carlo simula-
tion assuming the former null hypothesis. Ratios for the simulated data are indicated in
black. Only for mh “ 0.25, with p-value 0.016, should we consider rejecting the hypoth-
esis of a well defined rate of incidence of delayed non-stochastic inflation independent
of mv.

events) as belonging to one sample.

P pm P D1 | m P S X tmhu X tns, αuq

We report the resulting 90% confidence intervals represented by the shaded bars in

the left of Figure 5.5. (We also show the same results for models conditioned only

on number of e-folds, for which we also fail to reject the null hypothesis.) From

this we can infer that delayed non-stochastic inflation falls short of being generic

with high likelihood down to below mh “ 0.1, among models conditioned on ns

and α. For smaller field scales in this regime, what we have called non-stochastic-

eternal inflation (which includes some generous assumptions that cannot be taken

for granted) is neither generically present nor absent.
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Conditioning on Spectral Amplitudes The sub-sample of S after condition-

ing on a viable complete spectrum – including tQs, ns, α, r, ntu – was too small to

work with directly; but we can condition on the scalar and tensor amplitudes and

70+ e-folds alone, and use those results in conjunction with those conditioned

on ns and α above to make naive inferences from an assumption of statistical

independence.

Turning attention to the righthand plot in Figure 5.5, we find that straight-

forwardly stochastic inflation is less prevalent at larger potential scales among

models with viable spectral amplitudes, in comparison to all models in S. A

larger scale for the potential correlates with a greater proportion of models with

inflation below the peak among successful models satisfying constraints on the

scalar amplitude Qs. This may be somewhate suprising considering the stochastic

inflation criterion is a lower bound on the amplitude of scalar curvature pertu-

bations, which scales with m4
v. But it makes sense when considered as an effect

of selecting for a suitably small scalar amplitude born of a delayed inflationary

epoch.

A larger Hubble parameter „ m2
v means greater friction, allowing the poten-

tial to have a lot of curvature at the peak while tending toward somewhat smaller

separation in field space between the peak and an interval of slow roll (greater

allowance for V 1pϕq), as well as a smaller field velocity at the top of that inter-
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val. When the potential is large, the requirement of a small amplitude for scalar

perturbations means inflation must end low on the potential slope, which is more

likely in models with inflation starting below the peak. With greater potential

energy the upper bound on 9ϕ for the slow roll attractor is greater, allowing more

models to accrue many e-folds below the peak.

5.3.2 Topological Eternality with Delayed Inflation

The above analysis considers the incidence rate of stochastic eternal inflation

if we erect a reflecting boundary at the maximum, to the effect that fluctuations

always send Hubble volumes toward the Minkowski side of the barrier. This treat-

ment of course eliminates the possibility of topological inflation, with the intent to

isolate the occurence of eternal inflation owing to stochastic fluctuations. With-

out such an unphysical boundary, quantum fluctuations of the inflaton always

dominate the effects of the potential gradient in a sufficiently small neighborhood

around the potential peak, and so are overwhelmingly likely to result in an inho-

mogeneous field configuration descending toward the minima of both conjoining

half-basins.4

For models in the sample subset D, so long as ϕ somewhere obtains the peak

value, there is always a Hubble-sized region at the top of the slow roll interval

4Diffusion also implies that the number of e-folds in the past of any thermalized region is
finite even if we start with a homogeneous and stationary expectation value at the maximum.
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below the peak that must pass through an inflationary epoch, as the field therein

descends the slope toward the Minkowski vacuum. This is the case in which

the characteristic scale of domain wall thickness is greater than the characteristic

Hubble scale in the wall’s core; even as small inhomogeneities around the peak are

initially magnified, the wall is supported against collapse to sub-Hubble scales by

the shape of the potential, and we still end up with inflating defects interpolating

between the two vacua. Does this imply that all successful delayed inflation in

Measure A is always topologically eternal, since the intervening space separating

regions occupying the vacua is inflating?

Our hypothesis: almost (but not quite) certainly. Suppose that in Regions

I, II, and III, the field occupies the Minkowski true-vacuum basin (including an

interval of slow roll), the neighborhood of the sharp peak, and the adjacent basin,

respectively. Only if Region III grows to a size larger than the Hubble scale in

that basin – effectively “pinning” the de Sitter horizon surrounding that region to
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a value in the adjacent basin – do we get a topological defect. So long as the defect

is contained within a single de Sitter horizon, one can entertain the possibility of

a nonperturbative fluctuation that could in principle put the field in Regions I-III

in the true-vacuum basin, and make possible an end to inflation.

The question of topological eternality then comes down to whether the in-

homogeneous configuration becomes a topological defect or can be excised via

quantum tunneling, and how the rate of that process compares with the rate of

production of new defects in the late-time limit. There are three scenarios for the

basin adjacent to the Minkowski vacuum:

7. The adjacent minimum is largely positive. Inflation takes place in the false

vacuum, and the defect grows to a size of many Hubble volumes. The barrier

above the slow roll interval is sharply peaked, meaning that a Coleman-de

Luccia instanton dominates if the false vacuum has a vacuum energy greater

than the potential energy during inflation. Since the barrier includes an

interval in which the potential is very flat, a CDL instanton deposits the field

at the top of the slow roll shelf. However, one can assume that the tunneling

rate is generically too small to avoid false-vacuum eternal inflation.

8-9. The adjacent minimum is Minkowski or anti-de Sitter, and there is a period

of inflation between the peak and that minimum. Again we get an inflating

defect spanning many Hubble volumes that cannot be excised.
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10-11. The adjacent minimum is Minkowski or anti-de Sitter, and there is no slow

roll inflation on that half-basin. The zero or positive pressure region expands

outward, displacing the negative pressure inflating bulk with a spherical

boundary approaching the speed of light.

In Scenarios 10-11, the volume in Regions II and III is contained within a de

Sitter horizon. The field interpolates between the negative-energy minimum and

the start of the inflating region on the ρΛ “ 0 side; the nearest de Sitter horizon

is associated with the inflating volume that surrounds the defect. A homogeneous

anti-de Sitter space cannot tunnel to a Minkowski or de Sitter one [30]; since

the Wick rotated geometry is not compact, when we subtract the background

Euclidean action we get an infinite negative contribution to the exponent in the

tunneling rate. But perhaps such an interpolating configuration can tunnel to one

with the field everywhere at the top of the inflating interval, or otherwise to the

right of the barrier.

Unlike the Op3, 1q-symmetric solutions studied in Coleman-de Luccia, such

transitions cannot be treated in terms of ϕ and ρ as functions only of a single

radial coordinate ξ. To determine rates of such transitions, one would have to

simulate Euclidean evolution of configurations with at most Op3q symmetry, in

terms of ϕpξ, χq and ρpξ, χq. Eventually the distribution ρpϕ, tq will assign most of

the comoving volume to one or the other basin, and the rate of production of new
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topological defects – regions of negative V pϕq surrounded by inflating background

– approaches a late-time limit. If transitions that destroy defects exist, then the

rate of tunneling out of the negative or Minkowski false vacuum need not be

much faster than the rate of production of new defects. Once all of the existing

topological defects have tunneled away in a macroscopic region, all volume is on

the Minkowski side of the barrier, and the remaining inflating regions are no longer

topologically eternal toward the future. If such special tunneling solutions do not

exist, which seems likely, then Scenarios 10-11 also result in topological eternal

inflation.

5.4 Measure B: Uniform

Measure B draws initial field values uniformly; because the statistical behav-

ior of GRFs is translation-invariant, this is equivalent to simply choosing ϕ0 “ 0

for each newly sampled potential function.Many of the small field models from

Measure B that produce enough inflation will be initialized very near the maxi-

mum, and stochastic fluctuations may send Hubble volumes into both conjoining

half-basins. Despite this caveat, we consider draws of the potential and initial

conditions as belonging to one of two classes for the purpose of the analysis be-

low: those initialized in either the true- (Minkowski) or false-vacuum (de Sitter)
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basins of attraction.5

For Measure B we do not account for inflation in a slow roll interval that is

not contiguous with the initial field value, as in the delayed inflation scenario in

Measure A. This is because those inflating intervals are already included in the

domain of Measure B, and a history in which slow roll starts higher on the potential

and begins to inflate at the top of that region does not differ observationally from

a history in which the field is initialized in that interval. Furthermore, it is less

clear cut than in Measure A how we should sample the initial field velocity to

make the determination of whether the dynamics quickly reduce to slow roll at a

lower site on the potential.

Figure 5.7: 95% confidence upper bound on the rate of incidence of stochastic inflation
in Measure B, binned with respect to scalar tilt and tensor-to-scalar ratio, with at least
70 e-folds (left) and 200 e-folds (right), subject to epektacratic field scale weighting.

5Recall that the true vacuum basin is the one in which we have artificially shifted an already-
low vacuum energy to precisely ρΛ “ 0; a false-vacuum basin is one of the two adjacent to the
true-vacuum basin, in which the vacuum energy is positive. We only consider one transition
event.
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5.4.1 Initialized in a True-Vacuum Basin

Stochastic Eternality Unlike in Measure A, not every downhill trajectory for

models in Measure B passes through an extremal point on the potential. In the

left plot in Figure 5.7, we depict rates of incidence of stochastic eternal inflation

among models with greater than 70 e-folds, using epektacratic field scale wighting

and binning with respect to the scalar spectral index and tensor-to-scalar ratio.

Stochastic inflation is most prevalent in the vicinity of ns « 0.963 and r « 0.15;

this corresponds to the quadratic limiting behavior in large field models, where

the field excursion during a Hubble time goes like m´1
h making stochastic inflation

more likely. Even then, fewer than 1% of models from all mass scales in the

population are stochastically eternal.

Rates of stochastic eternal inflation presented here may be suppressed because

we require merely that εV , |ηV | ă 1 to assume slow roll takes place in the full dy-

namical evolution, rather than the strong versions of those inequalities. Although

the attractor behavior of the full equations of motion leads to authentic slow

roll being met, this choice could be letting through models that accrue e-folds

in intervals with larger V 1pϕq or V 2pϕq than would be admissible if the strong

inequalities were enforced at the initial field value. If we turn our attention to

regions of parameters space in which the scalar index ns « 1´ 6εV ` 2ηV is close

to 1, it suggests that the potential slow roll parameters are small enough to sat-
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isfy the strong inequality at least near the horizon exit scale in those models. To

compensate for this possible bias and to showcase dependence of the results on

e-fold count, we also show rates conditioned on at least 200 e-folds in the plot on

the right of Figure 5.7.

In our region of parameter space around ns “ 0.96 and small r, the effect

of requiring more e-folds is to only slightly increase the likelihood of stochastic

inflation. All of the dramatic effects of conditioning on more inflation occur for

redder scalar spectra than are viable based on Planck data. Observables ns and

r are highly correlated along contours of equal probability of eternal inflation in

the lower left region of both plots, corresponding to red spectra and small ten-

sor perturbations, which makes sense as the commonality lies in both quantities’

dependence on εV , which can be made to appear in the stochastic inflation crite-

rion. It seems that before conditioning on the amplitude of the scalar spectrum,

our region of this parameter space represents a local minimum for probability of

eternal inflation in this range.

Figure 5.8 depicts the rates of incidence of stochastic eternal inflation among

successful models with small scalar amplitude Qs ď 10´3 (our maximum likelihood

value is close to 10´4.3), as well as the number of models aggregated in each bin

– to inform where sample size is determining the estimate. Eternal inflation is

suppressed considerably for scalar-dominated spectra after conditioning on small
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Figure 5.8: (Top) Total number of successful models with Qs ă 10´3 in each bin.
(Bottom) 95% confidence upper bound on the rate of incidence of stochastic inflation
in Measure B, binned with respect to scalar tilt and tensor-to-scalar ratio, with at least
55 e-folds (left) and 200 e-folds (right), for Qs ă 10´3 and subject to epektacratic field
scale weighting.

scalar perturbations, with rates smaller by up to 3 orders of magnitude compared

to the sample of successful models. Our region of parameter space continues to

appear as near a local minimum for the probability of stochastic eternal inflation.

Topological Eternality Topological eternal inflation can come about in Mea-

sure B, if the field value is initialized close enough to the maximum that fluc-
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Figure 5.9: Same as the bottom plots in Figure 5.8, but subject to democratic field scale
weighting. The jagged apperance reflcts the small sample size of bins remaining after
one conditions on a small amplitude of scalar perturbations.

tuations are likely to result in at least one Hubble volume with a field value on

the other side of the barrier. (This can only happen if the stochastic inflation

criterion (2.11) is satisfied in an interval containing the starting point.) In Figure

5.10, we depict bounds on the incidence rate, among successful models and those

conditioned further on spectral features, of those in which the uniformly sampled

initial field value lands close enough to the maximum that fluctuations are likely

to result in at least one Hubble volume on the other side of the barrier after a

Hubble time. This is the case when

erfc
∣∣φstart ´ V

1
pφstartq{3H

2
´ φpeak

∣∣ ą 2e´3 (5.2)

In fewer than 1 in 104 models with a small scalar amplitude do we find this

condition to hold. The only sample in which we get positive events is that of all

models with succesful inflation; in that sample, the incidence of topological eternal
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Figure 5.10: 95% confidence lower bound on incidence rate of models with high prob-
ability of topological inflation, among models in Measure A with 70+ e-folds. In these
models, quantum fluctuations are comparable in size to |ϕ0 ´ ϕmax|, allowing Á 1 Hub-
ble volume to descend toward the opposite local minimum after a Hubble time with
high probability, and produce a persisting topological defect. Each line represents one
batch of simulations with particular mv,mh (only showing batches with at least one
positive event per sample or a sample size of 100). All models within a vertical stratum
have the same value of mh (the center of the stratum on the left axis); vertical position
within the stratum reflects log10mv (range shown on the right axis). In the left plot,
green data points are derived from samples conditioned on ns and α; the purple 90%
confidence intervals are conditioned only on minimal e-folds; and the shaded bars indi-
cate 90% confidence intervals taking models from all values of mv as belonging to one
sample. In the right plot, the blue data points are derived from samples of successful
models conditioned further on Qs. Darker points have at least one non-stochastic model
in the sample, whereas lighter points are determined only by sample size.
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inflation does exhibit a dependence on mv, with higher potential scales yielding

higher rates of topological inflation. This follows simply from the fact the the size

of fluctuations goes like m2
v, making it easier to atain large fluctuations that carry

the field over the peak. No events were observed in the population conditioned on

a viable scalar spectral index, and so the bounds in that sample are determined

entirely by sample size.

This is a rather high bar, indicating that the conditions for topological inflation

to proceed are highly probable to come about within a few Hubble times. Figure

5.10 does not account for models that are initialized in a stochastic inflation

interval contiguous with the maximum, but in which fluctuations from the initial

field value are not likely to reach all the way to the maximum. In such models,

the field would gradually climb the potential as it undergoes stochastic eternal

inflation, eventually to reach the peak and descend down the other side – becoming

also topologically eternal.

5.4.2 Initialized in a False-Vacuum Basin

When ϕ lands in a basin with a positive vacuum energy adjacent to the

Minkowski basin, we assume that large regions come to occupy the false vac-

uum. We compute the Coleman-de Luccia instanton profile interpolating between
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the starting basin and “true” vacuum6, or determine that a CDL solution does

not exist. When accounting for gravity, the CDL instanton terminates on the

slopes of the barrier rather than precisely at the local minima; so if a solution

exists we then initialize ϕ with a new starting position at its terminus on the

slope on the true-vacuum side of the barrier, and tally e-folds below that point.

If a CDL instanton does not exist, then the Hawking-Moss instanton gives the

largest contribution to the transition amplitude between de Sitter and Minkowski

basins. This happens when the top of the barrier is sufficiently flat [39]

V pϕtopq Á m2
P V

2
pϕtopq (5.3)

in which case ϕ following a Euclidean classical trajectory either cannot build up

enough kinetic energy to close the bubble on the false-vacuum side or loses it to

friction. Well above the Planck scale mh “ 1, it is therefore safe to assume that

the transition is Hawking-Moss. In that case, ϕ is re-initialized at the top of the

barrier, as in Measure A.

Having landed in the false vacuum basin, generically eternal would mean that

among models that produce observables consistent with Planck spectral fit and

ρΛ “ 0 after tunneling, the transition rate is generically below the threshold

given in (2.15) or generically Hawking-Moss (leading to stochastic and topological

6Since the domain of the Gaussian random field is infinite, one can always find a lower energy
vacuum. We limit consideration to the vacua to either side of the Minkowski basin.
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Figure 5.11: The bimodal distribution of SE,bkg´SErφprqs for Coleman-de Luccia transi-
tions in models initialized in the false vacuum, for mv “ 0.0025 (red) and 0.0042 (blue).
The normalized counts for values of the tunneling suppression are plotted with respect
to its absolute value; the solid lines correspond to slow tunneling, for which inflation is
eternal, while the dashed lines are fast tunneling.

inflation irrespective of the tunneling rate; there is always inflation at the peak

when HM dominates).

Coleman-de Luccia When CDL instantons exist, transition rates generically

fall below the eternal inflation upper bound, as shown in Figure 5.11. The dis-

tributions for different energy scales of inflation differ by a translation in the log

domain, scaling with m4
v. Vertical mass scales on the order m4

v “ Op10´5q would

correspond to a point where the distribution has support in the vicinity of 9{4π

and the determination of genericity becomes more nuanced, but that is far above

the range where small scalar and much smaller tensor curvature perturbations are

likely to be found at horizon exit. So models with a CDL transition are generically

eternal within the scope of this analysis. The challenge is to get enough e-folds

on the other side of the barrier, and to characterize statistical behavior of the
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tunneling rate among those very rare events.

The distributions of the number of e-folds after Coleman-de Luccia tunneling

for γ “ 0 and γ “ 4 (referring to the shape parameter in (4.3)), accounting for all

field scales with epektacratic weighting, are shown in Figure 5.12. Among models

aggregated from all field scales mh and for which the field value after tunneling

satisfies slow roll, the distribution resembles log-normal for γ “ 0 in (4.3), with

an expectation value of less than one e-fold (in effect, no inflation). Also shown

are the expectation values and 2-σ ranges (assuming log-normal) for populations

sampled with a single field scale and γ “ 0, along with the number of standard

deviations between the mean and 55 e-folds where horizon exit of CMB modes

could occur. For γ “ 4, practically the entire distribution is localized below 1

e-fold – yielding no inflation post-transition.

Determining the rate of non-eternal inflation comes down to the distribution

of the tunneling rate among models with CDL instanton solutions that are just

on the threshold of not existing – with the field landing very close to the maxi-

mum, but outside the stochastic inflation regime around the peak. For this reason,

we consider models in which the CDL solutions dominate as effectively not con-

tributing to the population of observationally viable models, for the purpose of

determining whether eternality is generic under Measure B. For a similarly defined

measure in which initial field values in the true vacuum basin are excluded, one
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Figure 5.12: (Top) Distributions of the number of slow roll e-folds in the true vacuum
basin after CDL tunneling, for two values of the shape parameter γ characterizing the
potential in (4.3). (Bottom) Moments of the distribution of number of e-folds after
CDL tunneling when inflation ends in the tunneled-to basin, as a function of mh. The
blue plot (solid line with circular markers, left axis) shows the mean of log10Ne and the
shaded 2-σ confidence interval. The red (dashed line with square markers, right axis)
is the number of standard deviations between the mean and log10 55.

would need a way of sampling such very rare potential shapes that give sufficient

inflation after a CDL tunneling event, in order to characterize the prevalence of

eternal inflation among small field models.

Hawking-Moss An interpretation of the Hawking-Moss [35] instanton as a lim-

iting behavior in the CDL formalism paints a picture of the entire Hubble duration

of the field configuration within a Hubble volume sitting on top of the barrier.

Rather, we take the Hawking-Moss calculation to give the rate at which Hub-
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ble volumes occupying the false vacuum basin thermally fluctuate into the true-

vacuum basin, with energy comparable to the height of the barrier [39].

Since the potential is only sampled at the false vacuum and at the top of the

barrier, the Hawking-Moss transition rate is independent of mh; so we can expect

this same distribution at higher field scales as well, in regions where Qs is likely

to match observation. Tunneling rates only begin to approach the fast-tunneling

regime when the potential approaches the Planck scale. This corresponds to

an enormous scale for the inflaton mh „ 106 in order to get a small enough

scalar amplitude. It then comes down to how we interpret the fast-tunneling

Hawking-Moss instanton. It is not eternal on the usual false-vacuum grounds, but

supposedly ends with the field everywhere in a Hubble sized region sitting atop

the maximum, where we would expect that it would fluctuate away from the peak

into the true vacuum basin and give topological inflation.

5.5 Measure C: Hilltops

If the inflaton starts with zero expected field velocity at the maximum and is

nudged off the peak by quantum fluctuations, then Ne is not infinite; the number

of e-folds to elapse before exiting the regime where quantum fluctuations dominate

is described by a Gaussian random walk. The total number of e-folds expected
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along the worldline of an observer born in the initial Hubble volume is

xNe,totaly “ xNe,stochy `Ne,since, (5.4)

where xNe,stochy is the expected number of Hubble times taken to traverse the

interval of stochastic eternal inflation, and Ne,since are elapsed between the break-

down of the stochastic inflation criterion (2.11) and the end of inflation. This

expected e-fold count characterizes the rate of production of terminally inflating

regions, and might play a role in some candidate volume-weighting measures for

predictions within a single model that undergoes eternal inflation.

If we neglect the classical field excursion when the stochastic criterion is met

(evolution is fluctuation-dominated), the random walk is unbiased with standard

deviation σ “ H{2π at each step, for which the mean distance traveled after N

steps goes like σ
?
N . Taking a population of future-directed world-lines uniformly

sampled within the initial Hubble volume, the expected number of Hubble times

(and hence e-folds) to reach the edge of the fluctuation-dominated interval of width

∆ϕ (and exit stochastic eternal inflation) along a worldline uniformly sampled

from that set is then

xNe,stochy “ p2πH
´1∆ϕq2

So large fluctuations near the maximum in fact reduce the a priori expected number

of e-folds for a comoving volume measure, by nudging ϕ away from the high-Ne-
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density maximum. (At later times, the volume measure changes to weigh higher

Ne world-lines more strongly.) After (2.11) breaks down, evolution is dominated

by slow roll, and we tally e-folds as usual based on the background trajectory.

Suppose the inflaton field value in an initial Hubble volume is drawn at some

characteristic distance in field space – say H{2π, or one standard deviation for

Hubble-scale fluctuations – away from the local maxima of potential barriers ran-

domly sampled by the procedure defining Measure A. If the field space interval

around the maximum in which fluctuations dominate is narrower than this gap,

then the model has a chance to avoid stochastic and topological inflation. How

often is stochastic eternal inflation localized entirely within that neighborhood of

the peak, with enough inflation lower on the potential to solve the horizon prob-

lem? In other words, how often is xNe,stochy ă 1? In principle, some Measure A

models with inflation at the peak can be excluded from Measure C, if fluctua-

tions are larger than the inflating interval around the maximum that includes the

would-be horizon exit scale.

A large field widens the fluctuation-dominated interval near the peak, but

also correlates with tall peaks in regions of model space in which scalar curvature

perturbations reflected in the CMB are the right size; the latter leads to larger

fluctuations around the peak. Approximating as quadratic the neighborhood of

the potential around the maximum in which fluctuations dominate, we can get a
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sense for when quantum fluctuations are larger than the width of that stochas-

tic inflating interval. Evaluating Eq. (2.11) at a field value separated from the

maximum by the width of Gaussian fluctuations δϕ, we have

pV pϕpeakq `
1
2
V 2pϕpeakq δϕ

2
q
3{2
ą 6.6 |V 2pϕpeakq δϕ|M3

P

Taking quantum fluctuations of size δϕ2 “ H2{4π2 “ 2
3π
m4
vm

2
Pfpxq, where x is

the dimensionless field value at the peak,

m6
v

ˆ

fpxq ´
1

3π

m4
v

m2
h

fpxqf2pxq

˙3{2

Á
6.6

16π2
?

3

m6
v

m2
h

f2pxq
a

fpxq

and assuming typical values for the shape function of order unity, fpxq “ f2pxq “

1, we obtain in terms of the mass scales characterizing the potential:

ˆ

1´
1

3π

m4
v

m2
h

˙3{2

Á
6.6m´2

h

16π2
?

3

Considering the large field regime, we set mh „ 106m2
v to delineate the region

in Figure 5.3 where the scalar amplitude Qs most often takes its value modeled

from measured data. We find that 1-σ fluctuations deposit the field beyond the

breakdown of the stochastic inflation criterion when mv À 10´3.4 or mh À 1 – just

about where the highly localized linear trend begins in Figure 5.3.

So granted the above assumptions we should expect a comfortably wide site

of stochastic inflation at the peak among large field models that are most likely

to give the observed amplitude of scalar curvature perturbations. Then, what
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explains the hook-shaped incursion of the contours of relatively low incidence of

peaky stochastic inflation in Figure 5.13, approaching ns „ 0.96 from below in

the large-mv and large-mh regions? These plots show the rate of incidence of

stochastic inflation among Measure C models respecting Planck 2018 constraints

on the scalar and tensor amplitudes, binned with respect to the scalar index and

the vertical or horizontal mass scale.

Large-field models producing a tensor-to-scalar ratio less than 0.07 are those in

which horizon exit occurs far from the quadratic minimum where εV is small; for

the scalar spectral index to also be more red than the quadratic limit of 0.96, the

second potential slow roll parameter ηV must be larger at horizon exit, correlating

with a narrow stochastic inflating interval around the peak. Inflation yielding a

redder spectrum with small scalar and tensor perturbations thus typically breaks

the approximations used in the above calculation, with f2pxq atypically large.

Entry of higher order terms that would break the quadratic approximation coin-

cides with breakdown of (2.11). (Taking into account that the field excursion is in

fact greater than (2.11) assumes when V 2pϕq is significant, the stochastic eternal

interval is actually smaller; so the above estimate of the lower bound on mv is

conservative – more cheritable to stochastic inflation.)

In the intermediate zone ´3.5 ă log10mv ă ´3, inflation no longer necessarily

ends in the quadratic regime, but peaks that are atypically high in energy can,
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and they have a better chance of scoring a selection boost. As the energy scale

shrinks further, without much new selection pressure on mh coming from the

Qs constraint, fluctuations once again become smaller than the eternal inflation

interval, and stochastic inflation becomes more prevalent below log10mv „ ´3.5.

Below mv „ 10´4 or mh „ 0.2, most models with small Qs are far too red to be

consistent with observation, and we lack sufficient samples in the range of Figure

5.13 to place bounds. When binning with respect to field scale, incidence rates for

stochastic inflation are consistently low below mh „ 1 – in the realm of common

but not generic.

So for the range 0.955 ă ns ă 0.975, eternal inflation peeks into the realm of

genericity (at ą 95% incidence) by the stochastic mode for vertical mass scales in

the middle of our range. Figure 5.14 shows rates of stochastic inflation conditioned

on ´4.5 ă log10Q ă ´4.1, and binned with respect to scalar spectral index and

tensor-to-scalar ratio, including models from all mass ranges represented in Figure

5.3 with epektacratic weighting. Stochastic inflation is generic for all spectral

index values when r ą 0.1, including all mass scales or just those less than mP.

For small tensor-to-scalar ratio, eternal inflation is suppressed.
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Figure 5.13: (Left) Bin counts. (Right) 95% confidence lower bound on the rate of
incidence of models with fluctuations smaller than the width of the stochastic inflation
interval around the maximum, under epektacratic weighting in Measure C, binned with
respect to scalar tilt and (top) vertical or (bottom) horizontal mass scale, and condi-
tioned on r ă 0.064, and ´4.5 ă log10Q ă ´4.1. The grid points indicate the centers of
bins with a non-zero number of non-eternal models. Where grid points are absent, the
reported bound is determined only by sample size; a small, uninformative lower bound
in regions with few samples.
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Figure 5.14: 95% confidence lower bound on the rate of incidence of stochastic infla-
tion in Measure A, binned with respect to scalar tilt and tensor-to-scalar ratio, and
conditioned on ´4.5 ă log10Qs ă ´4.1. The left plot includes all mass scales with
epektacratic weighting. The right includes only mh ď 1.
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Chapter 6

Discussion

6.1 Executive Summary

Among Hubble volumes initialized at the local maxima of Gaussian random

potentials, we considered separately questions of genericity of stochastic and topo-

logical modes of eternal inflation. Among large field models, and intermediate

models with acharacterstically broad barriers, a sustained bout of inflation begins

at the peak leading generically to both stochastic and topological modes of eternal

inflation. In intermediate field-scale models, initializing at the peak does not nec-

essarily entail stochastic eternal inflation; we can avoid sustained slow roll near

the peak if it has a large second derivative, while accruing enough inflationary

e-folds for a viable cosmology at a lower site on the potential in which (2.11) is
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not satisfied. At small enough field scales, successful inflation conditioned on the

scalar index and running does not generically take place in intervals in which both

the potential slow roll conditions and stochastic eternal criteria are satisfied. For

some models that meet this description, it is clear that a homogeneous configura-

tion initialized with a small field velocity at the maximum never exits slow roll,

despite ηV ă ´1 – as in the potential on the righthand side of Figure 5.4. Count-

ing these models as non-stochastically eternal suppresses the rates of eternality

presented in Figure 5.5, which should be taken as fairly generous to the prospect

of terminal inflation.

Even models with “delayed inflation” are likely always topologically eternal,

even though the peak itself does not satisfy the potential slow roll conditions. It

is conceivable but not settled from arguments presented here that inflation can be

considered non-eternal in some of these models if the adjacent basin has a small or

negative vacuum energy, and interpolating field configurations can quickly tunnel

to the side of the barrier containing our observable universe. We have had to

focus on edge cases in which eternal inflation might conceivably be avoided, as

the straightfoward cases are generically eternal when initialized at a summit. We

suspect most readers will interpret these labored and at times speculative mental

gymnastics as suggesting eternal inflation is indeed difficult to avoid in Measure

A at all field scales explored in this study.

122



Stochastic and topological modes of eternal inflation are not generic in Mea-

sure B below mh „ Op100q, with the initial value of the field sampled uniformly

from intervals satisfying the potential slow roll conditions. After conditioning

on Qs, models that give observables consistent with an approximately quadratic

potential at horizon crossing are those most likely to be stochastically eternal.

Binning with respect to the scalar index and tensor-to-scalar ratio, parameter

values that best model observation correspond to a local minimum in the rate

of stochastically eternal models within the range examined. Strongly topological

eternal inflation, taken to occur when quantum fluctuations are likely to produce

at least one Hubble volume descending toward the adjacent minimum, is natu-

rally rare due to needing luck to land so near to the peak. Models with stochastic

eternality tend to be initialized in a stochastic inflating interval contiguous with

the local maximum, and are therefore de facto topologically eternal – stochastic

fluctuations will carry the field in some regions over the top of the barrier to

produce an inflating topological defect.

For small field scales, Coleman-de Luccia instantons exist, but they tend to

be thin-walled with the field landing very close to the true minimum and not

producing an observationally viable cosmology with sufficient e-folds of inflation.

Among the models that do result, the transition rate is generically small enough to

yield false vacuum eternal inflation. At scales larger than mP , the Hawking-Moss
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instanton dominates, giving generic eternal inflation.

Measure C offers a variant of Measure A, initializing the field value near the

local maxima of the potential but with the possibility of non-topological inflation if

fluctuations are subdominant at the starting point. At small field scales, inflation

falls short of being generically eternal, neither satisfying the stochastic inflation

criterion (2.11) nor leading inevitably to an inhomogeneous inflating configurtion

straddling the potential barrier. Above the Planck scale mh „ 1, inflation is also

less-than-generic among models with redder spectra satisfying Planck constraints

on the scalar and tensor amplitudes.

6.2 Conclusions from Monte Carlo Analyses

Our first research question was “Is eternal inflation a generic consequence of

inflation conditioned on observations?” Embarking on this investigation, it was

clear that this question could not have a single answer given the ambiguity in

the measure over inflationary models. Furthermore, it was unclear whether it is

even sensible to seek a single verdict for any particular measure, akin to the top-

down probabilities discussed in [57]. Our second research question offers greater

latitude for exposition: “By what modes and to what extent is inflation generically

eternal?” Topological eternal inflation is only clearly generic when initializing at

the top of the barrier, an initial state from which it is nearly inevitable that
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an inhomogeneous configuration interpolating across the barrier will come about.

Stochastic inflation is generic at large field scales in Measures A, and in pockets

of the space of mass scale parameters in Measure C; it is generically absent in

all regions of the space of CMB spectral parameters examined conditioned on

minimal inflation. The data suggest that transitions between de Sitter minima

in viable cosmological histories – whether Coleman-de Luccia or Hawking-Moss –

generically entail eternal inflation.

Our third question “How is genericity to be defined?” is treated to a prelimi-

nary discussion and mathematical formulation in § 3.3. In formulating our numer-

ical methodology and converging on appropriate statistical methods for analysis,

our criteria for genericity changed. We adapted from a rather starkly formal defini-

tion in terms of joint estimation of many metrics parameterizing eternal inflation,

to a more practically minded approach of estimating frequentist rates of incidence

of eternal behaviors in populations of models sampled from the measure.

Our final research question was “How much freedom do we have in affecting

genericity of eternality in choosing a probability measure?” The data suggests

that genericity differs wildly among the three measures adopted in this numerical

study, and within submeasures obtained by adopting different weights on the mass

scales in the measure over potentials.

125



6.3 Implications for Landscapism

Results of consideration of the form of the string landscape suggest that sam-

pling the potential as a Gaussian random field is not an absurd proposition. If the

one-dimensional reduction of field trajectories within a multifield landscape can be

characterized as a Gaussian random field in 1D, then results of the above analysis

weigh on what we might expect from a string landscape. Since this setup involves

considering an ensemble of trajectories through a higher-dimensional potential,

our scope of considering the future 4-volume coincident with an initial Hubble

volume does not characterize the occurance of eternal inflation generally within

the landscape, but rather whether that initial Hubble volume with conditions

sampled according to the measure is more or less likely to lead to eternality.

The results most subject to change in such a framework are those concerning

topological inflation, as the structure of formation of topological defects varies

with the dimension of the field space (and the dimension of spacetime). False-

vacuum eternal inflation results are also subject to revision, as transitions between

de Sitter minima are dominated by instantons that take curving paths through

the higher-dimensional field space.
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6.4 Further Research

There are many avenues open for future work toward elucidating representation

of eternal inflation in the space of inflation models. We outline some of these

possible directions below.

While the “Is it generic?” research question has been suitably addressed within

our intended scope, we were limited in our ability to answer the “How generic?”

questions in some regions of hyperparameter- and observable-space. We would

like to know about genericity of eternal inflation at small field scales, less than

an order of magnitude below the Planck mass (or an Op1q fraction of the reduced

Planck mass). The variance of the standard Monte Carlo estimates based on sam-

pling from the distribution of Gaussian random fields was too great to be very

informative, due to the limited size of the sample containing models with success-

ful inflation; and the sample shrinks further when conditioning on or binning with

respect to observables. Furthermore, the sample sizes for the analysis of success-

ful inflation following a Coleman de Luccia transition were far too small to say

much of meaning using this methodology. To take the analysis further, we could

use importance sampling to probe the measure over small field scales and very

rare false vacuum transitions, without sampling the measure’s native distribution

and waiting for them to happen. We could generate potentials using a genetic

algorithm or some other means to sample these regions containing low-frequency
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events; compute the likelihood that that potential would be sampled from a Gaus-

sian random distribution or another sort; and weigh accordingly when estimating

rates.

One could apply the same numerical methodology to simulations that include

the full dynamics, to eliminate some of the guesswork inherent in the econom-

ical approach adopted here. As a middle road, one could use machine learning

techniques to identify deviations between smaller data sets computed with full dy-

namics and those computed using simplifying assumptions, and correct deviations

in much larger data sets including the latter.

The string landscape is populated by low energy effective theories generally

featuring multiple interacting fields, so these results are interesting largely to the

extent that they can be generalized to multifield cases. In higher dimensional

potentials spanned by multiple scalar fields, there is a reduction in the effective

dimension experienced by a field space trajectory as it approaches a minimum.

For particular multfield models with a lot of extra symmetry (e.g. Higgs inflation

with Op4q gauge symmetry, addressed with non-minimal coupling in [61]), mul-

tifield dynamics reduce to effectively single-field well before the era of inflation

that influences what we observe. Does a measure on initial conditions naturally

emerge given statistical characteristics of the landscape, identifying where on the

slope the potential becomes effectively one-dimensional? The CosmoTransitions

128



package includes code for computing Euclidean action-minimizing trajectories in

multifield potentials, and could be used to investigate false vacuum inflation in

N -D Gaussian random fields. Stochastic inflation must account for possibly non-

Gaussian fluctuations in the context of interacting fields.

One could perform a similar analysis in the single- and multifield cases, while

accounting for non-minimal coupling [62] or “warm inflation” – modifications to

the treatment that can be applied given any potential. Warm inflation consid-

ers the effect of adding a thermal friction term atop the usual Hubble friction –

typically by coupling to a light radiation field. The addition of thermal fluctua-

tions amplifies the scalar spectrum, lowering the threshold criterion for stochas-

tic eternal inflation and making a small tensor-to-scalar ratio less dependent on

fine-tuning of the potential. One could also replace the amplitude of inflaton

fluctuations in (2.11) with the adiabatic regularized version proposed in [42].

Finally, one could explore the possibility of field configurations lacking Op3, 1q

symmetry – interpolating from a Minkowski or anti-de Sitter minimum, over a

sharp peak, and into an interval of slow roll – tunneling to a configuration in

which the field is entirely on the Minkowski side of the barrier. A confirmation

of our hunch that these transitions are not possible – or generically have slow

tunneling rates or lead to curvature singularities – would close the prospects of

non-eternal inflation occuring in Measure A.
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Chapter 7

Conclusion

Inflation has been demonstrated to be highly successful as a paradigm for early

universe cosmology, addressing naturalness problems lingering in the Big Bang

picture while offering a coherent explanation for the origin of primordial curvature

perturbations implied by observations of the Cosmic Microwave Background. Its

grandest prediction of all may be that we live in an eternally inflating multiverse,

producing an unbounded number of causally disconnected regions with wildly

varying cosmological histories.

For research culminating in this dissertation, we investigated whether and to

what extent eternality can or must be considered a genuine prediction of inflation

– in the sense of following generically from conditions giving rise to the latter in

the context of more-or-less physically-justifiable measures on the space of infla-
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tionary cosmologies. We shed light on how one would go about evaluating claims

that features of a model are generic or fine-tuned. Using a computational method-

ology developed to assess the typicality of eternal inflation with applied statistics,

we found that genericity is highly dependent on the measure, and that its deter-

mination inevitably involves some nuance. In Appendix A, we go on to explore

the toy landscape of Gaussian random potential functions in conjunction with

computable measures over initial conditions, probing characteristics of eternal in-

flation like the fractal dimension. We demonstrate the absence of an informative

relationship between the running of the spectral index and presence of stochastic

eternal inflation in models with a uniform sampling of initial field values.

This work adds to an ongoing conversation pertaining to the credibility of the

anthropic view of the cosmos that has gained traction in recent decades. Whether

or not eternal proliferation and a “multiverse” generically follow from inflation has

profound implications for this picture, as anthropic arguments require a large pop-

ulation of trial sites where apparently fine-tuned quantities can vary. In addition

to direct scholarly contribution, we intend to publish a code package for simulat-

ing inflation across an ensemble of randomly generated inflaton potentials using

modern programming tools; others may build upon this package in furtherance of

related research objectives.

There may be no way of assigning probabilities to partitions of the space of
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cosmological models that is not contaminated by human prejudice. If that were

the case, should any weight be assigned to the intuitions and conceptual biases

of scientists and philosophers in judging the credibility of proposals that elude

falsification by evidence? Or should we be content with remaining agnostic when

apparent naturalness problems crop up in our scientific theories?

The answer to this question depends largely on the dispositon of the answerer

with respect to the role of science. If the objective in science is limited to illuci-

dating the reproducible, experimental facts of the natural world, then the scientist

should pay little attention to naturalness problems, which by their nature evade

unambiguous framing and definitive closure (except perhaps by the supersession

of the paradigm that is the context for the problem). If, on the other hand, one

views science as in some respects a form of elite art – to be appreciated in detail

by a highly trained community of experts and in likeness by the general public –

then aesthetic and philosophical questions are fair game, and perhaps the whole

point of the enterprise.

132



Bibliography

[1] Sean M. Carroll. In What Sense Is the Early Universe Fine-Tuned? 2014.
arXiv:astro-ph.CO/1406.3057.

[2] Anna Ijjas, Paul J. Steinhardt, and Abraham Loeb. Inflationary paradigm
in trouble after Planck 2013. Physics Letters B, 723(4):261 – 266, 2013.

[3] Y. Akrami et al. Planck 2018 results. X. Constraints on inflation. Astronomy
and Astrophysics. Accepted Aug 2019.

[4] Michael R. Douglas. The Statistics of string / M theory vacua. JHEP, 05:046,
2003.

[5] Leonard Susskind. The anthropic landscape of string theory. Universe or
multiverse, pages 247–266, 2007.

[6] Tom Banks, Michael Dine, and Elie Gorbatov. Is there a string theory land-
scape? Journal of High Energy Physics, 2004(08):058–058, sep 2004.

[7] Lawrence J. Hall and Yasunori Nomura. Evidence for the multiverse in the
standard model and beyond. Phys. Rev. D, 78:035001, Aug 2008.

[8] Alan H. Guth and Erick J. Weinberg. Could the universe have recovered
from a slow first-order phase transition? Nuclear Physics B, 212(2):321 –
364, 1983.

[9] A.D. LINDE. Eternal chaotic inflation. Modern Physics Letters A, 01(02):81–
85, 1986.

[10] Alexander Vilenkin. Birth of inflationary universes. Phys. Rev. D, 27:2848–
2855, Jun 1983.

[11] Anthony Aguirre. Eternal inflation, past and future. In Rudy Vaas, edi-
tor, Beyond the Big Bang, chapter 3. Springer-Verlag Berlin and Heidelberg
GmbH & Co. KG, 2014.

133



[12] A.D. Linde. Chaotic inflation. Physics Letters B, 129(3):177 – 181, 1983.

[13] Alan H. Guth. Eternal inflation and its implications. Feb 2007. arXiv:hep-
th/0702178.

[14] Alexander Vilenkin. The Birth of Inflationary Universes. Phys. Rev., page
2848, 1983.

[15] Ken D. Olum. Is there any coherent measure for eternal inflation? Phys.
Rev. D, 86(6):1–10, Feb 2012.

[16] Andreas Albrecht and Daniel Phillips. Origin of probabilities and their ap-
plication to the multiverse. Phys. Rev., D90(12):123514, 2014.

[17] Anthony Aguirre, Max Tegmark, and David Layzer. Born in an Infinite
Universe: A Cosmological Interpretation of Quantum Mechanics. Phys. Rev.,
D84:105002, 2011.

[18] Yasunori Nomura. Physical Theories, Eternal Inflation, and Quantum Uni-
verse. JHEP, 11:063, 2011.

[19] Raphael Bousso and Leonard Susskind. The Multiverse Interpretation of
Quantum Mechanics. Phys. Rev., D85:045007, 2012.

[20] Max Tegmark. What does inflation really predict? Journal of Cosmology
and Astroparticle Physics, 04, 2005.

[21] Alan H. Guth. The Inflationary Universe: A Possible Solution to the Horizon
and Flatness Problems. Phys. Rev., D23:347–356, 1981.

[22] A. D. Linde. A new inflationary universe scenario: A possible solution of the
horizon, flatness, homogeneity, isotropy and primordial monopole problems.
Physics Letters B, 108:389–393, February 1982.

[23] Andreas Albrecht and Paul J. Steinhardt. Cosmology for grand unified theo-
ries with radiatively induced symmetry breaking. Phys. Rev. Lett., 48:1220–
1223, Apr 1982.

[24] C. B. Netterfield et al. A measurement by Boomerang of multiple peaks in
the angular power spectrum of the cosmic microwave background. Astrophys.
J., 571:604–614, 2002.

[25] David Kaiser. Primordial perturbations from inflation: An informal primer.
Unpublished notes, Dec 2011.

134



[26] Chris Pattison, Vincent Vennin, Hooshyar Assadullahi, and David Wands.
Stochastic inflation beyond slow roll. Journal of Cosmology and Astroparticle
Physics, 2019(07):031–031, Jul 2019.

[27] Jerome Martin and Vincent Vennin. Quantum Discord of Cosmic Inflation:
Can we Show that CMB Anisotropies are of Quantum-Mechanical Origin?
Phys. Rev., D93(2):023505, 2016.

[28] David Polarski and Alexei A. Starobinsky. Semiclassicality and decoherence
of cosmological perturbations. Class. Quant. Grav., 13:377–392, 1996.

[29] A.R. Liddle and D.H. Lyth. Cosmological Inflation and Large-Scale Struc-
ture. Cosmological Inflation and Large-scale Structure. Cambridge University
Press, 2000.

[30] Sidney R. Coleman and Frank De Luccia. Gravitational Effects on and of
Vacuum Decay. Phys. Rev., D21:3305, 1980.

[31] Matthew C. Johnson. Vacuum Transitions and Eternal Inflation. PhD thesis,
University of California Santa Cruz, 2007.

[32] Jaume Garriga. Nucleation rates in flat and curved space. Physical Review
D, 49(12):6327–6342, 1994.

[33] Martin Bucher, Alfred S. Goldhaber, and Neil Turok. Open universe from
inflation. Phys. Rev. D, 52:3314–3337, Sep 1995.

[34] A. Aguirre, T. Banks, and M. Johnson. Regulating eternal inflation. II. The
Great divide. JHEP, 08:065, 2006.

[35] S.W. Hawking and I.G. Moss. Fluctuations in the inflationary universe. Nu-
clear Physics B, 224:180–192, 08 1983.

[36] Andrei D. Linde and Dmitri A. Linde. Topological defects as seeds for eternal
inflation. Phys. Rev., D50:2456–2468, 1994.

[37] Alan H. Guth and Vitaly Vanchurin. Eternal Inflation, Global Time Cutoff
Measures, and a Probability Paradox. 2011. arxiv:hep-th/1108.0665.

[38] Arjun Berera. Warm inflation. Phys. Rev. Lett., 75:3218–3221, 1995.

[39] Puneet Batra and Matthew Kleban. Transitions between de sitter minima.
Phys. Rev. D, 76:103510, Nov 2007.

135



[40] Viatcheslav F. Mukhanov, L. Raul W. Abramo, and Robert H. Branden-
berger. On the Back reaction problem for gravitational perturbations. Phys.
Rev. Lett., 78:1624–1627, 1997.

[41] L. Mersini-Houghton and L. Parker. Eternal inflation is “expensive”. 2007.
arXiv:hep-th/0705.0267.

[42] Leonard Parker. Amplitude of Perturbations from Inflation. 2007. arXiv:hep-
th/0702216.

[43] Elliot Nelson. Quantum Decoherence During Inflation from Gravitational
Nonlinearities. JCAP, 1603:022, 2016.

[44] Kimberly K. Boddy, Sean M. Carroll, and Jason Pollack. How Decoher-
ence Affects the Probability of Slow-Roll Eternal Inflation. Phys. Rev.,
D96(2):023539, 2017.

[45] William H. Kinney and Katherine Freese. Negative running can prevent
eternal inflation. Journal of Cosmology and Astroparticle Physics, 2015.

[46] Cumrun Vafa. The String landscape and the swampland. 2005. arXiv:hep-
th/0509212.

[47] T. Daniel Brennan, Federico Carta, and Cumrun Vafa. The String Landscape,
the Swampland, and the Missing Corner. PoS, TASI2017:015, 2017.

[48] Hiroki Matsui and Fuminobu Takahashi. Eternal Inflation and Swampland
Conjectures. Phys. Rev., D99(2):023533, 2019.

[49] Tom Rudelius. Conditions for (no) eternal inflation. Journal of Cosmology
and Astroparticle Physics, 2019(08):009–009, Aug 2019.

[50] Konstantinos Dimopoulos. Steep Eternal Inflation and the Swampland. Phys.
Rev., D98(12):123516, 2018.

[51] Suddhasattwa Brahma and Sarah Shandera. Stochastic eternal inflation is in
the swampland. Journal of High Energy Physics, 2019(11):16, Nov 2019.

[52] William H. Kinney. Eternal Inflation and the Refined Swampland Conjecture.
Phys. Rev. Lett., 122(8):081302, 2019.

[53] Ben Freivogel, Matthew Kleban, Maria Rodriguez Martinez, and Leonard
Susskind. Observational consequences of a landscape. JHEP, 03:039, 2006.

136



[54] Alan H. Guth and Yasunori Nomura. What can the observation of nonzero
curvature tell us? Phys. Rev., D86:023534, 2012.

[55] Melchiorri A. Di Valentino, E. and J. Silk. Planck evidence for a closed
universe and a possible crisis for cosmology. Nature Astronomy, 2019.

[56] G. W. Gibbons and Neil Turok. The Measure Problem in Cosmology. Phys.
Rev., D77:063516, 2008.

[57] J. B. Hartle and S. W. Hawking. Wave function of the universe. Phys. Rev.
D, 28:2960–2975, Dec 1983.

[58] James Hartle, S. W. Hawking, and Thomas Hertog. No-boundary measure
in the regime of eternal inflation. Phys. Rev. D, 82:063510, Sep 2010.

[59] Sumit K. Garg and Chethan Krishnan. Bounds on Slow Roll and the de
Sitter Swampland. JHEP, 11:075, 2019.

[60] Carroll L. Wainwright. Cosmotransitions: Computing cosmological phase
transition temperatures and bubble profiles with multiple fields. Comput.
Phys. Commun., 183:2006–2013, 2012.

[61] Ross N. Greenwood, David I. Kaiser, and Evangelos I. Sfakianakis. Multifield
Dynamics of Higgs Inflation. Phys. Rev., D87:064021, 2013.

[62] Chao-Jun Feng and Xin-Zhou Li. Is non-minimal inflation eternal? Nuclear
Physics B, 841(1):178 – 187, 2010.

[63] Mukunda Aryal and Alexander Vilenkin. The fractal dimension of the infla-
tionary universe. Physics Letters B, 199(3):351 – 357, 1987.

[64] Nobuyuki Sakai. Generality of topological inflation. Class. Quant. Grav.,
21:281–288, 2004.

137



Appendix A

Explorations in a Toy Landscape

In the above chapters, we focused on characterizing the prevalence of eternal

behavior among observationally viable inflation models, by simulating inflation on

Gaussian random potentials. In this appendix, we explore what other insights can

be gleaned from the simulated data obtained from that numerical methodology.

A.1 Does Negative Running Prevent

Eternal Inflation?

In [45], it is argued that a value of the running of the spectral index α below

a small negative threshold (´4 ˆ 10´5 for a pair of viable values of the scalar

amplitude and spectral index) is a sufficient condition for no stochastic eternal

inflation in the past of horizon exit of CMB perturbations, given assumptions

about higher-order runnings; an outline of the argument is reproduced in § 3.2.
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(The running indicates how the scale-dependence of power in spherical harmonic

modes of the CMB in turn depends on wavelength.) The bound claimed for non-

eternal inflation is

α ”
d2plnPRq

dpln kq2
ă
p1´ nsq

2

4 lnQ2
s

(A.1)

This assumes that higher runnings-of-the-running (higher derivatives given by

dnplnPRq{dpln kq
n) are non-positive for odd n and non-negative for even n. (Since

ln k{k˚ is negative in the past of CMB horizon exit, this ensures that higher-order

runnings do not compensate for the negative first running to raise the maximum

amplitude of curvature perturbations.)

To test this proposed bound in our toy landscape of Gaussian random poten-

tials, we compare the running of the spectral index computed at horizon exit to

the quantity on the RHS of Eq. (A.1) for models simulated in Measure B (uniform

sampling of initial field values within slow-roll intervals on the potential). To ob-

tain a test most relevance to our cosmological history, we would first condition on

the scalar amplitude Qs and spectral index ns falling within Planck constraints;

but the residual sample size after that selection is too small in Measure B. Since

the underlying argument presented in [45] is not conditioned on particular values

of Qs and ns, we instead do a more limited conditioning step – requiring Qs ă 10´3

and 0.9 ă ns ă 1.02.

We find that given our assumptions for the simulation in Measure B, the bound
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(A.1) is not consistent with the simulated data. Under all choices for the mea-

sure over mass scales that we analyzed, the distribution of the running among

stochastically eternal models is localized below the negative lower bound (A.1)

(in one case: entirely below). In the top left of Figure A.1, the population is all

Figure A.1: Histograms of values of the running α among stochastic eternal and non-
eternal models sampled from Measure B. (Top Left) All field scales, epektracratic
weighting; (Bottom Left) all field scales, Qs ď 10´3, epektracratic weighting; (Top
Right) mh ď 1, epektacratic weighting; (Bottom Right) mh ď 1, Qs ď 10´3, demo-
cratic weighting

Measure B models with successful inflation, using epektaratic weighting (simulate

the same number of models at each log-sampled field scale mh, then aggregate all

models with enough e-folds). The distributions for eternal and non-eternal models

are almost identical, with slightly greater excess kurtosis in the eternally inflating

population. This is because large field models dominate the epektacratic mea-

sure; the running is calculated at horizon exit near the minimum, where behavior

is pretty much the same whether or not there was eternal inflation higher on the
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potential slope. With other cuts on field scale (considering only mh ď 1) and

weighting schemes, we see some separation between the two distributions. How-

ever, the stochastically eternal distribution remains localized below the proposed

lower bound.

This suggests at least one of several factors at play. The higher order runnings

play a significant role and are generically not obeying the constraints assumed in

deriving the bound. It is also possible that our weak criteria for slow roll (requiring

only εV ă 1 and |ηV | ă 1), are admitting models in which the bound derived in

[45] is not effective, and were we to substitute strong inequalities the situation

would be different. In any case, we can feel comfortable in concluding that the

behavior of the potential at horizon exit is in many cases not well correlated with

that higher on the potential where stochastic inflation tends to occur – at least in

Measure B where eternal inflation is generically absent.

Although the lower bound (A.1) is not supported, one could go further to

ask under what conditions the running serves as an effective classifier, providing

good separation between models with and without eternal inflation. Figure A.2

plots Receiving Operator Characteric (ROC) curves for various measures on mass

scales in Measure B. The ROC plot compares the rates of correct classification

of eternal models agains the rate of false positives (Type I errors). Maximizing

the area under the ROC curve is equivalent to optimizing detector performance;
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in a two-class system, a diagonal line performs as well as random assignment of

class labels. We can see that the running performs the best as a classifier among

small field models (mh ă 1) with democratic field scale weighting (a prior on

logarithmically-spaced mass bins that is the inverse of the success rate).

Figure A.2: Receiver operating characteristic (ROC) curve obtained by treating the
running of the spectral index α as a detection statistic for stochastic eternal inflation.
The points indicate where the negative upper bound on the running lies. In the legend,
‘E’ and ‘D’ refer to epektacratic and democratic field scale weightings, respectively.

A.2 Fractal Dimension of Topological Defects

As argued in § 5.3, inflation driven by a single scalar field ϕ starting near

the maximum of its potential V pϕq is generically eternal. Quantum fluctuations

dominate the slow classical evolution of xϕy near the peak, resulting in an in-

homogeneous field configuration with ϕ descending toward the minima of both
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conjoining half-basins, separated in space by an inflating topological defect that

can never be excised. When the size of Hubble-scale fluctuations, given by H{2π,

is much smaller than the width of the field space interval around the maximum

in which fluctuations dominate, these defects take on a fractal character after

many Hubble times, as suggested in the early days of inflation and first tackled

in depth in [63]. It is fractal both in the sense of measuring volume in inflating

versus post-inflationary regions, and volume descending toward one or the other

adjacent minimum.

What can be said about typical values for the fractal dimension of the fluctuation-

dominated cores of such defects, in the context of measures on the space of inflation

models and initial conditions? In other words, if we sample the space at different

distance scales to determine the volume of space in the eternally inflating phase,

how does the measure of volume scale with the spatial frequency of the sampling?

Furthermore: what happens when the stochastic inflating interval is smaller than

the width of typical fluctuations around the peak, or when topological considera-

tions are the sole enforcer of eternal inflation?

In this appendix, we compute statistics of the fractal dimension for volume in

thermalized regions, and for volume that has exited eternal inflation, descended

from inflating topological defects in single-field models, given a simple measure

over potentials standing in for an inflationary landscape. We go on to discuss
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how one should go about computing the fractal dimension of topological defects in

models in which a sustained bout of inflation starts only below the maximum (due

to ηV Á 1 at the peak), and in which fluctuations are larger than the fluctuation-

dominated inflation interval around the maximum.

A.2.1 Random Walks and Fractal Dimension

Accounting for stochastic fluctuations of the inflaton atop the classically be-

haved field excursion, we must describe the trajectory of the inflaton in a given

Hubble volume as a biased Gaussian random walk, where the size of the bias varies

depending on the distance from the peak as V 1pϕq{3H2 «Mpϕ´ϕpeakq{3H
2 where

M ” ´V 2pϕpeakq.

ϕpt0 `H
´1
q Ð ϕpt0q `N pMpϕ´ ϕpeakq{3H

2, H{2πq

Because the whole space is inflating, there are correlations between when asyn-

chronous, enduring deviations from the bulk occurred and the scale of those de-

viations – older deviations manifest at larger distance scales. This is a natural

recipe for fractal structure.

Fractal dimension indicates how the measure of volume depends on the scale

of coarse graining when probing a particular function of space – e.g. a binary

evaluation of inflating vs. non-inflating. What does coarse-graining mean in the
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context of nested inflating and non-inflating regions? If we imagine sampling

space at intervals separated by a distance ξ, and take the number of those points

that are thermalized multiplied by the volume ξ3 as a measure of the volume of

thermalized regions, then the volume measured will scale with the coarse-graining

as

V „ ξ3
pR{ξqd

If across a significant range of the coarse-graining scale ξ the exponent d takes a

nearly constant non-integer value, then the space is a fractal with respect to that

function.

Aryal and Vilenkin [63] computed the fractal dimension of an eternally inflating

universe for potentials approximated around the maximum as V pϕq « V0´ δV pϕq

in three cases:

d “ 3´

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

H2{32ϕ2
c , δV “ V0Θp|ϕ|´ ϕcq

M2{3H2, δV “ 1
2
M2ϕ2

Cλ1{2, δV “ 1
4!
λϕ4

(A.2)

where Θ is the Heaviside step function, H is the Hubble parameter at the peak,

and C « 0.28 is a constant independent of the potential.

The distribution of field values in a comoving volume as a function of time,

ρpϕ, tq, obeys the Fokker-Planck equation (2.12). For an inverted quadratic po-

tential centered at ϕ “ 0 with initial conditions ρpϕ, 0q “ δpϕq, the solution is

145



Gaussian with a time-dependent variance

ρpϕ, tq “
1

a

πσptq2
exp

ˆ

´
ϕ2

2σptq2

˙

σptq2 ”
3H4

4π2M2

„

exp

ˆ

2M2t

3H2

˙

´ 1



With the rationale that the end of inflation comes far away from the peak at

ϕ " H2{M – where the field is not likely to climb back up the potential slope by

chance – they invoke an effective absorbing boundary at ϕend Á H2{M . In the

late-time limit, the distribution ρpϕ, tq is nearly uniform for ϕ À H2{M , giving

an inflating fraction „ expp´M2t{3Hq and fractal dimension given in (A.2).

When the amplitude of quantum fluctuations is considerably smaller than

the width of the fluctuation-dominated interval where stochastic eternal inflation

occurs, we can use Aryal and Vilenkin’s expression for the fractal dimension in

the vicinity of a peak dominated by quadratic or quartic terms. In Figure A.3, we

depict the (geometric) mean deviation of fractal dimension from 3, among models

from Measure A with inflation starting at the peak, for which the amplitude of

fluctuations at the peak is smaller than the size of the stochastically inflating

interval; the data is binned with respect to ns and either mv or mh. To calculate

the fractal dimension, we determine whether the dominant contribution around

the peak in the interval in which stochastic eternal inflation occurs is the quadratic

or quartic term, and then apply the formulas in (A.2). (Of course the vast majority

of potentials are dominated by the quadratic term.)

For all mass scales, fractal dimension departs from 3 by only a tiny amount,
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Figure A.3: Mean deviation of fractal dimension from 3 among models with fluctuations
of size smaller than H{2π, binned with respect to scalar tilt and vertical mass scale,
and conditioned on ´4.5 ă log10Qs ă ´4.1. The left plot includes all mass scales with
epektacratic weighting. The right includes only mh ď 1.

with the variation among scales much smaller than the discrepancy between val-

ues of d ´ 3 and Op1q. Binning with respect to field scale increases the size of

deviations. A fairly regular diagonal striation is interrupted by another signal

centered around ns “ 0.96 in the mv plot. Even though ns is determined by mh,

the mh plot shows some interesting non-correlation.

When binning with respect to ns and r, the range deviation in fractal di-
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mension is shifted toward larger scales by 2-3 orders of magnitude. Small tensor

perturbations correlate with small fractal dimension, suggesting that if our observ-

able universe descends from such a defect, the fractal effect is orders of magnitude

smaller than it could have been given a higher upper bound on the amplitude of

tensor perturbations.

Figure A.4: Mean deviation of fractal dimension from 3 among models with fluctuations
of size smaller than H{2π, binned with respect to scalar tilt and tensor-to-scalar ratio,
and conditioned on ´4.5 ă log10Qs ă ´4.1. The left plot includes all mass scales with
epektacratic weighting. The right includes only mh ď 1.

A.2.2 Beyond Aryal-Vilenkin Assumptions

Aryal and Vilenkin’s calculations assume that the field space interval in which

fluctuations dominate is much larger than the size of fluctuations, that inflation

within a topological defect occurs near the top of a potential barrier, and that

the part of the potential where inflation ends does not affect behavior of ρpϕ, tq in

the fluctuation-dominated interval. In this section, we identify a few scenarios in

148



which one or more of these assumptions is violated, and discuss whether and how

the prescription for computing fractal dimension must be altered in those cases.

A.2.2.1 Large Fluctuations

When inflation starts at the initial maximum, the stochastic eternal inflation

criterion is always satisfied in some neighborhood of the peak, and we can only

compare the size of fluctuations to the width of that fluctuation-dominated interval

in field space. If fluctuations are much larger than that interval’s width, then

they cannot continue to dominate the classical descent away from the peak in the

space threaded by a congruence of future-directed worldlines emanating from any

given Hubble volume for much more than a Hubble time, as both directions are

“downhill” and volume will continually fluctuate out of the small neighborhood

of the peak and into field space where V 1pϕq dominates.

Instead these models undergo topological inflation, with the field quickly fluc-

tuating away from the flattest part of the peak and thenceforth evolving classically.

Even if the probability of landing within the stochastic interval after a Hubble time

is less than 1{e3 – so that the inflating volume right around the maximum tends

to shrink over time – the topological nature of the defect prevents it from ever

being fully excised. With an infinite number of Hubble times to wait, improba-

ble fluctuations will eventually be realized, replenishing inflating volume at the

peak. Topological inflation always wins out in such a scenario, even amidst large
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inhomogeneities [64].

In the case of large fluctuations, it is rare for Hubble volumes with fluctuations

drawn from the tails of the distribution to find their way back into the fluctuation-

dominated interval. The Measure C results on the prevalance of stochastic eternal

inflation expounded in § 5 reflect the rate of incidence of this condition. For such

models, Aryal and Vilenkin’s assumption that the boundary of the fluctuation

dominated interval occurs far away from the peak is not satisfied, and so the

prescription for the fractal dimension of such defects must be reconsidered. When

delayed inflation takes place on an inflationary shelf lower on the potential, there

is a region of fast evolution as the field descends the sharply peaked barrier out

of slow roll – potentially adding further complexity to the calculation.

A.2.2.2 Delayed Decoherence

Perturbation modes are taken in the standard treatment to decohere (and so

start behaving classically) either instantaneously after exiting the horizon or an

elapsed Hubble time then-after. In [43], a calculation of explicit decoherence due

to interaction with metric perturbations suggests that it takes more like Op10q

Hubble times for super-Hubble modes to decohere and behave as contributions to

the classical background. Taking 10 to be a representative figure, let us define the
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retarded e-fold count Ne,ret as

Ne,ret “ Ne ´ 10

Then the amplitude of fluctuations is determined by conditions at a retarded field

value given by

ϕpNe,retq “ ϕpNeq `M2
P

ż 10

0

V 1pϕq

V pϕq
dNe

During slow roll, the Hubble parameter is nearly constant, so we can take the

amplitude of modes that decohere presently to be the same as of those that crossed

the horizon several Hubble times in the past. The implications for stochastic

inflation in this simple case (found to be minimal), are discussed in [44].

But suppose there is a period of non-slow-roll evolution between the peak and

φsr, followed by a period of adjustment subject to the slow roll attractor, followed

by slow roll. If we account for a long decoherence time for modes that have crossed

the horizon, then the fluctuations “put into effect” when slow-roll inflation starts

below the peak actually correspond to conditions ten or more Hubble times in the

past. At this retarded “time,” the inflaton was evolving out of slow-roll higher on

the slope (if we assume the analysis of decoherence is not substantially changed

in this regime). Does this have any non-transient effects on the prospects of

stochastic eternal inflation taking place on an inflationary shelf?

If fluctuations are not likely to drive the inflaton back into this non-slow-roll
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regime – so that regions in which the field has started slow roll continue to inflate

until preheating – then this long decoherence effect is a one-time occurrence, and

should not significantly alter the fractal structure. If we introduce dependence on

a retarded e-fold count, the Focker-Planck equation then becomes path-dependent

and non-Markov. In terms of the retarded log-scale-factor Ne,ret and the present

Ne, the Fokker-Planck equation becomes

Bρ

Bt
“
HpϕqHpϕretq

2

8π2

B2ρ

Bϕ2
`

1

3Hpϕq

B

Bϕ

ˆ

ρ
dV

dϕ

˙

(A.3)

Can we find an approximation in which it is Markov? The answer to this question

is key to characterizing the fractal behavior of topological defects if decoherence of

quantum fluctuations must really be considered to occur much later than horizon

exit.
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