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Coordination dynamics 
of multi‑agent interaction 
in a musical ensemble
Shannon Proksch1*, Majerle Reeves2, Michael Spivey1 & Ramesh Balasubramaniam1

Humans interact with other humans at a variety of timescales and in a variety of social contexts. We 
exhibit patterns of coordination that may differ depending on whether we are genuinely interacting 
as part of a coordinated group of individuals vs merely co‑existing within the same physical space. 
Moreover, the local coordination dynamics of an interacting pair of individuals in an otherwise 
non‑interacting group may spread, propagating change in the global coordination dynamics and 
interaction of an entire crowd. Dynamical systems analyses, such as Recurrence Quantification 
Analysis (RQA), can shed light on some of the underlying coordination dynamics of multi‑agent 
human interaction. We used RQA to examine the coordination dynamics of a performance of 
“Welcome to the Imagination World”, composed for wind orchestra. This performance enacts a real‑
life simulation of the transition from uncoordinated, non‑interacting individuals to a coordinated, 
interacting multi‑agent group. Unlike previous studies of social interaction in musical performance 
which rely on different aspects of video and/or acoustic data recorded from each individual, this 
project analyzes group‑level coordination patterns solely from the group‑level acoustic data of an 
audio recording of the performance. Recurrence and stability measures extracted from the audio 
recording increased when musicians coordinated as an interacting group. Variability in these measures 
also increased, indicating that the interacting ensemble of musicians were able to explore a greater 
variety of behavior than when they performed as non‑interacting individuals. As an orchestrated (non‑
emergent) example of coordination, we believe these analyses provide an indication of approximate 
expected distributions for recurrence patterns that may be measurable before and after truly 
emergent coordination.

Science has looked to art for inspiration in explaining human cognition. Music, in particular, has aided scien-
tists exploring human engagement with the world, from emotional  experience1–3 to social  interaction4–8. Music 
provides an ideal model system of human social interaction—balancing ecological validity of the interaction 
and environment with experimental  control4.

Consider the initiation of the slow clap by one, then two, then four people, before breaking into full audience 
applause or the first musician in a flash mob initiating a flow of musicians and audience members engaging in 
shared music making. The truly emergent sound of audience applause, and the script-guided pseudo-emergent 
sound of a musical flash mob each provide examples of acoustic behavioral patterns showcasing the transition 
from individual behavior to multi-agent interaction. Studying the patterns which arise from pseudo-emergent 
coordination aided by a musical script can shed light on some of the coordination dynamics which underlie truly 
emergent multi-agent human interaction.

Transitions from disorder to order are exhibited by a variety of animals ranging from locusts  marching9 to 
birds  flocking10 to humans  clapping11. The patterns and conditions for this emergent coordination between 
individuals has been a subject of laboratory study for decades. Spontaneous, or emergent, patterns of entrain-
ment are measured between individuals by analyzing video and motion capture from interacting dyads swinging 
 pendulums12 or rocking in rocking  chairs13. Recent work has evaluated motor coordination dynamics of natu-
ralistic interactions such as interactive problem  solving14,15, naturalistic conversation between  individuals16,17, 
speed-dating  partners18, and motor and acoustic coordination of performing musicians in  duets5,7 and larger 
 ensembles6,8. In these interactions, behavioral output of each interacting individual was measured and analyzed 
for meaningful correlations between individuals. An investigation of emergent synchrony in audience applause 
explicitly measured acoustic output of the  group11. However, the motor behavioral patterns were still measured 
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from the local behavior of individual audience members in order to evaluate correlation with the global signal of 
the audience. In each of these studies, it has been possible to obtain clear measurements of individual behavior to 
examine the emergent coordination dynamics of multi-agent interaction and social self-organization. However, 
if that multi-agent group has indeed self-organized into a complex system, then the interdependence between 
the agents’ functions should make it possible to detect that coordination from almost any time series emitted 
from that system, using state-space  reconstruction19,20. Thus, if obtaining movement or acoustic measurements 
at the individual and local level is not feasible or practical with group behaviors in the wild, then global-level 
measurements should suffice. One of the simplest global measures to employ is an acoustic recording taken 
from a well-placed microphone. Increasingly, naturalistic recordings from e.g. Youtube are being used in human 
behavioral research where specific recording equipment is unknown, and likely does not contain visual or audi-
tory signals mapped to individual-level behavior in group settings. Benefits of these sorts of recordings include 
heightened ecological validity and real world behavior. Already, Alviar et al 2020 and Kello et al 2017 analysed 
coordination between sound and movement, and multiscale structure in orchestral music, jazz, TED talks, and 
even animal vocalizations through a collection of videos found on youtube (and other corpora) with ostensibly 
varying recording setups, number and type of microphones,  etc21,22.

This paper shows that it is possible to describe coordination patterns of multi-agent interaction by analyzing 
a time series extracted solely from group-level audio data. Rather than analyzing the individual-level behavior 
of interacting agents, we used nonlinear methods from the dynamical systems framework on group-level acoustic 
data. We analyzed global patterns of coordination in a musical performance of “Welcome to the Imagination 
World”23. This performance enacts a physical simulation of an orchestrated (non-emergent) transition from 
uncoordinated to coordinated interaction. We used Recurrence Quantification Analysis (which relies on state-
space reconstruction) to investigate patterns of coordination from the audio signal of a performance of this 
 work24. Although this analysis is being applied on a single recording, we believe recurrence measures of this 
orchestrated musical performance provide an indication of the possible expected distributions for recurrence 
patterns that may be observable before and after spontaneous emergent coordination. Moreover, analysis of the 
transition itself from uncoordinated to coordinated behavior may provide insight into the trade-off between 
the playful enjoyment of novelty and the rigor of predictive  success25. Finally, we discuss applications to other 
examples of real-world multi-agent human interactions, such as multi-agent interaction at sporting events or of 
individuals coordinating in a protest.

Human behavior as a complex dynamical system
Principles of complex dynamical systems. A canonical example of a simple dynamical system is the 
pendulum clock. A pendulum is a mechanical device—e.g. a fixed weight on a string—which oscillates isochro-
nously around a central point, meaning that swings in both directions take equal amounts of time. The consistent 
rate of oscillation made the pendulum clock an ideal time-keeper following its invention in the seventeenth cen-
tury by Cristian Huygens. The pendulum clock and the metronome are examples of simple dynamical systems. 
The state (location) of the pendulum at any given time is determined by the trajectory of the pendulum over 
historical time. The oscillatory behavior of a pendulum can be explained by a system of differential equations.

What is relevant here is the behavior that emerges among two or more pendulums placed on a shared surface. 
Huygens observed that two pendulums hanging from a single beam will spontaneously—or emergently—syn-
chronize their behavior, swinging simultaneously in anti-phase with one another. Multiple metronomes placed 
atop a platform balanced on two cylinders will also demonstrate emergent synchronized  behavior26,27. A met-
ronome is a special type of pendulum, which clicks at isochronous intervals to aid time-keeping for musicians. 
Metronomes feature a fixed weight at the base of a rod, in addition to a moveable weight which slides along 
the top of the rod to adjust the speed of the metronome oscillations, and thus the speed (tempo) of the audible 
metronome clicks. If set at the same tempo, the oscillating pendulum and audible clicks of multiple metronomes 
will begin to synchronize both in-phase and anti-phase with one  another27. What begins as multiple individual 
metronome clicks will transition to clicks occurring simultaneously, as globally isochronous acoustic events. 
For both the pendulum clocks and the clicking metronomes, the local behavior of each individual pendulum 
is coupled to the behavior of the surrounding pendulums due to their behavior within a shared context — in 
this case a physical connection via a single beam or a single platform. The local behavior of each individual 
metronome or pendulum (each oscillating at approximately the same frequency but different phase) eventually 
self-organizes into emergent global patterns of synchronized behavior.

We observe similar patterns of behavioral synchronization in multi-agent human interaction. The shared 
context for multi-agent human behavior need not be a physical connection like the metronomes’ shared plat-
form. Rather, the shared context mediating emergent global patterns of human behavior is the interaction itself. 
When local behavior of individual human agents becomes coupled to the behavior of surrounding agents—via 
the shared context of interaction—the agents self-organize to exhibit emergent global patterns of coordinated 
behavior. We can detect this emergent coordination of multi-agent human groups from their acoustic behavior 
over time, just as we can detect the emergent coordination of metronomes from their acoustic output over time.

Principles of recurrence quantification analysis. Multi-agent human behavior, such as in crowds or 
musical ensembles, can be considered as complex dynamical systems, where complex global patterns of behavior 
emerge as a result of the self-organization of individual agents over time acting according to simple local rules. 
The behavior of such a dynamical system can be visualized in recurrence plots. These recurrence plots display 
the system’s trajectory through a phase-space, depicting when that trajectory revisits locations within that phase-
space at each moment in time. Recurrence quantification analysis is used to describe the complexity of a system 
over time by analyzing small-scale structures in the recurrence plot.
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There are a few key concepts underlying the generation of recurrence plots from time series data. In a recur-
rence plot, the time series data will sit on a plot with axes of time by time. A point (i, j) is plotted if the value 
at time i and time j are sufficiently similar — that is, recurrent — within a specified neighborhood size of the 
N-dimensional state-space28. The state-space of a dynamical system is the vector of possible combinations of 
states in some number of observable and unobservable dimensions. In order to determine which points are recur-
rent, it is necessary to reconstruct the higher dimensional phase space of the system. State-space reconstruction 
is done by embedding the original time series against a time lagged copy of  itself29. Each time lagged copy is an 
additional embedding dimension within the state-space30. Takens’ theorem (1981) shows that the coupling of activ-
ity between dimensions preserves the information dynamics of the system as a whole in any single dimension. 
Put another way, because the subcomponents of a complex dynamical system are intrinsically interdependent, a 
measurement taken from any one observable subcomponent encodes information from every other (potentially 
unobservable) subcomponent in the system. Thus, reconstruction of the N-dimensional state-space from a single 
measured time series allows us to infer the topological dynamics of a multivariate system because the influence 
of higher dimensional dynamics is encoded in the measured  dimension31.

The logic of state-space reconstruction and embedding within higher dimensions is important for evalu-
ating the dynamics of a natural complex system. The dynamics of natural systems such as crowd behavior, 
sounds within a piece of music, or even weather patterns, contain N possible state variables as well as N possible 
combinations of nonlinear and bidirectional interactions. State-space reconstruction allows us to infer these 
unmeasured or unobservable higher order dynamical variables from a single measured variable, in order to 
evaluate the characteristic dynamics of a system’s behavior over time. For a weather system, we might measure 
the flow of high- and low-pressure systems to evaluate the transitions from stable, “good” weather to instability 
that precedes a storm. In a crowd or a musical performance, we might measure movement or acoustic signal to 
investigate the higher order dynamics of transitions between periods of instability and incoherence to periods 
of stability and coordination. Here, we take a simple global measure of acoustic signal recorded from a musical 
performance. This performance demonstrates an orchestrated (non-emergent) transition from uncoordinated 
to coordinated interaction (described in more detail below). We use RQA to investigate the patterns of coordi-
nation in the audio signal as represented in small-scale structures within recurrence plots. We focus on five key 
measures: recurrence rate, determinism, entropy, average diagonal length, and laminarity.

Music and multi‑agent human intearction: a model from acoustic data
Musical ensembles as models of human social interaction. Music provides an ideal model system 
of human social interaction by providing a balance between ecological validity of the social interaction and 
experimental control (p111)4.

Analysis of social interactions in musical performance are aided by a “script-like description of the inter-
action” via the musical score that can be manipulated or referenced by researchers examining the behavioral 
dynamics of the interaction (p112)4. Applying methods of Granger-causality to motion capture data of individual 
musicians within a performing string quartet can be used to investigate how predictive the history of behavior 
of one musician is for the future behavior of another. The bodily sway dynamics of these interacting musicians 
carries Granger-causal information about leader and follower behavior of each  musician6, and Granger-coupling 
of bodily sway also carries information about the joint emotional expression and perceived emotional intensity 
of a musical  performance8. Even without reference to a strict musical score, studies of musical interaction have 
provided insight into how we anticipate and adapt to the behavior of other individuals. Nonlinear analysis tech-
niques have revealed spontaneous self-organizing patterns of coordination across a variety of timescales during 
joint musical improvisation without a strict score. In a series of experiments analyzing interactions between 
improvising musicians, Walton et al. describe how behavior produced and received from both the kinesthetic 
and sonic domain serves to influence and constrain mutual improvisers from the lens of complex dynamical 
 systems5,7 . Using cross-wavelet spectral analysis and Recurrence Quantification Analysis, Walton et al. describe 
how mutual behavioral constraints enable an improvising ensemble to produce more complex patterns than any 
individual would  otherwise5,7. This mutual interaction establishes a single synergetic system at the level of the 
improvising group, rather than a set of individuals behaving as single agents.

Rather than analyzing the individual-level behavior of interacting musicians, we apply dynamical systems 
analysis— specifically RQA— on group-level acoustic data to analyze global patterns of coordination in a musical 
performance. We chose to analyze this performance because it enacts a phenomenological simulation (described 
below) of the transition from the uncoordinated behavior of individuals to coordinated group behavior that 
mimics naturalistic multi-agent human interaction.

The composition “Welcome to the Imagination World” composed by Daisuke Shimizu for wind orchestra 
serves as the model system for multi-agent human interaction. Specifically, the interaction of interest is the shift 
in dynamics from an uncoordinated, incidental collection of musicians, to a coordinated, interacting ensemble. 
This transition from uncoordinated, to coordinated interaction is evident in the phenomenological experience 
of attending (or indeed, performing) this piece of music. The audience will note that, at first, the musicians on 
stage have no conductor. They sound and look like they are each playing their individual warm up routine. This is 
because, in fact, the musicians’ score tells them to play at random. The composer wanted the sound to be aleatoric, 
or to occur by chance without being strictly composed. This uncoordinated soundscape continues until a melodic 
pattern starts to emerge from a few of the musicians, still in the absence of a conductor, and still not appearing 
to be coordinating with the other performers. Next, the “conductor walks on stage [as] the horn, tenor and bass 
instruments unify into a majestic introduction”, according to program notes from the composer (windrep.org). 
This marks the transition from the uncoordinated actions of individual musicians to the coordinated ensemble 
musicianship the audience expects. The remaining musical score is composed to dictate the acoustic interaction 
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of the musicians on stage. Thus, the rest of the performance demonstrates the coordinated interactions of an 
interdependent complex system: the multi-agent musical ensemble.

Results
Recurrence quantification analysis. Figures  1 and 2 show recurrence plots generated from the time 
series data of the recording. The recurrence plots visualize the characteristic patterns of recurrence which are 
then quantified through recurrence quantification analysis. Figure 1 displays recurrence plots for the first and 
last 30 s of each Coordination Category (Uncoordinated or Coordinated). Darker segments of the recurrence 
plots indicate the presence of more recurrent data points. Vertical and horizontal lines indicate periods of stabil-
ity in the system, where one state was visited for a period of up to a few seconds at a time.

The recurrence plots in Fig. 2 are representative 5-s samples drawn from each 30 s sample in Fig. 1. These 
shorter samples are labeled as the associated Performance Event the 5-s sample is drawn from. Note that the 
“Introduction” section falls in the middle of the performance, marking the shift from the Uncoordinated to 
Coordinated interaction among the musicians, and thus the order of Performance Events is: 1. Aleatoric, 2. 
Transition, 3. Introduction, 4. Finale. Thirty second samples from the start and end of each Coordination Cat-
egory were chosen to maintain balanced samples from each category for computing inferential statistics, and 
because independent raters noted a clear Transition section in the final 30 s of the uncoordinated performance.

Increased presence of diagonal lines and vertical structures in the Introduction and Finale sections indicate 
increasingly coordinated interaction among the musicians. The diagonal striping in the Introduction indicates 
some periodicity in the signal, similar to the periodicity of a sine wave, and results in this case from a(n almost) 
unison chord during those few seconds. The Aleatoric and Transition plots at the top more closely resemble white 
noise, with fewer recurrent points, shorter diagonals, and less apparent vertical structures.

Recurrence Quantification Analysis quantifies the qualitative patterns observed in these recurrence plots. 
To describe the behavior of our model multi-agent system, five RQA measures were evaluated. The first RQA 
measures evaluated are common measures of recurrence: (a) patterns that repeat over time (Recurrence, the 
percentage of recurrent points on the recurrence plot); (b) behaviors that belong to a longer sequence of behavior 
(Determinism, or the percentage of points that fall on any diagonal line in the recurrence plot); (c) the amount 
of disorder there is in these sequences (Entropy, or the variability in lengths of these diagonal lines). Additional 
patterns of stability in the system’s behavior were measured by examining (d) clusters of behavior (Laminarity, 
or the percentage of points that fall on a vertical line in the recurrence plot), and (e) the average length of time 
our multi-agent system stays in one behavioral pattern (average diagonal length, the average length of diagonal 
lines). Average diagonal line length is a measure related to determinism. Longer average diagonal lines reflect the 
stability of a system by indicating longer, more continuous states. Similarly, higher laminarity shows the rigidity, 
or “stickiness” of a system that stays in one or more states of a behavior for a length of  time32.

Higher values and increased variability were evident for most RQA measures for Performance Events within 
the Coordinated sections of the performance vs Uncoordinated sections (Fig. 3). However, distribution plots do 
not readily visualize different trajectories of behavior over time. Varying trajectories of each RQA measure for 
Coordinated vs Uncoordinated sections of the performance is evident in the serial plots in Fig. 4. The majority 
of RQA values hover around a single value over time during the Uncoordinated Performance Events (Aleatoric 
and Transition), indicating little interaction among musicians—the agents in our model system. As interactive 
behavior emerges among musicians, the joint activity of the interacting ensemble in the Coordinated Performance 
Events (Introduction and Finale) begin to show increased recurrent points overall (Recurrence Rate), with emerg-
ing presence of longer sequences of behavior as represented by higher levels of Determinism, and higher levels of 
Entropy indicating more variability in sequence length. Increased values of Laminarity indicate enhanced stability 
in the system. The intermittency of these stable periods in the Coordinated Performance Events as shown in the 
recurrence plots can also be seen in the varying high and low values of Laminarity over time.

Statistical analysis. Descriptive statistics. Statistical analysis was performed on the first and last 25 sam-
ples of each Coordination Category, representing the first and last 30 s each of Uncoordinated and Coordinated 
sections of the piece. Recurrence (REC) for the first 30 s of each category was highest in coordinated (mean 
0.093/ sd 0.030) when compared to uncoordinated (mean 0.081/ sd 0.009). REC for Performance Event showed 
a slight decrease from Aleatoric (mean 0.085 /sd 0.009) to Transition (mean 0.078 / sd 0.008) and increased in 
both Introduction (mean 0.089/ sd 0.017) and Finale (mean 0.098 /sd 0.039) (Fig. 3A). Determinism (DET) for 
the first 30 s of each category was, highest in the coordinated condition (mean 0.277/ sd 0.147) when compared 
to uncoordinated (mean 0.163/ sd 0.024). DET for Performance event shows the same pattern, with a slight 
decrease from Aleatoric (mean 0.167 /sd 0.023) to Transition (mean 0.160 / sd 0.025), and increases in both In-
troduction (mean 0.266/ sd 0.106) and Finale (mean 0.288 /sd 0.179) (Fig. 3B). Entropy for the first 30 s of each 
category was highest in the coordinated condition (mean 0.693/ sd 0.432) when compared to uncoordinated 
(mean 0.295/ sd 0.091). Entropy for Performance event shows the same pattern, with a slight decrease from Alea-
toric (mean 0.305 /sd 0.074) to Transition (mean 0.292 / sd 0.110), and increases in both Introduction (mean 
0.654/ sd 0.325) and Finale (mean 0.731 /sd 0.521) (Fig. 3C) Laminarity for the first 30 s of each category was 
highest in the coordinated condition (mean 0.340/ sd 0.175) when compared to uncoordinated (mean 0.236/ sd 
0.045). Laminarity for Performance event shows the same pattern, with a slight decrease from Aleatoric (mean 
0.240/ sd 0.053) to Transition (mean 0.234 / sd 0.037), and increases in both Introduction (mean 0.353/ sd 0.162) 
and Finale (mean 0.326 /sd 0.190) (Fig. 3D).

Higher values and increased variability were evident for most RQA measures for Performance Events within 
the Coordinated sections of the performance vs Uncoordinated sections (Fig. 3). However, distribution plots do 
not readily visualize different trajectories of behavior over time. Varying trajectories of each RQA measure for 
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Figure 1.  Time series and recurrence plots for the first and last 30 s of each Coordination Category 
(Uncoordinated or Coordinated). Darker segments of the recurrence plots indicate the presence of more 
recurrent data points. Vertical and horizontal lines indicate periods of stability in the system, where one state 
was visited for a period of up to a few seconds at a time. Note: 9 s of audience applause during the Introduction 
Performance Event were not analyzed, and are subsequently excluded from all data visualizations.
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Figure 2.  Time series and recurrence Plots for representative 5-s samples drawn from each 30-s sample in Fig. 1, and 
labeled as the associated Performance Event the 5-s sample is drawn from. Uncoordinated Aleatoric and Transition 
plots more closely resemble white noise, with fewer recurrent points, shorter diagonals, and less apparent vertical 
structures. Increased presence of diagonal lines and vertical structures in Coordinated Introduction and Finale 
plots indicate increasingly coordinated interaction among the musicians. Note: 9 s of audience applause during the 
Introduction Performance Event were not analyzed, and are subsequently excluded from all data visualizations.
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Coordinated vs Uncoordinated sections of the performance is evident in the serial plots in (Fig. 4). The majority 
of RQA values hover around a single value over time during the Uncoordinated Performance Events (Aleatoric 
and Transition), indicating little interaction among musicians-the agents in our model system. As interactive 
behavior emerges among musicians, the joint activity of the interacting ensemble in the Coordinated Performance 
Events (Introduction and Finale) begin to show increased recurrent points overall (Recurrence Rate), with emerg-
ing presence of longer sequences of behavior as represented by higher levels of Determinism, and higher levels of 
Entropy indicating more variability in sequence length. Increased values of Laminarity indicate enhanced stability 
in the system. The intermittency of these stable periods in the Coordinated Performance Events as shown in the 
recurrence plots can also be seen in the varying high and low values of Laminarity over time.

Inferential statistics: model comparisons. To further examine the trends above, Linear Mixed Effects models 
(LMEs) were applied to determine the differential effect of Coordination Category and Performance Event on 
each RQA measure of interest. LMEs (or multilevel models) account for the nested structure of hierarchical data, 
as when individual observations are nested within  groups33. In this case, the individual observations of RQA 
measures in each 5 s sample are nested within larger uncoordinated or coordinated categories (or the subcat-
egories of performance event). A linear mixed effects model assumes that fixed effects (of coordination category 
or performance event) do not vary, while the random effect structure of a LME allows each individual sample 
to vary. This accounts for interdependence between subsequent samples in each category. Model comparisons 
between LME with and without fixed effects enables inference regarding the contribution of the fixed effect 
of  interest34. If model comparisons show that a model with fixed effects is statistically different from a model 
without a fixed effects (a random effects only model in this case), then we can conclude that the model with the 
fixed effect better explains the data. Therefore, we can infer the differential effect of the fixed effect of interest 
(Coordination Category or Performance Event) on the RQA measure of interest.

Log REC was predicted by Coordination Category ( χ2 (1) = 8.0805, p = 0 .0045), and by Performance Event 
( χ2 (3) = 12.594, p = 0.0056 ). Log DET was predicted by Coordination Category ( χ2(1) = 30.455, p = 3.418e-8), 

Figure 3.  Raincloud plots show higher levels, and wider variance, in each RQA metric in Coordinated 
compared to Uncoordinated Categories. Boxplots show sample median and interquartile range. Note: 9 s 
of audience applause during the Introduction Performance Event were not analyzed, and are subsequently 
excluded from all data visualizations.
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and by Performance Event ( χ2 (3) = 30.656, p = 1.004e-6). Log Entropy was predicted by Coordination Category 
( χ2 (1) = 41.261, p = 1.332e-10), and by Performance Event ( χ2 (3) = 41.739, p = 4.557e-9). Log Laminarity was 
predicted by Coordination Category ( χ2 (1) = 10.382, p = .0013), and by Performance Event ( χ2 (3) = 11.516, 
p = 0.0092).

LME model comparison results are reported in Table 1 for log transformations of each RQA measure, except 
for Average Diagonal Length because assumptions of normality/heterocedasticity were not met. LMEs with a 
fixed effect of Coordination Category showed lower AIC and BIC values than the null model, or the model with 
a fixed effect of Performance Event, indicating that RQA measures are better predicted by the Coordination 
Category (Uncoordinated vs Coordinated) of each sample than by the Performance Event (Aleatoric, Transi-
tion, Introduction, and Finale—which are smaller subdivisions of each Coordination Category). Table 1. Linear 
mixed effects model results. Models were fixed effect of interest (Coordination Category or Performance Event) 
with random effect of Sample Number, against a random intercept model without the fixed effect in question. 
Models reveal differential effect of the fixed effect of interest on the log transformed RQA measure of interest 
(Recurrence Rate, Determinism, Entropy, or Laminarity).

Figure 4.  Serial plots visualizing the trajectories of recurrence behaviors over time. (A) Coordinated 
Performance Events (Introduction and Finale) show increased recurrent points overall (Recurrence Rate) 
compared with Uncoordinated Performance Events (Aleatoric and Transition). (B) Emerging presence of 
longer sequences of behavior as represented by higher levels of Determinism, and (C) higher levels of Entropy 
in Coordinated Performance Events, indicating more variability in sequence length. (D) Increased values of 
Laminarity in Coordinated Performance Events indicate enhanced stability in the system. The intermittency of 
these stable periods in the Coordinated Performance Events as shown in the recurrence plots (Figs. 1 and 2) can 
also be seen in the varying high and low values of Laminarity over time in the serial plots. Note: 9 s of audience 
applause during the Introduction Performance Event were not analyzed, and are subsequently excluded from all 
data visualizations.
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Discussion
The current study evaluated a musical performance which enacted a real-life simulation of the transition from 
uncoordinated to orchestrated (non-emergent) coordinated behavior. That is, the musicians in this ensemble 
simulated the transition from disorder to order in one form of social interaction—a musical performance–by 
following the orchestration of the musical score, accentuated by the presence of a conductor on stage at just the 
time the musicians begin to play music together as a single interacting ensemble.

We have empirically demonstrated differences in the acoustic coordination patterns of this originally non-
interacting collection of independent musicians versus their collective dynamics as an interdependent group of 
musicians participating in a joint musical interaction. Thus, this study is one example of how conceptualizing 
and evaluating musical interaction using the tools of coordination dynamics and dynamical systems theory can 
reveal insights into the self-organizing behavior which underlies multi-agent musical interaction (see Schiavio 
et al, 2021 for a thorough  review35).

Table 1.  Linear mixed effects models evaluating the effect of Coordination category and performance event 
on each RQA measure of interest. ***p < 0.001 , **p < 0.01 , * p < 0.05.

Fixed effects

Recurrence rate Determinism

Full model

Null model

Full model

Null modelEstimate SE Estimate SE

Coordination category

Uncoordinated (intercept) − 2.514 0.0304 −  1.8225 0.0503

Coordinated 0.1052 0.0360 0.4217 0.0703

Goodness of fit

Deviance −  43.82 −  35.74 75.801 106.256

AIC −  35.82 −  29.74 83.801 112.256

BIC −  25.4 −  21.924 94.222 120.071

χ2 (df) 8.0805(1)** 30.455(1)***

Performance event

Aleatoric (intercept) − 2.4678 0.0389 −  1.8006 0.0706

Transition − 0.0924 0.049 −  0.0439 0.0993

Introduction 0.0324 0.0494 0.4039 0.0993

Finale 0.0856 0.0494 0.3956 0.0993

Goodness of fit

Deviance −  48.334 −  35.74 75.599 106.256

AIC −  36.334 −  29.74 87.599 112.256

BIC −  20.703 −  21.924 103.23 120.07

χ2 (df) 12.594(3)** 30.656(3)***

Fixed effects

Entropy Laminarity

Full model

Null model

Full model

Null modelEstimate SE Estimate SE

Coordination category

Uncoordinated (intercept) − 1.2647 0.0709 −  1.4567 0.0535

Coordinated 0.7169 0.1003 0.2506 0.0758

Goodness of fit

Deviance 145.78 187.04 89.655 100.037

AIC 153.78 193.04 97.655 106.037

BIC 164.2 200.86 108.08 113.85

χ2 (df) 41.261 (1)*** 10.382 (1)**

Performance event

Aleatoric (intercept) − 1.2167 0.1001 −  1.4504 0.0753

Transition − 0.0961 0.1415 −  0.0127 0.1065

Introduction 0.6593 0.1415 0.3008 0.1065

Finale 0.6783 0.1415 0.1877 0.1065

Goodness of fit

Deviance 145.3 187.04 88.521 100.037

AIC 157.3 193.04 100.52 106.04

BIC 172.94 200.86 116.15 113.85

χ2 (df) 41.739 (3)*** 11.516 (3)**
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Unlike previous studies of human social interaction, this study evaluated acoustic data of a musical perfor-
mance to infer the global behavior of musicians in the performing ensemble. This means we did not have access 
to the behavior of individual musicians in order to evaluate correlations between individuals. Instead, we relied on 
recurrence features extracted from global acoustic data and represented in recurrence plots. The uncoordinated 
acoustic behavior of individual, non-interacting musicians at the start of the performance demonstrated lower 
measures of recurrence and stability in the group-level acoustic data. When the musicians began interacting with 
each other as a coordinated musical ensemble, recurrence and stability measures increased overall. The interac-
tion served as a coupling mechanism for this multi-agent human group, just as the physical platform served as 
a coupling mechanism for the metronome group. In addition, the interacting ensemble also exhibited further 
variability in these recurrence measures. This indicates that the interacting ensemble of musicians were able to 
explore a greater variety of acoustic behavior than when they performed as a stage full of individual musicians.

When the function of each musician becomes interdependent with the functions of the other musicians, the 
group becomes a complex system. The collective cognition (c.f.36,37 ) that takes place in order to generate the 
coordinated music makes the group function a little bit like one large  mind38,39 (c.f.40 ). Thus, when that collective 
mind has an audio time series extracted from it (that is subjected to state-space reconstruction),it can provide 
insight into the dynamics by which those individual subcomponents achieve their coordinated behavior.

We present an example of Recurrence Quantification Analysis applied to group level acoustic data from a 
single performance. However, this musical performance is a model system for other forms of multi-agent human 
interaction. A priori, we know that the local rules that govern the emergence of interaction in this ensemble arise 
from a musical score, which stipulates when the musicians must begin performing as an interacting group, as 
well as a conductor who acts as a leader during the coordinated section of musical performance. This provides 
for the ecological validity of a natural performance as well as ground truth knowledge of the ensemble’s acoustic 
performance as they transition from uncoordinated to coordinated behavior. Thus, RQA applied to this model 
system provides an indication of the possible expected distributions for what recurrence dynamics to expect in 
truly emergent coordination in multi-agent human interaction in the wild—perhaps in less orchestrated (i.e. 
more improvised) forms of musical interaction such as leaderless interaction in free jazz  improvisation41, and 
even day-to-day social dynamics extending beyond musical interaction, such as walking in  groups42 or interact-
ing in large crowds.

Extending the current analysis methods to other forms of multi-agent human interaction will also expand 
current knowledge regarding the affective dynamics of acoustic and motor coordination during social interac-
tion. Listening to music while moving in time with a partner increases perceived connectedness among a  dyad43. 
Movement synchrony in dancers increases affiliation with the  group44 and can increase affective engagement 
from an  audience45. In a dot-motion paradigm, velocity-based synchrony (associated with expert interaction) 
in comparison with interval-based synchrony (associated with novice interaction) from ostensibly improvising 
performers is rated by observers as more beautiful, and the ‘performers’ are judged to like each other  more46. The 
affiliatory effects of synchronous interaction are not always positive, however, and can actually lead to increased 
compliance with requests to engage in aggressive  behavior47. Multi-agent groups in the wild, such as crowds at 
a sporting event or gathering for a protest, may not be engaging in strictly synchronous motor coordination, 
however their acoustic behavior may exhibit measurable patterns of distributed coordination which influence 
the affective states of the group and individual. A question remains as to what are the recurrence dynamics of 
acoustic behavior of multi-agent groups in the wild, and what role does coordinated acoustic behavior play in 
the affective dynamics of individuals engaging in or observing these social interactions.

Methods
Extracting acoustic data. 
An audio recording of “Welcome to the Imagination World” was obtained from the 2009 performance by the 
Inagauken Wind Orchestra posted on YouTube. An MP3 was downloaded using the YouTube to Mp3 video con-
verter. The audio recording was labeled by two independent raters with terminal music degrees and substantial 
training in music theory. Raters were familiarized with the program notes for the composition (retrieved from 
http:// www. windr ep. org) and were instructed to identify where the musicians transition from “random ad lib” 
to “unify[ing] majestic introduction” as described in the program note from the composer (operationalized as 
uncoordinated and coordinated, respectively), as well as noting any details of the performance they found impor-
tant. The audio was subsequently labeled into two Coordination Categories: Uncoordinated and Coordinated. 
The first and last 30-s of each Coordination Category (Uncoordinated or Coordinated) were also labeled into 
four Performance Event subcategories (Aleatoric, Transition, Introduction, and Finale), two in each Coordina-
tion Category, respectively, as shown in Table 2.

The audio recording was converted from stereo to mono in Audacity 2.3.0, converted from an MP3 to a WAV 
file, removed DC offset, and normalized to − 1.0 dBFS. Python 3.7 in Jupyter Notebooks was used first to create a 
time series of the full audio data, then to downsample this time series from 44.1 kHz to 44.1 Hz. Downsampling 
to this rate prioritizes the rhythmic content and aggregate amplitude of the acoustic signal rather than pitch or 
harmonic properties for the purposes of Recurrence Quantification Analysis. It may be a concern that this is a low 
sampling rate in relation to human auditory perception, which is sensitive to pitch information in the 20–20,000 
Hz range. This is not problematic, however, as this analysis does not seek to explain pitch perception but rather 
recurrence properties of sound onsets in the acoustic signal itself. This downsampling filters out sound wave 
properties interpreted as pitch by the human auditory system while preserving frequencies relevant to rhythm 
perception and identification of event sequences. A 44.1 Hz sample rate is more than sufficient to capture rhyth-
mic events performed within a tempo range of 60–135 bpm (1–2.25 Hz) as in this performance. Finally, a separate 
time series was created for each 30-s Coordination Category. The time series for each labeled Performance Event 

http://www.windrep.org
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Category was then extracted into 5-s overlapping windows, sliding by 1 s at a time, saving only full 5-s samples. 
Time series containing only audience noise, or dominated by audience noise, were discarded. This included 9 
s within the ‘Introduction’ Coordination Category which were discarded due to noise from audience applause 
overshadowing the signal from the music. These samples are not included in any analysis or data visualization.

Note: 30 s samples were chosen for analysis due to limitations in duration of uncoordinated performance. The 
Uncoordinated section of music, at 3 minutes in duration, is half the length of the remaining 6 minutes of the 
Coordinated section. An equal representation from each Coordination Category is required so as not to bias the 
results of statistical analysis. We know, due to the score, where the coordinated music begins and ends. Further, 
independent raters indicated a clear Transition section during the last 30 s of Uncoordinated performance. For 
this reason we choose to analyze both the first and last 30 s of the shorter Uncoordinated section, and the first 
and last 30 s of the longer Coordinated section. This selection also allows us to compare recurrence dynamics 
between the the start and end of each Coordination Category in the case that RQA shows individuals are more 
coordinated at the end of a section than the beginning after interacting for a period of time, rather than solely 
because of the coordination indicated by the musical score. For an overview of the global variability of recurrence 
metrics across a larger subset of data, see Supplementary Fig. S1 for a serial plot visualizing all six 30-s samples 
from Uncoordinated performance and the first and last three 30-s of Coordinated performance.

Recurrence quantification analysis. The CRP toolbox in MATLAB 2018b was used to visualize the 
acoustic time series as recurrence plots and to carry out  RQA48,49. RQA parameters were set with an embed-
ding dimension of 4, delay of 10, neighborhood size (radius) of 1 ∗ standard deviation, using maximum norm 
to calculate neighbors of the phase space trajectory. Parameters for the time delay and embedding dimension 
were chosen based on AMI and FNN respectively using a custom MATLAB GUI provided from the 2019 APA 
Advanced Training Institute in Nonlinear Methods for Psychological Science. There are various approaches to 
setting the threshold value for detecting nearest neighbors. In classification based on recurrence dynamics of 
harmonic, transient, and noisy acoustic signals, Zhang  201150 set this threshold value using 1 ∗ standard error. 
Here we set the threshold value at 1 ∗ standard deviation, because the standard deviation is always larger than 
standard error, assuring a radius large enough to sufficiently capture recurrent structures in the recurrence plots. 
5 ∗ σ has been suggested as an optimal threshold value for detecting signal in cases of high observational  noise51, 
however, 1 ∗ σ is standard and is preferable when the amount of observational noise is  unknown52. For further 
discussion regarding parameter selection in RQA see Marwan,  201153 and Webber and Marwan,  201554.

Statistical analysis. Statistical analysis was performed on the first and last 25 samples of each Coordina-
tion Category, representing the first and last 30 s each of Uncoordinated and Coordinated sections of the piece. 
Raincloud  plots55 and serial time series plots to visualize distributions and trajectories of the RQA measures were 
created in RStudio 1.1.463 using  ggplot256.

Linear Mixed Effects models (LMEs) were applied to determine the differential effect of Coordination Cat-
egory and Performance Event on each RQA measure of interest. LMEs were calculated using the lme4  package57. 
The first model examined the effects of Coordination Category on each RQA measure, with a fixed effect of Coor-
dination Category and random effects of Sample Number, to account for any variance arising from individual 
5-s samples. The second model examined the effects of Performance Event on each RQA measure, with a fixed 
effect of Performance Event and random effects of Sample Number.

• Full model with fixed effect of Category (Coordinated vs Uncoordinated) and random effects of order (sample 
number): 

• Null, intercept-only model without the fixed effect of Category: 

RQAMetrici ∼ N
(

αj[i] + β1(Category), σ
2
)

αj ∼ N
(

µαj , σ
2
αj

)

, for SampleNum j = 1, . . . ,J

Table 2.  Coordination category and performance event labels for recurrence quantification analysis. 30-s 
samples used for analysis are indicated. Audience noise was discarded before analysis.

Music event Coordination category Performance event Start time End time 30-s sample

Recording starts Audience noise – 0m00s 0m14s –

Scattered entrances Uncoordinated Aleatoric 0m14s 2m43s 0m14s to 0m44s

Flute cue Uncoordinated Transition 2m43s 3m15s 2m45s to 3m15s

French horn cue Coordinated Introduction 3m15s 3m53s 3m15s to 3m53s*

Conductor appearance Audience noise – 3m37s 3m45s *discarded above

Drum cue coordinated – 3m53s 9m06 –

Performance continues Coordinated Finale 8m36s 9m06s 8m36s to 9m06s

Performance ends Audience noise – 9m06s 9m23s –
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• Full model with fixed effect of Performance Event (Aleatoric, Transition, Introduction, Finale) and random 
effects of order: 

• Null, intercept-only model without the fixed effect of Performance Event: 

LMEs with random intercepts such as this are robust to variability in individual subjects, or 5-s samples in this 
case. This is because random intercept models assume a different baseline-level of the RQA measure of interest in 
each fixed effect for each sample, thus accounting for any differences that may appear by virtue of the sequential 
order of obtaining each sample. Mixed models also address issues of non-independence due to inherent cor-
relations between successive samples of musical performance  data33. Goodness of fit was evaluated by model 
comparison of the full models against null, intercept only models without the fixed effect in question, as shown 
in the equations above. Four of the five RQA measures of interest were modeled (Recurrence Rate, Determin-
ism, Entropy, and Laminarity). LME results based on Average Diagonal Length are not reported. Residuals 
plots revealed that the LMEs for Average Diagonal Length did not meet criteria for assumptions of normality 
and heteroscedasticity, even after log transformation, and as such were not a good model for the data. Statisti-
cal significance was obtained by computing a likelihood ratio test of the full model to a null model without the 
fixed effect in question.

Received: 3 June 2021; Accepted: 22 December 2021

References
 1. Meyer, L. Emotion and meaning in music (University of Chicago Press, Chicago, 1956).
 2. Huron, D. Sweet anticipation: Music and the psychology of expectation (MIT Press, USA, 2008).
 3. Juslin, P. N. & Västfjäll, D. Emotional responses to music: The need to consider underlying mechanisms. Behav. Brain Sci. 31, 

559–621. https:// doi. org/ 10. 1017/ S0140 525X0 80052 93 (2008).
 4. D’Ausilio, A., Novembre, G., Fadiga, L. & Keller, P. E. What can music tell us about social interaction?. Trends Cogn. Sci. 19, 111–114. 

https:// doi. org/ 10. 1016/j. tics. 2015. 01. 005 (2015).
 5. Walton, A. E., Richardson, M. J., Langland-Hassan, P. & Chemero, A. Improvisation and the self-organization of multiple musical 

bodies. Front. Psychol. 06. https:// doi. org/ 10. 3389/ fpsyg. 2015. 00313 (2015).
 6. Chang, A., Livingstone, S. R., Bosnyak, D. J. & Trainor, L. J. Body sway reflects leadership in joint music performance. Proc. Natl. 

Acad. Sci. 114, E4134–E4141. https:// doi. org/ 10. 1073/ pnas. 16176 57114 (2017).
 7. Walton, A. E. et al. Creating time: Social collaboration in music improvisation. Top. Cogn. Sci. 10, 95–119. https:// doi. org/ 10. 1111/ 

tops. 12306 (2018).
 8. Chang, A., Kragness, H. E., Livingstone, S. R., Bosnyak, D. J. & Trainor, L. J. Body sway reflects joint emotional expression in music 

ensemble performance. Sci. Rep. 9, 205. https:// doi. org/ 10. 1038/ s41598- 018- 36358-4 (2019).
 9. Buhl, J. et al. From disorder to order in marching locusts. Science 312, 1402–1406. https:// doi. org/ 10. 1126/ scien ce. 11251 42 (2006).
 10. Cavagna, A. et al. Scale-free correlations in starling flocks. Proc. Natl. Acad. Sci. 107. https:// doi. org/ 10. 1073/ pnas. 10057 66107 

(2010).
 11. Néda, Z., Ravasz, E., Brechet, Y., Vicsek, T. & Barabási, A.-L. The sound of many hands clapping. Nature 403, 849–850. https:// doi. 

org/ 10. 1038/ 35002 660 (2000).
 12. Schmidt, R. & O’Brien, B. Evaluating the dynamics of unintended interpersonal coordination. Ecol. Psychol. 9, 189–206. https:// 

doi. org/ 10. 1207/ s1532 6969e co0903_2 (1997) (Publisher: Routledge.).
 13. Richardson, M. J., Marsh, K. L., Isenhower, R. W., Goodman, J. R. & Schmidt, R. Rocking together: Dynamics of intentional and 

unintentional interpersonal coordination. Hum. Mov. Sci. 26, 867–891. https:// doi. org/ 10. 1016/j. humov. 2007. 07. 002 (2007).
 14. Abney, D. H., Paxton, A., Dale, R. & Kello, C. T. Movement dynamics reflect a functional role for weak coupling and role structure 

in dyadic problem solving. Cogn. Process. 16, 325–332. https:// doi. org/ 10. 1007/ s10339- 015- 0648-2 (2015).
 15. Nalepka, P., Kallen, R. W., Chemero, A., Saltzman, E. & Richardson, M. J. Herd those sheep: Emergent multiagent coordination 

and behavioral-mode switching. Psychol. Sci. 28, 630–650. https:// doi. org/ 10. 1177/ 09567 97617 692107 (2017).
 16. Paxton, A. & Dale, R. Interpersonal movement synchrony responds to high- and low-level conversational constraints. Front. 

Psychol. 8, 1135. https:// doi. org/ 10. 3389/ fpsyg. 2017. 01135 (2017).
 17. Richardson, D. C. & Dale, R. Looking to understand: The coupling between speakers’ and listeners’ eye movements and its relation-

ship to discourse comprehension. Cogn. Sci. 29, 1045–1060. https:// doi. org/ 10. 1207/ s1551 6709c og0000_ 29 (2005) (Publisher: 
John Wiley& Sons, Ltd.).

 18. Chang, A. et al. Body sway predicts romantic interest in speed dating. Soc. Cogn. Affect. Neurosci. 185–192. https:// doi. org/ 10. 
1093/ scan/ nsaa0 93 (2020).

 19. Takens, F. Detecting strange attractors in turbulence. In: Rand, D. & Young, L. (eds) Dynamical systems and turbulence, vol. 898 
of Lecture Notes in Mathematics (Springer, Berlin, Heidelberg, Warwick, 180)

 20. Vlachos, I. & Kugiumtzis, D. Nonuniform state-space reconstruction and coupling detection. Phys. Rev. E 82, 016207. https:// doi. 
org/ 10. 1103/ PhysR evE. 82. 016207 (2010) (Publisher: American Physical Society.).

 21. Alviar, C., Dale, R., Dewitt, A. & Kello, C. Multimodal coordination of sound and movement in music and speech. Disc. Proc. 57, 
682–702. https:// doi. org/ 10. 1080/ 01638 53X. 2020. 17685 00 (2020).

RQAMetrici ∼ N
(

αj[i], σ
2
)

αj ∼ N
(

µαj , σ
2
αj

)

, for SampleNum j = 1, . . . ,J

RQAMetrici ∼ N
(

αj[i] + β1(Performance.Event), σ 2
)

αj ∼ N
(

µαj , σ
2
αj

)

, for SampleNum j = 1, . . . ,J

RQAMetrici ∼ N
(

αj[i], σ
2
)

αj ∼ N
(

µαj , σ
2
αj

)

, for SampleNum j = 1, . . . ,J

https://doi.org/10.1017/S0140525X08005293
https://doi.org/10.1016/j.tics.2015.01.005
https://doi.org/10.3389/fpsyg.2015.00313
https://doi.org/10.1073/pnas.1617657114
https://doi.org/10.1111/tops.12306
https://doi.org/10.1111/tops.12306
https://doi.org/10.1038/s41598-018-36358-4
https://doi.org/10.1126/science.1125142
https://doi.org/10.1073/pnas.1005766107
https://doi.org/10.1038/35002660
https://doi.org/10.1038/35002660
https://doi.org/10.1207/s15326969eco0903_2
https://doi.org/10.1207/s15326969eco0903_2
https://doi.org/10.1016/j.humov.2007.07.002
https://doi.org/10.1007/s10339-015-0648-2
https://doi.org/10.1177/0956797617692107
https://doi.org/10.3389/fpsyg.2017.01135
https://doi.org/10.1207/s15516709cog0000_29
https://doi.org/10.1093/scan/nsaa093
https://doi.org/10.1093/scan/nsaa093
https://doi.org/10.1103/PhysRevE.82.016207
https://doi.org/10.1103/PhysRevE.82.016207
https://doi.org/10.1080/0163853X.2020.1768500


13

Vol.:(0123456789)

Scientific Reports |          (2022) 12:421  | https://doi.org/10.1038/s41598-021-04463-6

www.nature.com/scientificreports/

 22. Kello, C. T., Bella, S. D., Médé, B. & Balasubramaniam, R. Hierarchical temporal structure in music, speech and animal vocaliza-
tions: jazz is like a conversation, humpbacks sing like hermit thrushes. J. R. Soc. Interface 14, 20170231. https:// doi. org/ 10. 1098/ 
rsif. 2017. 0231 (2017).

 23. Shimizu, D. Welcome to the imagination world (2016). www. windr ep. org/ Welco me_ to_ the_ Imagi nation_ World.
 24. InagakuenWindOrchestra. Welcome to the Imagination World (2009). Inagakuen Wind Orchestra. Youtube, uploaded by kamoshi-

tamoyashi. 17 Feb. 2011. https:// www. youtu be. com/ watch? v=- wJ9Zs gO3QI.
 25. Kiverstein, J., Miller, M. & Rietveld, E. The feeling of grip: novelty, error dynamics, and the predictive brain. Synthese 196, 2847–

2869. https:// doi. org/ 10. 1007/ s11229- 017- 1583-9 (2019).
 26. Pantaleone, J. Synchronization of metronomes. Am. J. Phys. 70, 992–1000. https:// doi. org/ 10. 1119/1. 15011 18 (2002).
 27. Francke, M., Pogromsky, A. & Nijmeijer, H. Huygens’ clocks: sympathy and resonance. Int. J. Control 93, 274–281. https:// doi. org/ 

10. 1080/ 00207 179. 2019. 15907 36 (2020) (Publisher: Taylor& Francis.).
 28. Balasubramaniam, R., Riley, M. A. & Turvey, M. Specificity of postural sway to the demands of a precision task. Gait Post. 11, 

12–24. https:// doi. org/ 10. 1016/ S0966- 6362(99) 00051-X (2000).
 29. Riley, M., Balasubramaniam, R. & Turvey, M. Recurrence quantification analysis of postural fluctuations. Gait and Posture 9, 65–78. 

https:// doi. org/ 10. 1016/ S0966- 6362(98) 00044-7 (1999).
 30. Stephen, D. G., Dixon, J. A. & Isenhower, R. W. Dynamics of representational change: Entropy, action, and cognition. J. Exp. Psychol. 

Hum. Percept. Perform. 35, 1811–1832. https:// doi. org/ 10. 1037/ a0014 510 (2009).
 31. Marwan, N. & Webber, C. L. Mathematical and Computational Foundations of Recurrence Quantifications. In Webber, C. L. & 

Marwan, N. (eds) Recurrence Quantification Analysis, 3–43. https:// doi. org/ 10. 1007/ 978-3- 319- 07155-8_1 (Springer International 
Publishing, Cham, 2015). Series Title: Understanding Complex Systems.

 32. Davis, T. J., Pinto, G. B. & Kiefer, A. W. The stance leads the dance: The emergence of role in a joint supra-postural task. Front. 
Psychol. 8. https:// doi. org/ 10. 3389/ fpsyg. 2017. 00718 (2017).

 33. Demos, A. P., Chaffin, R. & Logan, T. Musicians body sway embodies musical structure and expression: A recurrence-based 
approach. Music. Sci. 22, 244–263. https:// doi. org/ 10. 1177/ 10298 64916 685928 (2017).

 34. Winter, B. Linear models and linear mixed effects models in r with linguistic applications. arXiv preprint. arXiv: 1308. 5499 (2013).
 35. Schiavio, A., Maes, P.-J. & van der Schyff, D. The dynamics of musical participation. Musicae Scientiae 1029864920988319, https:// 

doi. org/ 10. 1177/ 10298 64920 988319 (2021).
 36. Clark, A. Natural-born cyborgs: Minds, technologies, and the future of human intelligence (Oxford University Press, Oxford, 2003).
 37. Theiner, G., Allen, C. & Goldstone, R. L. Recognizing group cognition. Spec. Issue Extend. Mind 11, 378–395. https:// doi. org/ 10. 

1016/j. cogsys. 2010. 07. 002 (2010).
 38. Kirchhoff, M. D. & Kiverstein, J. Attuning to the world: The diachronic constitution of the extended conscious mind. Front. Psychol. 

11, 1966. https:// doi. org/ 10. 3389/ fpsyg. 2020. 01966 (2020).
 39. Spivey, M. Who you are: The science of connectedness (MIT Press, London, 2020).
 40. O’Regan, J. K. & Noë, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973. https:// doi. 

org/ 10. 1017/ S0140 525X0 10001 15 (2001).
 41. Goupil, L., Saint-Germier, P., Rouvier, G., Schwarz, D. & Canonne, C. Musical coordination in a large group without plans nor 

leaders. Sci. Rep. 10, 1–14. https:// doi. org/ 10. 1038/ s41598- 020- 77263-z (2020).
 42. Tunçgenç, B., Travers, E. & Fairhurst, M. T. Leadership and tempo perturbation affect coordination in medium-sized groups. Sci. 

Rep. 11, 1–11. https:// doi. org/ 10. 1038/ s41598- 021- 81504-0 (2021).
 43. Demos, A. P., Chaffin, R., Begosh, K. T., Daniels, J. R. & Marsh, K. L. Rocking to the beat: Effects of music and partner’s movements 

on spontaneous interpersonal coordination. J. Exp. Psychol. Gen. 141, 49–53. https:// doi. org/ 10. 1037/ a0023 843 (2012).
 44. von Zimmermann, J., Vicary, S., Sperling, M., Orgs, G. & Richardson, D. C. The choreography of group affiliation. Top. Cogn. Sci. 

10, 80–94. https:// doi. org/ 10. 1111/ tops. 12320 (2018).
 45. Vicary, S., Sperling, M., von Zimmermann, J., Richardson, D. C. & Orgs, G. Joint action aesthetics. PLoS ONE 12, e0180101. https:// 

doi. org/ 10. 1371/ journ al. pone. 01801 01 (2017).
 46. McEllin, L., Knoblich, G. & Sebanz, N. Synchronicities that shape the perception of joint action. Sci. Rep. 10, 15554. https:// doi. 

org/ 10. 1038/ s41598- 020- 72729-6 (2020).
 47. Wiltermuth, S. S. Synchronous activity boosts compliance with requests to aggress. J. Exp. Soc. Psychol. 48, 453–456. https:// doi. 

org/ 10. 1016/j. jesp. 2011. 10. 007 (2012).
 48. Marwan, N. Cross Recurrence Plot Toolbox for MATLAB, Ver. 5.22(R32.4).
 49. Marwan, N., Romano, M. C., Thiel, M. & Kurths, J. Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237–329. 

https:// doi. org/ 10. 1016/j. physr ep. 2006. 11. 001 (2007).
 50. Zhang, L., Liu, X., Zhang, X. & Bu, B. Audio classification algorithm based on nonlinear characteristics analysis. APSIPA ASC 4 

(2011).
 51. Thiel, M. et al. Influence of observational noise on the recurrence quantification analysis. Phys. D 171, 138–152. https:// doi. org/ 

10. 1016/ S0167- 2789(02) 00586-9 (2002).
 52. Schinkel, S., Dimigen, O. & Marwan, N. Selection of recurrence threshold for signal detection. Eur. Phys. J. Spec. Top. 164, 45–53. 

https:// doi. org/ 10. 1140/ epjst/ e2008- 00833-5 (2008).
 53. Marwan, N. How to avoid potential pitfalls in recurrence plot based data analysis. Int. J. Bifur. Chaos 21, 1003–1017. https:// doi. 

org/ 10. 1142/ S0218 12741 10290 08 (2011).
 54. Webber, C. L. & Marwan, N. Recurrence quantification analysis: Theory and best practices (Spinger, Berlin, 2015).
 55. Allen, M. et al. Raincloud plots: a multi-platform tool for robust data visualization [version 2; peer review: 2 approved]. Wellcome 

Open Res 4, 1. https:// doi. org/ 10. 12688/ wellc omeop enres. 15191.1. (2021)
 56. Wickham, H. ggplot2: Elegant graphics for data analysis 2nd edn. (Springer, Berlin, 2016).
 57. Bates, D. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https:// doi. org/ 10. 18637/ jss. v067. i01 (2015).

Acknowledgements
The authors wish to thank Byron Pillow, M.M. (National Music Museum, University of South Dakota) for pro-
viding technical assistance and music theory consultation, and Dr Paul Garza, D.M.A. (University of Houston) 
for music theory consultation. This material is based upon work supported by the National Science Foundation 
under Grant No. DGE-1633722. Any opinions, findings, and conclusions or recommendations expressed in this 
material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author contributions
S.P. devised the project, the main conceptual ideas, and led writing the manuscript. M.R. performed data clean-
ing and preparation. S.P. and M.R. performed the nonlinear analysis, S.P performed statistical analysis. R.B. and 
M.S. verified the analytical methods and supervised the findings of this work. All authors discussed the results 
and contributed to the final manuscript.

https://doi.org/10.1098/rsif.2017.0231
https://doi.org/10.1098/rsif.2017.0231
http://www.windrep.org/Welcome_to_the_Imagination_World
https://www.youtube.com/watch?v=-wJ9ZsgO3QI
https://doi.org/10.1007/s11229-017-1583-9
https://doi.org/10.1119/1.1501118
https://doi.org/10.1080/00207179.2019.1590736
https://doi.org/10.1080/00207179.2019.1590736
https://doi.org/10.1016/S0966-6362(99)00051-X
https://doi.org/10.1016/S0966-6362(98)00044-7
https://doi.org/10.1037/a0014510
https://doi.org/10.1007/978-3-319-07155-8_1
https://doi.org/10.3389/fpsyg.2017.00718
https://doi.org/10.1177/1029864916685928
http://arxiv.org/abs/1308.5499
https://doi.org/10.1177/1029864920988319
https://doi.org/10.1177/1029864920988319
https://doi.org/10.1016/j.cogsys.2010.07.002
https://doi.org/10.1016/j.cogsys.2010.07.002
https://doi.org/10.3389/fpsyg.2020.01966
https://doi.org/10.1017/S0140525X01000115
https://doi.org/10.1017/S0140525X01000115
https://doi.org/10.1038/s41598-020-77263-z
https://doi.org/10.1038/s41598-021-81504-0
https://doi.org/10.1037/a0023843
https://doi.org/10.1111/tops.12320
https://doi.org/10.1371/journal.pone.0180101
https://doi.org/10.1371/journal.pone.0180101
https://doi.org/10.1038/s41598-020-72729-6
https://doi.org/10.1038/s41598-020-72729-6
https://doi.org/10.1016/j.jesp.2011.10.007
https://doi.org/10.1016/j.jesp.2011.10.007
https://doi.org/10.1016/j.physrep.2006.11.001
https://doi.org/10.1016/S0167-2789(02)00586-9
https://doi.org/10.1016/S0167-2789(02)00586-9
https://doi.org/10.1140/epjst/e2008-00833-5
https://doi.org/10.1142/S0218127411029008
https://doi.org/10.1142/S0218127411029008
https://doi.org/10.12688/wellcomeopenres.15191.1.
https://doi.org/10.18637/jss.v067.i01


14

Vol:.(1234567890)

Scientific Reports |          (2022) 12:421  | https://doi.org/10.1038/s41598-021-04463-6

www.nature.com/scientificreports/

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 04463-6.

Correspondence and requests for materials should be addressed to S.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

https://doi.org/10.1038/s41598-021-04463-6
https://doi.org/10.1038/s41598-021-04463-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Coordination dynamics of multi-agent interaction in a musical ensemble
	Human behavior as a complex dynamical system
	Principles of complex dynamical systems. 
	Principles of recurrence quantification analysis. 

	Music and multi-agent human intearction: a model from acoustic data
	Musical ensembles as models of human social interaction. 

	Results
	Recurrence quantification analysis. 
	Statistical analysis. 
	Descriptive statistics. 
	Inferential statistics: model comparisons. 


	Discussion
	Methods
	Extracting acoustic data. 
	Recurrence quantification analysis. 
	Statistical analysis. 

	References
	Acknowledgements




