UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Symbolic/Connectionist Script Applier Mechanism

Permalink
https://escholarship.org/uc/item/69859087

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Authors
Lee, Geunbae

Flowers, Margot
Dyer, Michael G.

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/69859087
https://escholarship.org
http://www.cdlib.org/

A Symbolic/Connectionist Script Applier Mechanism

Geunbae Lee, Margot Flowers, Michael G. Dyer
Artificial Intelligence Laboratory
Computer Science Department, UCLA

Abstract

We constructed a Modular Connectionist Architec-
ture which consists of many different types of 3 layer
feed-forward PDP network modules (auto-associative
recurrent, hetero-associative recurrent, and hetero-
associative) in order to do script-based story un-
derstanding. Our system, called DYNASTY (DY-
NAmic script-based STory understanding sYstem)
has the following 3 major functions: (1) DYNASTY
can learn disiributed representations of concepts and
events in everyday scriptal ezperiences, (2) DY-
NASTY can do script-based causal chain completion
inferences according to the acquired sequential knowl-
edge, and (3) DYNASTY performs script role as-
sociation and retrieval while performing script ap-
plication. Qur purpose in constructing this sys-
tem is to show that the learned internal represen-
tations, using simple encoder-type networks, can be
used in higher-level modules to develop connection-
ist architectures for fairly complex cognitive tasks,
such as script processing. Unlike other neurally
inspired script processing models, DYNASTY can
learn its own similarity-based distribuled representa-
tions from input script data using ARPDP (Auto-
associative Recurrent PDP) architectures. Moreover
DYNASTY’s role association network handles both
script roles and fillers as full-fledged concepts, so that
it can learn the generalized associative knowledge be-
tween several script roles and fillers.

1 Background and Issues

A script is a knowledge structure of stereotypic
action sequences [27]. According to psychological
experiments(1], people use scripts to understand and
remember narrative texts. But proposed symbolic
Al models of script processing (e.g. SAM [2,26])
have many unresolved problems: (1) They are too
rigidly defined, so they can not handle script devia-
tions properly. (2) It is difficult to invoke the right
script for the input story fragments. Proposed script

headers(2] are unnatural and fragile.

A number of neurally inspired connectionist script
processing models have been proposed to overcome
weaknesses in the symbolic models 3,4,5], but none of
them has the semantics needed for representing con-
stituency of concepts and events. Dolan and Dyer [6]
are the first to consider micro-feature based underly-
ing representations in connectionist script processing
to make their representations have similarity prop-
erties: similar concepts have similar representations.
But as noted in [7] micro-features are unnatural and
akward.

This paper proposes a modular distributed con-
nectionist architecture called DYNASTY (DYNAmic
script-based STory understanding sYstem) based on
automatically learned distribuied semantic represen-
tations. DYNASTY takes simple coherent groups of
sentences as input, e.g.:

John went to Sizzler. John ate steak and

shrimp. John left a tip.

and produces causally completed groups of sentences
as output:!

John went to Sizzler. Waiter seated John.
John looked at the menu. John ordered
steak and shrimp. John ate steak and
shrimp. John paid the bill. John left a tip.
John left Sizzler for home.

There are three major tasks that DYNASTY must
solve in order to handle this example: (1) DY-
NASTY must learn distributed semantic representa-
tions (DSR) for both concepts and events automati-
cally from its input script data. (2) DYNASTY must
learn sequential knowledge to do causal-chain com-
pletion inference. (3) DYNASTY must learn associ-
ations between script roles and their fillers for later
retrieval of role bindings.

! The events in this output were mentioned by 55 - 75% of
the human subjects in a psychological experiment [1].

714

HRPDP MODULE

Figure 1: ARPDP, HRPDP, and HPDP modules.

2 DYNASTY System Archi-
tecture

DYNASTY has three different PDP (Parallel Dis-
tributed Processing) modules in its system architec-
ture: ARPDP (Auto-associative Recurrent PDP),
HRPDP (Hetero-associative Recurrent PDP) and
HPDP (Hetero-associative PDP) modules. Figure 1
shows the three different modulesin the system. Each
module is not an entirely new architecture. For exam-
ple, Pollack [8] used an ARPDP architecture? to gen-
erate recursive distributed representations of stacks
and parse trees. HRPDP architecture has been used
by many researchers, e.g. Elman [9], Allen [10], Han-
son [11] and John [12] for several applications: natu-
ral language question-answering[10], parsing[11] and
sentence comprehension[12]. HPDP architecture is
an ordinary three layer PDP architecture. But what
is new is that DYNASTY uses all these different PDP
sub-architectures as modular components for a coher-
ent system architecture, namely, a system for script
application.

Figure 2 shows the overall DYNASTY architec-
ture. DYNASTY modules communicate through a
global dictionary (7] which has distributed represen-
tations of concepts and events. The ARPDP oval con-
sists of two ARPDP modules, and their functions are
to develop distributed semantic representations for
concepts and events in an input script-based story.
In the same way, the HRPDP oval consists of two
HRPDP modules, and their functions are to learn se-
quential knowledge in the script and produce entire
script events sequentially. Finally, the HPDP oval
consists of one HPDP module with three symbolic
buffers: event-match-list, script-instance-buffer, and
script-buffer. Their functions are to learn the script

?He used a different name, i.e., RAAM (Recursive Auto
Associative Memory).

(parser)

Figure 2: DYNASTY system architecture. The
ovals represent PDP modules, while the boxes rep-
resent symbolic stores. The lines designate uni-/bi-
directional data flow. Modules marked with * are not
developed yet.

role and filler associations. The internal architectures
and their functions will be described in detail.

3 Learning Distributed Se-
mantic Representations

3.1 Criteria for a Distributed Seman-
tic Representation

A distributed representation able to represent con-
ceptual knowledge must have five features:

1.Automaticity — The representation must be ac-
quired through some automatic learning procedure,
rather than set by hand. For instance, the hand-
coded microfeature based representation[15] does not
meet this criterion.

2.Portability— The representation should be global
rather than locally confined to its training en-
vironment. That is, the representation learned
in one training environment should have struc-
tural/semantic invariant properties so that it can be
applied in another task environment. For example,
the representation in Hinton’s family tree example[19)]
can be said to meet the automaticity criterion, but
not the portability criterion, since it cannot be used
in any other task.

3.Structure Encoding — Feldman[20] has argued
that any conceptual representation must support an-
swering questions about structural aspects of the
concept. For example, part of the meaning of “ir-
responsible” is that there was an obligation estab-
lished to perform an action and the obligation was
violated. To answer a question about the mean-
ing of “irresponsible” requires accessing these con-
stituent structures. Any conceptual representation
must have structural information in the represen-
tation itself about the constituents of the concept

715

and purely holographic representations do not meet
this criterion. This structure-encoding criterion im-
plies systematicity, compositionality, and inferen-
tial coherence - the three properties that Fodor
and Pylyshyn[18] mentioned when criticizing connec-
tionism. The extended back-propagation method,
FGREP[7), can be said to meet the first and the
second criteria, but the resulting FGREP represen-
tation is purely holographic. We can not retrieve any
structural information from the representation itself.
Thus representations of lexical entries in the FGREP
lexicon do not allow us to answer questions about
the constituents of any word’s conceptual structure.
Hand-coded microfeatures are a good representation
according to this criterion, since at least one can in-
terpret the semantic content of each microfeature in
the representation, but they are arbitrary, lack struc-
ture, and create a knowledge engineering bottleneck.

4. Micro-Semantics — Distributed representations
gain much of their power by encoding statistical cor-
relations from the training set, which are used to
characterize the environment. These statistical corre-
lations give connectionist models the ability to gen-
eralize. To support generalization, distributed rep-
resentations should exhibit semantic content at the
micro level, i.e. similar concepts should end up
(by some metric) with similar distributed representa-
tions. This criterion provided the original impetus for
microfeature-based encodings, since similar concepts
are similar because they share similar microfeature
values.

5.Convergence — A basic operation for any self-
organizing (possibly chaotic) representation is con-
vergence to a (possibly chaotic) attractor. At any one
time, the representation should have a stable pattern
of activation over the ensemble of units in a stable
environment, and this pattern should converge to an
attractor point in the feature space[14).

3.2 Forming Distributed Seman-
tic Representations (DSRs) of
Words

In this section we show how DSRs may be formed and
demonstrate their validity for the task of encoding
word meanings.

There are two alternate views on the semantic con-
tent of words: (1) The structural view defines a word
meaning only in terms of its relationships to other
meanings. (2) The componential view defines mean-
ing as a vector of properties (e.g. microfeatures).
We take an interim view - that meaning can be
defined in terms of a distributed representation of
structural/functional relationships, where each rela-

tionship is encoded as a proposition. Examples of
propositions are verbal descriptions of action-oriented
events in everyday experiences.

3.2.1 Representing DSRs

The intuition behind DSRs is that people learn the
meanings of words through examples of their rela-
tionships to other words. For example, after reading
the 4 propositions below, the reader begins to form a
hypothesis of what kind of meaning the word “foo”
should have.

e Propositionl: The man drinks foo with a straw.

e Proposition2: The company delivers foo in a car-
ton.

e Proposition3: Humans get foo from cows.

e Proposition4: The man eats bread with foo.

The meaning of foo should be something like that of
milk. The interesting fact is that the semantics of
“foo” is not fixed, rather it is gradually refined as
one experiences more propositions in varying envi-
ronments. To develop DSRs based on propositions,
we have to define the structural/functional relation-
ships between concepts with respect to those propo-
sitions. For action-oriented events describing propo-
sitions, we use thematic case relations, originally de-
veloped by Fillmore[13], and extended in several nat-
ural language processing systems[21]. We use the fol-
lowing 8 thematic case relations which are similar to
the ones defined in Fillmore[13] : agent, object, co-
object, instrument, source, goal, location, and time.
For example, the DSR of “milk™ is now defined as
the composition of relationships, e.g. with respect to
the 4 propositions above. These are then combined
as follows:

milk = F; (G. (object, *propositionl*),
G. (object, *proposition2*), G. (object,
propositiond), G. (co-object, *proposi-

where *milk* is the meaning representation of “milk”;
F; is some integration function and G, is some combi-
nation function of structural/functional relationships
with respect to the corresponding propositions. In
the same way, each proposition itself is defined as the
composition of the constituent thematic case com-
ponents that are themselves combinations of struc-
tural/functional relationships with their correspond-
ing meaning representations of other words:

propositionl = F; (G, (agent, *man*), G,
(verb, *drink*), G. (object, *milk*), G, (in-
strument, *straw*))

716

stor
Son hame |DSR
)
milk 01...
load _l1
oncept-encoding-nel concept-dictionary
load DSA
vl pP10...
copy slore
event-dictionary
event-encoding-net
bank1 bank2 bank3
(m-bit) (n-bit) (m-bit)

Figure 3: ARPDP Network Architecture for Learning
DSRs

3.2.2 Learning DSRs

We have developed ARPDP (auto-associative recur-
rent PDP) networks for automatically learning DSRs.
The basic idea is to recirculate the developing inter-
nal representation (hidden layer of the network) back
out to the environment (input and output layers of
the network).® Figure 3 shows our ARPDP architec-
ture. The learning portion of the ARPDP architec-
ture contains two symbolic memories (concept dictio-
nary and event dictionary) and two 3-layer ARPDP
networks. The input and output layers of each net-
work has 3 banks of units: bankl, bank2, bank3. Af-
ter each of the 3 banks is properly loaded with the
elements of a proposition, the DSR emerges in bank1
by unsupervised auto-associative BEP (Backward Er-
ror Propagation)[16].

The DSR learning process consists of two alter-
nating cycles: Concept Encoding and Proposition
(Event) Encoding. Below we informally describe each
cycle. In each, all concept and proposition represen-
tations start with a don’t care pattern, e.g. 0.5, when
the activation value range of each unit in network
is 0.0 to 1.0. The structural/functional relationship
representation is fixed, using orthogonal bit patterns
(for minimizing interference).

Concept Encoding Cycle:
1. Pick one concept to be represented, say CON1.

2. Select all relevant triples for CON1. In the
milk example, they should be triples like
(*milk* object propositionl) (*milk* object
proposition2) (*milk* object proposition3), etc.

3The idea of recirculation was first developed by Pollack(g]
and Miikkulainen and Dyer[7].

3. For the first triple, load the initial represen-
tation for CON1 into bankl; load the struc-
tural/functional relationship into bank2, and
load its corresponding proposition to bank3. In
the *milk* example, for the first triple, bankl,
bank2, and bank3 are loaded with bit patterns
for *milk*, object, and propositionl, respec-
tively.

4. Run the auto-associative BEP algorithm, where
the input and output layers have the same bit
patterns.

5. Recirculate the developed (hidden layer) repre-
sentation into bankl of both the input/output
layers and perform step3d to step5 for another
triple until all triples are encoded.

6. Store the developed DSR into the concept dic-
tionary and select another word concept to be
represented.

Proposition (Event) Encoding Cycle: Basically this
cycle undergoes the same steps as the Concept En-
coding Cycle except that, this time, we load bankl,
bank2, and bank3 with (respectively) the proposition
(event) to be represented, structural/functional rela-
tionship, and its corresponding concept representa-
tion (DSR). The result of the encoding is stored into
the event dictionary.

Now the overall DSR learning process will be:

1. Perform the entire concept encoding cycle.

2. Perform the entire proposition (event) encoding
cycle.

3. Repeat stepl and step2 until we get stable pat-
terns for all concepts and events.

In this process,the composition function F; is embod-
ied in the dynamics of the Recursive Auto-Associative
Stacking operation[8] and the combination function
G, is just a concatenation of two bit patterns. So
what the ARPDP architecture does is form a repre-
sentation by compressing propositions about a con-
cept into the hidden layer and then use those com-
pressions in the specification of propositions that de-
fine other concepts, and then recycle the compression
formed for this concept back into the representation
of the original concept (doing this over and over until
it stabilizes). Thus each DSR has in it the propo-
sitional structure that relates it to other concepts,
where each of those are also DSRs. This method
produces what may be viewed as generalizations of
Hinton’s “reduced descriptions™ [28].

717

to surface-gen

script-event
sequence-encoding-net sequence-decoding-net

Figure 4: HRPDP architecture for learning the se-
quentaility of events

The decoding process is the reverse process of en-
coding: We load the concept representation in the
hidden layer of the ARPDP concept encoding net-
work and perform relaxation until we get the de-
sired relationship in bank2 and proposition (event)
in bank3 of the output layer. Next, we load the re-
sulting proposition (event) in the hidden layer of the
proposition encoding network and get back the con-
stituent relationships and concept representations.

According to the evaluation and experiments re-
ported elsewhere[17], the resulting DSRs meet all
the 5 criteria: automaticity, portability, structure-
encoding, micro-semantics, and convergence.

4 Learning Sequentiality of
Events

Event sequences are encoded in two HRPDP net-
works, namely, a sequence encoding network and a
sequence decoding network. Figure 4 shows this por-
tion of the system architecture. The sequence encod-
ing network has 2 banks in the input layer, namely,
a context bank and an event bank, and has 1 script
bank in the output layer. Similarly, the sequence de-
coding network has 2 banks: a context bank and a
script bank in its input layer and 1 event bank in its
output layer.

During the training phase, the system repeats the
sequence encoding and decoding procedures for all
the scripts defined in the system. For one script, the
seqence encoding procedure is:

1. Select all relevant script instances (specific and
incomplete event sequences with script roles al-
ready filled) and choose one instance.

2. Load script bank with the fixed orthogonal script
representation.

3. Load contezt bank with don’ care patterns and
event bank with the first event representation in

the chosen script instance from the event dictio-
nary.

4. Do hetero-associative BEP.

5. Copy the developed hidden layer into the contezt
bank and load the event bank with the next event
representation.

6. Repeat step 4 to step 5 with all the event repre-
sentations in the chosen script instance.

7. Choose another script instance and repeat step
2 to step 6 until all the selected script instances
are encoded.

In this procedure, the weight vectors along with the
context bank learn the correct encoding of the se-
quences for each script instance. For the same script,
the sequence decoding procedure is:

1. Load the context bank with don't care patterns
and load the script bank with the fixed orthogo-
nal script representation.

2. Load the event bank with the first event rep-
resentations of the chosen script. In this case,
the generic event with the script roles unfilled is
used.

3. Do hetero-associative BEP,

4. Copy the developed hidden layer into the contezt
bank and load the event bank with the next event
representation.

5. Repeat step 3 to step 4 with all the event repre-
sentations in the script.

In the same way, the weight vectors along with the
context bank learn the correct decoding of the se-
quences for the script.

In the performance phase, the system can do the
causal chain completion inferences by using learned
sequential knowledge. In this phase, the context bank
is loaded with the don’t care patterns and the event
bank is loaded with the event representations from
the input story. After a series of relaxations and
copy actions, the script representation emerges in the
script bank of the sequence encoding network. This
is similar to the script recognition process in symbolic
Al models. But here we don't need to worry about
the script header problems: All the events in the in-
pul story cooperate lo invoke one scripl represenia-
tion. We load this script pattern into the script bank
of the sequence decoding network and the same series
of relaxations and copy actions make the completed
event sequence emerge in the event bank. Since these

718

role-associator-net

Figure 5: HPDP architecture for script role associa-
tion.

events are role stripped, we need to fill the roles with
fillers using a role associator network(Figure 5). After
roles are filled, the output event sequences form the
causal chain, i.e. the completed story output. This
role binding operation will be addressed in the next
section.

5 Role Association and Re-
trieval in DYNASTY

Role binding is not easy in a system using distributed
representations since it is impossible to have context-
free role variables. With similarity-based distributed
representations, a solution using binding units, like
in [22], will not scale up. In Smolensky’s tensor ap-
proach [23], the superposition of several (schema role
filler) triples in one cube makes unorthogonal patierns
hard to be retrieved correctly.

We take a different approach to script role bind-
ing problems, namely, we consider both script roles
and fillers as full-fledged concepts. So script roles are
associated with their fillers rather than bound in the
symbolic sense. This approach is in the same spirit as
Wilensky's [24] frame/slot (or node/link) distinctions
in his CRT (Cognitive Representation Theory), and
as Touretzky and Geva [25], who used diffuse pat-
terns for both slot names and fillers in their DUCS
(Dynamically Updatable Concept Structures) archi-
tecture.

Figure 5 shows the role association/retrieval archi-
tecture in DYNASTY. While the HRPDP architec-
ture is doing sequence encoding and decoding, the
corresponding events in the input and output story
are kept in the event-match-list. The event pairs are
decoded using the ARPDP proposition (event) en-
coding network (see Figure 3) and stored into the
script-instance-buffer and script-buffer respectively.
The decoded results for the events in the input story
(from the script-instance-buffer) are loaded into the
filler bank, while the results for the events in the
ouput story (from the script-buffer) are loaded into
the role bank in the role associator network. The
script bank in the same network is loaded with the

patterns in the script bank in the sequence encoder
network. After BEP training, the weight vectors
learn the generalized features for script role and filler
associations with the corresponding script represen-
tations. Then this role associator network is used to
retrieve correct roles when the script and fillers are
given. This is a new approach to the script role bind-
ing problem: By accumulating the associative knowl-
edge between several roles and fillers while processing
several scripts, the role associator network learns the
general role-filler associative features, not individual
role-filler bindings.

6 Experiment Results

We selected 4 scripts: going to a restaurant, attend-
ing a leclure, grocery shopping, and visiting a doc-
tor from [1] and made 8 variations of each script.
From the resulting 32 scripts, we extracted 122 events
(propositions) to train our ARPDP modules. Figure
6 shows parts of our learned DSRs for the concepts
and events.

In concept representations (CON-NAME in Fig-
ure 6), the first group designates script role concepts,
while the second group designates their filler con-
cepts. The filler concepts (e.g. John, Jack) for the
same role (e.g. customer) develop similar representa-
tions. The third group designates some of the verb
representations. Some of the concepts developed ex-
actly the same representations, which is due to the
limited number of propositions provided. The more
propositions used in the training, the more refined
are the representations.!

In event representations (EVENT-NAME in Fig-
ure 6), the first group designates events in the restau-
rant script, while the second group designates the
same events in a specific instance (with script roles
filled by proper filler concepts). The corresponding
events in the second group also develop similar rep-
resentations.

Next, we made up input stories (not causally com-
pleted ones) and fed them to our HRPDP and HPDP
modules to get the causally completed stories with
the correct role associations.

Figure 7 shows our results for the restaurant script
when the system is fed with the input story “John
went 1o Sizzler. John ale steak-and-shrimp. John
left a tip.” In each representation, the first row des-
ignates system output, and the second row shows the
correct values for the comparison.

4122 propositions are obviously insufficient in number to
learn 70 concepts. We postulate that a child must experience a
great number of propositions to learn a single concept correctly.

719

CON-NAME
cusiomer
reslaurant

|ohn

|mck

silller
worean-garden
sleak-and-shrimp
short-rib

want
sealed
ooked-al
ordersd

Figure 6: Learned DSRs of concepts (Nouns/Verbs)
and events. The experiment is done using momen-
tum accelerated back-propagation. Learning rate =
0.07,momentum factor = 0.5, 30 epochs for each con-
cept and event; one epoch = 100 cycles of auto-
associative backprop. The value range is 0.0 - 1.0
continuous which is shown by the degree of box fill-

up.

As can be seen, the system is excellent at causal
completion inference and script role retrieval.

7 Future Directions and Con-
clusion

A modular connectionist architecture with recursive,
compositional distributed representations (the DSRs
in DYNASTY) opens a new way to building practi-
cal connectionist systems that can do fairly high-level
cognitive tasks. This type of neurally inspired cog-
nitive architecture can bridge the gap between sym-
bolic AI and the more numerical (statistical) neural
network field. Usually symbolic Al systems lack in
expandibility since they are brittle and break easily
with large practical data. But our DYNASTY ex-
hibits the reverse property: The more data the system
1s fed, the more robust and refined its performance.
The next step is to extend this type of architecture
from the prototype level to the practical level includ-
ing parsing, generation and question-answering mod-
ules.

We have designed DYNASTY, a modular connec-
tionist architecture for script processing. DYNASTY

OUTPUT ROLE-RETRIEVAL
ROLE-NAME FILLER
cusmer john

restaurant szzier

food R, R

Figure 7: Causally completed output story with cor-
rect role-fillers retrieved.

can (1) automatically form distributed representa-
tions of the concepts (words) and events in the do-
main of script-based story understanding, (2) gener-
ate completed script event sequences from fragmen-
tary input, and (3) successfully bind the roles in the
script for the unstated events in the input. Moreover
the representations formed contain constituent struc-
ture that can be extracted and events, roles, concepts
with similar semantics end up with similar represen-
tations, i.e., they satisfy the 5 criteria for a DSR[17].

References

[1] Bower, G. H., Black J. B. and Turner, T. J. Scripts in
memory for text. Cognitive psychology. 11, 177-220.
1979.

[2] Cullingford, R. E. SAM, in Schank, R. C. and Ries-
beck, C. K. (Eds.) Inside computer understanding:
Five programs plus miniatures. Lawrence Erlbaum
Associates. 1981.

[3] Golden, R. M. Representing causal schemata in con-
nectionist systems. Proceedings of the eight annual
conference of the cognitive science society. Amherst,

MA, 1986.

(4] Chun, Hon Wai and Alejandro Mimo. A model of
schema selection using marker passing and connec-
tionist spreading activation. Proceedings of the ninth
annual conference of the cognitive science society.
Seattle, WA. 1987.

720

[5] Rumelhart, D. E., Smolensky, P., McClelland, J. L.
and Hinton, G. E. Schemata and sequential thought
processes in PDP models. In Rumelhart and McClel-
land (Eds.) Parallel Distributed Processing. Vol. 2,
Bradford Book/MIT Press, 1986.

Dolan, C. P. and Dyer, M. G. Symbolic schemata,
role binding, and the evolution of structure in con-
nectionist memories. Proceedings of the first interna-
tional conference on neural network. San Diego, CA,
Volume II, 287-298. 1987.

Miikkulainen, R. and Dyer, M. G. Forming global
representations with extended back-propagation.
Proceedings of the IEEE second annual international
conference on neural nets. San Diego, CA. 1988.

(6]

(7

(8] Pollack, J. Recursive auto-associative memory: de-
vising compositional distributed reprsentations. Pro-
ceedings of the tenth annual conference of the cogni-
tive science society. Montreal. 1988.

Elman, J. L. Finding structure in time. Technical
report 8801. Center for research in language, UCSD,
San Diego. 1988.

Allen, R. B. Sequential connectionist networks for
answering simple questions about a micro-world.
Proceedings of the tenth annual conference of the cog-
nitive science society. Montreal. 1988.

Hanson, Stephen J. and Kegl, Judy. PARSNIP: A
connectionist network that learns natural language
grammer from exposure to natural language sen-
tences. Proceedings of the ninth annual conference
of the cognitive science society. Seattle, WA, 1987,

John, St. M. F. and McClelland, J. L. Applying con-
textual constraints in sentence comprehension. Pro-
ceedings of the tenth annual conference of the cogni-
tive science society. Montreal. 1988.

(9]

[10]

(11]

(12]

Fillmore, C. The case for case. In Bach, E. and
Harms, R. (Eds.) Universals in linguistic theory,
New York: Holt, Rinehart and Winston, 1968.

Hopfield, J. J. Neural networks and physical sys-
tems with emergent collective computational abili-
ties. Proceedings of national academy of science, Vol.
79, pp 2554-2558, 1982,

McClelland, J. L. and Kawamoto, A. H. Mecha-
nisms of sentence processing: assigning roles to con-
stituents of sentences. In McClelland and Rumelhart
(Eds.) Parallel Distributed Processing. Vol. 2. Brad-
ford Book/MIT Press, 1986.

Rumelhart, D. E., Hinton, G. E. and Williams, R.
Learning internal representations by error propaga-
tion. In Rumelhart and McClelland (Eds.) Parallel
Distributed Processing. Vol. 1, Bradford Book/MIT
Press, 1986.

Lee, G., Flowers, M. and Dyer, M. G. Learning
distributed representations of conceptual knowledge.
Research Report, Artificial Intelligence Lab, Dept. of
Computer Science, Univ. of California at LA, 1989.

(13]

(14]

(15]

[16]

(17]

[18] Fodor, J. and Pylyshyn, Z. Connectionism and cog-
nitive architecture: A critical analysis. Cognition, 28,
3-T1, 1988.

[19] Hinton, G. E. Learning distributed representation of
concepts. Proceedings of the eighth annual conference
of the cognitive science society, Amherst, MA, 1986.

[20] Feldman, J. A. Neural representation of conceptual
knowledge. Technical report, TR 189, Dept. of CS.,
Univ. of Rochester, New York, 1986.

[21] Schank, R. C. and Riesbeck, C. K. Inside com-
puter understanding: Five programs plus miniatures.
Lawrence Erlbaum Associates. 1981.

[22] Touretzky, D. and Hinton, G. E. A distributed
connectionist production system. Technical report,
CMU-CS-86-172. Computer Science Department,
Carnegie Mellon Univ., Pittsburgh, 1986.

[23] Smolensky, P. A method for connectionist variable
binding. Technical report, CU-CS-356-87. Dept. of
Computer Science, Univ. of Colorado, Boulder, 1987.

[24] Wilensky, R. Some problems
and proposals for knowledge representation. Tech-
nical report, UCB/CDS 86/294, Computer Science
Division, Univ. of California at Berkeley, 1986.

[25] Touretzky, D. and Geva, S. A distributed connection-
ist representation for concept structures. Proceedings
of the tenth annual conference of the cognitive science
society. Montreal, 1988,

Schank, R. and Abelson, R. Scripts, plans, goals, and
understanding. LEA Press, Hillsdale, NJ. 1977.
Dyer, M. G., Cullingford, R. and Alvarado, S.
Scripts, in Shapiro (Eds.) Encyclopedia of artifi-
cial intelligence. John Wiley and Sons, Inc. 980-994,
1977.

[26]

27]

Hinton, G. Representing part-whole hierarchies in
connectionist networks. Proceedings of the tenth an-
nual conference of the cognitive science society, Mon-
treal, 1988,

(28]

721

	cogsci_1989_714-721

