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ARTICLE

An equation-of-state-meter of quantum
chromodynamics transition from deep learning
Long-Gang Pang 1,2,3, Kai Zhou 1,4, Nan Su1, Hannah Petersen 1,4,5, Horst Stöcker1,4,5

& Xin-Nian Wang 3,6

A primordial state of matter consisting of free quarks and gluons that existed in the early

universe a few microseconds after the Big Bang is also expected to form in high-energy

heavy-ion collisions. Determining the equation of state (EoS) of such a primordial matter is

the ultimate goal of high-energy heavy-ion experiments. Here we use supervised learning

with a deep convolutional neural network to identify the EoS employed in the relativistic

hydrodynamic simulations of heavy ion collisions. High-level correlations of particle spectra in

transverse momentum and azimuthal angle learned by the network act as an effective

EoS-meter in deciphering the nature of the phase transition in quantum chromodynamics.

Such EoS-meter is model-independent and insensitive to other simulation inputs including the

initial conditions for hydrodynamic simulations.
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Deep learning (DL) is a branch of machine learning that
learns multiple levels of representations from data1,2. DL
has been successfully applied in pattern recognition and

classification tasks, such as image recognition and language
processing. Recently, the application of DL to physics research is
rapidly growing, such as in particle physics3–7, nuclear physics8,
and condensed matter physics9–14. DL is shown to be very
powerful in extracting pertinent features especially for complex
non-linear systems with high-order correlations that conventional
techniques are unable to tackle. This suggests that it could be
utilized to unveil hidden information from the highly implicit
data of heavy-ion experiments.

Strong interaction in nuclear matter is governed by the theory
of quantum chromodynamics (QCD). It predicts a transition
from the normal nuclear matter, in which the more fundamental
constituents, quarks and gluons, are confined within the domains
of nucleons, to a new form of matter with freely roaming quarks
and gluons as one increases the temperature or density. The QCD
transition is conjectured to be a crossover at small density (and
moderately high temperature), and first order at moderate density
(and lower temperature), with a critical point separating the two,
see Fig. 1 for a schematic QCD phase diagram and15–17 for some
reviews. One primary goal of ultra-relativistic heavy-ion collisions
is to study the QCD transition.

Though it is believed that strongly coupled QCD matter can be
formed in heavy-ion collisions at the Relativistic Heavy Ion
Collider (RHIC, Brookhaven National Laboratory, USA)18, Large
Hadron Collider (LHC, European Organization for Nuclear
Research, Switzerland)19, and at the forthcoming Facility for
Anti-proton and Ion Research (FAIR, GSI Helmholtz Centre for
Heavy Ion Research, Germany)20,21, a direct access to the bulk
properties of the matter such as the equation of state (EoS) and
transport coefficients is impossible due to the highly dynamical
nature of the collisions. In heavy-ion collisions where two high-
energy nuclei collide along the longitudinal (z) direction, what
experiments measure directly are the final-state particle dis-
tributions in longitudinal momentum (rapidity), transverse
momentum pT and azimuthal angle ϕ.

Current efforts to extract physical properties of the QCD
matter from experimental data are through direct comparisons
with model calculations of event-averaged and predefined
observables, such as anisotropic flow22 or global fitting of a set of
observables with Bayesian method23,24. However, event-by-event

raw data on ρ(pT, ϕ) at different rapidities provide much more
information that contains hidden correlations. These hidden
correlations can be sensitive to physical properties of the system
but independent of other model parameters.

The aim of the present exploratory study is a first step in
directly connecting QCD bulk properties and raw data of heavy-
ion collisions using state-of-the-art deep-learning techniques. We
use the relativistic hydrodynamic model which has been very
successful in simulating heavy-ion collisions and connecting
experiments with theory25–29. We find unique encoders of bulk
properties (here we focus on the EoS) inside ρ(pT, ϕ) in terms of
high-level representations using deep-learning techniques, which
are not captured by conventional observables. This is achieved by
constructing a convolutional neural network (CNN) and training
it with labeled ρ(pT, ϕ) of charged pions generated from the
relativistic hydrodynamic program CLVisc30,31 with two different
EoSs as input: crossover32 and first order33. The CNN is then
trained with supervision in identifying different EoSs. The per-
formance is surprisingly robust against other simulation para-
meters such as the initial conditions, equilibrium time τ0,
transport coefficients and freeze out temperature. The supervised
learning with deep CNN identifies the hydrodynamic response
which is much more tolerant to uncertainties in the initial con-
ditions. ρ(pT, ϕ) as generated by independent simulations
(CLVisc with different setup parameters and another hydro-
dynamic package iEBE-VISHNU34 which implements a different
numerical solver for partial differential equations) are used for
testing—on average a larger than 95% testing accuracy is
obtained. It has been recently pointed out that model-dependent
features (features in the training data that depends on the
simulation model and parameters) may generate large uncer-
tainties in the network performance6. The network we develop
below is, however, not sensitive to these model-dependent
features.

Results
Training and testing data sets. The evolution of strongly coupled
QCD matter can be well described by second-order dissipative
hydrodynamics governed by ∂μTμν = 0, with Tμν the
energy–momentum tensor containing viscous corrections
governed by the Israel–Stewart equations25,26. In order to close
the hydrodynamic equations, one must supply the EoS of the
medium as one crucial input. The nature of the QCD transition in
the EoS strongly affects the hydrodynamic evolution35, since
different transitions are associated with different pressure
gradients which consequently induce different expansion rates,
see the small chart in Fig. 1. Final ρ(pT, ϕ) are obtained from the
Cooper–Frye formula for particle i at mid-rapidity

ρ pT;ϕð Þ � dN i

dYpTdpTdϕ
¼ gi

Z
σ
pμdσμf i; ð1Þ

Here Ni is the particle number density, Y is the rapidity, gi is the
degeneracy, dσμ is the freeze-out hypersurface element, fi is the
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Fig. 1 The conjectured phase diagram in quantum chromodynamics. In the
region with high temperature and small baryon chemical potential, the
phase transition between hadronic matter and quark–gluon plasma is a
cross over according to lattice QCD calculations (blue dashed line in the
small insert). In the region with low temperature and moderately high
baryon chemical potential, the phase transition is first order (red line in the
small insert). At low temperature and high baryon chemical potential, there
might exist other phases, such as color superconductor

Table 1 The training data set

Training data set η/s= 0 η/s= 0.08

EOSL EOSQ EOSL EOSQ

Au–Au
ffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV 7435 5328 500 500
Pb–Pb

ffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV 4967 2828 500 500

Numbers of ρ(pT, ϕ) generated by the CLVisc hydrodynamic package with the AMPT initial
conditions in the centrality range 0–60%. η/s is ratio of shear viscosity to entropy density.
τ0 = 0.4 fm for the Au–Au collisions and τ0 = 0.2 fm for the Pb–Pb collisions. The freeze-out
temperature is set to be 137MeV
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thermal distribution. In the following, we employ the lattice-EoS
parametrization32 (dubbed as EOSL) for the crossover transition
and Maxwell construction33 (dubbed as EOSQ) for the first-order
phase transition.

The training data set of ρ(pT, ϕ) (labeled with EOSL or EOSQ)
is generated by event-by-event hydrodynamic package
CLVisc30,31 with fluctuating AMPT initial conditions36. The
simulation generated about 22,000 ρ(pT, ϕ) for different types of
collisions. Then the size of the training data set is doubled by
label-preserving left-right flipping along the ϕ direction. In
Table 1 we list the details of the training data set.

The testing data set contains two groups of samples. In the first
group, we generate 7343 ρ(pT, ϕ) events using the second-order
event-by-event hydrodynamic package iEBE-VISHNU34 with
MC-Glauber initial condition. In the second group, we generate
10953 ρ(pT, ϕ) events using the CLVisc package with the IP-
Glasma-like initial condition24,37. The testing data sets are
constructed to explore very different regions of parameters as
compared to training data set. The details are listed in Table 2.
Note that all the training and testing ρ(pT, ϕ) are preprocessed by
ρ′ = ρ/ρmax − 0.5 to normalize the input data.

The existence of physical encoders and neural-network deco-
der. After training and validating the network, it is tested on the
testing data set of ρ(pT, ϕ) events (see Sec. 4 for the details of our
neural-network model). As shown in Table 3, high prediction
accuracies—on average larger than 95% with small model
uncertainties given by a 10-fold cross validation tests—are
achieved for these three groups of testing data sets, which indi-
cates that our method is highly independent of initial conditions.
The network is robust against shear viscosity and τ0 due to the
inclusion of events with different η/s and τ0 in the training. In the
testing stage the neural network identifies the type of the QCD
transition solely from the spectra of each single event. Further-
more, in the training only one freeze-out temperature is used,
while the network is tolerant to a wide range of freeze-out tem-
peratures during the testing. For simplicity, the exploratory study
has not included pions from resonance decays (the hadronic
transport module UrQMD is switched off in iEBE-VISHNU to
exclude contributions from resonance decays in testing data).

For complex and dynamically evolving systems, the final states
may not contain enough information to retrieve the physical
properties of initial and intermediate states due to entropy
production (information loss) during the evolution. The mean
prediction accuracy decreases from 97.1% (for η/s = 0.0) to 96.6%
(for η/s = 0.08) and 87% (for η/s = 0.16) in the 10-fold cross
validation for testing GROUP 1. Besides, the construction of
conventional observables may introduce further information loss
due to projection of raw data to lower dimensions, as well as

information interference due to its sensitivity to multiple factors.
These make it yet unclear how to reliably extract physical
properties from raw data. Our study firmly demonstrates how to
detect the existence of physical encoders in final states with deep
CNN decoders, and sets the stage for further applications, such as
identifying all relevant physical properties of the systems.

Observation from the neural-network decoder. In order to get
physical insights from the neural-network model, it is instructive
to visualize the complex dependences learned by the network. For
this purpose, we employ the recently developed Prediction Dif-
ference Analysis method38,39. This method uses the observation
that replacing one feature in the input image can induce a sizable
prediction difference if that feature is important for classification
decision. The prediction differences can be visualized as the
importance maps of all the input features for the classification
network.

Shown in Fig. 2 are importance maps which illustrate the (pT,
ϕ) dependence of the mean prediction difference averaged over
800 events for different model setups (initial conditions, PDE
solver and model parameters), EoSs and values of the shear
viscosity. For a given event, the mean prediction difference in
each (pT, ϕ) bin is computed against ten random reference events
from the same data set. Comparing different columns in the same
row in Fig. 2, we can see that importance maps vary slightly for
different values of viscosity and model setups (Group 1: IEBE-
VISHNU +MC-Glauber, Group 2: CLVics + IP-Glasma) for the
same EoS. However, importance maps for EOSL in general have a
distinctly narrower width in the pT range than that for EOSQ,
independently of the model setup and the value of viscosity40.
This might be the important region of hidden features the
network recognizes in classifying the EoS under each event.

Discussion
Besides the deep CNN method employed in the present paper,
there are also some other machine learning classifiers. In Sup-
plementary Note 2 we attached the results from several traditional

Table 2 The testing data set

Testing data set group 1: iEBE-VISHNU +MC-Glauber

Centrality: 10–60% η/s ∈ [0, 0.05] η/s ∈ (0.05, 0.10] η/s∈ (0.10, 0.16]

EOSL EOSQ EOSL EOSQ EOSL EOSQ

Au–Au
ffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV 650 850 900 750 200 950
Pb–Pb

ffiffiffiffiffiffiffi
sNN

p ¼ 2:76 TeV 500 650 600 644 499 150
Testing data set group 2: CLVisc + IP-Glasma
Au–Au

ffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, b≲ 8 fm EOSL EOSQ
η/s= 0 4164 4752
η/s= 0.08 1173 864

Numbers of ρ(pT, ϕ) generated by the CLVisc and iEBE-VISHNU hydrodynamic packages with different initial conditions. η/s is ratio of shear viscosity and entropy density. b is the impact parameter. τ0=
0.6fm for all the collisions. In iEBE-VISHNU simulations, the freeze-out temperature is varied in the range [115, 142]MeV. In CLVisc simulations, the freeze-out temperature is set to be 137MeV

Table 3 Testing accuracies

Testing data Group 0 Group 1 Group 2

Number of events 4000 7343 10,953
Accuracy 99.88± 0.04% 93.46± 1.35% 93.91± 3.92%

The mean prediction accuracies and the standard deviations given by ten trained models in
cross validation method, from three groups of testing data sets, (GROUP 0) CLVisc with AMPT
initial condition, (GROUP 1) iEBE-VISHNU and (GROUP 2) CLVisc with the IP-Glasma-like initial
condition
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machine learning methods, such as support vector machine
classifier (SVC), decision trees, random forests and gradient
boosting trees. The best classifier (linear SVC) that generalizes
well on two testing data sets achieves on average ~80% prediction
accuracy. The important features from different classifiers differ
from each other, however, those with good generalization cap-
ability have similar importance regions as given by the deep
CNN. The deep CNN with on average ~95% prediction accuracy
works much better to answer the core questions—is there a
traceable encoder of the dynamical information from phase
structure (EoS) that survives the evolution and exists in the final
snapshot? If yes, then how to exclusively and effectively decode
these information from the highly complex final output? These
questions are crucial but unclear for decades in high-energy
heavy-ion physics (and also in physical cosmology) due to the
complexity and highly-dynamical characteristics in the collision
evolution. The deep CNN demonstrates the revolution that big
data analysis and machine learning might bring to the high
energy physics and astrophysics.

The present method yields a perspective on identifying the
nature of the QCD transition in heavy-ion collisions. With the
help of deep CNNs and its well generalization performance, we
firmly demonstrate that discriminative and traceable projections
—encoders—from the QCD transition onto the final-state ρ(pT,
ϕ) do exist in the complex and highly dynamical heavy-ion col-
lisions, although these encoders may not be intuitive. The deep

CNN provides a powerful and efficient decoder from which the
EoS information can be extracted directly from the ρ(pT, ϕ). It is
in this sense that the high-level representations, which help
decoding the EoS information in the present method, act as an
EoS-meter for the QCD matter created in heavy-ion collisions.
The Prediction Difference Analysis method is employed to extract
the most relevant features for the classification task, which may
inspire phenomenological and experimental studies. Our study
might provide a key to the success of the experimental determi-
nation of QCD EoS and search for the critical end point. Another
intriguing application of our framework is to extract the QGP
transport coefficients from heavy-ion collisions. The present
method can be further improved by including hadronic rescat-
tering and detector efficiency corrections.

Methods
Network architecture. The decisive ingredients for the success of hydrodynamic
modeling of relativistic heavy-ion collisions are the bulk-matter EoS and the
viscosity. In the study of the QCD transition in heavy-ion collisions, one of the
holy-grail question is: how to reliably extract EoS and the nature of the QCD
transition from the experimental data? The CNN41,42 is a powerful technique in
tasks such as image and video recognition, natural language processing. Supervised
training of the CNN with labeled ρ(pT, ϕ) generated by CLVisc is tested with ρ(pT,
ϕ) generated by iEBE-VISHNU. The training and testing ρ(pT, ϕ) can be regarded
as numerical experimental data. Hence, analyzing real experimental data is possible
with straightforward generalizations of the current prototype setup.

Our CNN architecture is shown in Fig. 3. The input ρ(pT, ϕ) consists of 15 pT-
bins and 48 ϕ-bins. We use two convolutional layers each followed by batch
normalization43, dropout44,45 with a rate 0.2 and PReLU activation46. These
technical terms are briefly explained in Supplementary Note 1. In the first
convolutional layer, there are 16 filters of size 8 × 8 scanning through the input ρ
(pT, ϕ) and creating 16 features of size 15 × 48. These features are further
convoluted in the second convolutional layer that has 32 filters of size 7 × 7 × 16.
The weight matrix of both convolutional layers are initialized with normal
distribution and constrained with L2 regularization47. In a convolutional layer,
each neuron only locally connects to a small chunk of neurons in the previous layer
by a convolution operation—this is a key reason for the success of the CNN
architecture. Dropout, batch normalization, PReLU and L2 regularization work
together to prevent overfitting that may generate model-dependent features from
the training data set and thus hinder the generalizability of the method. The
resulting 32 features of size 8 × 24 from the second convolutional layer are flattened
and connected to a 128-neuron fully connected layer with batch normalization,
dropout with rate 0.5 and sigmoid activation. The output layer is another fully
connected layer with softmax activation and two neurons to indicate the type of the
EoS. For multi-class classification, one may use more neurons in the output layer.

There are several non-trainable parameters in the neural network, such as the
number of hidden layers, the size of the convolution kernels, the size of the final
hidden layer and the dropout rate. The neural network in the present work can be
easily rebuilt with these hyper-parameters in Keras48 (the source code is also
available as requested). These parameters are adjusted heuristically to maximize the
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training accuracy and validation accuracy but not the testing accuracy. The first
step is to choose the number of hidden layers, the size of the convolution kernels
and the size of the final hidden layer such that the model has enough capacity to
describe the training data. At this step, we use a small portion of the training data,
tune the widely used values of parameters and observe big training accuracy but
small validation accuracy. It is found that the widely used convolution kernel sizes
5 × 5 and 3 × 3 do not work well at this step and increasing the number of the
convolution layers from 2 to 3 does not improve the training accuracy and the
validation accuracy. The next step is to increase the validation accuracy, in addition
to the batch normalization and L2 regularization, it is found that dropout with a
proper rate and tuning the size of the final hidden layer help to increase the
validation accuracy. With this minimal working neural network, the validation
accuracy increases rapidly with more training data. What is interesting is that when
there are big training data, the previously not functioning architectures (with
smaller convolution kernels and more hidden layers) also start to work and
produces similar testing accuracy. The optimal neural network architecture and the
values of the non-trainable parameters with big training data may desire future
investigation.

Training and validation. We use supervised learning to tackle this binary classi-
fication problem with the crossover case labeled by (1, 0) and the first-order case
labeled by (0, 1). The difference between the true label and the predicted label from
the two output neurons, quantified by cross entropy49, serves as the loss function l
(θ), where θ are the trainable parameters of the neural network. Training attempts
to minimize the loss function by updating θ → θ − δθ. Here δθ = α ∂l(θ)/∂θ where α
is the learning rate with initial value 0.0001 and adaptively changed in AdaMax
method50.

We build the architecture using Keras with a TensorFlow (r1.0)51 backend and
train the neural network with 2 NVIDIA GPUs K20m. The training data set is fed
into the network in batches with batch size empirically selected as 64. One traversal
of all the batches in the training data set is called one epoch. To accelerate the
learning, the training data set is reshuffled before each epoch. The neural network
is trained with 500 epochs. Small fluctuations of validation accuracy saturated
around 99% are observed. The model parameters are saved to a new checkpoint
whenever a smaller validation error is encountered.

The k-fold stratified cross validation is employed to estimate the model
uncertainties. The training data set is randomly shuffled and split into k equal folds
with each fold containing equal number of two types of training data. One of these
k folds is used for validation while the other k − 1 folds are used for training. Finally
k models (according to k pairs of (training, validation) partitioning) are trained to
get the mean prediction accuracy and standard deviation. As shown in Fig. 4, the
prediction accuracy approaches 99% with negligible uncertainty for testing on
CLVisc + AMPT (same data generator as training), using less than 50% of the
training data. While for the testing on IEBE-VISHNU +MC-Glauber (testing
Group 1) and CLVisc + IP-Glasma (testing Group 2), the prediction accuracy
increases as one increases the size of the training data set, which is in line with the
practical expectation that more training data could boost the network’s
performance. With the full training data, we get on average a larger than 95%
prediction accuracy, which is a very positive manifestation of the generalization
capability of our deep CNN.

For the network settings, most of the parameters are introduced in the fully
connected layers. In an alternative model, we add two more convolutional layers
with filter size (3, 3) and subsequent average pooling layers to reduce the number of
neurons in the flatten layer and also in the first fully connected layer, which helps
to reduce the total number of parameters by a factor of 10. This deeper neural

network produces similar prediction accuracy and model uncertainty in a 10-fold
cross validation tests.

The input images in the present method are particle density distributions in the
momentum space. Due to collective expansion of the QGP, fluctuations in the
initial state are transformed to strong correlations of final state particles in the
images. These local structures and translational invariance of odd-order Fourier
decomposition along the azimuthal angle direction make convolution neural
networks preferable to fully connected neural networks.

The relativistic hydrodynamic simulations of the heavy ion collisions are quite
computing intensive, even with the GPU parallelization, it still takes much longer
to accumulate enough training data than the training process. In the beginning of
this study when the training data size is not big enough, we experimented with fully
connected neural networks. However, the network always overfits the training data
and fails to work with the validating data. We noticed that CNN has much better
generalizability than fully connected neural network with small set of data. With
22,000 events, the best performance of fully connected neural networks, with 2–5
hidden layers, gave on average 90% recognition rate on the testing data. Data
augmentation in fully connected neural networks bring negligible improvement
(less than 1%) on the testing data. The fully connected neural networks neglect the
translation invariance of the local correlations of particles that are close to each
other in momentum space.

Data availability. The data sets generated and analyzed during the current study
are available in the public repository52, https://doi.org/10.6084/m9.
figshare.5457220.v1.
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