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Abstract Genetic instability promotes cancer progression (by increasing the proba-
bility of cancerous mutations) as well as hinders it (by imposing a higher cell death
rate for cells susceptible to cancerous mutation). With the loss of tumor suppressor
gene function known to be responsible for a high percentage of breast and colorectal
cancer (and a good fraction of lung cancer and other types as well), it is important
to understand how genetic instability can be orchestrated toward carcinogenesis. In
this context, this paper gives a complete characterization of the optimal (time-varying)
cell mutation rate for the fastest time to a target cancerous cell population through the
loss of both copies of a tumor suppressor gene. Similar to the (one-step) oncogene
activation model previously analyzed, the optimal mutation rate of the present two-
step model changes qualitatively with the convexity of the (mutation rate-dependent)
cell death rate. However, the structure of the Hamiltonian for the new model differs
significantly and intrinsically from that of the one-step model, and a completely new
approach is needed for the solution of the present two-step problem. Considerable
insight into the biology of optimal switching (between corner controls) is extracted
from numerical results for cases with nonconvex death rates.
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1 Introduction

Genetic instability induced by excessive genetic mutation as a cause for carcinogen-
esis has been an active research area for more than four decades starting as early
as Loeb et al. (1974) with representative findings reported in review articles such as
Branzei and Foiani (2010), Bristow and Hill (2008), Negrini et al. (2010), Pikor et
al. (2013), Wodarz and Komarova (2005) and Wodarz and Komarova (2014). With
technological advances and clinical interest, research effort in this area has further
expanded in this new century as seen from Ashworth et al. (2011), Bailey and Mur-
nane (2006), Bartek (2011), Bartkova et al. (2005), Breivik (2005), Campbell et al.
(2012), Colotta et al. (2009), Corcos (2012), Deng (2006), Gorgoulis et al. (2005),
Grady and Carethers (2008), Ledzewicz et al. (2013), Maslov and Vijg (2009), Michor
et al. (2005), Nouspikel (2013) and Smith et al. (2003) and references cited therein.
Fundamental knowledge gained from these studies include the followings:

• There are two principal sources of genetic instability: The chromosomal instability
(CIN) associated with chromosome abnormality in cells (Cahill et al. 1999) and
microsatellite instability (MSI) associated with an impaired mismatch repair mech-
anism leading to a high level of errors in stretches of DNA (known as microsatel-
lites) (Kinzler and Vogelstein 2002; Perucho 1996). Other possible causes include
telemeric abnormality (Rudolph et al. 2001; Samper et al. 2001).

• Genetic instability has two main effects on carcinogenesis (see Wodarz and
Komarova 2005 for example): (1) A possible increase in the probability for a cell
to experience an advantageous, malignant mutation which can increase the cell’s
proliferation rate and lead to cancerous growth and (2) an increased chance of
unwanted deleterious changes in the cell’s genome which can lead to a higher cell
death rate.

Notably, new directions of research include the initiation of mathematical model-
ing, analysis and numerical simulations to provide a theoretical basis for the empirical
and clinical findings (de Pillis and Radunskaya 2003; Pillis et al. 2007; dePillis et
al. 2007; Komarova et al. 2002, 2003; Ledzewicz et al. 2013; Nowak et al. 2006;
Wodarz and Komarova 2005, 2014). That genetic instability can both increase the
rate of cancer progression (by increasing the probability of cancerous mutations) and
decrease the rate of cancer growth (by imposing a higher cell death rate) has led to
theoretical studies on how genetic instability may be orchestrated to promote carcino-
genesis (as it is known to do so) in the microevolution inside the biological organism
(Komarova and Wodarz 2004; Komarova 2004; Komarova et al. 2008; Wan et al.
2010). The microevolutionary forces that act on cancer cells during multistage car-
cinogenesis can be modeled by taking into account both beneficial and deleterious
effects and formulating the question of interest from the viewpoint of cancerous cells.
In that context, we are interested in the optimal level of mutation rate that makes
carcinogenesis progress in the fastest way. This information is expected to provide
insight into the clinical data on the change in mutation rate during the progression
of breast and intestinal cancer on the one hand (Lengauer et al. 1997, 1998) and
into the time available for clinical intervention on the other hand. The mathemat-
ical problem of finding the most efficient rate of genetic changes toward a target
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cancer cell population was solved in Komarova and Wodarz (2004) and Komarova
(2004).

With the microevolutionary pressures inevitably change as cancer progresses,
a good strategy of high mutation rate at the start of the cancerous growth may
be detrimental for the cancerous colony later on, favoring less mutation once a
sufficiently large population of fast proliferating mutants has been produced. The
observation motivated an extension of the Komarova–Wodarz model by allowing
for temporal changes in the cancerous mutation rate in Komarova et al. (2008).
A time-varying mutation rate has experimental support. The findings in Chin
et al. (2004) suggest that the level of genetic instability in breast cancers first
increases, reaches a peak and then decreases as the cancer passes through telom-
ere crisis. Data reported in Rudolph et al. (2001) on intestinal carcinoma in mice
and humans are also consistent with a similar model: Telomere dysfunction pro-
motes CIN which drives carcinogenesis at early stages, and telomerase activa-
tion restores stability to allow further tumor progression through normal prolifera-
tion of tumor cells. The mechanism of telomerase activation and subsequent pre-
vention of CIN is also described in Artandi and DePinho (2000) and Samper et
al. (2001). It is found that short telomeres in later stages can make mice resis-
tant to skin cancer because of an increased cell death rate (Gonzalez-Suarez et al.
2000).

Given the reality of time-varying mutation rates, we are interested in the factors
that shape them as we extend the model of Komarova and Wodarz (2004) to allow for
temporal nonuniformity. In Komarova et al. (2008), mathematical models for the time-
dependent optimization problem were formulated for two biologically realistic cases.
One (one-step) model characterizes cancerous mutation activated by an oncogene.
A second (two-step) model corresponds to cancerous mutation initiated by the loss
of both copies of a tumor suppressor gene (TSG) in accordance with the so-called
two-hit hypothesis (Knudson 1971). An optimal mutation rate, which appears as an
unknown function of time in these models, was sought to maximize the growth of the
mutants.

The optimization problem for the first model was solved by an ad hoc iterative
algorithm for a specific class of death rate for cells susceptible to malignant mutation.
Below are the two main findings among those reported in Komarova et al. (2008) for the
class of normalized death rates d(u) whose functional dependence on the normalized
mutation rate u is specified by (7) given in the next section:

• For a wide range of parameters, the most successful strategy is to keep a high rate of
mutations at first and then switch to stability. This explains much of the biological
data in Chin et al. (2004), Rudolph et al. (2001) and Shih et al. (2001), for example
(see also Komarova and Wodarz 2004).

• It turns out that, depending on the convexity of the death rate (7), the corresponding
optimal strategies are qualitatively different. If d(u) is a linear or concave function
of the mutation rate u, then the optimal strategy is an abrupt (discontinuous) change
from maximum instability to maximum stability (known as bang–bang control in
control theory). If d(u) is convex, the transition is gradual and smooth.
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The results of Komarova et al. (2008) for the one-step model for a death rate of
the specific form (7) were justified rigorously in Wan et al. (2010). For this one-
step model (in the biologically realistic region of the parameter space), it was proved
mathematically that the optimal mutation rate for fastest time to cancer is (1) a bang–
bang control for a death rate function (7) with α ≥ 1; and (2) a smoothly decreasing
function for 0 < α < 1 until it reaches the minimum feasible rate allowed (and
continues at that rate thereafter). In this sense, the strategy most advantageous for
the tumor’s growth is completely determined for this model and consistent with the
numerical results for specific cases computed in Komarova et al. (2008). A similar
complete characterization of the optimal mutation rate was also deduced in Wan et
al. (2010) for a general concave function and a general strictly convex death rate
function, respectively, without the restriction (7). With the theoretical results in Wan
et al. (2010), efficient theory-based algorithms can be developed for computing the
optimal solution once d(u) is specified (Sanchez-Tapia 2015).

The one-step model is for the case of cancerous mutation induced by the acti-
vation of an oncogene. The first oncogene, Src (sarcoma), identified in 1970 was
eventually shown to be the oncogene of a chicken retrovirus (Martin 2001). The first
nucleotide sequence of v-src and related contributions (Czernilofsky et al. 1980) led
to a Nobel Prize for Michael Bishop and Harold Varmus in 1989. In contrast, the
first tumor suppressor gene, retinoblastoma protein (pRb) was already discovered in
human retinoblastoma at the start of the nineteenth century. It has been found over
the years since then that 65 % of colon cancers, 30–50 % of breast cancers and 50 %
of lung cancers involve inactivation of TSG (though not all subject to the two-step
process). Mutated TSG is also involved in the pathophysiology of leukemias, lym-
phomas, sarcomas and neurogenic tumors. Clearly, the loss of TSG functions is at
least as significant to carcinogenesis as (if not more so than) the activation of an onco-
gene. It is therefore important that we have a good understanding of carcinogenesis
associated with the loss of both copies of TSG.

Given the findings in Wan et al. (2010), it is natural to apply the same mathematical
analysis for a complete characterization of the optimal mutation rate for the two-step
model with the class of death rates (7). Unexpectedly, the mathematical analysis of
Wan et al. (2010) failed to yield any information on the optimal mutation rate to start
the growth process for the two-step model (as shown in Sect. 3 of this paper). The new
analytical approach needed for the two-step model (developed herein) turns out to be
substantially more complex than that for the oncogene case. The resulting theoretical
findings on the optimal mutation rates also enable us to formulate appropriate compu-
tational algorithms for the determination of the optimal solution. Sample solutions for
realistic value ranges in the parameter space show some surprising results that offer
important insight into the biology of the optimal mutation strategy.

It should be noted that methods of optimization and optimal control have been
applied to the study of issues in carcinogenesis (see de Pillis and Radunskaya 2003;
Pillis et al. 2007; dePillis et al. 2007; Kirschner et al. 1997; Ledzewicz et al. 2013;
Lenhart and Workman 2007; Swan 1990 for examples). However, the present problem
on the fastest time to cancer requires a substantively different kind of theoretical analy-
sis and computational approach in conjunction with the application of the maximum
principle.

123



Fastest Time to Cancer by Loss of Tumor Suppressor Genes

2 Carcinogenesis Induced by Loss of Tumor Suppressor Gene (TSG)

2.1 The Two-Step Model for Loss of TSG

We summarize in this section the two-step process that models carcinogenesis due
to the loss of both copies of a tumor suppressor gene (TSG) that leads to mutant
clonal expansion. In this two-step molecular process, the two alleles of the TSG are
inactivated one at a time. The inactivation of just one allele does not result in any
phenotypic changes. The inactivation of the second allele leads to the abnormal cell
proliferation needed to overcome homeostasis. This two-step process to cancer, typical
for the initiating events of familial colorectal cancer (Lengauer et al. 1998), has been
modeled by a system of the three ordinary differential equations (ODE) in Komarova
et al. (2008). For this model, we let x0(t) be the (normalized) population at time
t of T SG+/+ cells with both copies of the T SG intact, x1(t) be the (normalized)
population of T SG+/− cells where one of the copies of the tumor suppressor gene
has been mutated, and x2(t) be the (normalized) population of T SG−/− cells, where
the remaining copy of the T SG has been lost. The first two cell populations are
normalized by the initial normal (T SG+/+) cell population size N just prior to the
onset of cancerous mutation so that x0(0) = 1 and x1(0) = 0 while the cancerous
cell population is normalized by the final target population size for cancer M , so
that x2(0) = 0 and x2(T ) = 1 at terminal time T . As in Komarova et al. (2008),
we measure time in units of the natural growth rate constant of the T SG+/+ cells
(assumed to be the same as that of the T SG+/− cells).

As in the case of colorectal cancer and the adenomatous polyposis coli (APC) gene,
there is a different mechanism, known as a “loss-of-chromosome” event, by which
the second copy of the TSG can be turned off. This second mechanism is known to be
responsible for the inactivation of a large percentage of TSG in cancers (Kinzler and
Vogelstein 2002). As a result of this event, the whole chromosome corresponding to the
T SG in question becomes lost or replaced by one with T SG mutated. This is a gross
chromosomal change, whose (normalized) probability, u(t), is our control parameter.
Further discussion of this asymmetry between the first and the second inactivation
events, particularly with the first allele also inactivated by a loss-of-chromosome event,
can be found in Komarova and Wodarz (2004) and Komarova et al. (2008). For this
two-step process, the time evolution of the three cell populations is typically modeled
by the following three first-order ODE:

x ′
0 = −2µx0 + x0(1 − d(u))(1 − x0 − x1) ≡ g0(x0, x1, x2, u), (1)

x ′
1 = 2µx0 − (µ + umu)x1 + x1(1 − d(u))(1 − x0 − x1) ≡ g1(x0, x1, x2, u),

(2)

x ′
2 = 1

σ
(µ + umu)x1 + x2(1 − d(u))(a − x0 − x1) ≡ g2(x0, x1, x2, u), (3)

with ( )′ = d( )/dt, σ = M/N ≫ 1, a ≥ 2 (usually ≫ 1) and 0 < um ≤ 1 (see
Komarova et al. 2008 for further discussion). These three state ODE are augmented
by the following four auxiliary conditions which follow from the definitions of the
three state variables {xk(t)}:
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x0(0) = 1, x1(0) = 0, x2(0) = 0, x2(T ) = 1 (4)

where T is the time when the cancerous mutant cell population reaches the target
size M . Evidently, the length of time to target is expected to depend on the choice of
mutation rate u(t). The fastest time T̄ to target is therefore an unknown constant to be
determined along with the optimal mutation rate ū(t).

To summarize, cells reproduce and die with time rescaled so that the rate of renewal
is 1 for types x0 and x1. The mutants x2 expand at rate a ≫ 1 (in addition to the
expansion rate due to the mutation of x1). The parameter µ, 0 < µ ≪ 1, is the
(normalized) basic mutation rate by which an allele of TSG can be inactivated while
the quantity umu corresponds to the additional (normalized) mutation rate resulting
from genetic instability. The nonnegative normalized gross chromosomal change rate
has been scaled so that u is limited by the inequality constraint (see Komarova et al.
2008)

0 ≤ u ≤ 1. (5)

The death rate d(u) in the three state Eqs. (1)–(3) is a function for the (normalized)
mutation rate u. When mutation rate is large, cells often lose chromosomes to result
in a higher death rate. For this study, we stipulate

d(0) = 0, d(1) = 1, 0 ≤ d(u) ≤ 1 and d ·(u) > 0 (0 ≤ u ≤ 1) (6)

where a superscripted dot denotes differentiation with respect to the argument of the
function (see Komarova et al. 2008 for some results for d(u) < 1 in the entire range of
u). In that case, it is seen from (3) u(t) = 0 [so that d(u(t)) = 0] would allow a finite
cancerous cell population to break out of homeostatic control and grow exponentially.
But without some mutation to produce enough cancerous cells for fast proliferation,
it would take much longer time to reach the target population. The present work is to
find that a time-varying optimal control ū(t) for x2(t) to reach the target population
in the shortest time. It turns out that the qualitative features of the optimal strategy
depend only on the convexity of d(u).

To develop the solution technique for a complete characterization of the optimal
mutation rate for the shortest time, we first work with the following class of death rate
functions

d(u) = 1 − (1 − u)α (7)

to show how the actual optimal control depends on α. The solution technique is then
modified to extend the results for the special death rate (7) to general death rate with
different convexity.

2.2 The Shortest Time Problem

The optimization problem for carcinogenesis is to choose a time-varying normalized
gross chromosomal change rate u to minimize the time T needed to drive the cancerous
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mutants to the target population size with the specified growth dynamics for the three
nonnegative cell populations given that all cells are of the T SG+/+ type initially.
The admissible (feasible) controlling mutation rates are restricted to the class Ω of
piecewise continuously differentiable functions (with only finite jump discontinuities)
on the interval [0, T ], denoted by PWS, satisfying the inequality constraint (5):

Ω = {u(t) ∈ PWS |0 ≤ u(t) ≤ 1, 0 ≤ t ≤ T } . (8)

This shortest time problem is conventionally recast in the standard form of choosing
u(t) from Ω to minimize the performance index:

J =
∫ T

0
1 dt, (9)

subject to the equations of state (1)–(3), the boundary conditions (4), the inequality
constraint (5) and nonnegativity constraints

xk ≥ 0, k = 0, 1, 2, (10)

with T > 0 to be determined as a part of the solution so that we have a free end point
problem.

To recapitulate, we adopt in this paper the theoretical framework where it is possible
to set the rate of genetic instability, captured by the normalized cancerous mutation
rate u(t), to any biologically admissible value (normalized to [0, 1]) at each moment
of time. Every choice of such a function determines a growth process for the cancerous
cells. We shall seek the choice of u(t) that allows the cancerous population to reach
a given size, M , in the shortest possible time. The specified terminal population size,
normalized to be 1, is called the target. Each possible choice of u(t) steers the mutant
cell population to the target at a different pace. As such, the (normalized) cancerous
mutation rate controls the growth of the mutant population and u(t) is the control
(also called strategy) for time to target in our model. The control that steers the mutant
population to the target faster than any other control is said to be the optimal control,
denoted by ū(t). In this terminology, we seek an optimal control for the mutant pop-
ulation to reach the target in the fastest time possible. As we shall see, ū(t) is unique
for our problem; hence, we can speak of “the” optimal control throughout this paper.

A meaningful qualitative comparison between two controls (strategies) is now pos-
sible: the “better” or “more advantageous” control is the one allowing the mutant
cells to reach the target sooner. Thus, an “advantageous strategy” is advantageous for
cancer. The optimal control or strategy is determined by way of the terminal time, T ,
which is the solution of the equation

x2(T ) = 1 (11)

where x2 is the solution of system (1)–(3) for the three cell populations. The terminal
growth time, T , depends on all the parameters of the ODE system, including the
time-dependent mutation rate, u. The optimal control, denoted by ū, is the one that
minimizes the value of T . The simplest case of limiting admissible controls, u(t), to
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constant functions results in an optimization problem with a single unknown constant
optimal mutation rate value, uop, that depends on the parameters of the ODE system.
Such a problem was solved in Komarova and Wodarz (2004). However, faster times
to target is possible if we allow u to be a function of time as evident from clinical
observations of Chin et al. (2004) and Rudolph et al. (2001) and the mathematical
results of Wan et al. (2010) for the one-step model. More specifically, suitably higher
initial values and lower subsequent values of u (than uop) would facilitate faster growth.
The goal of this paper is to prove that this is the case also for the two-step model and
determine ū(t). However, the method of solution for the one-step model, as we shall
see, does not apply to the present two-step model and a completely different analysis
is required to accomplish the task on hand.

2.3 Evolution of Cell Populations

To help establish the clinically observed difference in mutation rate at the two end of
the time interval for the two-step model, we begin by investigating the evolution of
the cell populations near the start [without the restriction (7)].

Lemma 1 For any death rate satisfying properties stipulated in (6), we have

i) x0 + x1 = 1 − µ(µ + umu(0))t2 + O(t3), (0 ≤ t ≪ T ).

i i) x0(t) + x1(t) ≤ 1 (0 ≤ t < T ) with equality only for t = 0.

Proof From the initial conditions (4), we have x0(0)+x1(0) = 1. For t > 0, summing
(1) and (2) gives

(x0 + x1)
′ = −(µ + umu)x1 + (x0 + x1)(1 − d(u))(1 − x0 − x1). (12)

and, with x1(0) = 0 (and no jump discontinuities in the mutation rate at t = 0),

[
(x0 + x1)

′]
t=0 = 0,

[
(x0 + x1)

′′]
t=0 =

[
−(µ + umu)x ′

1
]

t=0
= [−(µ + umu)(2µx0)]t=0 = −2µ(µ + umu(0)).

It follows that

x0 + x1 = 1 − µ(µ + umu(0))t2 + O(t3)

given 0 ≤ u(0) ≤ 1. This proves part (ii) of the Lemma with

x0 + x1 < 1 (0 ≤ t < T ∗)

at least for some T ∗ ≪ T .
If x0 + x1 should increase and approach 1, it does so from below and maximally

with u = 0 so that d(u) = 0. In that case, the negative term −(µ + umu)x1 in (12)
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eventually dominates [given the lower bound (93) for x1 for u = 0 established in the
Appendix of this paper] as 1 − x0 − x1 → 0 from above. It follows that 1 − x0 − x1
could never reach 0. This establishes part (i) of the Lemma. ⊓,

Results obtained in Komarova et al. (2008) and Wan et al. (2010) suggest that the
upper corner control u(t) = 1 plays a significant role at least near the start of the
cancerous growth. Below are some results for the three cell populations for the upper
corner control, to be denoted by

{
x (1)

k (t)
}

, useful in later developments.

Lemma 2 For u = 1, we have (x (1)
0 + x (1)

1 )′ < 0 and x (1)
0 + x (1)

1 < 1 for t > 0
with x (1)

1 (t) attaining its unique maximum at

tM = 1
um − µ

ln
(

um + µ

2µ

)
> 1 (13)

Proof For u = 1, (12) simplifies to

(
x (1)

0 + x (1)
1

)′
= −(µ + um)x (1)

1 < 0

Together with the initial condition x (1)
0 (0)+x (1)

1 (0) = 1, we have x (1)
0 (t)+x (1)

1 (t) < 1
for t > 0.

It is evident from the state equations that x (1)
0 (t) is positive and monotone decreas-

ing, x (1)
2 (t) is nonnegative and monotone increasing, while x (1)

1 (t) is nonnegative with
a stationary point when 2µx (1)

0 = (µ + um)x (1)
1 . It is straightforward to deduce from

the ODE (1) and (2) for u = 1 and the initial conditions (4) the exact solution,

x (1)
1 = 2µ

um − µ

[
e−2µτ − e−(µ+um )τ

]
,

(see the first section of the Appendix of this paper) with x (1)
1 (t) attaining a unique

maximum at the instant tM given by (13). ⊓,

Remark 3 The same exact solutions (85) and (86) (in the Appendix of this paper) for
the upper corner control may be used to determine the following three cell population
sizes at t = tM :

x (1)
0 (tM ) =

(
2µ

um + µ

) 2µ
um−µ

≡ x M
0

x (1)
1 (tM ) =

(
2µ

um + µ

) um+µ
um−µ

= 2µ

um + µ
x M

0 ≡ x M
1 (14)

x (1)
2 (tM ) = 1

σ

[
1 − um + 3µ

um + µ
x M

0

]
≡ x M

2
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with

x M
1 + x M

0 = um + 3µ

um + µ
x M

0 < 1 − µ. (15)

Results obtained in Komarova et al. (2008) and Wan et al. (2010) also suggest that
the lower corner control u(t) = 0 plays a significant role at least near the terminal
time of the cancerous growth. Below are some results for the three cell populations
for the lower corner control, to be denoted by

{
x (0)

k (t)
}

, useful in later developments.

Lemma 4 For u = 0, the following relations hold

1. (x (0)
0 +x (0)

1 )′ > 0 if x (0)
0 +x (0)

1 ≤ 1−µ and (x (0)
0 +x (0)

1 )′ < 0 if x (0)
0 +x (0)

1 = 1−ε

for sufficiently small positive ε > 0, and therewith 0 < x (0)
0 + x (0)

1 < 1 for all
t > 0.

2. The coupled system of state equations for x (0)
0 and x (0)

1 has two admissible fixed
points: an unstable fixed point at (0, 0) and an asymptotically stable fixed point

at (0, 1 − µ) with
(

x (0)
0 + x (0)

1

)
→ 1 − µ as t → ∞.

Proof For u = 0, (12) simplifies to

(
x (0)

0 + x (0)
1

)′
= −µx (0)

1 +
(

x (0)
0 + x (0)

1

) (
1 − x (0)

0 − x (0)
1

)

and therewith (x (0)
0 + x (0)

1 )′ > 0 for x (0)
0 + x (0)

1 ≤ 1 − µ. For the case x (0)
0 + x (0)

1 =
1 − ε < 1, the corresponding expression is

(
x (0)

0 + x (0)
1

)′
= −(µ − ε)x (0)

1 + εx (0)
0

which would be <0 for a sufficiently small ε. These results for part (i) show that
x (0)

0 + x (0)
1 hovers around 1 − µ for large t and 0 < x (0)

0 + x (0)
1 < 1 for all t > 0.

Part (ii) of the lemma gives a more detailed characterization of the solution behavior
for large time. The stated results are consequence of the systems (1) and (2) specialized
with the lower corner control u = 0,

(
x (0)

0

)′
= −2µx (0)

0 + x (0)
0

(
1 − x (0)

0 − x (0)
1

)
,

(
x (0)

1

)′
= 2µx (0)

0 + x (0)
1

(
1 − µ − x (0)

0 − x (0)
1

)
. (16)

It can be verified by the usual linear stability analysis that (0, 0) and (0, 1 − µ) are
the only critical points of the system with the indicated stability. ⊓,
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3 The Hamiltonian and Adjoint Variables

3.1 The Maximum Principle

The key to the solution of our optimal control problem is the maximum principle
(Bryson and Ho 1969; Gelfand and Fomin 1963; Pontryagin et al. 1962; Wan 1995)
for the Hamiltonian:

H = 1 + λ0g0 + λ1g1 + λ2g2

= 1 + A(t) + um

σ
u R(t) + [1 − d(u)] D(t) (17)

with

A(t) = −2µλ0x0 + µλ1(2x0 − x1) + µ

σ
λ2x1 (18)

D(t) = (1 − x0 − x1)P + λ2x2(a − 1), R(t) = x1(λ2 − σλ1) (19)

P(t) = λ0x0 + λ1x1 + λ2x2 (20)

where the three functions {λk} are the adjoint variables for the problem chosen to
satisfy the three adjoint ODE,

λ′
k = −

(
λ0

∂g0

∂xk
+ λ1

∂g1

∂xk
+ λ2

∂g2

∂xk

)
(k = 0, 1, 2). (21)

For the state Eqs. (1)–(3) with any control u(t), these adjoint equations specialize to

λ′
0 = 2µ (λ0 − λ1) + (1 − d){P − λ0(1 − x0 − x1)} (22)

λ′
1 = −umu + µ

σ
(λ2 − σλ1) + (1 − d){P − λ1(1 − x0 − x1)} (23)

λ′
2 = −λ2(1 − d)(a − x0 − x1). (24)

Recall that u(t) may have finite jump discontinuities but continuously differentiable
otherwise; the state and adjoint variables must therefore be continuous with piecewise
smooth (PWS) derivatives. The quantities A(t), D(t), P(t) and R(t) as defined by
(22)–(24) do not depend on u(t) explicitly, but do so implicitly through the state and
adjoint variables.

The system of three state ODE, three adjoint ODE and four prescribed auxiliary
conditions are augmented by two Euler boundary conditions (Bryson and Ho 1969;
Gelfand and Fomin 1963; Pontryagin et al. 1962; Wan 1995)

λ0(T ) = λ1(T ) = 0. (25)

For the optimal solution of our minimum terminal time problem, the application of
the maximum principle (Bryson and Ho 1969; Gelfand and Fomin 1963; Pontryagin
et al. 1962; Wan 1995) consists of seeking

123



C. Sanchez-Tapia, F. Y. M. Wan

• an optimal control ū(t) that minimizes the Hamiltonian at each instance of time
over all u in Ω with the minimum [attained at ū(t)] denoted by H̄(t);

• six quantities {x̄i (t), λ̄ j (t)}that satisfy the six differential Eqs. (1)–(3) and (21) [or
(22)–(24)] and six auxiliary conditions in (4) and (25) with u(t) = ū(t);

• the optimal terminal time T̄ that satisfies the free end (transversality) condition

[
H̄(t)

]
t=T̄ = [1 + λ̄2ḡ2]t=T̄ = 0 (26)

with

[ḡ2]t=T̄ = [g2(x̄0(t), x̄1(t), x̄2(t), ū(t))]t=T̄ = [g2(x̄0, x̄1, 1, ū)]t=T̄ ;

after simplification by the Euler boundary conditions (25) and the terminal condition
in (4), and

• at any switch point T̄s of a finite jump discontinuity of the optimal control, the
Hamiltonian is continuous

[
H̄(t)

]t=T̄s+
t=T̄s− = 0. (27)

As the central feature of the maximum principle, the optimal control ū(t) must
minimize the Hamiltonian with

H̄(t) ≡ H
(
x̄0(t), x̄1(t), x̄2(t), λ̄0(t), λ̄1(t), λ̄2(t), ū(t)

)

≤ H
(
x̄0(t), x̄1(t), x̄2(t), λ̄0(t), λ̄1(t), λ̄2(t), u

)
(28)

for all u ϵ Ω , i.e.,

H̄(t) = min
u ϵΩ

[
H(x̄0(t), x̄1(t), x̄2(t), λ̄0(t), λ̄1(t), λ̄2(t), u)

]
(29)

While the process of determining the optimal control is greatly simplified by the
condition (29), it is still far from straightforward for our problem as we shall see in
the subsequent developments.

3.2 The Stationary Solution

Prime candidates for the optimal control ū(t) [known as an “interior control” and
denoted by ui (t)] are the solution of the stationary condition

∂ H
∂u

= um

σ
R(t) − D(t)d ·(u) = 0. (30)

The relation (30) is a necessary condition for (29) and, in principle, determines possible
candidates for ū(t) in terms of the state and adjoint variables. For the death rate (7)
with d ·(u) = α(1 − u)α−1, the relation (30) becomes
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D(t)d ·(u) = α(1 − u)α−1 D(t) = um

σ
R(t). (31)

We see from (18), (19) and the initial conditions in (4) that both R(t) and D(t) in (30)
vanish at t = 0. Hence, the stationary condition does not specify the control ui (t) at
the initial time and the problem of finding ū(t) requires a more refined analysis.

Remark 5 In contrast, we recall for the one-step model

R(0) = [x1(λ2 − σλ1)]t=0 = λ2(0) − σλ1(0)

D(0) = [(λ1x1 + λ2x2) (1 − x1) + (a − 1)λ2x2]t=0 = 0

With x1(0) = 1 and q(0) = λ2(0)−σλ1(0) < 0 (see Komarova et al. 2008 or Lemma
12 below), minimizing H(0) requires

u(0) = 1;

The situation is further complicated by the fact that even when the stationary con-
dition

[
∂ H
∂u

]

u=ui

= 0 (32)

determines a well-defined ui (t) in some interval of time away from t = 0, the interior
control may violate the inequality constraints (5) in some segment(s) of (0, T ). As
such, ui (t) may not be admissible (and the optimal control may be one of the corner
controls) in one or more subintervals of [0, T ]. In the remaining subsections of this
section, we obtain some preliminary results needed to specify the optimal control
when it is not the interior control for the entire solution domain.

The following proposition is related to a well-known result for our Hamiltonian
system of autonomous state and adjoint ODE with a general PWS death rate restricted
only by (6).

Proposition 6 For an optimal control ū(t) (which may be the interior control ui (t), a
corner control or a combination of both), the Hamiltonian (17) for the optimal control
problem of our two-step model vanishes for all t in [0, T ], i.e., H̄ ≡ [H ]u=ū(t) = 0,
for all t in [0, T ].
Proof Except for locations of simple jump discontinuities of the control u(t), we can
differentiate H with respect to time to get

dH
dt

= ∂ H
∂u

du
dt

. (33)

where we have made use of the Hamiltonian structure of the six relevant state and
adjoint ODE to eliminate terms involving derivatives of state and adjoint variables.
For u = ū(t), the right-hand side of (33) vanishes since either ū(t) is an interior control
so that ∂ H/∂u = 0 or it is a corner control in which case we have dū(t)/dt = 0. Hence,
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H̄(t) is a constant in any interval where H is continuously differentiable. With the
free end condition (26), we have H̄(t) = 0 in the interval (Ts, T ] if there should be
a simple jump discontinuity in ū at some earlier time Ts < T in the interval (0, T ).
The switching condition (27) requires the constant H̄(Ts) to be the same (and equal
to zero by the free end condition) on both sides of the jump in ū(t). The observation
allows us to extend H̄(t) = 0 to the next switch point and finally for the entire interval
[0, T ]. ⊓,

3.3 Local Behavior of R(t) and D(t) for t ≪ T

Next, we show R(t) = O(t) and D(t) = O(t2) in a small interval adjacent to t = 0
for a general PWS death rate subject only to (6).

Proposition 7 Prior to any switch point of the control u(t), we have for some ω > 0
and υ > 0

R(t) = 2µq(0)t + O(t1+ω),

D(t) = µ

σ
[(µ + umu) {(a − 1)λ2 + σλ0}]t=0 t2 + O

(
t2+υ

)

where q(t) = λ2 − σλ1.

Proof From the expression for R(t) in (18) and x1(0) = 0, we have

R(t) = x1(λ2 − σλ1) = x ′
1(0)q(0)t + O(t1+ω)

= 2µq(0)t + O
(

t1+ω
)

. (34)

where we have made use of (2) to set x ′
1(0) = 2µ. Similarly, we have from Lemma

1 and the state Eqs. (1)–(3) along with the initial conditions x1(0) = x2(0) = 0 and
x0(0) = 1

D(t) = P(1 − x0 − x1) + (a − 1)λ2x2

= −
[
P

(
x ′′

0 + x ′′
1
)
− (a − 1)λ2x ′′

2
]

t=0
t2

2
+ O(t2+υ)

= µ

σ
[(µ + umu) {(a − 1)λ2 + σλ0}]t=0 t2 + O(t2+υ) (35)

where (in an interval [0, T̃ ) that does not contain a switch point) the second derivatives
x ′′

k (0), k = 0, 1, 2, are obtained from differentiating the state equations and evaluating
the results at t = 0. ⊓,

Corollary 8 [λ0 − λ1]t=0 = 1/2µ

Proof In view of Proposition 7 and the known initial conditions, we have H(0) =
1 + A(0) = 1 − 2µ [λ0(0) − λ1(0)]. But from Proposition 6, we have H(0) = 0 for
an optimal control; the corollary follows. ⊓,
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As pointed out earlier, the stationary condition (30) [or (31) for a death rate in the
form (7)] does not determine the interior control for our problem at least at t = 0
because D(0) = 0 and R(0) = 0. With Proposition 7, the interior control may be
inadmissible for t ≥ 0. To see this, we solve (31) for u to get

ui (t) = 1 −
[

um

ασ

R(t)
D(t)

]1/(α−1)

.

While the right-hand side is well defined for t > 0, ui (t) becomes negative for
sufficiently small (but positive) t if α > 1 (by Proposition 7), violating the inequality
constraint (5). With the interior control inadmissible, the optimal control ū(t) would
have to be an boundary point of the control set +, i.e., a corner control, at least in a
small interval adjacent to the starting time t = 0. The situation is different, however,
if 0 < α < 1. In that case, the interior control is well defined and admissible at least
for some interval of time adjacent to the starting time. Together, these observations
suggest that for a general death rate the optimal control is likely to be qualitatively
different depending on the convexity of the death rate.

3.4 Global Behavior of Adjoint Variables for General Death Rate

When the stationary condition (32) does not determine the optimal control, which
is the case at least in a small interval adjacent to the starting time for the death rate
function (7) with α > 1, we need to work with the more general condition (29) to
minimize H(t). For this purpose, we need some information on the adjoint variables,
even when we cannot determine their solutions, analytically or numerically, without
knowing the optimal control. We begin by noting that the two relations (17) and (24)
for a general death rate determine the sign of λ2(t).

Lemma 9 λ2(t) < 0 and λ′
2(t) ≥ 0 (0 ≤ t ≤ T ) for any admissible control u(t).

Proof From (26) and (25), we have (after omitting the bar in T̄ and other quantities
(except for ū(t)) for brevity henceforth)

λ2(T ) = −
[

1
ḡ2

]

t=T

= −
[

σ

(µ + umū)x1 + σ x2(1 − d(ū))(a − x0 − x1)

]

t=T
< 0. (36)

with

[
λ′

2
]

t=T = − [λ2(a − x0 − x1){1 − d(ū)}]t=T ≥ 0 (37)

by (24). The two conditions (36) and (37) imply λ2(t) < 0 in some neighborhood of
t = T . The lemma follows from these local results and the ODE (24). ⊓,

123



C. Sanchez-Tapia, F. Y. M. Wan

Let

S(t) = (a − 1)λ2 + σ P, q(t) = λ2 − σλ1. (38)

with P(t) as previously defined in (20). The additional properties of the state and
adjoint variables below also hold for any admissible control and a general PWS death
rate restricted only by (6):

Lemma 10

P ′(t) = (1 − d(u)) (x0 + x1) P, (39)

D′(t) = µ + umu
σ

x1S, R′(t) = 2µx0q − (1 − d)x1S (40)

and

S′(t) = (1 − d) [(x0 + x1) σ P − (a − 1)(a − x0 − x1)λ2] (41)

for all t in (0, T ) other than the switch points of any admissible u(t).

Proof For the first three relations, it is straightforward to obtain the expressions for
the derivatives of the combinations of state and adjoint variables on the left-hand side
of these equations from the differential equations (1)–(3) and (22)–(24).

To get (41), we use (24) and (39) to eliminate λ′
2 and P ′, respectively, from

S′ = σ P ′ + (a − 1)λ′
2.

⊓,

Lemma 11 (i) D(0) = 0, (ii) P(t) and S(t) are negative in [0, T ] while D(t) < 0
for t > 0; (iii) λ1(0) < λ0(0) < 0 and (iv) λ1(t) < 0 and λ0(t) < 0 at least for some
(small) interval [0, Tℓ) for some Tℓ < T .

Proof Part (i) follows from the initial cell populations (and boundedness of the adjoint
variables). With x0 + x1 > 0 and 0 ≤ 1 − d(u) ≤ 1, the solution of ODE (39) may
be written as

P(t) = P(T )E(t; T ) = λ2(T )E(t; T )

where

E(t; T ) = e−-(t,T ), -(t, T ) =
∫ T

t
(1 − d(u)) (x0 + x1) dt.

Since P(T ) = λ2(T ) < 0, P(t) is therefore a negative, continuous and nonincreasing
function of t for all t in [0, T ]. This result and λ2(t) < 0 render S(t) negative for t ≥ 0
[see also (38)] and D(t) < 0 for t > 0 [see (19)]. This proves part (ii). That λ0(0) < 0
follows from P(0) < 0 and the initial cell populations while λ1(0) < λ0(0) < 0 is
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an immediate consequence of Corollary 8 taken in the form λ1(0) = λ0(0)− 1/2µ <

λ0(0) < 0. This proves part (iii). Part (iv) follows from the continuity of the adjoint
variables. ⊓,
Lemma 12 q(t) = (λ2 − σλ1) < 0 for all t in [0, T ], R(0) = 0 and R(t) < 0 for
t > 0.

Proof The adjoint differential equations give the following expression for q ′(t):

q ′(t) = {(µ + umu) − (1 − d)(1 − x0 − x1)} q − (1 − d)S. (42)

This is a linear first-order ODE for q; its solution can be written as

I q = λ2(T ) +
∫ T

t
(1 − d)S(τ )I (τ )dt

with the help of an integrating factor

I = e.(t) > 0, .(t) = −
∫ T

t
[(1 − d)(1 − x0 − x1) − (µ + umu)] dt.

The integrand for .(t) is nonsingular so that I = e.(t) > 0 for any value of u with
I (T ) = 1. Given S(t) < 0 from Lemma 11, I (t)q is an increasing function of t , with
I (T )q(T ) = q(T ) = λ2(T ) < 0. Hence, we have q(t) < 0 for all t in [0, T ] with
q(0) = λ2(0) − σλ1(0) < 0 in particular. That R(t) < 0 for t > 0 follows from (19)
while R(0) = 0 is a consequence of x1(0) = 0. ⊓,
Remark 13 While I (t)q is an increasing function of t, q(t) may not be. For an interval
of time where u = 1, we have

q ′ = (µ + um)q < 0

in view of Lemma 12. Hence, q(t) < 0 is a decreasing function of t in that time
interval. The situation is different when u = 0. With

0 < µ < {1 − d(0)}
{
(1 − x0 − x1) + S

q

}
,

we have now q ′ > 0 so that q(t) < 0 increases with time in that case. The sign change
in the right-hand side of (42) renders the determination of the optimal control more
delicate than the one-step model. The following results will be useful on the discussion
of this issue in subsequent developments.

Lemma 14 Let z(t) = D(t)/R(t). For a general PWS death rate subject only to the
requirements in (6), we have

(i) z(0) = 0 and z(t) > 0 for t > 0.

(i i) z′(t) > 0 for t ≥ 0.
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Proof Part (i) follows from the Taylor polynomials of D(t) and R(t) in Proposition 7
and the negativity of these quantities by Proposition 11. The former gives

z(t) = µ + umu(0)

2σ

S(0)

q(0)
t
{
1 + O(tω)

}

near the starting time for some ω > 0 so that limt→0 z(t) = 0 while the latter ensure
z(t) > 0 for t > 0.

For part (i i), we differentiate z(t) and use Lemma 10 to eliminate R′(t) and D′(t)
to get

z′(t) =
{

µ + umu
σ

+ D
R

(1 − d)

}
S
q

− 2µx0
D

x2
1q

. (43)

As t → 0, the limiting behavior of D(t), R(t), S(t) and q(t) [see Proposition 7 and
(38)] leads to

lim
t→0

z′(t) = µ + umu(0)

2σ

S(0)

q(0)
> 0.

Continuity of state and adjoint variables requires z′(t) > 0 for some finite interval
[0, Tp) prior to any switching of the mutation rate u(t). For t ≥ Tp, we rewrite the
expression (43) for z′(t) as

z′(t) = z
um

{[
d ·(u)(µ + umu) + um(1 − d)

]
x1

S
q

− 2µx0um

}

With the lower bounds for x1 established in the “Appendix”, we have x1 = O(2µx0)

(and possibly larger) for t ≥ min[Tℓ, Tp] ≡ Tmin and therewith

z′(t) = x1z
um

{[
d ·(u)(µ + umu) + um(1 − d)

] S
q

− 2µx0um

x1
)

}

= zx1

um

[
d ·(u)(µ + umu) + um(1 − d)

] S
q

{
1 + O

(um

a

)}
(44)

given 0 < um ≤ 1, d ·(u) > 0 and the growth rate constant a of cancerous cell
population is large compared to that of the normal cells (normalized to be 1) so that
S/q = O(a). With S/q > 0 by Lemmas 11 and 12, the second half of the part (ii) is
proved. ⊓,

Remark 15 Strictly speaking, z′(t) > 0 for t ≥ Tp is proved asymptotically for a
sufficiently large (which it usually is). However, we know λ2(t) < 0 for all t and, by
part iii) of Lemma 11, λ1(t) < λ0(t) < 0 at least for an interval [0, Tℓ) (as it is desirable
to have more of all three types of cells at least at the early stage of carcinogenesis).
With λ1(t) < λ0(t) < 0 for t = O(Tmin), then
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z′(t) ≥ x1z
um

{[
d ·(u)(µ + umu) + um(1 − d)

] λ2 (a − 1 + σ x2)

λ2
− 2µx0um

x1

}

= x1z
um

{[
d ·(u)(µ + umu) + um(1 − d)

]
(a − 1 + σ x2) − 2µx0um

x1

}
> 0

(45)

given 2µx0um/x1 = O(1), a ≫ 1 and σ ≫ 1. For t considerably larger than Tmin,
(when it may be more advantageous for the cancerous cell population to grow by natural
proliferation than by mutation of the other cell types so that λ1(t) and λ0(t) may turn
positive), |λ1(t)| and |λ0(t)| would be much smaller than |λ2(t)| since both must tend
to zero as t → T as required by the Euler boundary conditions (25). It follows that
the λ2(t) term in both S and q remains dominant and (45) again holds for the normal
range of the growth rate constant a (typically >2) without appealing to asymptoticity.
Also, when it is more advantageous for x2(t) to grow by natural proliferation, the
T SG+/− and T SG+/+ cell populations would be of comparable magnitude [keeping
in mind Lemma 4 requiring that (x0, x1) → (0, 1 − µ), the asymptotically stable
critical point of (1) and (2) with u = 0]. In that case, 2µx0um/x1 = O(2µ) which
is small compared to the S/q term so that z′(t) > 0 again without appealing to
asymptoticity.

Remark 16 If λ1(t) > 0 and/or λ0(t) > 0 at some later stage (when it is more
advantageous for the cancerous cell population to grow by natural proliferation than
by mutation of the other cell types), then the magnitudes, |λ1(t)| and |λ0(t)| , of these
“shadow cell prices” would be considerably smaller than |λ2(t)| since both adjoint
variables must be zero at terminal time (by the Euler boundary conditions). As such,
the λ2(t) terms in both S and q remain dominant and (45) again holds for the normal
range of the growth rate constant a (typically >2) without the asymptotic restriction.

Remark 17 For strictly convex death rates, we have

d ·(u) <
1 − d(u)

1 − u
. (46)

The relation (44) may be simplified somewhat to

z′(t) ≥ x1zd ·(u)

um
(µ + um)

S
q

{
1 + O

(um

a

)}
> 0

for t ≥ Tp.

4 Some Features of ū(t) for General Death Rate

4.1 Optimal Control Does Not Start with a Lower Corner Control

We are now in a position to state the first characterization of the optimal control ū(t)
for a general death rate restricted only by (6) [and not by (7)]:
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Proposition 18 The optimal control ū(t) is not the lower corner control u(t) = 0 in
0 ≤ t < T1 at least for some T1 ≪ T .

Proof By Propositions 6 and 7, we have

H(0) = 1 + A(0) = 0

and, for a sufficiently small positive t , say 0 ≤ t < T1,

H(t) = A′(0)t + um

σ
u(0)R′(0)t + O(t2)

= A′(0)t + 2µq(0)
um

σ
u(0)t + O(t2).

Given q(0) < 0 by Lemma 12, H(t) is not minimized by the lower corner control
u(0) = 0 as the upper corner control renders H(t) more negative in [0, T1) and is
therefore superior. Hence, the Maximum Principle rules out the lower corner control
at least in [0, T1) for a sufficiently small T1. ⊓,

Remark 19 It should be noted that the optimal control is not necessarily the upper
corner control in [0, T1) as the interior solution, ui (t), if it exists and is admissible,
would be superior.

4.2 Optimal Control Does Not End in an Upper Corner Control

At the terminal time T , we have λ0(T ) = λ1(T ) = 0 and therewith

H(t = T ) =
{

1 + 1
σ λ2(T ) {µx1(T ) + σ [a − x0(T ) − x1(T )]} (u(T ) = 0)

1 + 1
σ λ2(T )x1(T )(µ + um) (u(T ) = 1)

.

(47)

Relevant biological parameter value ranges are a ≥ 2, σ ≫ 1, um ! 1 and µ ≪ 1.
In view of 0 < x0 + x1 ≤ 1 by Lemma 1 and therewith 0 ≤ xk ≤ 1 [see (10)], we
have σ (a − 1) > um ≥ um x1(t) for any admissible solution so that

[H(t = T )]u=0 < [H(t = T )]u=1 (48)

given λ2(t) < 0 in [0, T ] by Lemma 9. We have thus proved the following proposition:

Proposition 20 An optimal control is not an upper corner control for all t in an
interval (T0, T ] for some T0 < T , i.e., ū(t) < 1 for T0 < t ≤ T .

Proof The proposition follows from (48) and the continuity of state and adjoint vari-
ables. ⊓,

Remark 21 Note that the optimal control may or may not end with a lower corner
control since an interior control, if it exists and is admissible, would be superior.
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4.3 Optimal Control for the Shortest Time to Cancer

In obtaining the various results in the previous sections, we have so far made use of
only the properties of d(u) stipulated in (6) and (5) but not any specific functional
form [such as (7)] for the death rate. In the remaining sections of this paper, we show
how the optimal control for our shortest time problem depends qualitatively on the
convexity of d(u). More specifically, we establish that

• the unique optimal mutation rate ū(t) is a bang–bang control if d(u) is a concave
or linear function of u, and

• the unique optimal mutation rate is generally a monotone decreasing interior control
ū(t) = ui (t) > 0 but may start with an upper corner control adjacent to t = 0
and end with a lower corner control adjacent to the terminal time with continuous
transition at either switch.

Because the structure of the Hamiltonian for the two-step model is qualitatively
different from that of the one-step model, the method of analysis employed in Wan
et al. (2010) is not applicable and a completely new approach is developed for the
solution of the present problem. The new solution technique is first introduced through
the special class of death rates (7) in the next three sections and then extended the
results obtained to the general death rates subsequently.

5 Concave Death Rates (α > 1)

5.1 A Corner Control Adjacent to End Points

In the next three sections, we determine the optimal control ū(t) for the special class
of death rates of the form (7). In this first section, we consider the strictly concave case
of α > 1. For this case, we actually can say more about the optimal control beyond
the fact that it cannot be determined by (30) [or (31)].

Proposition 22 For α > 1, any optimal solution for a minimum terminal time must
start with an upper corner control in some finite interval [0, T1), i.e., ū(t) = 1 for t
in [0, T1) for some T1 in (0, T ).

Proof With D(t) and R(t) not depending on u explicitly, we make use of (29) and
solve the stationary condition (31) for u(t) to get the interior control

ui (t) = 1 −
[

um

ασ

R(t)
D(t)

]η (
η = 1

α − 1
> 0

)
(49)

With D(t)/R(t) → 0 as t → 0, the interior control is negative and therefore not
admissible at least for some interval [0, T1) for some positive T1. By Proposition 18,
the optimal control ū(t) must be the upper corner control, with T1 < T given Propo-
sition 20. ⊓,

For t > T1 where ui (t) is well defined and feasible, we have the following negative
result on the interior control:

123



C. Sanchez-Tapia, F. Y. M. Wan

Proposition 23 For α > 1, the interior control ui (t) is maximizing in [T1, T ], 0 <

T1 < T .

Proof From Lemma 10, we see that both D(t) and R(t) are continuously differentiable.
Consequently, we can differentiate the Hamiltonian twice with respect to time for the
case of an interior control to get

d2 H
dt2 = ∂2 H

∂u2

(
du
dt

)2

= −D(t)d ··(u)

(
du
dt

)2

. (50)

after making use of the Hamiltonian structure of the state and adjoint equations to
eliminate terms involving derivatives of the state and adjoint variables. With λ2(t) < 0
(by Lemma 9) and P(t) < 0 (by Lemma 11), we have from (19)

D(t) = (1 − x0 − x1)P(t) + λ2x2(a − 1) < 0, (t > 0) (51)

keeping in mind Lemma 1. It follows from this and d ··(ui ) = −α(α−1)(1−ui )
α−2 <

0 for α > 1 that
[

d2 H
dt2

]

u=ui (t)
< 0 (t > 0). (52)

As such, the interior control, whenever it is well defined by (49) and admissible,
maximizes the Hamiltonian and therefore is not optimal for minimum terminal time.

⊓,
As a consequence of Proposition 23, we can now conclude that the optimal control

adjacent to the terminal time must be the lower corner control:

Proposition 24 For α > 1, any optimal control for the two-step model must end with
a lower corner control in some finite interval (T0, T ], i.e., ū(t) = 0 for t in (T0, T ]
for some T0 in (0, T ).

Proof Since we can only choose between the two corner controls, Proposition 20
eliminates the upper corner control as a candidate for optimal mutation rate in some
interval (T0, T ]. It follows that the optimal mutation rate must end with the lower
corner control in (T0, T ] for some T0 < T . That T0 > 0 is an immediate consequence
of Proposition 18 ruling out the lower corner control for some interval [0, T1). Hence,
T0 cannot be less than T1. ⊓,

5.2 The Optimal Mutation Rate is Bang–Bang

With Propositions 24 and 22, we know that the optimal control must be the lower
corner control in the interval (T0, T ] and must be the upper corner control in [0, T1)

with 0 < T1 ≤ T0 < T . In principle, it is possible to have more (than one) switches
between corner controls in T1 and T0 (keeping in mind that the interior control is
maximizing), we show presently that there can only be one switch in the interval
(0, T ) (so that T1 = T0 ≡ Ts with the only switch point denoted by Ts).
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Proposition 25 For a death rate (7) with α > 1, the optimal control for our two-step
model has one and only one-switch point Ts switching from the upper to the lower
corner control in the interval (0, T ).

Proof With the first switch (from ū(t) = 1 to ū(t) = 0) at T1 > 0, suppose there is a
second switch (from ū = 0 to ū = 1) at t = T2. [We note parenthetically that, given
Propositions 23 and 24, there must be at least one other switch at T3 (> T2 > T1)

to the last lower corner control.] Let a superscript (1) again denotes the upper corner
solution and (0) the lower corner solution. It is clear from the relevant ODE for the
two corner controls that

dx (1)
2

dt
= um + µ

σ
x (1)

1 <
µ

σ
x (0)

1 + x (0)
2

(
a − x (0)

0 − x (0)
1

)
= dx (0)

2

dt
in some subinterval of (T1, T2), given that the lower corner control is optimal there.
The situation is even less favorable for growth rate of cancerous cells with the upper
corner control in the t > T2 range given the relative growth rates for the two corner
solutions have not changed structurally while x (0)

0 and x (0)
1 grow faster than x (1)

0 and
x (1)

1 and thereby provide more fuel for mutation into more cancerous cells. Hence, a
switch from the lower to upper corner control at T2 (or any later time) is not optimal
leaving us with T1 = T0 ≡ Ts. ⊓,

Altogether, we have the following complete characterization of the optimal mutation
rate for a death rate (7) with α > 1.

Theorem 26 For α > 1, the optimal mutation rate for fastest time to cancer for our
two-step model is the bang–bang control

ū(t) =
{

1 [0 ≤ t < Ts)

0 (Ts < t ≤ T ] (53)

with its one-switch point determined by the switching condition (27) which may be
taken to be H(Ts) = 0 in light of Proposition 6.

Proof The proposition follows from Propositions 22, 24, 23 and 25. ⊓,

5.3 Determination of Switch Point

5.3.1 A Simple Iterative Numerical Scheme

With H̄(t) being continuous and vanishing on both sides of a switch point, we have
from (17) D(Ts) = um R(Ts)/σ . Our task is to find the unique root of this equation.
However, both D(t) and R(t) involve all the state and adjoint variables, we must solve
for these six unknowns, the unknown switch point Ts and the unknown terminal time T
simultaneously. An iterative solution scheme was designed in Komarova et al. (2008)
to compute the solution for the present class of problems for both the one-step and
two-step models without knowing the optimal control being bang–bang. Now that we

123



C. Sanchez-Tapia, F. Y. M. Wan

know the optimal control for a death rate (7) with α > 1 must be bang–bang (switching
from the upper corner control to the lower corner control), a more efficient solution
scheme is possible.

One such scheme would be the following iterative algorithm:

• Start with an initial guess T (0)
s for the switch point (which should be somewhat less

than the crossover point Tc of cancerous cell growth to target by each of the two
corner control alone to be discussed in the next section). The three state ODE for
the cell populations with the upper corner control u = 1,

x ′
0 = −2µx0, x ′

1 = 2µx0 − (µ + umu)x1, x ′
2 = 1

σ
(µ + umu)x1, (54)

together with the three initial conditions in (4) are solved in the interval [0, T (0)
s ].

The exact solution of this IVP is immediate and is given in the “Appendix”.
• Given the continuity of the state variables, the solution of the IVP above at T (0)

s
provides the initial conditions for a new IVP for the same three state ODE but
now with u = 0. With the condition x2(T (0)) = 1, this second IVP determines an
approximate terminal time T (0).

• If T (k) resulting from the kth iterate T (k)
s is not optimal, we modify T (k)

s to T (k+1)
s

and continue the process until a minimum terminal time is found up to an acceptable
tolerance.

More on this approach will be discussed in Sanchez-Tapia (2015). We report here
only that for σ = 10, µ = 0.1, um = 1 and a = 2, the iterative scheme above gives an
optimal switch time of Ts = 1.4125 . . . and a fastest terminal time of T = 5.3986 . . .

which is substantially lower than the approximate fastest time of 5.68 . . . obtained in
Komarova et al. (2008) by an existing code for the discrete SQP algorithm (Gill et al.
2005). (It is noted that the inaccuracy is due to the ad hoc process for discretization
of the continuous optimal control problem and not to any inadequacy of the SQP
algorithm.) Changing only a = 2 to a = 5 leads to an optimal switch time of Ts =
0.41415 . . . and a fastest terminal time of T = 1.9817 . . .

5.3.2 Some Bounds for the Switch Time

For an efficient implementation of the iterative scheme described in the previous
section, it is desirable to have a good initial guess or a narrow range for the switch
point Ts. Below are some bounds that either offer insight into the optimal solution or
are actually useful as an initial guess.

Crossover of Corner Solutions An obvious upper bound for the switch time would be
the crossover time Tc when the upper and lower corner solutions for the IVP problem for
state Eqs. (1)–(3) have the same cancerous mutant population, i.e., x (0)

2 (Tc) = x (1)
2 (Tc).

While the determination of Tc by the exact solutions or numerical integration is
straightforward, the use of Tc as a first approximation for Ts is too conservative. The
rapid growth of the mutants in the case of a lower corner control would have made up
for the associated smaller mutant population from an earlier switch time.
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Crossover of Corner Cancerous Growth Rates A less conservative choice would be
the time Tg when the two corner growth rates for mutants are equal:

[
dx (1)

2 /dt
]

t=Tg
=

[
um + µ

σ
x (1)

1

]

t=Tg

=
[µ

σ
x (0)

1 + x (0)
2 (a − x (0)

0 − x (0)
1 )

]

t=Tg

=
[
dx (0)

2 /dt
]

t=Tg
.

For µ = 0.1, um = 1, a = 2 and σ = 10, we have Tg = 2.215 . . . compared to
Tc = 3.267 . . ..

Maximum x (1)
1 Still another possible initial guess is the time tM when x (1)

1 attains its
unique maximum. It has the advantage of having an explicit expression in terms of µ

and um given by (13). For µ = 0.1 and um = 1, we have tM = 1.894 . . . < Tg < Tc
while the optimal switch point is T̄s = 1.4125 . . . The corresponding terminal times
for tM and Tg are

[T ]Ts = Tg = 5.5540 . . . > [T ]Ts = tM = 5.460 . . . > [T ]Ts =T̄s.
= 5.3986 . . .

So, for this example, tM provides a better upper bound for the optimal switch point
T̄s compared to Tg (or Tc). However, the reliability of tM may vary since it does not
depend on a or σ and therefore does not take into account the important proliferation
of mutants by their fast natural growth rate. This is seen from the case with a = 5
(instead of a = 2) for which T̄s = 0.4135 . . . with [T ]Ts =T̄s

= 1.9506 . . . while
[T ]Ts =tM = 2.6251 . . . The corresponding Tg is 0.7915 . . . which is closer but still
considerably later than the optimal switch time (though the resulting terminal time
[T ]Ts =Tg = 2.0895 . . . is much closer to the optimal T ).

The reason why the actual switch point is typically earlier than the three different
special times mentioned above is the more aggressive growth rate of the mutant cells
compared to the gain through the mutation of x (1)

1 (t), cells with only one copy of
tumor suppressor gene. Even if x (1)

1 (t) < x (1)
1 (tM ) for t less than (but close to) tM

(hence with slightly less of the x1 cells available to start the lower corner solution),
the faster growth rate of the mutant cells may more than make up for that shortfall to
reach the target mutant population in the same time interval (Ts, T ] or faster.

A Lower Bound As long as natural proliferation is faster, the lower corner solution
is more effective eventually. This suggests consideration of the threshold Tt when the
proliferation rate of the mutant cells equals the gain through the mutation of x (1)

1 (t)
and use

[
dx (1)

2 /dt
]

t=Tt
=

[
um + µ

σ
x (1)

1

]

t=Tt

=
[µ

σ
x (1)

1 + x (1)
2 (a − x (1)

0 − x (1)
1 )

]

t=Tt

or

[
x (1)

2 (a − x (1)
0 − x (1)

1 ) − um

σ
x (1)

1

]

t=Tt
= 0 (55)
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for determining the threshold Tt , by the exact solution for
{

x (1)
k

}
in the “Appendix”

or by numerical integration.
For a = 5, µ = 0.1, um = 1 and σ = 10, the threshold condition (55) gives

Tt = 0.41415 . . . with [T ]Ts =Tt = 1.98177 . . . which is indistinguishable (at least
for the number of digits calculated) from the optimal switch point T̄s obtained by
the iterative scheme of the previous section. We note, however, that Tt is not the
actual switch point or an upper bound. For a = 2 (while keeping the other three
parameters unchanged), we have Tt = 1.2630 . . . with [T ]Ts =Tt = 5.4060 . . .. The
actual optimal switch time is found by the iterative scheme of the previous section to
be T̄s = 1.4125 . . . which is larger.

There is a simple explanation why Tt is only a lower bound for the optimal switch
point T̄s. Though the condition (55) is satisfied showing that natural growth rate for
the mutant population x (1)

2 has caught up with (and equal to) the gain rate from the
mutation of the x (1)

1 population at Tt , that parity may be lost after the switch to a lower
control. With the switch to the lower corner control, the two populations x0 and x1
begin to rise more rapidly with their sum tending to 1 − µ because of the addition
of the logistic growth terms. Correspondingly, the natural proliferation rate of x2 is
reduced somewhat through the factor a − x0 − x1 in the third state Eq. (3). As such,
the parity between the two modes of gaining mutant cells at the threshold Tt may be
lost (for a short time after Tt ), much less so for a ≫ 1 and more so if a = O(1). The
latter scenario requires a later switch time than Tt to get a larger x1 at the switch to
balance the change in logistic growth rate after the switch to a lower corner control as
shown for the a = 2 case. The precise condition specifying the optimal switch time
is given by (27) [to be given in terms of D(t) and R(t) later in (56)].

The observations on the various bounds are summarized in the following propo-
sition useful for bracketing the two starting iterates in the application of the iterative
numerical solution scheme:

Proposition 27 The threshold value Tt defined by the condition (55) provides a lower
bound for the optimal switch point T̄s while the smaller of Tg and tM provides an upper
bound.

Remark 28 The iterative solution scheme has been applied for several sets of parame-
ter values. It was found that Tt constitutes a tight lower bound, often very close to the
optimal switch point. Similar to tM , its determination only involves the upper corner
control problem (for which we have an explicit exact solution). It is more effective for
larger a, i.e., for more aggressive cancerous proliferation rate.

6 Linear Death Rates (α = 1)

6.1 Nonexistence of Singular Solution

For the linear death rate case (α = 1) with d(u) = u, the stationary condition requires

um

σ
R(t) = D(t) (56)
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Known as the singular solution of the problem, the condition (56) does not involve the
control explicitly and therefore does not identify directly an interior control ui (T ) as
a possible candidate for the optimal control ū(t). The path to the optimal control for
our two-step model is simplified considerably by the following nonexistence theorem;

Proposition 29 For the two-step model with a linear death rate d(u) = u, the relation
(56) is not satisfied for any finite interval of time; consequently, there is no singular
solution for our problem.

Proof Rewrite (56) as

z(t) = um

σ
(57)

with z(t) = D(t)/R(t) as previously defined in conjunction with Lemma 14. Differ-
entiate both sides of (57) to get

z′(t) = 0.

But this contradicts Lemma 14 which requires z′(t) > 0 for all t ≥ 0. The proposition
is proved. ⊓,

6.2 The Optimal Control is Bang–Bang

In the absence of a stationary (singular) solution, we are left with a choice of two corner
controls. Proposition 18 requires the optimal mutation to start with an upper corner
control and Proposition 20 requires it to end with a lower corner control. Similar to
the α > 1 case, the optimal mutation is shown presently to be a one-switch bang–bang
control:

Proposition 30 For α = 1 so that d(u) = u, the optimal mutation rate ū(t) for fastest
time to cancer of our two-step model is the bang–bang control

ū(t) =
{

1 (0 ≤ t < Ts)
0 (Ts < t ≤ T )

. (58)

Proof While it is possible to have any odd number of switches between the two
corner controls (ending in the lower corner control adjacent to the terminal time),
Proposition 25 applies to the present problem since (in the absence of a stationary
solution) the argument in its proof does not depend on the form of the death rate. ⊓,

Remark 31 For α = 1, the only switch point Ts for the optimal (bang–bang) control
and the fastest time to target can be determined by the iterative algorithm described in
the previous section. In the next subsection, we obtain an upper bound for the optimal
terminal time to cancer whenever the optimal mutation rate is bang–bang. Such a
finite upper bound effectively demonstrates the existence of a finite fastest time to
target cancerous population.
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6.3 An Upper Bound for T and Another Lower Bound for Ts

For the purpose of obtaining an upper bound for the terminal time of our problem,
we specialize the exact solutions and bounds for the cell populations obtained in the
“Appendix”. For a growth program that starts with an upper corner control and switch
to a lower corner control at Ts, the exact time evolution of the three cell population is
given in (85)–(86) for 0 ≤ t ≤ Ts. For t > Ts where the control is lower corner, we
have the following bounds for the corresponding cell populations:

e−µ(t+Ts) ≤ x (0)
0 ≤ 1 − 2µ

[
x (1)

1

]

t=Ts
+ 2µ

{
e−2µTs − e−µ(t+Ts)

}
≤ x (0)

1 ≤ x (p)
1 ! 1 + µ

x (0)
2 ≥ 1

σ

[
1 − um + µ

um − µ
e−2µTs

]
e(a−1)τ

with x (p)
1 as defined in (96) and with the superscript “(0)” indicating a quantity defined

for t > Ts (with ū(t) = 0 there) and

τ = t − Ts,
[
x (1)

0

]

t=Ts
= e−2µTs ,

[
x (1)

1

]

t=Ts
= 2µ

um − µ

[
e−2µTs − e−(µ+um )Ts

]

by continuity. We note that the upper bound for x (0)
1 is unrealistic since x (0)

0 + x (0)
1 < 1

(by Lemma 1) and x (0)
0 ≥ 0. However, x (p)

1 ! 1 + µ is only an (overly conservative)
upper bound and does not contradict other more realistic results for cell populations
(such as Lemma 1).

With the optimal control consisting of only one switch from upper corner to lower
corner control at the optimal switch point Ts, the terminal time to target cancerous
population is determined by x2(T ) = 1. Our results for upper and lower bounds for
the switch point suggest 2µTs ≪ 1 and therewith

[
x (0)

2

]

t=T
≥ 1

σ

[
1 − um + µ

um − µ
e−2µTs

]
e(a−1)τT , τT = T − Ts

or

e(a−1)τT ! σ (um − µ)

2µ [(um + µ) Ts − 1]
.

The relation above gives an upper bound T ∗ for the optimal terminal time T̄ with

T̄ ≤ T ∗ = Ts + 1
a − 1

ln
(

σ (um − µ)

2µ [(um + µ) Ts − 1]

)
(59)
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While the optimal switch point T̄s is an unknown and to be determined simulta-
neously with T̄ , we do have several upper and lower bounds for T̄s (given in the last
section on the α > 1 case. For the typical set of parameter values used in Komarova
et al. (2008) (a = 2, µ = 0.1, σ = 10 and um = 1), using tM = 1.894 . . . for ts
results in the following approximate bound for the terminal time:

T̄ ≤
[
T ∗]

Ts=tM
≃ 5.6206 . . .

The approximate T ∗ is only 4 % off the exact solution of T̄ = 5.3986 . . . for this
example. For the higher cancerous cell growth rate constant a = 5 (with the other
three parameter values unchanged), the corresponding T ∗ from the same tM (which
does not depend on a),

T̄ ≤
[
T ∗]

Ts=Tt
≃ 2.8258...,

is much less accurate, about 40 % higher than the exact solution T̄ = 1.98177 . . .

The less than rosy result for a = 5 may be turned into a more positive one by
asking for the least informative bound possible from applications of (59). The answer
is of course T ∗ = ∞ attained by taking Ts = 1/(um + µ). For Ts < 1/(um + µ), T ∗

would no longer be real. We have therefore the following lower bound for the switch
point Ts:

Proposition 32

T̄s >
1

um + µ
.

7 Convex Death Rates (α < 1)

7.1 Existence of a Minimizing Interior Control

For death rates of the form (7) with α < 1, for which

d ·(u) = α(1 − u)α−1 > 0 and d ··(u) = α(1 − α)(1 − u)α−2 > 0 (60)

for 0 ≤ u < 1, the stationary condition (30) leads to the interior control

ui (t) = 1 − [δ(t)]β (61)

where

δ(t) = ασ

um

D(t)
R(t)

= ασ

um
z(t), β = 1

1 − α
> 1. (62)

With z(t) known to be nonnegative from Lemma 14, the expression (61) for ui (t) is
a well-defined real-valued function for t ≥ 0 with:
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lim
t→0+

ui (t) = 1. (63)

Furthermore, ui (t) is an admissible control at least for some interval adjacent to the
starting time:

Proposition 33 For a death rate (7) with 0 < α < 1, a real-valued interior control
ui (t) for our two-step model exists for all t in [0, T ] with (i) ui (0) = 1, (ii) u′

i (0) = 0,
(iii) u′

i (t) < 0 for all t in (0, T ] and (iv) 0 < ui (t) < 1 in (0, T0) for some T0 > 0.

Proof We already have part (i) from (63). For the other parts, we differentiate (61)
with respect to time to get

u′
i (t) = −β [δ(t)]β−1 ασ

um
z′(t).

Parts (ii) and (iii) follow given z′(t) > 0 by Lemma 14, δ(0) = 0 and δ(t) > 0 for
t > 0. With ui (t) monotone decreasing from ui (0) = 1, part iv) follows. ⊓,

By the convexity property d ··(u) > 0, ui (t) minimizes the Hamiltonian wherever
it is admissible in the interval [0, T ].

Proposition 34 For a death rate (7) with 0 < α < 1, the interior control for our
two-step model is the optimal control whenever it is admissible.

Proof For the well-defined real interior control (61), we have as in (50)

d2 H
dt2 = ∂2 H

∂u2

(
du
dt

)2

= −D(t)d ··(u)

(
du
dt

)2

, (64)

given that the ODE for the state and adjoint variables form a Hamiltonian system.
Since d ··(u) > 0 for 0 < α < 1 and D(t) < 0 for t > 0 by Lemma 11, we have

[
∂2 H
∂u2

]

u=ui

= −d ··(ui )D(t)
[
u′

i (t)
]2

> 0, (t > 0)

As such, the unique well-defined interior control minimizes the Hamiltonian of our
problem. Hence, we have ū(t) = ui (t) whenever the interior control is admissible. ⊓,

7.2 Admissibility of Interior Control

With ui (0) = 1 and ui (t) monotone decreasing with increasing t , at least for some
interval adjacent to the starting time, the interior control may well be well defined and
admissible for the entire time duration [0, T ] required to reach the target cancerous
cell population. However, approximate numerical solutions computed in Komarova
et al. (2008) show that for some combination of system parameter values the interior
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control vanishes at some T0 < T . For a theoretical validation of these observations,
we note that the interior control simplifies considerably at the terminal time T to

ui (T ) =
[

1 −
(

σα

um

a − x0 − x1

x1

)1/(1−α)
]

t=T

(65)

given x2(T ) = 1 and the Euler boundary conditions λ0(T ) = λ1(T ) = 0. With
0 ≤ x1 ≤ x0 + x1 ≤ 1 for all t ≥ 0, we arrive at the following upper bound for ui (T ):

ui (T ) < 1 −
[
σα

um
(a − 1)

]1/(1−α)

.

It follows that ui (T ) < 0 for σα(a − 1) > 1 ≥ um . This would be the case for the
biologically realistic parameter value combinations of {um =1, σ =10, α=0.2, a=2}
and {um = 1, σ = 4, α = 0.1, a = 4}, leading to the following proposition on the
inadmissibility of the interior control:

Proposition 35 For the two-step model, ui (t) < 0 in (T ∗
0 , T ] for some T ∗

0 > 0 if

σα(a − 1) > um . (66)

Proof With (66), we have ui (T ) < 0. By the continuity of the various state and
adjoint variables, we conclude that ui (t) < 0 in (T ∗

0 , T ] for some T ∗
0 < T . T ∗

0 must
be positive in view of Proposition 33. ⊓,

With (66), ui (t) is not admissible in (T ∗
0 , T ] for some T ∗

0 > 0. By Proposition
20, the optimal control must be the lower corner control in that interval. The suffi-
cient condition for the inadmissibility of the interior control suggests that the interval
(T ∗

0 , T ] would be larger for a larger value of “a” or “σ .” Clearly, with a higher growth
rate constant for the cancerous cell population, it would be more advantageous for
x2(t) to grow by natural proliferation sooner. The preference for natural proliferation
when the target cancerous cell population is larger (relative to the original normal cell
population), i.e., large σ is the gain in mutants at any instant would be a smaller and
smaller fraction of the target cancerous cell population for larger and larger σ .

7.3 The Optimal Mutation Rate

The extent of the admissibility of ui (t) for t < T ∗
0 is answered by the next proposition.

Proposition 36 Let T0 be the first zero of ui (t), so that ui (T0) = 0 and ui (t) > 0 for
t < T0. Then, for a strictly convex death rate of the form (7) (with 0 < α < 1), the
optimal mutation rate ū(t) for our two-step model is the continuous and PWS control
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ū(t) =
{

ui (t) (0 ≤ t ≤ T0)

0 (T0 ≤ t ≤ T )
. (67)

Proof With ui (T0) = 0 and u′
i (t) < 0 for all t ≥ T0 (by Proposition 33), we have

ui (t) < 0 for all t in (T0, T ] ; hence, the interior control is not admissible for t > T0.
By Proposition 20, the optimal mutation rate must be as given by (67). ⊓,

7.4 Approximate Location of the Zero of ui (t)

With (65), we see that the optimal mutation rate ū(t) is the interior control ui (t) for
the entire solution domain [0, T ] if

σα

um

[
a − x0 − x1

x1

]

t=T
≤ 1. (68)

In that case, the three state ODE (1)–(3), three adjoint ODE (22)–(24), the four bound-
ary condition (4), the two Euler boundary conditions (25) and the transversality con-
dition (26) together determine the optimal solution. With some re-arrangements, such
a problem can be solved by any of the available mathematical software for two-point
boundary value problems with error estimates.

Unfortunately, the cell populations x0(T ) and x1(T ) are not known without the
solution of the problem. The obvious upper bound of the expression on the left side
of (68),

σα

um

[
a − x0 − x1

x1

]

t=T
<

σα

um

a
x1(T )

,

still contains the unknown x1(T ) with an obvious lower bound 2µe−2µT too conser-
vative for our purpose. With the optimal control vanishing for t ≥ T0, it would seem
reasonable to expect

x1(T ) ≥ x M
1 = x (1)

1 (tM ) =
(

2µ

um + µ

) um+µ
um−µ

.

In that case, we may get some insight into the location of T̄s by taking x1(T ) >

2µ [given µ ≪ um = O(1)]. For the biologically realistic parameter values α =
0.05, a = 2, um = 1, σ = 2 and µ = 0.1, we have

σα

um

[
a − x0 − x1

x1

]

t=T
<

σα

um

a
x1(T )

< 1 (69)

so that T0 > T on the basis of the assumption x1(T ) > 2µ. While the assumed
lower bound for x1(T ) gives a possible location for T0, it is still necessarily to verify
whether the interior control is nonnegative for the entire interval [0, T ] even if (69) is
met. Methods of solution for determining ū(t) (including the unknown T0) as given by
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(67) in the absence of an ironclad assurance of T0 > T will be discussed in Sanchez-
Tapia (2015).

8 General Death Rates

In this section, we extend the findings for death rates of the form (7) to general death
rates (of appropriate convexity) having the properties stipulated in (6). We denote by
P2

d the class of twice continuously differentiable function d(u) satisfying (6):

P2
d =

{
d(u) ϵC2 ∣∣d(0) = 0, d(1) = 1, 0 ≤ d(u) ≤ 1, d ·(u) > 0 (0 ≤ u < 1)

}
.

(70)

8.1 Death Rate Strictly Concave in the Mutation Rate

Consider first P2
d death rates that are strictly concave so that d(u) satisfies the inequality

d ··(u) < 0 (0 ≤ u ≤ 1) . (71)

The following key result is an immediate consequence of (71):

Proposition 37 For a P2
d death rate that is strictly concave, the corresponding inte-

rior control for our two-step model. ui (t), whenever admissible, maximizes the Hamil-
tonian and is therefore not optimal.

Proof From (50), we have for an interior control

d2 H
dt2 = ∂2 H

∂u2

(
du
dt

)2

= −d ··(u)D(t)
(

du
dt

)2

< 0 (t > 0)

given Lemma 11 and the concavity condition (71). Hence, any admissible interior
control is maximizing and therefore not optimal for the minimum time problem. ⊓,

Proposition 37 requires the optimal control to be a corner control. Proposition 18
and 20 [which do not depend on the specific form (7) for d(u)] then require the optimal
control to start with an upper corner control ū(t) = 1 in some interval [0, T1) and to
end in a lower corner control in some interval (T0, T ] with T1 ≤ T0. In principle, we
may have more switches between the corner controls inside the interval (T1, T0). The
following proposition rules out that possibility requiring T1 = T0 ≡ Ts and thereby
completely specifies the optimal mutation rate for strictly concave P2

d death rates:

Proposition 38 For a P2
d death rate that is strictly concave, the optimal mutation rate

for the fastest time to target for our two-step model is the following bang–bang control
for some switch point Ts:

ū(t) =
{

1 [0 ≤ t < Ts)

0 (Ts < t ≤ T ] . (72)
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Proof The proof for Proposition 26 applies since it actually does not depend on the
form of the death rate function. ⊓,

8.2 Death Rates Strictly Convex in Mutation Rate

8.2.1 Interior Control Minimizes Hamiltonian

The situation is quite different for strictly convex P2
d death rates characterized by

d ··(u) > 0 (0 ≤ u ≤ 1). (73)

It follows from (73) that the positive d ·(u) itself is also monotone increasing and (see
Wan 1995)

α < d ·(u) <
1 − d(u)

1 − u
(0 ≤ u < 1). (74)

In that case, the stationary condition (30), written as

0 < d ·(u) = um

σ

R(t)
D(t)

≡ w(t), (75)

is invertible to give a unique real-valued interior control Ui (w(t)) ≡ ui (t). We have
immediately the following important conclusion:

Proposition 39 For a strictly convex P2
d death rate, the unique interior control ui (t)

of our two-step model minimizes the Hamiltonian for the problem and is therefore
optimal whenever it is admissible.

8.2.2 Interior Control is Monotone Decreasing in Time

Recall from Propositions 11 and 12 that both R(t) and D(t) are negative for t > 0
and their local behavior given by Proposition 7 holds in some interval [0, T1). With
R(t) decreasing at a slower rate than D(t) in that interval, the positive ratio R(t)/D(t)
decreases monotonically with time at least for all t < T1. In that case, ui (t) = Ui (w(t))
is a decreasing function of t with u′

i (t) < 0 for 0 ≤ t < T1. We wish to extend this
result to the entire time interval [0, T ] (where Proposition 7 may not be applicable).

To accomplish this, we rewrite the stationary condition (75) in terms of z(t) =
D(t)/R(t) previously introduced in connection with Lemma 14,

0 < d ·(u) = um

σ

R(t)
D(t)

= um

σ z(t)
,

and differentiate both sides of (75) with respect to t to obtain

d ··(u)u′
i (t) = − um z′(t)

σ [z(t)]2
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Since the death rate function is strictly convex, we have d ··(u) > 0. With Lemma 14
assuring us z′(t) > 0, we have proved the following proposition:

Proposition 40 For any P2
d death rate that is strictly convex, the interior control for

our two-step model is a monotone decreasing function of time for t ≥ 0, i.e., u′
i (t) < 0

for all t in [0, T ].

8.2.3 Admissibility of the Interior Control Adjacent to Starting Time

In the special case of (7) with 0 < α < 1, the interior control ui (t) for the two-step
model is always admissible adjacent to the initial time but may become negative prior
to the terminal time (and hence not admissible). For our more general class of strictly
convex death rates, the situation is complicated by the additional possibility that ui (t)
may exceed the upper bound. The actual admissibility of the interior control near t = 0
is shown presently to depend on the value u∞ of the mutation rate u for which d(u)

becomes unbounded,

lim
u→u∞

d(u) = ∞. (76)

Note that with the restrictions imposed on P2
d death rates specified in (70), we must

have 1 ≤ u∞ ≤ ∞. Strict convexity of d(u) requires its slope to satisfy

d ·(u) > d ·(0) ≡ α0 > 0. (77)

Proposition 41 For a strictly convex P2
d death rate, we have (i) ui (T̂ ) = 1 for some

0 ≤ T̂ < T , (ii) ui (t) > 1 for all t < T̂ and (iii) ui (t) < 1 for all t > T̂ .

Proof For strictly convex d ·(u) death rates, we have d ··(u) > 0 so that d ·(u) is itself
a monotone increasing function [see (73)]. It follows that

0 < α0 = d ·(0) < d ·(u) < d ·(u∞) (78)

for 0 ≤ u < u∞ ≤ ∞ (keeping in mind u∞ ≥ 1 for P2
d death rates). Then, the inverse

of (75), Ui (w), is a monotone increasing (strictly concave) function of w and bounded
above by u∞. With w(t) = um/ [σ z(t)] a monotone decreasing function of time from
t = 0 and

lim
t→0

d ·(ui (t)) = lim
t→0

w(t) = lim
t→0

um

σ

R(t)
D(t)

= ∞,

the inverse function ui (t) is a monotone decreasing function of t starting from t = 0.
If u∞ > 1, then ui (t) > 1 for [0, T̂ ) for some T̂ > 0 with ui (T̂ ) = 1 and ui (t) < 1
for t > T̂ . ⊓,

Corollary 42 If u∞ > 1, the optimal control starts with the upper corner control for
the interval [0, T̂ ], i.e., ū(t) = 1 in [0, T̂ ].
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Proof Since ui (t) > 1 for 0 ≤ t < T̂ , it is not admissible in that interval. By Lemma
18, the optimal control must be the upper corner control there. ⊓,

8.2.4 The Optimal Control Configuration

For the actual configuration of the optimal control, we need to know when the interior
control remains admissible in (T̂ , T ]. We saw from Proposition 41 how the admissi-
bility of ui (t) adjacent to t = 0 depends on u∞. We now show how the admissibility
of ui (t) adjacent to terminal time T depends of the initial slope α0 = d ·(0).

Lemma 43 If d(u) is a strictly convex P2
d death rate and um/(σ z(T )) > α0, then

ui (t) is admissible in the interval (T̂ , T ] with the threshold T̂ defined in Proposition
41 (which may be 0 as in the special case of (7) with α < 1) with 0 < ui (t) < 1 there.

Proof The Lemma follows from u′
i (t) < 0. From d ·(u(T )) = um/(σ z(T )) > α0

follows ui (T ) > 0 and hence 0 < ui (t) < 1 in that interval. ⊓,

Remark 44 The lemma above holds also for um/(σ z(T )) = α0 with ui (T ) = 0 in
that case.

For the complementary case of um/(σ z(T )) < α0, we have ui (T ) < 0. As such
ui (t) is not admissible for the problem in an interval (T0, T ] for some positive T0 < T
with ui (T0) = 0 and ū(t) = 0 in that interval. Note that T0 is necessarily positive
since the lower corner control is not optimal in some interval [0, T1) adjacent to the
starting time by Lemma 18.

In the interval [0, T0), we have ui (t) > 0 and monotone decreasing as a function
of t with ū(t) = ui (t) in [0, T0) if ui (t) ≤ 1 in that interval. If ui (T̂ ) = 1 for some
T̂ > 0, then the upper constraint in (5) requires ū(t) = 1 for all t in [0, T̂ ]. These
observations are summarized in the following proposition:

Proposition 45 For a strictly convex P2
d death rate and um R(T )/σ D(T ) < α0, the

optimal mutation rate ū(t) for fastest time to target for our two-step model is

ū(t) =

⎧
⎨

⎩

1 (0 ≤ t < T̂ )

ui (t) (T̂ ≤ t ≤ T0)

0 (T0 ≤ t ≤ T )

with ui (T0) = 0 and ui (T̂ ) = 1 if T̂ > 0.

Remark 46 Note that ū(t) = ui (t) for all t in [0, T0) only if

lim
u→1−

d ·(u) = ∞.

This was the case when d(u) is of the form (7) with 0 < α < 1.
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8.2.5 A Sufficient Condition for T0 < T

The functions R and D that appear in the admissibility criteria of the last two subsec-
tions depend on the state and adjoint variables and are generally not known until we
have the solution of our problem. However, the expressions for these two quantities
simplify at the terminal time. With only their ratio in (75), the terminal slope d ·(ui (T ))

is given by

w(T ) = d ·(ui (T )) = um

σ

R(T )

D(T )
= um

σ

x1(T )

a − x0(T ) − x1(T )
.

While we also do not know x0(T ) and x1(T ) without the solution of our problem, the
constraints on x1(t) [see (10)] and x0(t) + x1(t) (see Lemmas 1 and 4) provide the
needed ingredients for an upper bound for d ·(ui (T )) that limits the admissibility of
the interior control:

Proposition 47 If σ (a − 1) > um/α0, where α0 = d ·(0) then ui (t) < 0 for some
interval (T0, T ], with T0 being the first zero of the interior control.

Proof With

d ·(ui (T )) = um

σ

x1(T )

a − x0(T ) − x1(T )
≤ um

σ (a − 1)
< α0 = d ·(0),

the strict convexity of d(u) (and hence d ·(u) being monotone increasing) requires
ui (T ) < 0. By the continuity of the death rate function and the interior control, we
have ui (t) < 0 for some interval (T0, T ] adjacent to T where, by Propositions 40
and 45, T0 is the first positive zero of the interior control. ⊓,

9 The Biology of Switching

The principal objective of this paper is to understand how the competing effects of
mutation may be orchestrated to be in favor of carcinogenesis and to quantify this
favoring process for the case of dysfunctional TSG. More specifically, we provide
through the two-step model a complete characterization of the optimal mutation rate
for the fastest time to cancer and how this rate depends on the convexity of the death rate
as a function of the mutation rate. The overall project, however, is also concerned with
several other related issues. One of these is to formulate an appropriate algorithm for
computing the actual optimal mutation rate, especially for the strictly convex case when
the lower constraint on the optimal control is binding prior to the terminal time. The
brute force iterative scheme used in Komarova et al. (2008) for determining the optimal
rate in the absence of any information about its nature or properties was not effective
for strictly convex death rates of the two-step model. An effective algorithm has been
developed in Sanchez-Tapia (2015) to accomplish this task and applied successfully.
Another is to investigate the effects of noise on the optimal solutions. Considerable
progress has also been made in Sanchez-Tapia (2015) on this problem including the
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Table 1 Dependence of switch and terminal time on (normalized) basic mutation rate µ for concave cases
with um = 1, a = 2, dm = 1

µ (a) σ = 2 (b) σ = 10

Oncogene T SG Oncogene T SG

Ts T Ts T Ts T Ts T

10−1 0.6563 1.5713 1.4009 3.8764 0.895 2.7809 1.413 5.3986

10−2 0.7451 1.6802 1.5744 6.3931 1.031 2.9238 1.574 8.0004

10−5 0.7561 1.6935 1.5936 13.334 1.048 2.9734 1.592 14.943

10−7 0.7561 1.6935 1.5936 17.938 1.050 2.9734 1.593 19.548

extension of the results of Komarova and Wodarz (2004) through a novel application
of the Liouville equation in classical dynamical systems and statistical mechanics to
allow for noise affecting the optimal mutation rate. These and more will be reported in
Sanchez-Tapia (2015) and future publications. Here, we limit our discussion to some
insight into the biology that determines the switch time of the bang–bang control for
nonconvex death rate cases as suggested by the numerical solutions.

Since the optimal mutation rate is known to be (one switch) bang–bang, the impor-
tant information for nonconvex death rate cases is the switch time Ts of the mutation
rate (from upper to lower corner control) and the associated time to target T . In Table 1,
the optimal Ts and T are shown for both one-step model and two-step model with
um = 1, a = 2 and dm = 1. The set (a) is for four values of µ with σ = 2 while the
set (b) is for the same four values of µ with σ = 10, The corresponding results with
the value of a = 5 are given in Table 2. The range of µ in all cases is from the CIN-type
mutation rate of 10−7/s to the MIS-type mutation rate of 0.01–0.1/s (Komarova and
Wodarz 2004).

In each of the four combinations of σ and a , the results shown certainly confirm
what is expected intuitively:

• For the same combination of σ and a, it would take the two-step model longer to
get to the target cancerous population given that two mutations are needed to lose
both copies of TSG (compared to one mutation to activate an oncogene) in order
to get from a normal cell to a cancerous cell.

• For a fixed a, it would take cancerous mutants of each model longer to get to a
larger target cancerous population, i.e., as σ increases.

Less obvious, however, is the asymptotic behavior of the switch time and the time to
target as basic mutation rate µ becomes much smaller than the (normalized) maximum
cancerous mutation rate um , i.e., µ ≪ um = 1, with

• Ts and T tending to their respective asymptotic value as µ/um → 0,

Evidently, for µ/um = O(10−2) and smaller, the trade-off between the two corner
controls is unaffected by the basic mutation rate µ.

More interesting, however, is the biology responsible for the switch time and its
asymptotic behavior. It has been proved earlier that a high mutation rate is needed at
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Table 2 Dependence of switch and terminal time on (normalized) basic mutation rate µ for concave cases
with um = 1, a = 5, dm = 1

µ (a) σ = 2 (b) σ = 10

Oncogene T SG Oncogene T SG

Ts T Ts T Ts T Ts T

10−1 0.210 0.73360 0.410 1.58188 0.220 1.11835 0.410 1.98173

10−2 0.230 0.77165 0.455 2.20387 0.245 1.16194 0.460 2.60616

10−5 0.235 0.77622 0.465 3.93662 0.250 1.16719 0.465 4.33902

10−7 0.235 0.77623 0.465 5.08796 0.250 1.16720 0.465 5.49032

Table 3 Threshold for switching in two-step model for concave cases (um = 1, a = 2, dm = 1)

µ (a) σ = 2 (b) σ = 10

x1(Ts)/µ x2(Ts)/µ x ′
2(Ts)/µ x1(Ts)/µ x2(Ts)/µ x ′

2(Ts)/µ

u = 1 u = 0 u = 1 u = 0

10−1 1.203 0.620 0.662 0.757 1.205 0.1256 0.133 0.153

10−2 1.546 0.777 0.781 0.797 1.546 0.1554 0.156 0.159

10−5 1.593 0.797 0.797 0.797 1.593 0.1591 0.159 0.159

10−7 1.594 0.796 0.797 0.797 1.593 0.1593 0.159 0.159

the start for faster production of the exceedingly low advantageous mutants but, once
a sufficiently large population of fast proliferating mutants is accumulated, becomes
detrimental to the longevity of the fast (naturally) proliferating mutants. For the ques-
tion of when to switch, we report in Tables 3 and 4 four pieces of information for the
optimal bang–bang solution for each of the same four combinations of parameter val-
ues as Tables 1 and 2: (1) the normalized precancerous mutant (with only one copy of
TSG) population at the switch time x1(Ts) responsible for the production of cancerous
mutants; (2) the normalized cancerous mutant population at the switch time x2(Ts);
(3) the rate of growth of the cancerous cell population at switch time by maximum
mutation rate (u = 1); and (4) the rate of growth of the cancerous cell population at
switch time without cancerous mutation (u = 0). (Note that {xk(t)} are continuous
at Ts while {x ′

k(t)} are not). From these results, we learn the following less obvious
facts:

• x1(Ts)/µ and x2(Ts)/µ tend to an asymptotic value as µ/um → 0.
• At switch time, the growth rate of x2 with the lower corner control is generally not

less than the corresponding growth rate with the upper corner control and essentially
indistinguishable from the latter when µ/um ≪ 1, say µ/um = O(10−3) or
smaller.

It appears that switch from upper to lower corner control takes place when there are
sufficient cancerous mutants so that the population growth rate for the latter caught
up with that for the upper corner. An exception to the second observation is when the
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Table 4 Threshold for switching in two-step model for concave cases (um = 1, a = 5, dm = 1)

µ (a) σ = 2 (b) σ = 10

x1(Ts)/µ x2(Ts)/µ x ′
2(Ts)/µ x1(Ts)/µ x2(Ts)/µ x ′

2(Ts)/µ

u = 1 u = 0 u = 1 u = 0

10−1 0.6317 0.0778 0.347 0.344 0.6317 0.0156 0.695 0.688

10−2 0.7260 0.0899 0.367 0.364 0.7322 0.0184 0.740 0.742

10−5 0.7437 0.0931 0.372 0.373 0.7437 0.0186 0.744 0.745

10−7 0.7437 0.0931 0.372 0.373 0.7437 0.0186 0.744 0.745

natural cancerous mutant growth rate is high (e.g., a = 5) and the target cancerous
population is relatively small. In that case, the switch over may be sooner since, as
noted previously in Sect. 5.3.2), the higher cancerous mutant growth rate with no
mutation would more than make up for the shortfall from an earlier switch.

The observation that the switch should take place near the time determined by[
x ′

2

]
u=1 =

[
x ′

2

]
u=0 provides an estimate for Ts. From (3), we have

[
x ′

2
]

u=1 = 1
σ

(µ + um)x1,
[
x ′

2
]

u=0 = µ

σ
x1 + x2(a − x0 − x1).

Let T ∗
s be the time of equality between the two growth rates at switch so that

um

σ
x1(Ts) = x2(Ts) [a − x0(Ts) − x1(Ts)] . (79)

If the switch point is taken to be at T ∗
s , the relation (79) constitutes a nonlinear equation

for T ∗
s . With the various cell populations {xk(T ∗

s )} known explicitly for both corner
controls (see “Appendix”) and continuous at the only switch point T ∗

s , numerical
solution can be found accurately by any of the available numerical software.

For µ ≪ um , a simple approximate determination of the switch time is possible.
With x0(T ∗

s ) + x1(T ∗
s ) ! 1 [see (85)], we may approximate the relation (79) by

x2(T ∗
s ) = um

σ (a − 1)
x1(T ∗

s ) (80)

where we have for µ ≪ um = 1 [see (85) and (86)]

x1(T ∗
s ) = 2µ

um − µ

[
e−2µT ∗

s − e−(um+µ)T ∗
s

]
= 2µ

[
1 − e−T ∗

s + O(µ)
]

x2(T ∗
s ) = 2µ

σ

[
T ∗

s − 1 + e−T ∗
s + O(µ)

]
.

It follows that (80) becomes

T ∗
s = a

a − 1

(
1 − e−T ∗

s

)
[1 + O(µ)] . (81)
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We summarize the development above in the following proposition:

Proposition 48 With the optimal bang–bang control switches at the instant T ∗
s when

the cancerous mutant growth rate being indifferent to the choice of corner control (as
suggested by the numerical solution for the optimal mutation rate), the switch point
T ∗

s is determined by (79) which simplifies to (81) up to terms of order O(µ/um). It
follows that the switch point T ∗

s does not depend on µ or σ for sufficiently small µ.

The conclusions of the proposition are consistent with the numerical data of
Tables 1, 2, 3 and 4 for the two-step model. Note that the conclusions do not apply
to the one-step model since the evolution of the two relevant cell populations is no
longer given by (85) and (86).

10 Summary and Concluding Remarks

10.1 Summary

Clinical data show that dysfunctional TSG is a prevalent cause of breast, colorectal and
lung cancers (and others not so prevalently), it is important to gain some understanding
of the TSG related mechanisms and processes favoring the promotion of these types
of cancer. However, intrinsic differences between the biology of the activation of an
oncogene and the loss of both copies of TSG render the successful method of analysis
for the one-step model ineffective for the two-step model (see Sect. 3.2) and necessitate
a considerably more intricate analysis in order to completely characterize the optimal
mutation rates for the two-step model. This is accomplished herein first for a special
class of death rate functions given in (7). More specifically, we have the following
characterization of the optimal time-varying mutation rate:

• For α > 1, the unique optimal mutation rate is shown to be a (one-switch) bang–
bang control, starting with an upper corner control and ending in a lower corner
control (see Proposition 26). An admissible interior control may exist for some
interval(s) of time but is shown to maximize the Hamiltonian and therefore not
optimal by the maximum principle.

• For α = 1, the Hamiltonian is linear in the control and the stationary condition is
independent of the control. For this case, it is shown (see Proposition 30) that (i)
there is no singular solution for any time interval for the problem and (ii) the optimal
control is also (one-switch) bang–bang, starting with an upper corner control and
ending in a lower corner control.

• For 0 < α < 1, a unique monotone continuously decreasing interior control ui (t)
exists for this case with ui (0) = 1. The optimal control consists of the interior
control for all t in [0, T0] with ū(t) = ui (t) > 0 for 0 ≤ t < T0 and ū(t) = 0 for
T0 ≤ t ≤ T if T0 < T (see Proposition 36).

The same characterization is then shown in Sect. 8 to apply to general twice continu-
ously differentiable death rates with the properties stipulated in (6) and (5), designated
as P2

d death rates. For concave P2
d death rates, the optimal control for fastest time to

cancer is again bang–bang, similar to the special death rate (7) with α ≥ 1.
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For strictly convex P2
d death rates, the results are somewhat more complicated than

the special death rate (7) with α < 1. Unlike the special case, the optimal control
now may start with an upper corner control for a finite duration before transition
continuously to the interior control at the instant T1 ≤ T . If T1 < T , then ū(t) = ui (t)
in the interval (T1, T0) for some T0 ≤ T . As in the case of (7), we have ū(t) = 0 for
all t in [T0, T ] if T0 < T .

The qualitative characterization of the optimal program for the shortest time prob-
lem actually provides the needed information for computing the optimal solution. For
the case of a bang–bang control, we have upper and lower bounds for the only switch
point of the optimal mutation rate. They render a new iterative algorithm developed
herein highly efficient as a replacement for the brute force iterative scheme used in
Komarova et al. (2008) which was developed without the knowledge that the optimal
control is bang–bang. We also obtain an upper bound for the terminal time which is
helpful for validating the solution algorithm.

For the case of strictly convex P2
d death rates, we obtain an explicit upper bound

on the terminal value of the interior control; it delimits the admissibility of the inte-
rior control adjacent to the terminal time. The information is needed as an appropriate
solution algorithm for the problem necessarily depends on whether the interior control
vanishes prior to the terminal time. The actual solution processes for both concave
and convex death rates will be discussed in detail in Sanchez-Tapia (2015).

While the principal objective of our research is to understand how the compet-
ing effects of genetic instability may be orchestrated to favor carcinogenesis and to
quantify this favoring process for the case of dysfunctional TSG, there are also other
goals. These include the formulation of appropriate efficient theory-based algorithms
for computing the actual optimal mutation rate for death rates of different convexities
mentioned above. In addition, the results of Komarova and Wodarz (2004) has been
extended to allow for noise that affects the optimal mutation rate. These items and more
will be reported in future publications. Here, we have limited additional discussion to
some insight into the biology that determines the switch time of the bang–bang control
for nonconvex death rate cases gained from the numerical solutions of the problem
as summarized in the previous section, highlighting a major difference between the
one-step model and the two-step model. For dysfunctional TSG with all system para-
meter fixed, the switch time Ts is effectively the same for different target population
size. The same is true for the oncogene case only when the natural growth rate of
cancerous mutants is much larger than that of the normal cells. Another important
observation is the biology that governs the switch time of the optimal bang–bang con-
trol: The switching takes place not sooner than the instant T ∗

s when the cancerous
mutant growth rate is indifferent to the choice of upper or lower bound of the mutation
rate with T ∗

s independent of the basic mutation rate µ (see Proposition 48).

10.2 Concluding Remarks

With considerable effort expended in the mathematical analysis and numerical com-
putation of the optimal solution, it would seem reasonable to ask how well do the
theoretical results compare with available empirical evidence and/or clinical data.
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However, what we have determined from our idealized model is the optimal mutation
rate for the fastest time to cancer (characterized by a target cancerous mutant popula-
tion size) possible, not the time-varying mutation rate of any particular type of cancer.
And as pointed out in the Introduction section, there are different kinds of mutations
contributing to genetic stability in a biological host: CIN, MSI and telemeric abnor-
mality, just to name a few. The frequencies of the different mutation rates are known to
range from 10 ˆ (−7)/s to 0.1/s. At any instant in time, all can contribute to the progres-
sion of cancer in the same host with different temporal combinations giving different
combined time-varying mutation rate histories. (For more thorough discussions, both
experimental and theoretical, see Komarova and Wodarz 2004 as well as Wodarz and
Komarova 2005, 2014) In addition, there are a number of genes known to contribute
to CIN alone adding more rate variations in the progression toward cancer (see Cahill
et al. 1999; Bardelli et al. 2001).

With all these factors (different genes, different abnormalities, different muta-
tion types, etc.) contribute to each instant of a particular mutation rate time profile,
even limiting to the case of dysfunctional TSG, the actual time-varying rate can-
not be expected to be close to the optimal rate. An example of this expected dis-
crepancy is the actual data for intestinal carcinoma in mice and human (Rudolph
et al. 2001) and for breast cancer (Chin et al. 2004), both having a mutation rate
first increases and then decreases in later stage. The optimal mutation rate, how-
ever, would start at the maximum allowable rate before eventually decrease as time
progresses.

Given the expected differences between the optimal mutation rate for an ideal-
ized model and clinical data available, it is gratifying (and rather remarkable) that
the order of magnitude of the optimal solution is still consistent with the rate of
chromosome loss obtained by in vitro experiments using several CIN colon can-
cer cell lines (Lengauer et al. 1997) as previously observed in Komarova et al.
(2008).
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Appendix

Cell Populations for Upper Corner Control

With the two corner controls playing a key role in the optimal solution, we note that
the state equations admit an exact solution for these controls. For the upper corner
control u1(t) = 1, the state equations simplify to

dx (1)
0

dt
= −2µx (1)

0 ,
dx (1)

1

dt
= 2µx (1)

0 − (µ + um) x (1)
1 ,

dx (1)
2

dt
= um + µ

σ
x (1)

1 .

(82)
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The following exact solutions for these uncoupled first-order state equations are imme-
diate.

Lemma 49 For u(t) = u1(t) ≡ 1 and a general set of initial conditions x (1)
k (Ti ) =

x (i)
k ≥ 0, k = 0, 1, 2, the exact solution of the three uncoupled first-order state Eq. (82)

is

x (1)
0 = x (i)

0 e−2µτ , x (1)
1 = 2µx (i)

0

um − µ

[
e−2µτ − e−(µ+um )τ

]
+ x (i)

1 e−(µ+um )τ , (83)

x (1)
2 = x (i)

2 + x (i)
1

σ

{
1 − e−(um+µ)τ

}
(84)

+ x (i)
0

σ (um − µ)

[
(µ + um)(1 − e−2µτ ) − 2µ(1 − e−(µ+um )τ )

]

with τ = t − Ti and a superscript “(1)” for upper corner control. The normalized
mutated cell populations x (1)

1 and x (1)
2 are positive function of time for τ = t −Ti > 0.

Remark 50 The concavity of x (1)
2 (t) also follows from

d2x (1)
2

dt2 = um + µ

σ

dx (1)
1

dt
= − (um + µ)2

σ
x (1)

1 < 0.

Remark 51 For the interval adjacent to the initial time t = Ti = 0, the exact solutions
(83) and (84) simplify by the known initial conditions to

x (1)
0 = e−2µt , x (1)

1 = 2µ

um − µ

[
e−2µt − e−(µ+um )t

]
, (85)

x (1)
2 = 1

σ

[
1 − 1

(um − µ)

{
(um + µ) e−2µt − 2µe−(µ+um )t

}]
. (86)

10.3 Cell Populations for Lower Corner Control

For the lower corner control u0(t) = 0, the first two state Eqs. (1) and (2) simplify to

dx (0)
0

dt
= x (0)

0

(
1 − 2µ − x (0)

0 − x (0)
1

)
, (87)

dx (0)
1

dt
= 2µx (0)

0 + x (0)
1

(
1 − µ − x (0)

0 − x (0)
1

)
, (88)

They may be solved exactly (by Mathematica or Maple) allowing for the satisfaction
of two initial conditions

x (0)
0 (Ts) = x (s)

0 , x (0)
1 (Ts) = x (s)

1 . (89)
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Instead of writing down the exact solution, we need only the following simple
bounds on x (0)

0 and x (0)
1 for our purposes:

− 2µx (0)
0 ≤ dx (0)

0

dt
≤ x (0)

0

(
1 − 2µ − x (0)

0

)
, (90)

2µx (0)
0 − µx (0)

1 ≤ dx (0)
1

dt
≤ 2µx (0)

0 + x (0)
1

(
1 − µ − x (0)

1

)
, (91)

given the nonnegativity of the three cell population and 0 ≤ x (0)
0 + x (0)

1 ≤ 1 by
Lemma 4. It is possible to simplify the upper bound for dx (0)

1 /dt further by replacing
the right-hand side of (91) with 2µx (0)

0 + x (0)
1 (1 − µ). We refrain from doing so to

get sharper results.

Lemma 52

x (s)
0 e−2µτ ≤ x (0)

0 ≤ 1 − 2µ (92)

x (s)
1 + 2x (s)

0

{
e−µτ − e−2µτ

}
≤ x (0)

1 ≤ x (s)
1 (93)

where

τ = t − Ts, x (s)
k = x (0)

k (t = Ts) (94)

Proof The various inequalities are straightforward consequences of the inequalities
(90) and (91) along with the switch conditions (89): In particular, we have

x (0)
0 ≤ (1 − 2µ)C0e(1−2µ)τ

1 + C0e(1−2µ)τ
≤1 − 2µ, x (0)

1 ≤ x (p)
1 − C1γ e−γ τ

1 + C1e−γ )τ
≤ x (p)

1 ! 1+µ,

(95)

where

C0 = x (s)
0

1−2µ−x (s)
0

> 0, C1 = x (p)
1 − x (s)

1

x (s)
1 + x (p)

1 +µ − 1
> 0, γ = 2x (p)

1 + µ − 1 > 0,

and

2x (p)
1 = (1 − µ) +

√
1 + 6µ − 15µ2 = 2

{
1 + µ + O(µ2)

}
! 2(1 + µ), (96)

keeping in mind x (s)
1 < 1 < x (p)

1 . ⊓,

Remark 53 We note that the upper bound for x (0)
1 is unrealistic since x (0)

0 + x (0)
1 < 1

(by Lemma 1) and x (0)
0 ≥ 0. However, x (p)

1 ! 1 + µ is only an (overly conservative)
upper bound and does not contradict other more realistic results for cell populations
(such as Lemma 1).
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For u = 0, the third state Eq. (3) takes the form

dx (0)
2

dt
= µ

σ
x (0)

1 + x (0)
2 (a − x (0)

0 − x (0)
1 ). (97)

which is a linear first-order ODE for the only unknown x (0)
2 and can be solved with

the help of an integrating factor. Even without the explicit solution, we see from (97)
that x2(t) increases without bound as t → ∞ since a ≫ 1.

More useful for our analysis is the following upper and lower bound for x (0)
2 :

Lemma 54 The following inequalities hold for u = 0 and x (0)
2 (t = Ts) = x (s)

2 :

x (0)
2 (t) ≥ x (s)

2 e(a−1)τ , τ = t − Ts. (98)

Proof With 0 ≤ x (0)
0 + x (0)

1 ≤ 1 by Lemma 1, the ODE (97) implies

dx (0)
2

dt
≥ µ

σ
x (0)

1 + x (0)
2 (a − 1) ≥ x (0)

2 (a − 1).

from which we get

x (0)
2 (τ ) ≥ x (s)

2 e(a−1)τ .

⊓,
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