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Abstract

Electromagnetic brain imaging is the reconstruction of brain activity from non-invasive recordings
of magnetic fields and electric potentials. An enduring challenge in this imaging modality is
estimating the number, location, and time course of sources, especially for the reconstruction of
distributed brain sources with complex spatial extent. Here, we introduce a novel robust empirical
Bayesian algorithm that enables better reconstruction of distributed brain source activity with two
key ideas: kernel smoothing and hyperparameter tiling. Since the proposed algorithm builds upon
many of the performance features of the sparse source reconstruction algorithm - Champagne and
we refer to this algorithm as Smooth Champagne. Smooth Champagne is robust to the effects of
high levels of noise, interference and highly correlated brain source activity. Simulations
demonstrate excellent performance of Smooth Champagne when compared to benchmark
algorithms in accurately determining the spatial extent of distributed source activity. Smooth
Champagne also accurately reconstructs real MEG and EEG data.

Index Terms

Electromagnetic Brain Mapping; Bayesian Inference; Distributed brain activity; Inverse problem;
Magnetoencephalography; Electroencephalography
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Introduction

Noninvasive functional brain imaging has made a tremendous impact in improving our
understanding of the human brain. Functional magnetic resonance imaging (fMRI) has been
the predominant modality for imaging the functioning brain during the past 2 decades.
However, fMRI lacks the temporal resolution required to image the dynamic and oscillatory
spatiotemporal patterns associated with activities in the brain. Direct non-invasive
measurements of these neuronal oscillatory activity in the millisecond time scale can be
achieved with magnetoencephalography (MEG) and electroencephalography (EEG), this
temporal resolution is essential for epileptic form activity localization and for imaging
dynamic of brain networks subserving perception, action and cognition.

MEG/EEG sensor data only provides qualitative information about underlying brain
activities. Analysis is typically performed based on the qualitative analyses of experienced
users regarding the sensitivity profile of the sensors. To extract more precise information
from the sensor data, it is essential to reconstruct actual brain activity (source space
reconstruction) from the recorded sensor data. This process involves two steps: the forward
and inverse models. The forward model uses source, volume conductor, and magnetic field
measurement models to calculate the lead field or gain matrix that describes a linear
relationship between sources and the measurements. Inverse algorithms are then employed
to estimate the parameters of neural sources from MEG and EEG sensor data. The illposed
inverse problem for source localization with MEG/EEG data involves estimating brain
activity from noise sensor data where the number of brain voxels (typically 3000 to 10000)
is much larger than the number of sensors (typically ~ 300 sensors for MEG and ~ 128
electrodes for EEG).

A wide variety of source localization algorithms exist for estimating source activity to
overcome the difficult inverse problem. These algorithms may be roughly organized into
three classes: dipole fitting, spatial scanning, and tomography. Dipole fitting can produce
very sparse results but with two major caveats. First, the process of nonlinear optimization
can result in poor performance when multiple sources are present due to local minima in the
solution space. Second, for adequate performance, the number of active neuronal sources
must be known a priori. Scanning algorithms, also known as spatial filters, are based on
reconstructing activity at a specific voxel of a discretized cortex. Spatial filter methods do
not need a priori knowledge of the number of the brain sources. However, traditional spatial
filter methods such as beamformers perform poorly when different regional brain activities
are correlated in time. In contrast, tomographic methods are estimating activity at all voxels
simultaneously. Some tomographic methods are able to promote sparseness in the solution
[1], [2], [3], where the majority of the candidate locations do not have significant activity.
Empirical evidence shows that a sparse source model can improve the accuracy of
localization in a noisy environment.

Most source reconstruction algorithms from the three categories can be framed in a Bayesian
schema [4]. This perspective is useful because it demonstrates that various source
localization methods are interrelated and, in fact, can be thought of as implicity or explicity
imposed prior distributions within a Bayesian framework. Algorithms such as MNE [5], [6],
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dSPM [7], sSLORETA [8], MVAB (and other beamformers) [9], [10], [11], [12], [13] assume
a known, fixed prior. Alternatively, the parameters of the prior distribution
(hyperparameters) can be learned from the data for robust performance, commonly referred
to as empirical Bayesian algorithms [4]. One such recent empirical Bayesian source
reconstruction algorithm that we have developed is referred to as Champagne [1].
Champagne outperforms several benchmark algorithms in a variety of simulated source
configurations, especially for sparse brain source activity [14]. Since the development of the
original Champagne algorithm, we have proposed several extensions of this framework. We
have proposed hierarchical spatiotemporal extensions of Champagne to deal with sparse
spatial and smooth temporal sources [15]. Recently, we proposed a hierarchical version of
the Champagne algorithm, called tree_Champagne, for reconstruction of sources with mixed
spatial extents at a voxel and at a regional-level as specified by anatomical or functional
atlases [16].

Here, we develop a novel algorithm designed for accurate reconstruction of source activity
with distributed spatial extents. Since the algorithm builds upon the Champagne framework,
we refer to it as Smooth Champagne. We propose two key ideas to better handle distributed
source activity: kernel smoothing and hyperparameter tiling. First, we introduce a kernel
filter that converts a spatially smooth generative model for brain sources into a sparse
subspace. Second, we assume that this sparse subspace is clustered into regions or tiles, and
we estimated variance hyperparameters for this model at a resolution of regions [1]. Model
learning of Smooth Champagne deploys robust empirical Bayesian Inference and uses a
principled cost function which maximizes a convex lower bound on the marginal likelihood
of the data. Resulting update rules are fast and convergent. In Section 1, we derive this new
algorithm and in Sections Il and IV we demonstrate its performance in simulated and real
MEG and EEG data in comparison to benchmarks, followed by a brief discussion in Section
V.

Theory

A. The probabilistic generative model

The generative model for the sensor data with distributed brain activity is defined as

N
YOy =Y Lisit) +& = LS1) +e, &)
i=1
where, y() = (D, ..., vakD]7 is the output of the sensors at time £ M is the number of
channels, NVis the number of voxels under consideration and L; € RM X4 js the lead-field

matrix for /th voxel, g is the number of directions for each voxel. The Ath column of L;
represents the signal vector that would be observed at the scalp given a unit current source/
dipole at the /th vertex with a fixed orientation in the Ath direction. It is common to assume
g =2 (for MEG) or g = 3 (for EEG), which allows flexible source orientations to be
estimated in 2D or 3D space. Multiple methods based on the physical properties of the brain
and Maxwell’s equations are available for the computation of each L;[17]. s;(r) € R?* Lis

the brain activity for /th voxel at time fwith gdirections. The term ¢ is the noise-plus-
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interference whose statistics are estimated from the baseline period. We assume that the
columns are drawn independently from .#(0, ), where X is the noise covariance which
could be estimated using a variational Bayesian factor analysis (VBFA) model [18].
Temporal correlations can easily be incorporated if desired using a simple transformation
outlined in [19]. And L = [Ly, ..., LaJ and S(A = [s1(d7, ..., sp{d ] 7. For simplicity, we
define matrix Y = [y(1), ..., y(7)] and S = [S(1), ..., S(7)] as the entire sensor and source
time series. 7is the number of time points.

In order to reconstruct the distributed brain activity robustly, we assume that distributed
brain source activity arises from a sparse set of clustered sources that (1) are spatially
contiguous and (2) share a common time courses. We define the sparse brain activity with
clustered sources at time tas Z() = [z1(7, z2() 7, ..., z(D ] T, where z;(r) € RI <!, We also

define a local spatial smoothing kernel matrix as H = [hy, hy, ..., hal7and h;= [, Ap, ...,
hind T is the local spatial smoothing kernel for /th voxel. S(#) = HZ(#) ensures spatial
contiguity. The model of Eq. (1) can then be expressed as

y&)= LHH 'S(t) +e = GZ(t) + ¢, @)
where G = LH is the new modified leadfield matrix, G = [Gy, ..., Gpland Gj=L ;.

There are many ways to define the local spatial smoothing kernel matrix h;. For
mathematical convenience here, we define hj, a smoothing kernel that includes flexible
parameterization for different kernel properties such as width, pass-band and transition-band
characteristic, as follows:

1 J:[,

m

where, we denote the minimum distance between /th and j~th (j# /) voxel as @ and the
distance between /th voxel and /th voxel is denoted as dj;. In the above formulation, the
parameter /m determines the width of the smoothing kernel, uniformity in the pass-band, and
the parameter p determines the slope of the transition region of the kernel. For the rest of this
manuscript, unless otherwise specified, the default values for pis 4 and for mis 2.

Additionally, we divide the whole brain voxels into /R regions (or tiles) specified either
anatomically or functionally and the r~th region contains A/, voxels. By default the number of
regions is assumed to be around one tenth of the total number of voxels, regions are assumed
to be non-overlapping in this paper. We assume that voxels within the same brain region
share a common variance hyperparameter. The prior distribution for sources can be written
as

R
rzi) =TT IT T1 #GEwlo. 2D, @

t=1lr=1n€g{,
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where Z =[Z(1), ..., Z(7)] is the entire sparse time series, {,is the set of voxels in rth
region and 7 € ¢, indicates that the 7-th voxel is in r~th region. Q,is the prior variance
hyperparameter of r~th region, | is a gxgidentity matrix. If we use the distribution of noise
and interference as e~N(0, X,), the conditional probability p(Y|Z) can be expressed as

T T
p¥12) = [ ro1 2@y = [] #0162 ), Z0). )

t=1 t=1

Egs. (2), (4) and (5) form the sparse model appropriate for distributed sources, next, we will
use Bayesian inference to derive the update rules of model parameters and hyperparameters.
In the limit of when the kernel width or the tile/region size is equal to the number of voxels
in the lead-field, the generative model will result in the algorithm commonly known as
Bayesian minimum-norm algorithm. In such a limit, the algorithm will fail to capture
distributed source clusters that are on the spatial scale of 5-35 contiguous voxels.
Conversely, at the other limit of when the kernel width and the tile/region size is equal to
that of a single voxel, the generative model will become similar to that for the Champagne
algorithm, i.e. the algorithm will become more suited to reconstruct sparse source activity.

B. Bayesian inference

To estimate the sparse source activity Z, we use Bayesian inference and derive the posterior
distribution p(Z]Y), which is given by

T T
nz1v) = [ rzonye) = [ #(z0|Zo, r7"), ©®)

r=1 =1
where the mean and the variance [1], [16], [20] are

Zt) = I 'GT =y, )

r'=v+c6¢'s... ®)

Tis a g x gN diagonal matrix expressed as

Y, 0 - 0
0 Y, 0

Y= . . . ’ (9)
0 0 Yy

T;= Q[ if ith voxel belongs to r~th region.

In order to compute Z() in Eq. (7), we need to know the hyperparameter Q. The
hyperparameter Q,is obtained by maximizing the cost function #(Q, ®), with an auxiliary
variable @, and is expressed as
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T
F= -2 (0 -GZw) X () - GZ(v)

R T
—% > 21 2,0 (2D Z,(0) o
1=

Eq. (10) is a convex lower bound of the logarithm of marginal likelihood of the data p(Y|Q)
(details of the derivation of this function can be found in Appendix A).

We then set the derivative of the cost function #(Q, ®) with respect to Q to zero, the regional
resolution level hyperparameter Q,for ~th region is given by [20]:

(1

1 T - — T
| TR Zi=1ne i (Za(0Z0")
= o .

r

The optimization problem of ®,is equivalent to finding the hyperplane that forms a closest
upper bound of log|2}}. Such a hyperplane is found as the plane that is tangential to log|2}).
Therefore, we set the derivative of log|2}| with respect to T"to zero, the update rule for @, is
obtained as

@, = % > 1r(Grz5'Gy). (12)

ned

The update rule for z,(r) can also be derived by setting the derivative of the new cost
function F(Q, ®) with respect to z,(r) to zero. The source time course for the 7-th voxel at
th region is expressed as

z,(1) = QIG Z; y(r). (13)

The proposed algorithm then repeats the update steps Egs. (11), (12) and (13) until the cost
function Eq. (10) converges.

Finally, the estimated sparse brain activity for /~th voxel is Eq. (13) and the distributed brain
activity is

su(t) = hZa(D) = By QIG 25 ' y(0) (14)

A summary of the proposed algorithm is shown in Table 1.
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[1l. Performance evaluation on simulation and real data

This section describes algorithm performance evaluations for different simulated complex
source configurations and real datasets. We also compared performance with benchmark
source localization algorithms.

A. Benchmark algorithms for comparison

We chose the following representative source localization algorithms to compare with the
performance of Smooth Champagne: (1) an adaptive spatial filtering method, linearly
constrained minimum variance beamformer (referred to as Beamformer) [9], [10], [11], [12],
two non-adaptive weighted minimum-norm method, (2) standardized low-resolution
tomographic analysis (referred to as SLORETA) [7], [8], (3) a variant of mixed-norm
algorithm (MxNE) specially tailored to handle multiple time-points and unconstrained
source orientations [2], [3], and two Bayesian based algorithms: (4) Champagne [1] and (5)
MSP [19]. Champagne, Beamformer, and SLORETA, were implemented using NUTMEG
libraries (nuts_Champagne.m, nuts_LCMV_Vector_Beamformer.m and nuts_sLORETA.m)
[21]. Standard implementation of MSP from SPM12 was used (spm_eeg_invert.m).

B. Initialization

The initialization of the parameters for Smooth Champagne are as follows. We learn the X,
from the baseline period using Variational Bayesian Factor Analysis [18] and then assume it
is fixed when estimating other model parameters from actual data. The local spatial
smoothing kernel is set by Eq. (3) and after that, the value of /;less than 0.1 is set as 0 to
eliminate the influence of voxels that are too far away. Initialization for Q is set by first
running Bayesian Minimum-Norm (BMN) [20] to determine a whole-brain level variance
parameter, then the variance of region level is set by the average variance of voxels from the
same region.

C. Choice of tuning parameters

In Smooth Champagne there are two free parameters namely the width of the smoothing
kernel and the tile/region size. All other parameters are estimated from data. In principle,
these two parameters can be estimated from data by computing the model evidence as a
function of kernel width and the tile/region size. For other algorithms like MXNE, SLORETA
and Beamformer the main free parameter is the regularization constant. In our
implementation of MXNE, we set the regularization parameter based on the sensor noise
levels from baseline data. For SLORETA, we use the default setting in NUTMEG software
where the regularization parameter is equal to the maximum eigenvalue of the sensor data
covariance [21]. For Beamformer, we set the regularization parameter to be 1le-3 times the
maximum eigenvalue of the sensor data covariance.

D. Quantifying performance

To evaluate the performance of Smooth Champagne in simulations, we use free-response
receiver operator characteristics (FROC) which shows the probability for detection of a true
source in an image vs. the expected value of the number of false positive detections per
image [22], [16], [14], [23]. Based on the FROC, we compute an A" metric [24] which is an
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estimate of the area under the FROC curve for each simulation. If the area under the FROC
curve is large, then the hit rate is higher compared to the false positive rate. The A’ metric is
computed as follows:

Hg - Fgr

A= 5 + (15)

N —

We make modifications to this performance metric to be applicable for reconstruction of
distributed and clustered sources that are balanced metrics across a variety of sparse and
non-sparse reconstruction algorithms. We use the following definitions of hit rate and false
rate for the performance evaluation. First, the voxels localized by each algorithm that are
included in the calculation of hit-rates are defined as voxels that are i) at least 0.1% of the
maximum activation of the localization result; and ii) within the largest 10% of all of the
voxels in the brain.

Within these subset of voxels, we test whether each voxel is within the three nearest voxels
to a true source cluster. If a particular voxel’s estimated activity lies within a true cluster,
that voxel gets labeled as a “sub-hit’. If the number of ‘sub-hits’ within a particular true
cluster is more than 50% of the number of voxels in that cluster, that cluster gets labeled as a
‘hit’. Hpis then calculated by dividing the number of hit clusters by the true number of
clusters. For Fp, the false positive voxels localized by each algorithm are defined as voxels
that lie within the largest 10% of the whole voxels. Fgis defined by dividing the number of
potential false positive voxels by the total number of inactive voxels for each simulation.
Lastly, we use Eq (15) to calculate the extent scores A" metric which ranges from 0 to 1,
with higher numbers reflecting better performance.

E. MEG simulations

In this paper, we generate data by simulating dipole sources with fixed orientation. Damped
sinusoidal time courses are created as voxel source time activity and then projected to the
sensors using the leadfield matrix generated by the forward model, assuming 271 sensors
and a single-shell spherical model [17] as implemented in SPM12 (http://
www.fil.ion.ucl.ac.uk/spm) at the default spatial resolution of 8196 voxels at approximately
5 mm spacing and unless otherwise indicated, we set the number of voxels in a region to be
around eight resulting in about one thousand regions, and the average kernel width is set to
around ten voxels. The time course is then partitioned into pre- and post-stimulus periods. In
the pre-stimulus period (480 samples) there is only noise and baseline brain activity, while in
the post-stimulus period (480 samples) there is also source activities of interest on top of
statistically similarity distributed noise plus interfering brain activity. The noise activity,
which is added to achieve a desired signal to noise ratio, consists of actual resting-state
sensor recordings collected from a human subject presumed to have only spontaneous brain
activity and sensor noise.

Signal-to-noise ratio (SNR), correlations between voxel time courses in the same cluster
(intra-cluster aq,), and correlations between voxel time courses from different clusters
(inter-clusters a ) Were varied to examine algorithm performance. SNR and time course
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correlation are defined in a standard fashion [16], [14]. The following configurations were
tested:

1. Cluster number: 3, 5, 7, 11, 13, and 15 clusters were seeded with 20 sources
each, corresponding to 60, 100, 140, 220, 260, and 300 active voxels. Each
cluster consists of the center, chosen randomly, and 19 nearest neighbors.

2. Cluster size: 5 clusters were seeded with 5, 10, 15, 20, 25, 30, 35 and 40 active
dipoles each.

3. SNR: Simulations were performed with 5 randomly seeded clusters at SNRs of 0
dB, 3dB, 6 dB, 9dB, 12 dB, and 15 dB.

4, Inter-cluster correlation: 5 clusters were seeded with 20 sources each.
Correlation between clusters was varied from 0.1, 0.3, 0.5, 0.7, and 0.9. Intra-
cluster correlation was set to 0.8.

5. Influence of width of local smoothing kernel and size of tiles: We evaluate the
algorithm performance as a function of local smoothing kernel width. We
examine performance for reconstruction of 5 clusters of different sizes (from 5-
35 voxels per cluster). We increase the width of the local smoothing kernel from
3 voxels to 121 voxels while the tile size is maintained at 6 voxels. We also
examine performance as a function of average tile size ranging from 4-132
voxels per tile and fix the average kernel width (15 voxels).

If not indicated above, each of the simulations was conducted with the following parameters:
SNR of 10 dB, intra-cluster correlation coefficient of a s, = 0.8, and inter-cluster
correlation coefficient of a s, = 0.25. Correlations within clusters were modeled higher
than between clusters to simulate real cortical activity. Results for A" and localization were
obtained by averaging over 50 simulations for each of the configurations above.

F. EEG simulations

The algorithm was also tested on simulated EEG data with a scalar lead field computed for a
three-shell spherical model in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) with more than
5000 voxels at approximately 8 mm spacing and 120 sensors. EEG sensor recordings were
simulated through the forward model in the same way as the MEG data. Since the algorithm
has similar performance with EEG data as with MEG, only one specific example is shown in
the paper. Three clusters are seeded with SNR of 20 dB, intra-cluster correlation of 0.9, and
inter-cluster correlation of 0.9.

G. Real datasets

Real MEG data was acquired in the Biomagnetic Imaging Laboratory at University of
California, San Francisco (UCSF) with a CTF Omega 2000 whole-head MEG system from
VSM MedTech (Coquitlam, BC, Canada) with 1200 Hz sampling rate. The lead field for
each subject was calculated in NUTMEG [21] using a single-sphere head model (two
spherical orientation lead fields) and an 8 mm voxel grid. Each column was normalized to
have a norm of unity. The data were digitally filtered from 1 to 160 Hz to remove artifacts
and DC offset.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 March 01.


http://www.fil.ion.ucl.ac.uk/spm

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Caietal.

Page 10

Six algorithms were run on three real MEG data sets: 1. Somatosensory Evoked Fields
(SEF); 2. Auditory Evoked Fields (AEF); 3. Audio-Visual Evoked fields. The data sets have
been reported in our prior publications using the Champagne algorithm, and details about
these datasets can be found in [1], [14].

The EEG data (128-channel ActiveTwo system) was downloaded from the SPM website
(http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces) and the lead field was calculated in SPM8
using a three-shell spherical model at the coarse resolution of 5124 voxels at approximately
8 mm spacing. The EEG data paradigm involves randomized presentation of at least 86 faces
and 86 scrambled faces. The averaged scrambled-faces data was subtracted from the
averaged faces data to study differential response [25]. The EEG data has been reported in
our prior publication using the Champagne algorithm, and details about our analyses of this
dataset can be found in [16], [14].

V. Results

A. Simulation Results

1) MEG simulations: Figure 1 shows a representative example of localization results for
an MEG simulation with 3 clusters. In this configuration, the SNR, correlation of dipole
activities within the cluster and between clusters are 10 dB, 0.9 and 0.9, respectively.
Compared with the ground truth, Beamformer and SLORETA can localize all three clusters
but produce blurred and spurious activity, while MXNE can localize two of the three clusters
but produces focal sources and misses one cluster. In contrast, MSP can localize all three
clusters, but reconstructions are smoother than ground truth and produces additional sources
that are not present in the simulations. Champagne can accurately localize all three clusters
but estimates activity that is more focal than the true spatial extent of the sources. Smooth
Champagne is able to localize three clusters which are the closest spatially distributed to the
ground truth.

1 Influence of the number of clusters - In Figure 2 (A), we plot the number of
clusters versus A" metrics at SNR levels of 10 dB and correlations within and
between clusters as 0.8 and 0.25. All algorithms have the same trend, with
decreasing performance as number of clusters increases. However, Smooth
Champagne outperforms all benchmark algorithms. MxNE shows higher A’
scores than MSP, Beamformer and SLORETA.

2. Effect of increasing cluster size - Results of all algorithms in response to
increasing cluster size are presented in Figure 2 (B). From the performance
scores, Smooth Champagne outperforms all benchmarks except for when the size
of clusters is less than 10 voxels. In this sparse source activity scenario, as to be
expected, Champagne performs better than Smooth Champagne. Champagne
performs better than other benchmark algorithms when cluster size is less than
35, when cluster size increases to 40, MSP outperforms Champagne. In contrast,
MSP, MXNE, sLORETA and Beamformer show no change with increasing
cluster size, MXNE outperforms MSP, sSLORETA and Beamformer.
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3. Effects of increasing SNR - In the subplot (C) of Figure 2, SNR versus
performance score is plotted. All algorithms demonstrate improved performance
with increasing SNR. Again, Smooth Champagne outperforms all benchmark
algorithms. MxNE shows higher A” scores than MSP, sSLORETA and
Beamformer.

4 Influence of the correlation between clusters - The subplot (D) of Figure 2 shows
the influence of increasing the correlation between clusters on algorithm
performance. Increasing the correlation between clusters has little influence on
the performance of all algorithms. Based on the plots, it is clear that smooth
Champagne outperforms all benchmarks. Champagne again outperforms MxNE,
which outperforms MSP, sSLORETA and Beamformer.

5. Influence of width of local smoothing kernel and size of tiles - Figure 3 (A)
shows the performance of the novel algorithm as a function of local smoothing
kernel width. We examine performance for reconstruction of 5 clusters of
different sizes (from 5-35 voxels per cluster). We increase the width of the local
smoothing kernel from 3 voxels to 121 voxels while the averaged tile size was
maintained around 6 voxels. For small cluster sizes (of 5 voxels) performance
deteriorates when smoothing kernel size is increased. However, for moderate to
large clusters, performance is invariant to kernel size up to 42. Only for very
large kernel size of 121 voxels does performance start to deteriorate. Figure 3 (B)
shows the performance of the novel algorithm as a function of the tile size. We
again examine performance for reconstruction of 5 clusters of different sizes
(from 5-35 voxels per cluster). We examine performance as a function of
average tile size ranging from 4-132 voxels per tile while the averaged
smoothing kernel size was maintained around 7 voxels. Here, we observe that
across all cluster sizes, performance deteriorates when the tile size increases. For
optimal performance the size of the smoothing kernel and the tile/region size
should be smaller than the true size of the clusters. If the kernel width exceeds
the true cluster size, then some deterioration in performance is observed. If the
tile/region size exceeds the true cluster size, performance also deteriorates.
However, in real data and absence of ground truth, the true cluster size is
unknown. Our analysis suggests that for cluster sizes between 15-35 voxels,
which are thought to the size of blobs typically reported in fMRI studies and may
represent realistic clustered brain activity, performance is fairly uniform for a
range of kernel sizes from 3-40 and for tile sizes between 4-25. This indicates
some robustness in algorithm performance. However, examining Figure 3 (A)
and (B) indicates that robustness is conferred more by kernel size than by tile/
region size, especially for smaller clusters. In this context, if there is a mismatch
between the kernel width and the tile/region size, indeed performance will
deteriorate due to the leadfield columns which are divergent such that the
regional lead-field cannot fit the scalp topography.

2) EEG simulations: Figure 4 shows a representativ