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THE EQUIVARIANT EULER CHARACTERISTIC OF MODULI SPACES OF
CURVES.

EUGENE GORSKY

ABSTRACT. We derive a formula for theSn–equivariant Euler characteristic of the moduli space
Mg,n of genusg curves withn marked points.

1. INTRODUCTION

Consider the moduli spaceMg,n of algebraic curves of genusg with n marked points. The
symmetric groupSn acts naturally on this space. LetVλ denote the irreducible representation
of Sn corresponding to a Young diagramλ, then one can decompose the cohomology ofMg,n

into isotypic components:

Hi(Mg,n) =
⊕

λ

ai,λVλ.

TheSn-equivariant Euler characteristic ofMg,n is defined by the formula

χSn(Mg,n) =
∑

i,λ

(−1)iai,λsλ,

wheresλ denotes the Schur polynomial labeled by the diagramλ. We calculate these equivariant
Euler characteristics for allg ≥ 2 andn.

Theorem 1.1. The generating function for theSn-equivariant Euler characteristics ofMg,n

has the form
∞∑

n=0

tnχSn(Mg,n) =
∑

k

ck1,...,kr

r∏

j=1

(1 + pjt
j)kj ,

wherepj are power sums and the coefficientsck1,...,kr are defined by the equation(6).

Consider the moduli spaceMg(k1 . . . , kr) of pairs(C, τ) whereC is a genusg curve and
τ is an automorphism ofC such that for alli the Euler characteristic of the set of points inC
having the orbit of lengthi under the action ofτ equalsiki. The coefficientck1,...,kr can be also
defined as the orbifold Euler characteristic ofMg(k1 . . . , kr).

This moduli space can be defined for any tuple of integers(k1, . . . , kr) of arbitrary sizer, but
we prove that (for a fixed genusg) it is non-empty only for a finite number of such tuples. In
particular,r cannot exceed4g + 2.

Corollary 1.2. The generating function
∑∞

n=0 t
nχSn(Mg,n) is a rational function int. Further-

more, for anyn,
χSn(Mg,n) ∈ Z[p1, . . . , p4g+2].

Theorem 1.1 can be compared with the computations of [4], [5], [8] and [10] in genus 2 and
with the computations of [1], [2], [9], [17] and [18] in genus3. A similar generating function for
the moduli spaces of hyperelliptic curves was previously obtained in [11]. The non-equivariant
Euler characteristics of moduli spaces of curves were computed by Bini and Harer in [3].

The paper is organized as follows. In Section 2 we consider a complex quasi-projective vari-
etyX with an action of a finite groupG. Theorem 2.5 provides a formula for theSn-equivariant

1

http://arxiv.org/abs/0906.0841v3


2 EUGENE GORSKY

Euler characteristic of quotientsF (X, n)/G, whereF (X, n) is a configuration space ofn la-
beled distinct points onX. This theorem was previously proved in [10] using the results of
Getzler [6, 7] concerning Adams operations over the equivariant motivic rings (see also [12]).
The alternative proof presented here uses only the basic properties of Euler characteristic and
seems to be more geometric. It also makes the proof of the mainresult self-contained.

In Section 3 we apply this theorem to the universal family over Mg, the moduli space of
genusg curves. This allows us to prove in Theorem 3.3 that the coefficientck1,...,kr is equal to the
orbifold Euler characteristic ofMg(k1 . . . , kr). These Euler characteristics are then computed
in Theorem 3.8 using the results of Harer and Zagier.
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00110-a, NSh-709.2008.1 and the Möbius Contest fellowship for young scientists.

2. EQUIVARIANT EULER CHARACTERISTICS

LetX be a complex quasi-projective variety with an action of a finite groupG. Let us denote
byF (X, n) the configuration space of orderedn-tuples of distinct points onX. For eachn, the
action of the groupG onX can be naturally extended to the action ofG onF (X, n), commuting
with the natural action ofSn.

In the computations below we will use the additivity and multiplicativity of the Euler charac-
teristic, as well as the Fubini formula for the integration with respect to the Euler characteristic
([15, 19], see also [16]).

Lemma 2.1. The following equation holds:
∑∞

n=0
tn

n!
χ(F (X, n)) = (1 + t)χ(X).

Proof. The mapπn : F (X, n) → F (X, n − 1), which forgets the last point in then-tuple,
has fibers isomorphic toX withoutn − 1 points. Thereforeχ(F (X, n)) = (χ(X) − n + 1) ·
χ(F (X, n− 1)), andχ(F (X, n)) = χ(X) · (χ(X)− 1) · . . . · (χ(X)− n + 1). �

Let pk denote thekth power sum and letVλ denote the irreducible representation ofSn la-
belled by the Young diagramλ. We define theSn-equivariant Euler characteristic ofF (X, n)/G
by the equation

χSn(F (X, n)/G) =
∑

i,λ

(−1)iai,λsλ,

whereHi(F (X, n)/G) =
⊕

λ ai,λVλ andsλ is the Schur polynomial.

Lemma 2.2. The following equation holds:

χSn(F (X, n)/G) =
1

n!

∑

σ∈Sn

p
k1(σ)
1 · . . . · pkn(σ)n · χ ([F (X, n)/G]σ) ,

whereki(σ) is the number of cycles of lengthi in a permutationσ.

Proof. It is well known that for everyi
∑

λ

ai,λsλ =
1

n!

∑

σ∈Sn

p
k1(σ)
1 · . . . · pkn(σ)n · Tr(σ)|Hi(F (X,n)/G),

hence

χSn(F (X, n)/G) =
1

n!

∑

i

(−1)i
∑

σ∈Sn

p
k1(σ)
1 · . . . · pkn(σ)n · Tr(σ)|Hi(F (X,n)/G)

Now the statement follows from the Lefschetz fixed point theorem. �
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Lemma 2.3. Letσ ∈ Sn. Then

χ ([F (X, n)/G]σ) =
1

|G|

∑

g∈G

χ
(
F (X, n)g

−1σ
)
.

Proof. For a pointy ∈ F (X, n) whose projection onF (X, n)/G is σ-invariant there exists an
elementg ∈ G such thatσy = gy. Consider the set of pairs

S = {(g,y)|g ∈ G,y ∈ F (X, n)|σy = gy}

and its two-step projectionS → F (X, n) → F (X, n)/G. The fiber of the first projection over a
pointy is isomorphic toG-stabiliser ofy or empty, the fiber of the second projection containing
y is exactly the orbit ofy. Therefore the cardinality of every fiber of the compositionis equal
to |G|. �

Definition 2.4. For anyg ∈ G we denote byXk(g) the subset ofX consisting of points with
g-orbits of lengthk. For example,X1(g) is a set ofg-fixed points. LetX̃k(g) = Xk(g)/(g),
where(g) is a cyclic subgroup inG generated byg.

The following theorem was deduced in [10] from the results ofGetzler [6, 7], here we would
like to present a more geometric and straightforward proof.

Theorem 2.5.The generating function for theSn-equivariant Euler characteristics of the quo-
tientsF (X, n)/G is given by the following equation:

(1)
∞∑

n=0

tnχSn(F (X, n)/G) =
1

|G|

∑

g∈G

∞∏

k=1

(1 + pkt
k)

χ(Xk(g))

k .

Proof. Since all points inXk(g) haveg-orbit of lengthk, we haveχ(X̃k(g)) = χ(Xk(g))/k.
From Lemma 2.1 one gets:

(1 + pjt
j)χ(X̃j(g)) =

∞∑

kj=0

p
kj
j tjkj

(kj)!
χ
(
F
(
X̃j(g), kj

))
,

Therefore the coefficient attn in the right hand side of (1) equals to:

1

|G|

∑

g∈G

∑
∑

jkj=n

∏

j

p
kj
j

kj !
χ
(
F
(
X̃j(g), kj

))
.

On the other hand, by Lemma 2.2 and Lemma 2.3, the left hand side of (1) can be rewritten as
following:

1

|G|

∑

g∈G

1

n!

∑

σ∈Sn

p
k1(σ)
1 · . . . · pkn(σ)n · χ([F (X, n)]g

−1σ).

If for a tupley ∈ F (X, n) we haveσ(y) = g(y), the action of(g) at this tuple haskj(σ) cycles
of lengthj. Every cycle of lengthj corresponds to a point iñXj(g), hence for everyg we can
define a map

αg : ⊔σ∈Sn
[F (X, n)]g

−1σ →
∏

j

F (X̃j(g), kj)/Skj .

Given ag-invariantn-tuple of distinct points inX, there aren! ways to label them and make an
ordered tupley. Every such ordering defines a unique permutationσ such thatσ(y) = g(y),
therefore all fibers ofαg have cardinalityn! and

1

n!

∑

σ∈Sn

χ([F (X, n)]g
−1σ) =

∏

j

χ
(
F (X̃j(g), kj)/Skj

)
=

∏

j

χ
(
F (X̃j(g), kj)

)

kj!
.
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3. MODULI SPACES OF CURVES

Let us apply Theorem 2.5 to the study of moduli spaces of curves. LetMg denote the moduli
space of genusg algebraic curves and letMg,n denote the moduli space of genusg algebraic
curves withn parked points (we will always assumeg ≥ 2). LetMg(k1, . . . , kr) be the moduli
space of pairs(C, τ) whereC is a genusg curve andτ is an automorphism ofC such that
χ(Ci(τ)) = iki for all i. Sinceg ≥ 2, every automorphism ofC has finite order, hence one can
chooser such thatkr 6= 0 andki = 0 for i > r.

There is a natural forgetful mapπg,k : Mg(k1, . . . , kr) → Mg sending(C, τ) to C. For a
curveC we defineAutk(C) = π−1

g,k(C) ⊂ Aut(C).

Proposition 3.1. Suppose thatMg(k1, . . . , kr) is not empty. Thenkr < 0, ki = 0 for i ∤ r and
ki ≥ 0 for i | r, i < r. Moreover, we have the following bounds onr andki:

r ≤ 4g + 2, |kr| ≤ 2g,
r−1∑

i=1

ki ≤ 2g + 2.

Proof. Let τ be an automorphism of a genusg curveC such thatχ(Ci(τ)) = iki for all i. Note
thatCi(τ) are finite sets fori < r and

(2) χ(C) = 2− 2g =
r−1∑

i=1

iki − r|kr|

The quotientC1 = C/τ is a smooth curve of some genush, and the Riemann-Hurwitz formula
yields its Euler characteristic:

(3) χ(C1) = 2− 2h =
r−1∑

i=1

ki − |kr|.

The projection ofC to C1 is a ramified covering of orderr with s =
∑r−1

i=1 kj ramification
points. The automorphismτ has orderr, soi|r, if ki 6= 0. By a theorem of Wiman ([20], see
also [14]), the maximal order for an automorphism of a genusg curve equals4g + 2, hence
r ≤ 4g + 2.

Since proper divisors ofr cannot exceedr/2, equation (3) implies:
r−1∑

i=1

iki ≤
r

2

r−1∑

i=1

ki =
r

2
(2− 2h + |kr|),

hence by (2):

(4) 2g − 2 = r|kr| −

r−1∑

i=1

iki ≥
r

2
(2h+ |kr| − 2).

Therefore|kr| − 2 ≤ 2g − 2 and|kr| ≤ 2g. Finally,
∑r−1

i=1 ki = |kr|+ 2− 2h ≤ 2g + 2. �

Remark3.2. The bounds onr and onki are sharp. Indeed, consider a hyperelliptic curveP
coveringCP1 with ramifications at the vertices of a regular(2g + 1)-gon and at its center. The
covering can be chosen such that the automorphism ofP induced by the rotation of this polygon
acts nontrivially in the fibers and hence has orderr = 2(2g + 1) = 4g + 2.

On the other hand, consider a hyperelliptic curveC with involutionτ . We have

χ(C1(τ)) = 2g + 2, χ(C2(τ)) = 2− 2g − (2g + 2) = −4g,

hence a pair(C, τ) belongs to the moduli spaceMg(2g + 2,−2g).
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Theorem 3.3.The following equation holds:

(5)
∞∑

n=0

tnχSn(Mg,n) =
∑

k

χorb(Mg(k1, . . . , kr)) ·
r∏

j=1

(1 + pjt
j)kj .

Proof. Consider the forgetful mapπg,n : Mg,n → Mg. Its fiber over a point representing a
curveC is isomorphic toF (C, n)/Aut(C), hence one can apply Theorem 2.5 to compute its
equivariant Euler characteristic:

∞∑

n=0

tnχSn(π−1
g,n(C)) =

∞∑

n=0

tnχSn(F (C, n)/Aut(C)) =

1

|Aut(C)|

∑

τ∈Aut(C)

∏

i

(1 + pit
i)

χ(Ci(τ))

i =
∑

k

1

|Aut(C)|

∑

τ∈Autk(C)

∏

i

(1 + pit
i)ki.

Therefore:
∞∑

n=0

tnχSn(Mg,n) =

∫

Mg

∞∑

n=0

tnχSn(π−1
g,n(C))dχ =

∑

k

∏

i

(1 + pit
i)ki

∫

Mg

|Autk(C)|

|Aut(C)|
dχ.

On the other hand,

χorb(Mg(k1, . . . , kr)) =

∫

Mg

|π−1
g,k(C)|

|Aut(C)|
dχ =

∫

Mg

|Autk(C)|

|Aut(C)|
dχ �

Using the Proposition 3.1, we conclude that the sum in the right hand side of (5) is finite.

Corollary 3.4. The generating function
∑∞

n=0 t
nχSn(Mg,n) is a rational function int. Further-

more, for anyn,
χSn(Mg,n) ∈ Z[p1, . . . , p4g+2].

The orbifold Euler characteristic ofMg(k1, . . . , kr) can be computed using the combinatorial
results of Harer and Zagier [13]. We will denote the greatestcommon divisor of integersa and
b by (a, b). Letϕ(n) andµ(n) denote the Euler function and the Möbius function respectively.
Define

c(k, l, d) := µ

(
d

(d, l)

)
ϕ(k/l)

ϕ(d/(d, l))
,

Definition 3.5. Let λ = (λ1, . . . , λs) be a partition. We define a number

N(r;λ) = |{(x1, . . . , xs) ∈ (Z/rZ)s : x1 + . . .+ xs ≡ 0 (modr), (xi, k) = λi}| .

Lemma 3.6. ([13]) The following equation holds:

N(r;λ) =
1

r

∑

d|r

ϕ(d)

s∏

i=1

c(k, λi, d).

Theorem 3.7. ([13]) The orbifold Euler characteristic of the moduli spaceMh,s of genush
curves withs marked points is given by the formula:

χorb(Mh,s) = (−1)s
(2h− 1)B2h

(2h)!
(2h+ s− 3)!

whereBk denote Bernoulli numbers.
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Theorem 3.8. The generating function for theSn-equivariant Euler characteristics ofMg,n

has the form
∞∑

n=0

tnχSn(Mg,n) =
∑

k

ck1,...,kr

r∏

j=1

(1 + pjt
j)kj ,

wherepj are power sums and the coefficientsck1,...,kr are defined by the equation:

(6) ck1,...,kr = χorb(Mh,s)r
2h
∏

p|γ

(1− p−2h) ·
N(r;λ)

r
∏r−1

i=1 ki!
.

Hereh = 1
2
(1−

∑r
j=1 kj), s =

∑r−1
j=1 kj , γ = GCD(i : ki > 0) , λ =

(
1k12k2 . . . (r − 1)kr−1

)

Proof. By Theorem 3.3 one hasck1,...,kr = χorb(Mg(k1, . . . , kr)). Consider the moduli space
Mg(k1, . . . , kr) of pairs(C, τ). As in Proposition 3.1, to such a pair one can associate a genus
h curveC1 = C/τ . The projection fromC to C1 is ramified ins points subdivided into groups
of sizek1, . . . , kn−1. The orbifold Euler characteristic of the moduli space of genush curves
with such markings equalsχorb(Mh,s)/

∏r−1
i=1 ki!.

The number of pairs(C, τ) associated to a curveC1 with fixed marked points was computed
in [13, pages 478–479] and equals

1

r
r2h

∏

p|γ

(1− p−2h) ·N(r;λ).

This completes the proof. �

The non-equivariant Euler characteristic ofMg,n has been computed in [3, Theorem 4.3]. It
can be compared with Theorem 3.8 since

χ(Mg,n) = n! · χSn(Mg,n)[p1 = 1, pk = 0 for k > 1].

Example 3.9.The generating function for theSn-equivariant Euler characteristics of the moduli
spaces of genus 2 curves with marked points has a form [10]:

∞∑

n=0

tnχSn(M2,n) = −
1

240
(1 + p1t)

−2 −
1

240
(1 + p1t)

6(1 + p2t
2)−4+

+
2

5
(1 + p1t)

3(1 + p5t
5)−1 +

2

5
(1 + p1t)(1 + p2t

2)(1 + p5t
5)(1 + p10t

10)−1+

+
1

6
(1 + p1t)

2(1 + p2t
2)(1 + p6t

6)−1 −
1

12
(1 + p1t)

4(1 + p3t
3)−2−

−
1

12
(1 + p2t

2)2(1 + p3t
3)2(1 + p6t

6)−2 +
1

12
(1 + p1t)

2(1 + p2t
2)−2+

+
1

4
(1 + p1t)

2(1 + p4t
4)(1 + p8t

8)−1 −
1

8
(1 + p1t)

2(1 + p2t
2)2(1 + p4t

4)−2.

These coefficients can be matched with the ones defined in Theorem 3.8.
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