UC Davis UC Davis Previously Published Works

Title

The equivariant Euler characteristic of moduli spaces of curves

Permalink https://escholarship.org/uc/item/6997k34s

Author Gorsky, Eugene

Publication Date 2014

DOI

10.1016/j.aim.2013.10.003

Peer reviewed

THE EQUIVARIANT EULER CHARACTERISTIC OF MODULI SPACES OF CURVES.

EUGENE GORSKY

ABSTRACT. We derive a formula for the S_n -equivariant Euler characteristic of the moduli space $\mathcal{M}_{q,n}$ of genus g curves with n marked points.

1. INTRODUCTION

Consider the moduli space $\mathcal{M}_{g,n}$ of algebraic curves of genus g with n marked points. The symmetric group S_n acts naturally on this space. Let V_{λ} denote the irreducible representation of S_n corresponding to a Young diagram λ , then one can decompose the cohomology of $\mathcal{M}_{g,n}$ into isotypic components:

$$\mathrm{H}^{i}(\mathcal{M}_{g,n}) = \bigoplus_{\lambda} a_{i,\lambda} V_{\lambda}.$$

The S_n -equivariant Euler characteristic of $\mathcal{M}_{q,n}$ is defined by the formula

$$\chi^{S_n}(\mathcal{M}_{g,n}) = \sum_{i,\lambda} (-1)^i a_{i,\lambda} s_{\lambda},$$

where s_{λ} denotes the Schur polynomial labeled by the diagram λ . We calculate these equivariant Euler characteristics for all $g \ge 2$ and n.

Theorem 1.1. The generating function for the S_n -equivariant Euler characteristics of $\mathcal{M}_{g,n}$ has the form

$$\sum_{n=0}^{\infty} t^n \chi^{S_n}(\mathcal{M}_{g,n}) = \sum_{\underline{k}} c_{k_1,\dots,k_r} \prod_{j=1}^r (1+p_j t^j)^{k_j},$$

where p_j are power sums and the coefficients c_{k_1,\ldots,k_r} are defined by the equation (6).

Consider the moduli space $\mathcal{M}_g(k_1, \ldots, k_r)$ of pairs (C, τ) where C is a genus g curve and τ is an automorphism of C such that for all i the Euler characteristic of the set of points in C having the orbit of length i under the action of τ equals ik_i . The coefficient c_{k_1,\ldots,k_r} can be also defined as the orbifold Euler characteristic of $\mathcal{M}_g(k_1,\ldots,k_r)$.

This moduli space can be defined for any tuple of integers (k_1, \ldots, k_r) of arbitrary size r, but we prove that (for a fixed genus g) it is non-empty only for a finite number of such tuples. In particular, r cannot exceed 4g + 2.

Corollary 1.2. The generating function $\sum_{n=0}^{\infty} t^n \chi^{S_n}(\mathcal{M}_{g,n})$ is a rational function in t. Furthermore, for any n,

$$\chi^{S_n}(\mathcal{M}_{g,n}) \in \mathbb{Z}[p_1,\ldots,p_{4g+2}].$$

Theorem 1.1 can be compared with the computations of [4], [5], [8] and [10] in genus 2 and with the computations of [1], [2], [9], [17] and [18] in genus 3. A similar generating function for the moduli spaces of hyperelliptic curves was previously obtained in [11]. The non-equivariant Euler characteristics of moduli spaces of curves were computed by Bini and Harer in [3].

The paper is organized as follows. In Section 2 we consider a complex quasi-projective variety X with an action of a finite group G. Theorem 2.5 provides a formula for the S_n -equivariant

EUGENE GORSKY

Euler characteristic of quotients F(X, n)/G, where F(X, n) is a configuration space of n labeled distinct points on X. This theorem was previously proved in [10] using the results of Getzler [6, 7] concerning Adams operations over the equivariant motivic rings (see also [12]). The alternative proof presented here uses only the basic properties of Euler characteristic and seems to be more geometric. It also makes the proof of the main result self-contained.

In Section 3 we apply this theorem to the universal family over \mathcal{M}_g , the moduli space of genus g curves. This allows us to prove in Theorem 3.3 that the coefficient c_{k_1,\ldots,k_r} is equal to the orbifold Euler characteristic of $\mathcal{M}_g(k_1,\ldots,k_r)$. These Euler characteristics are then computed in Theorem 3.8 using the results of Harer and Zagier.

ACKNOWLEDGEMENTS

The author is grateful to J. Bergström, S. Gusein-Zade, M. Kazaryan and S. Lando for useful discussions. This work was partially supported by the grants RFBR-007-00593, RFBR-08-01-00110-a, NSh-709.2008.1 and the Möbius Contest fellowship for young scientists.

2. Equivariant Euler characteristics

Let X be a complex quasi-projective variety with an action of a finite group G. Let us denote by F(X, n) the configuration space of ordered n-tuples of distinct points on X. For each n, the action of the group G on X can be naturally extended to the action of G on F(X, n), commuting with the natural action of S_n .

In the computations below we will use the additivity and multiplicativity of the Euler characteristic, as well as the Fubini formula for the integration with respect to the Euler characteristic ([15, 19], see also [16]).

Lemma 2.1. The following equation holds: $\sum_{n=0}^{\infty} \frac{t^n}{n!} \chi(F(X,n)) = (1+t)^{\chi(X)}$.

Proof. The map $\pi_n : F(X, n) \to F(X, n-1)$, which forgets the last point in the *n*-tuple, has fibers isomorphic to X without n-1 points. Therefore $\chi(F(X, n)) = (\chi(X) - n + 1) \cdot \chi(F(X, n-1))$, and $\chi(F(X, n)) = \chi(X) \cdot (\chi(X) - 1) \cdot \ldots \cdot (\chi(X) - n + 1)$.

Let p_k denote the kth power sum and let V_{λ} denote the irreducible representation of S_n labelled by the Young diagram λ . We define the S_n -equivariant Euler characteristic of F(X, n)/G by the equation

$$\chi^{S_n}(F(X,n)/G) = \sum_{i,\lambda} (-1)^i a_{i,\lambda} s_{\lambda},$$

where $\mathrm{H}^{i}(F(X,n)/G) = \bigoplus_{\lambda} a_{i,\lambda} V_{\lambda}$ and s_{λ} is the Schur polynomial.

Lemma 2.2. *The following equation holds:*

$$\chi^{S_n}(F(X,n)/G) = \frac{1}{n!} \sum_{\sigma \in S_n} p_1^{k_1(\sigma)} \cdot \ldots \cdot p_n^{k_n(\sigma)} \cdot \chi\left([F(X,n)/G]^{\sigma}\right),$$

where $k_i(\sigma)$ is the number of cycles of length *i* in a permutation σ .

Proof. It is well known that for every *i*

$$\sum_{\lambda} a_{i,\lambda} s_{\lambda} = \frac{1}{n!} \sum_{\sigma \in S_n} p_1^{k_1(\sigma)} \cdot \ldots \cdot p_n^{k_n(\sigma)} \cdot \operatorname{Tr}(\sigma)|_{\mathrm{H}^i(F(X,n)/G)},$$

hence

$$\chi^{S_n}(F(X,n)/G) = \frac{1}{n!} \sum_i (-1)^i \sum_{\sigma \in S_n} p_1^{k_1(\sigma)} \cdot \ldots \cdot p_n^{k_n(\sigma)} \cdot \operatorname{Tr}(\sigma)|_{\mathrm{H}^i(F(X,n)/G)}$$

Now the statement follows from the Lefschetz fixed point theorem.

Lemma 2.3. Let $\sigma \in S_n$. Then

$$\chi\left([F(X,n)/G]^{\sigma}\right) = \frac{1}{|G|} \sum_{g \in G} \chi\left(F(X,n)^{g^{-1}\sigma}\right).$$

Proof. For a point $\mathbf{y} \in F(X, n)$ whose projection on F(X, n)/G is σ -invariant there exists an element $g \in G$ such that $\sigma \mathbf{y} = g \mathbf{y}$. Consider the set of pairs

$$S = \{(g, \mathbf{y}) | g \in G, \mathbf{y} \in F(X, n) | \sigma \mathbf{y} = g \mathbf{y} \}$$

and its two-step projection $S \to F(X, n) \to F(X, n)/G$. The fiber of the first projection over a point y is isomorphic to *G*-stabiliser of y or empty, the fiber of the second projection containing y is exactly the orbit of y. Therefore the cardinality of every fiber of the composition is equal to |G|.

Definition 2.4. For any $g \in G$ we denote by $X_k(g)$ the subset of X consisting of points with g-orbits of length k. For example, $X_1(g)$ is a set of g-fixed points. Let $\widetilde{X}_k(g) = X_k(g)/(g)$, where (g) is a cyclic subgroup in G generated by g.

The following theorem was deduced in [10] from the results of Getzler [6, 7], here we would like to present a more geometric and straightforward proof.

Theorem 2.5. The generating function for the S_n -equivariant Euler characteristics of the quotients F(X, n)/G is given by the following equation:

(1)
$$\sum_{n=0}^{\infty} t^n \chi^{S_n}(F(X,n)/G) = \frac{1}{|G|} \sum_{g \in G} \prod_{k=1}^{\infty} (1+p_k t^k)^{\frac{\chi(X_k(g))}{k}}.$$

Proof. Since all points in $X_k(g)$ have g-orbit of length k, we have $\chi(\widetilde{X}_k(g)) = \chi(X_k(g))/k$. From Lemma 2.1 one gets:

$$(1+p_jt^j)^{\chi\left(\widetilde{X}_j(g)\right)} = \sum_{k_j=0}^{\infty} \frac{p_j^{k_j}t^{jk_j}}{(k_j)!} \chi\left(F\left(\widetilde{X}_j(g), k_j\right)\right),$$

Therefore the coefficient at t^n in the right hand side of (1) equals to:

$$\frac{1}{|G|} \sum_{g \in G} \sum_{\sum j k_j = n} \prod_j \frac{p_j^{\kappa_j}}{k_j!} \chi\left(F\left(\widetilde{X}_j(g), k_j\right)\right).$$

On the other hand, by Lemma 2.2 and Lemma 2.3, the left hand side of (1) can be rewritten as following:

$$\frac{1}{|G|} \sum_{g \in G} \frac{1}{n!} \sum_{\sigma \in S_n} p_1^{k_1(\sigma)} \cdot \ldots \cdot p_n^{k_n(\sigma)} \cdot \chi([F(X, n)]^{g^{-1}\sigma}).$$

If for a tuple $\mathbf{y} \in F(X, n)$ we have $\sigma(\mathbf{y}) = g(\mathbf{y})$, the action of (g) at this tuple has $k_j(\sigma)$ cycles of length j. Every cycle of length j corresponds to a point in $\widetilde{X}_j(g)$, hence for every g we can define a map

$$\alpha_g : \sqcup_{\sigma \in S_n} [F(X,n)]^{g^{-1}\sigma} \to \prod_j F(\widetilde{X}_j(g),k_j)/S_{k_j}$$

Given a g-invariant n-tuple of distinct points in X, there are n! ways to label them and make an ordered tuple y. Every such ordering defines a unique permutation σ such that $\sigma(\mathbf{y}) = g(\mathbf{y})$, therefore all fibers of α_q have cardinality n! and

$$\frac{1}{n!}\sum_{\sigma\in S_n}\chi([F(X,n)]^{g^{-1}\sigma}) = \prod_j \chi\left(F(\widetilde{X}_j(g),k_j)/S_{k_j}\right) = \prod_j \frac{\chi\left(F(\widetilde{X}_j(g),k_j)\right)}{k_j!}.$$

EUGENE GORSKY

3. MODULI SPACES OF CURVES

Let us apply Theorem 2.5 to the study of moduli spaces of curves. Let \mathcal{M}_g denote the moduli space of genus g algebraic curves and let $\mathcal{M}_{g,n}$ denote the moduli space of genus g algebraic curves with n parked points (we will always assume $g \ge 2$). Let $\mathcal{M}_g(k_1, \ldots, k_r)$ be the moduli space of pairs (C, τ) where C is a genus g curve and τ is an automorphism of C such that $\chi(C_i(\tau)) = ik_i$ for all i. Since $g \ge 2$, every automorphism of C has finite order, hence one can choose r such that $k_r \ne 0$ and $k_i = 0$ for i > r.

There is a natural forgetful map $\pi_{g,\underline{k}} : \mathcal{M}_g(k_1, \ldots, k_r) \to \mathcal{M}_g$ sending (C, τ) to C. For a curve C we define $\operatorname{Aut}_{\underline{k}}(C) = \pi_{g,\underline{k}}^{-1}(C) \subset \operatorname{Aut}(C)$.

Proposition 3.1. Suppose that $\mathcal{M}_g(k_1, \ldots, k_r)$ is not empty. Then $k_r < 0, k_i = 0$ for $i \nmid r$ and $k_i \ge 0$ for $i \mid r, i < r$. Moreover, we have the following bounds on r and k_i :

$$r \le 4g+2, |k_r| \le 2g, \sum_{i=1}^{r-1} k_i \le 2g+2.$$

Proof. Let τ be an automorphism of a genus g curve C such that $\chi(C_i(\tau)) = ik_i$ for all i. Note that $C_i(\tau)$ are finite sets for i < r and

(2)
$$\chi(C) = 2 - 2g = \sum_{i=1}^{r-1} ik_i - r|k_r|$$

The quotient $C_1 = C/\tau$ is a smooth curve of some genus h, and the Riemann-Hurwitz formula yields its Euler characteristic:

(3)
$$\chi(C_1) = 2 - 2h = \sum_{i=1}^{r-1} k_i - |k_r|.$$

The projection of C to C_1 is a ramified covering of order r with $s = \sum_{i=1}^{r-1} k_j$ ramification points. The automorphism τ has order r, so i|r, if $k_i \neq 0$. By a theorem of Wiman ([20], see also [14]), the maximal order for an automorphism of a genus g curve equals 4g + 2, hence $r \leq 4g + 2$.

Since proper divisors of r cannot exceed r/2, equation (3) implies:

$$\sum_{i=1}^{r-1} ik_i \le \frac{r}{2} \sum_{i=1}^{r-1} k_i = \frac{r}{2} (2 - 2h + |k_r|),$$

hence by (2):

(4)
$$2g - 2 = r|k_r| - \sum_{i=1}^{r-1} ik_i \ge \frac{r}{2}(2h + |k_r| - 2).$$

Therefore $|k_r| - 2 \le 2g - 2$ and $|k_r| \le 2g$. Finally, $\sum_{i=1}^{r-1} k_i = |k_r| + 2 - 2h \le 2g + 2$.

Remark 3.2. The bounds on r and on k_i are sharp. Indeed, consider a hyperelliptic curve P covering \mathbb{CP}^1 with ramifications at the vertices of a regular (2g + 1)-gon and at its center. The covering can be chosen such that the automorphism of P induced by the rotation of this polygon acts nontrivially in the fibers and hence has order r = 2(2g + 1) = 4g + 2.

On the other hand, consider a hyperelliptic curve C with involution τ . We have

$$\chi(C_1(\tau)) = 2g + 2, \, \chi(C_2(\tau)) = 2 - 2g - (2g + 2) = -4g,$$

hence a pair (C, τ) belongs to the moduli space $\mathcal{M}_g(2g+2, -2g)$.

Theorem 3.3. *The following equation holds:*

(5)
$$\sum_{n=0}^{\infty} t^n \chi^{S_n}(\mathcal{M}_{g,n}) = \sum_{\underline{k}} \chi^{orb}(\mathcal{M}_g(k_1,\ldots,k_r)) \cdot \prod_{j=1}^r (1+p_j t^j)^{k_j}.$$

Proof. Consider the forgetful map $\pi_{g,n} : \mathcal{M}_{g,n} \to \mathcal{M}_g$. Its fiber over a point representing a curve C is isomorphic to $F(C, n) / \operatorname{Aut}(C)$, hence one can apply Theorem 2.5 to compute its equivariant Euler characteristic:

$$\sum_{n=0}^{\infty} t^n \chi^{S_n}(\pi_{g,n}^{-1}(C)) = \sum_{n=0}^{\infty} t^n \chi^{S_n}(F(C,n)/\operatorname{Aut}(C)) = \frac{1}{|\operatorname{Aut}(C)|} \sum_{\tau \in \operatorname{Aut}(C)} \prod_i (1+p_i t^i)^{\frac{\chi(C_i(\tau))}{i}} = \sum_{\underline{k}} \frac{1}{|\operatorname{Aut}(C)|} \sum_{\tau \in \operatorname{Aut}_{\underline{k}}(C)} \prod_i (1+p_i t^i)^{k_i}$$

Therefore:

$$\sum_{n=0}^{\infty} t^n \chi^{S_n}(\mathcal{M}_{g,n}) = \int_{\mathcal{M}_g} \sum_{n=0}^{\infty} t^n \chi^{S_n}(\pi_{g,n}^{-1}(C)) d\chi = \sum_{\underline{k}} \prod_i (1+p_i t^i)^{k_i} \int_{\mathcal{M}_g} \frac{|\operatorname{Aut}_{\underline{k}}(C)|}{|\operatorname{Aut}(C)|} d\chi.$$

On the other hand,

$$\chi^{orb}(\mathcal{M}_g(k_1,\ldots,k_r)) = \int_{\mathcal{M}_g} \frac{|\pi_{g,\underline{k}}^{-1}(C)|}{|\operatorname{Aut}(C)|} d\chi = \int_{\mathcal{M}_g} \frac{|\operatorname{Aut}_{\underline{k}}(C)|}{|\operatorname{Aut}(C)|} d\chi \quad \Box$$

Using the Proposition 3.1, we conclude that the sum in the right hand side of (5) is finite.

Corollary 3.4. The generating function $\sum_{n=0}^{\infty} t^n \chi^{S_n}(\mathcal{M}_{g,n})$ is a rational function in t. Furthermore, for any n,

$$\chi^{S_n}(\mathcal{M}_{g,n}) \in \mathbb{Z}[p_1,\ldots,p_{4g+2}].$$

The orbifold Euler characteristic of $\mathcal{M}_g(k_1, \ldots, k_r)$ can be computed using the combinatorial results of Harer and Zagier [13]. We will denote the greatest common divisor of integers a and b by (a, b). Let $\varphi(n)$ and $\mu(n)$ denote the Euler function and the Möbius function respectively. Define

$$c(k,l,d) := \mu\left(\frac{d}{(d,l)}\right) \frac{\varphi(k/l)}{\varphi(d/(d,l))}$$

Definition 3.5. Let $\lambda = (\lambda_1, \dots, \lambda_s)$ be a partition. We define a number

$$N(r;\lambda) = \left| \{ (x_1, \dots, x_s) \in (\mathbb{Z}/r\mathbb{Z})^s : x_1 + \dots + x_s \equiv 0 \pmod{r}, (x_i, k) = \lambda_i \} \right|.$$

Lemma 3.6. ([13]) *The following equation holds:*

$$N(r;\lambda) = \frac{1}{r} \sum_{d|r} \varphi(d) \prod_{i=1}^{s} c(k,\lambda_i,d).$$

Theorem 3.7. ([13]) The orbifold Euler characteristic of the moduli space $\mathcal{M}_{h,s}$ of genus h curves with s marked points is given by the formula:

$$\chi^{orb}(\mathcal{M}_{h,s}) = (-1)^s \frac{(2h-1)B_{2h}}{(2h)!} (2h+s-3)!$$

where B_k denote Bernoulli numbers.

Theorem 3.8. The generating function for the S_n -equivariant Euler characteristics of $\mathcal{M}_{g,n}$ has the form

$$\sum_{n=0}^{\infty} t^n \chi^{S_n}(\mathcal{M}_{g,n}) = \sum_{\underline{k}} c_{k_1,\dots,k_r} \prod_{j=1}^r (1+p_j t^j)^{k_j},$$

where p_j are power sums and the coefficients c_{k_1,\ldots,k_r} are defined by the equation:

(6)
$$c_{k_1,\dots,k_r} = \chi^{orb}(\mathcal{M}_{h,s}) r^{2h} \prod_{p|\gamma} (1-p^{-2h}) \cdot \frac{N(r;\lambda)}{r \prod_{i=1}^{r-1} k_i!}.$$

Here $h = \frac{1}{2}(1 - \sum_{j=1}^{r} k_j), s = \sum_{j=1}^{r-1} k_j, \gamma = \text{GCD}(i:k_i > 0)$, $\lambda = (1^{k_1} 2^{k_2} \dots (r-1)^{k_{r-1}})$

Proof. By Theorem 3.3 one has $c_{k_1,\ldots,k_r} = \chi^{orb}(\mathcal{M}_g(k_1,\ldots,k_r))$. Consider the moduli space $\mathcal{M}_g(k_1,\ldots,k_r)$ of pairs (C,τ) . As in Proposition 3.1, to such a pair one can associate a genus h curve $C_1 = C/\tau$. The projection from C to C_1 is ramified in s points subdivided into groups of size k_1,\ldots,k_{n-1} . The orbifold Euler characteristic of the moduli space of genus h curves with such markings equals $\chi^{orb}(\mathcal{M}_{h,s})/\prod_{i=1}^{r-1}k_i!$. The number of pairs (C,τ) associated to a curve C_1 with fixed marked points was computed

The number of pairs (C, τ) associated to a curve C_1 with fixed marked points was computed in [13, pages 478–479] and equals

$$\frac{1}{r}r^{2h}\prod_{p|\gamma}(1-p^{-2h})\cdot N(r;\lambda)$$

This completes the proof.

The non-equivariant Euler characteristic of $\mathcal{M}_{g,n}$ has been computed in [3, Theorem 4.3]. It can be compared with Theorem 3.8 since

$$\chi(\mathcal{M}_{g,n}) = n! \cdot \chi^{S_n}(\mathcal{M}_{g,n})[p_1 = 1, \ p_k = 0 \text{ for } k > 1].$$

Example 3.9. The generating function for the S_n -equivariant Euler characteristics of the moduli spaces of genus 2 curves with marked points has a form [10]:

$$\sum_{n=0}^{\infty} t^n \chi^{S_n}(\mathcal{M}_{2,n}) = -\frac{1}{240} (1+p_1 t)^{-2} - \frac{1}{240} (1+p_1 t)^6 (1+p_2 t^2)^{-4} + \frac{2}{5} (1+p_1 t)^3 (1+p_5 t^5)^{-1} + \frac{2}{5} (1+p_1 t) (1+p_2 t^2) (1+p_5 t^5) (1+p_{10} t^{10})^{-1} + \frac{1}{6} (1+p_1 t)^2 (1+p_2 t^2) (1+p_6 t^6)^{-1} - \frac{1}{12} (1+p_1 t)^4 (1+p_3 t^3)^{-2} - \frac{1}{12} (1+p_2 t^2)^2 (1+p_3 t^3)^2 (1+p_6 t^6)^{-2} + \frac{1}{12} (1+p_1 t)^2 (1+p_2 t^2)^{-2} + \frac{1}{4} (1+p_1 t)^2 (1+p_4 t^4) (1+p_8 t^8)^{-1} - \frac{1}{8} (1+p_1 t)^2 (1+p_2 t^2)^2 (1+p_4 t^4)^{-2}.$$

These coefficients can be matched with the ones defined in Theorem 3.8.

REFERENCES

- [1] J. Bergström. Cohomologies of moduli spaces of curves of genus three via point counts. J. Reine Angew. Math. **622** (2008), 155–187.
- [2] J. Bergström, O. Tommasi. The rational cohomology of $\overline{\mathcal{M}}_4$. Math. Ann. 338 (2007), no. 1, 207–239.
- [3] G. Bini, J. Harer. Euler Characteristics of Moduli Spaces of Curves. J. Eur. Math. Soc. (JEMS) 13 (2011), no. 2, 487–512.
- [4] G. Bini, G. Gaiffi, M. Polito. A formula for the Euler characteristic of $\overline{\mathcal{M}}_{2,n}$. Math. Z. **236** (2001) 491–523.
- [5] C. Faber, G. van der Geer. Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes. I, II. C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 381–384; no. 6, 467–470.

- [6] E. Getzler. Mixed Hodge structures of configuration spaces. arXiv:math.AG/9510018
- [7] E. Getzler. Resolving mixed Hodge modules on configuration spaces. Duke Math. J. 96 (1999), no. 1, 175–203.
- [8] E. Getzler. Euler characteristics of local systems on \mathcal{M}_2 . Compositio Math. 132 (2002), 121–135.
- [9] E. Getzler, E. Looijenga. The Hodge polynomial of $\overline{\mathcal{M}}_{3,1}$. arXiv:math.AG/9910174
- [10] E. Gorsky. On the S_n equivariant Euler characteristic of $\mathcal{M}_{2,n}$. arXiv:0707.2662.
- [11] E. Gorsky. On the S_n -equivariant Euler characteristic of moduli spaces of hyperelliptic curves. Math. Res. Lett. **16** (2009), no. 4, 591–603.
- [12] E. Gorsky. Adams operations and power structures. Mosc. Math. J. 9 (2009), no. 2, 305–323.
- [13] J. Harer, D. Zagier. The Euler characteristic of the moduli space of curves. Invent. Math. 85 (1986), 457–485.
- [14] W. J. Harvey. Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford Ser. (2) 17 (1966), 86–97.
- [15] A. Khovanskii, A. Pukhlikov. Integral transforms based on Euler characteristic and their applications. Integral Transform. Spec. Funct. 1 (1993), no. 1, 19–26.
- [16] R. MacPherson. Chern classes for singular algebraic varieties. Ann. of Math. (2) 100 (1974), 423–432.
- [17] O. Tommasi. Rational cohomology of the moduli space of genus 4 curves. Compos. Math. 141 (2005), no. 2, 359–384.
- [18] O. Tommasi. Rational cohomology of M_{3,2}. Compos. Math. 143 (2007), no. 4, 986–1002.
- [19] O. Viro. Some integral calculus based on Euler characteristic. Topology and geometry Rohlin Seminar, 127–138, Lecture Notes in Math., **1346**, Springer, Berlin, 1988.
- [20] A. Wiman. Ueber die hyperelliptischen Curven und diejenigen vom Geschlechte p = 3 welche eindeutigen Transformationen in sich zulassen. Bihang Till. Kongl. Svenska Veienskaps-Akademiens Hadlingar **21** (1895-6) 1–23.

MATHEMATICS DEPARTMENT, STONY BROOK UNIVERSITY, STONY BROOK NY, 11794-3651, USA *E-mail address*: egorsky@math.sunysb.edu