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THE EQUIVARIANT EULER CHARACTERISTIC OF MODULI SPACES OF
CURVES.

EUGENE GORSKY

ABSTRACT. We derive aformula for th8,,—equivariant Euler characteristic of the moduli space
M., of genusg curves withn marked points.

1. INTRODUCTION

Consider the moduli spack1,,,, of algebraic curves of genuswith » marked points. The
symmetric groupS,, acts naturally on this space. LB denote the irreducible representation
of S,, corresponding to a Young diagrakthen one can decompose the cohomologpf,,
into isotypic components:

Hi(Mg,n) = @ai,,\\/,\.
A
The S,,-equivariant Euler characteristic 8 ,, is defined by the formula

X (Mgn) = Z(_l)iai,ksm
i\
wheres, denotes the Schur polynomial labeled by the diagkaiVe calculate these equivariant
Euler characteristics for all > 2 andn.

Theorem 1.1. The generating function for thg,-equivariant Euler characteristics ot ,,
has the form

-----

Consider the moduli spac&t,(k; ..., k,) of pairs(C, ) whereC' is a genug curve and
7 is an automorphism aof’ such that for all the Euler characteristic of the set of points(in
having the orbit of lengtl under the action of equalsik;. The coefficienty, .. can be also
defined as the orbifold Euler characteristic’of, (k; . .., k).

This moduli space can be defined for any tuple of integers . ., k,.) of arbitrary sizer, but
we prove that (for a fixed genug it is non-empty only for a finite number of such tuples. In
particular,” cannot exceedy + 2.

-----

Corollary 1.2. The generating functiol_ -, t"x°" (M, ) is a rational function irt. Further-
more, for anyn,

XS”(Mg,n) € Zlp1, ..., pagya).

Theorenm_1.1l can be compared with the computations|of [4][8pJand [10] in genus 2 and
with the computations of [1], [2],19]/[17] and [18] in gen8sA similar generating function for
the moduli spaces of hyperelliptic curves was previoushamied in [11]. The non-equivariant
Euler characteristics of moduli spaces of curves were coeadoy Bini and Harer in [3].

The paper is organized as follows. In Secfidn 2 we considengtex quasi-projective vari-

ety X with an action of a finite groufr. Theoreni 25 provides a formula for tig-equivariant
1
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Euler characteristic of quotienfs(X,n)/G, whereF'(X,n) is a configuration space of la-
beled distinct points oX. This theorem was previously proved [n [10] using the resaft
Getzler [6, 7] concerning Adams operations over the eqgiamamotivic rings (see als [12]).
The alternative proof presented here uses only the baspepres of Euler characteristic and
seems to be more geometric. It also makes the proof of the rasirt self-contained.

In Section B we apply this theorem to the universal familyravé,, the moduli space of
genusy curves. This allows us to prove in Theoreml 3.3 that the coeffic,, _, is equal to the
orbifold Euler characteristic oM, (k; ..., k,). These Euler characteristics are then computed
in Theoreni.3.B using the results of Harer and Zagier.
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2. EQUIVARIANT EULER CHARACTERISTICS

Let X be a complex quasi-projective variety with an action of adigroupG. Let us denote
by F'(X,n) the configuration space of ordereetuples of distinct points oX'. For each, the
action of the groug on X can be naturally extended to the actiorGobén F'( X, n), commuting
with the natural action of,,.

In the computations below we will use the additivity and nplicativity of the Euler charac-
teristic, as well as the Fubini formula for the integratiomhwespect to the Euler characteristic
([15,[19], see alsa [16]).

Lemma 2.1. The following equation holdsy > | £\ (F (X, n)) = (1 + t)x).

Proof. The mapr, : F(X,n) — F(X,n — 1), which forgets the last point in the-tuple,
has fibers isomorphic t& withoutn — 1 points. Therefore((F(X,n)) = (x(X) —n+1) -
X(F(X,n — 1), andy(F(X,n)) = x(X) - (((X) = 1) ... (x(X) —n +1). 0

Let p, denote theith power sum and let, denote the irreducible representationfla-
belled by the Young diagrath We define the,,-equivariant Euler characteristic 6§ X, n)/G
by the equation

X(F(X,n)/G) =Y (=Daas,
3,
whereH'(F(X,n)/G) = @, a;,V, ands, is the Schur polynomial.
Lemma 2.2. The following equation holds:

S(F(X,n)/G) = Z PO X (P (X ) [GY),

O’GSn
wherek; (o) is the number of cycles of lengtlin a permutations.

Proof. It is well known that for every

1 k(o) kn(0)
;az,,\b‘,\—azm - Tr(o)

O'ESn

H(F(X,n)/G)>

hence

i ki(o n (o
( (X,n)/G) = nl Z Z p11( o 'pﬁ ) 'TT(U)|Hi(F(X,n)/G)

oESy
Now the statement follows from the Lefschetz fixed point teen O
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Lemma 2.3. Leto € S,,. Then
g 1o )
X ([F(X,n)/G]) ‘g|EX< (X,n) )

Proof. For a pointy € F'(X,n) whose projection o' (X, n)/G is o-invariant there exists an
elementy € G such thaty = gy. Consider the set of pairs

S={(9,y)lg € G,y € F(X,n)loy = gy}
and its two-step projectiofl — F(X,n) — F(X,n)/G. The fiber of the first projection over a
pointy is isomorphic ta=-stabiliser ofy or empty, the fiber of the second projection containing
y is exactly the orbit ofy. Therefore the cardinality of every fiber of the composit®equal
to |G]. O
Definition 2.4. For anyg € G we denote byX;(g) the subset oX" consisting of points with

g-orbits of lengthk. For exampleX;(g) is a set ofg-fixed points. LetX)(g) = Xx(9)/(g),
where(g) is a cyclic subgroup id’ generated by.

The following theorem was deduced in [10] from the result&efzler [6] 7], here we would
like to present a more geometric and straightforward proof.

Theorem 2.5. The generating function for th&,-equivariant Euler characteristics of the quo-
tientsF (X, n)/G is given by the following equation:

[e.9]

(1) >IN FX0)/G) = LS TT0+ mty

n=0 g€eG k=1

Proof. Since all points inX,(g) haveg-orbit of lengthk, we haveX()N(k(g)) = x(Xx(9))/E.
From Lemma 2]1 one gets:

(14 (90) = 3 p(;f]; (F(X@.k)),

k;=0

Therefore the coefficient &t in the right hand side of (1) equals to:

|G|Z 2. H ( (Xito). 1))

S jkj=n J

On the other hand, by Lemrha®.2 and Lemima 2.3, the left hardd$il) can be rewritten as

following:
G 2 2 A (P ).
geG n! oc€Snh
If for a tupley € F'(X,n) we haver(y) = ¢(y), the action of(g) at this tuple hag; (o) cycles
of lengthj. Every cycle of lengtty corresponds to a point iX;(g), hence for every we can
define a map
Qg o I—'UESn [F(Xa n)]Ef 7= HF(Xj(g)v kj)/SkJ
j
Given ag-invariantn-tuple of distinct points inX, there are:! ways to label them and make an
ordered tupley. Every such ordering defines a unique permutaticguch thatr(y) = g(y),
therefore all fibers ofy, have cardinality:! and

S R ) = I (rm/s.) = TT=—;

c€Sn J
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3. MODULI SPACES OF CURVES

Let us apply Theorein 2.5 to the study of moduli spaces of survet M, denote the moduli
space of genug algebraic curves and le¥1,,, denote the moduli space of genuslgebraic
curves withn parked points (we will always assume> 2). Let M, (k4, .. ., k) be the moduli
space of pairgC, 7) whereC' is a genug curve andr is an automorphism of’ such that
X(C;(1)) = ik; for all i. Sinceg > 2, every automorphism af' has finite order, hence one can
chooser such that,. # 0 andk; = 0 for i > r.

There is a natural forgetful mag, , : My(ki,..., k) = M, sending(C,7)to C. For a
curveC we defineAut,(C) = m,,(C) C Aut(C).

Proposition 3.1. Suppose thaM (&, . .., k;) is not empty. Therk, < 0, k; = 0 for i { » and
k; > 0fori | r,i < r. Moreover, we have the following bounds pand#k;:

r—1

r<4g+2, |kl <29, ) ki <29+2,

=1
Proof. Let 7 be an automorphism of a gengisurveC' such thaty(C;(7)) = ik; for all i. Note
thatC;(7) are finite sets fof < r and

r—1
@) X(C)=2—2g =" ik —rlk]
=1

The quotient’; = C/7 is a smooth curve of some gentisand the Riemann-Hurwitz formula
yields its Euler characteristic:

r—1
(3) X(C) =2=2h=> ki — |k

=1
The projection ofC' to C} is a ramified covering of order with s = S"/_ k; ramification
points. The automorphismhas order-, soi|r, if k; # 0. By a theorem of Wiman|([20], see
also [14]), the maximal order for an automorphism of a genasirve equalstg + 2, hence
r <4g+2.

Since proper divisors of cannot exceed/2, equation[(B) implies:

r—1 r—1
T T
ki < = ==(2—2
lekl_szl 5 (2= 20+ [k |),

hence byl(R):
r—1
T
4 29 — 2 = — ik, > —(2 —2).
(@) 9= 2=rlk| ;zkz_2< ht |k = 2)
Thereforelk,| — 2 < 2g — 2 and|k,| < 2g. Finally, >7— k; = |k,| +2—2h <29 +2. O

Remark3.2 The bounds om and onk; are sharp. Indeed, consider a hyperelliptic cuRve
coveringCP! with ramifications at the vertices of a regul@y + 1)-gon and at its center. The
covering can be chosen such that the automorphisfinfiuced by the rotation of this polygon
acts nontrivially in the fibers and hence has onder 2(2g + 1) = 4g + 2.

On the other hand, consider a hyperelliptic cuévavith involutionr. We have

X(Ci(7)) =29 +2,x(Ca(7)) = 2 — 29 — (29 + 2) = —4yg,
hence a paifC, 7) belongs to the moduli spacet,(2g + 2, —2g).
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Theorem 3.3. The following equation holds:

© Do (Ma) = 3O Myl k) T+ mit)
n=0 i=1

Proof. Consider the forgetful map,, : M,, — M,. Its fiber over a point representing a
curveC' is isomorphic toF'(C,n)/ Aut(C'), hence one can apply Theoréml|2.5 to compute its
equivariant Euler characteristic:

DN (mya(C) = Dt (F(Cym)/ Aut(C)) =
n=0 n=0
\Aut P [T+ pe)™ _ZIAut 2 o
TEAut(C i TEAutk(C i
Therefore:
Ztn S:(M, ) / S () =
My n=0

s | Aut(O)]
1+ pit’ k’/ ———dx
2 1M0+re | ThaE
On the other hand,

orb T O [ Aut(O)
X<MM“””i&MwwW‘Aumwﬂxm

Using the Proposition 3.1, we conclude that the sum in th tignd side ofl(5) is finite.

Corollary 3.4. The generating functiop >~ , t"x*" (M, ) is a rational function it. Further-
more, for anyn,

XS”(Mg,n) € Zlp1, ..., pagya.

The orbifold Euler characteristic d#1,(k,, . . ., k,) can be computed using the combinatorial
results of Harer and Zagier [13]. We will denote the greatestmon divisor of integers and
b by (a,b). Letp(n) andu(n) denote the Euler function and the Mobius function respebti

Define (k/1)
- d p(k/l
c(k,l,d) == p ((d7 l)) ©(d/(d,1))’

Definition 3.5. Let A = (A4, ..., As) be a partition. We define a number
N A) = (21, ... 25) € (Z)rZ)° -2+ ...+ x5 =0 (modr), (x;, k) = N} .
Lemma 3.6. ([13]) The following equation holds:

ng H (k, \i, d).

Theorem 3.7.([13]) The orbifold Euler characteristic of the moduli spagé,, ; of genush
curves withs marked points is given by the formula:

) = (o DB

(2h + s — 3)!

whereB;, denote Bernoulli numbers.
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Theorem 3.8. The generating function for th&,-equivariant Euler characteristics ot ,,
has the form

Ztn Sn ch‘h , H 1—|—pjtj)kj,
n=0 7j=1
wherep; are power sums and the coeﬁ|0|en,g§___7kr are defined by the equation:
N(T' A)
orb 2h 72h )

plv
Hereh = 5(1—= 37 1 k)5 = 251 kjy v = GCD(i by > 0), A = (1M282 . (r — 1)Fr)
Proof. By Theoren{ 3B one has, i = x"°(M,(ki,...,k,)). Consider the moduli space

My (ky, ... k) of pairs(C, 7). As in Propositiori_3]1, to such a pair one can associate asgenu
h curveC; = C'/7. The projection fronC' to C} is ramified ins points subdivided into groups
of sizeky,...,k,_1. The orbifold Euler characteristic of the moduli space afiggh curves

with such marklngs equals”® (M) / TT'2; kil-
The number of pairéC, 7) associated to a curvé, with fixed marked points was computed
in [13, pages 478-479] and equals

_,r,2h H —2h (T )\)

ply
This completes the proof. O

The non-equivariant Euler characteristic/of, ,, has been computed in/[3, Theorem 4.3]. It
can be compared with Theorém13.8 since

X(Mgn) =nl- X" (Mgn)lpr =1, pp = 0for k > 1.

Example 3.9.The generating function for the,-equivariant Euler characteristics of the moduli
spaces of genus 2 curves with marked points has a form [10]:

o0

S (Ma) = g5 1) = g1+ p0)( 4 )
P2t (1 5ot S0 pit)(L+ o) (L4 pst)(1+ prof)
+é(1 +p1t)*(1+pot”) (14 pet’) ™ — %(1 +pit) (14 pst”) =
—%(1 +pat®)* (1+ pst’)*(1+ pt®) ™ + 112<1 +pit)*(1+ pot”) 7+
(L (0 pat) (1 ps) ™ = L4 pat (L4 por? (14 pat?)

These coefficients can be matched with the ones defined inr&@imed. 8.
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