UC Davis

UC Davis Previously Published Works

Title

The equivariant Euler characteristic of moduli spaces of curves

Permalink
https://escholarship.org/uc/item/6997k34s

Author

Gorsky, Eugene

Publication Date

2014
DOI
10.1016/j.aim.2013.10.003

Peer reviewed

THE EQUIVARIANT EULER CHARACTERISTIC OF MODULI SPACES OF CURVES.

EUGENE GORSKY

Abstract

We derive a formula for the S_{n}-equivariant Euler characteristic of the moduli space $\mathcal{M}_{g, n}$ of genus g curves with n marked points.

1. Introduction

Consider the moduli space $\mathcal{M}_{g, n}$ of algebraic curves of genus g with n marked points. The symmetric group S_{n} acts naturally on this space. Let V_{λ} denote the irreducible representation of S_{n} corresponding to a Young diagram λ, then one can decompose the cohomology of $\mathcal{M}_{g, n}$ into isotypic components:

$$
\mathrm{H}^{i}\left(\mathcal{M}_{g, n}\right)=\bigoplus_{\lambda} a_{i, \lambda} V_{\lambda} .
$$

The S_{n}-equivariant Euler characteristic of $\mathcal{M}_{g, n}$ is defined by the formula

$$
\chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)=\sum_{i, \lambda}(-1)^{i} a_{i, \lambda} s_{\lambda},
$$

where s_{λ} denotes the Schur polynomial labeled by the diagram λ. We calculate these equivariant Euler characteristics for all $g \geq 2$ and n.

Theorem 1.1. The generating function for the S_{n}-equivariant Euler characteristics of $\mathcal{M}_{g, n}$ has the form

$$
\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)=\sum_{\underline{k}} c_{k_{1}, \ldots, k_{r}} \prod_{j=1}^{r}\left(1+p_{j} t^{j}\right)^{k_{j}}
$$

where p_{j} are power sums and the coefficients $c_{k_{1}, \ldots, k_{r}}$ are defined by the equation (6).
Consider the moduli space $\mathcal{M}_{g}\left(k_{1} \ldots, k_{r}\right)$ of pairs (C, τ) where C is a genus g curve and τ is an automorphism of C such that for all i the Euler characteristic of the set of points in C having the orbit of length i under the action of τ equals $i k_{i}$. The coefficient $c_{k_{1}, \ldots, k_{r}}$ can be also defined as the orbifold Euler characteristic of $\mathcal{M}_{g}\left(k_{1} \ldots, k_{r}\right)$.

This moduli space can be defined for any tuple of integers $\left(k_{1}, \ldots, k_{r}\right)$ of arbitrary size r, but we prove that (for a fixed genus g) it is non-empty only for a finite number of such tuples. In particular, r cannot exceed $4 g+2$.
Corollary 1.2. The generating function $\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)$ is a rational function in t. Furthermore, for any n,

$$
\chi^{S_{n}}\left(\mathcal{M}_{g, n}\right) \in \mathbb{Z}\left[p_{1}, \ldots, p_{4 g+2}\right] .
$$

Theorem [1.1] can be compared with the computations of [4], [5], [8] and [10] in genus 2 and with the computations of [1], [2], [9], [17] and [18] in genus 3. A similar generating function for the moduli spaces of hyperelliptic curves was previously obtained in [11]. The non-equivariant Euler characteristics of moduli spaces of curves were computed by Bini and Harer in [3].

The paper is organized as follows. In Section 2 we consider a complex quasi-projective variety X with an action of a finite group G. Theorem 2.5 provides a formula for the S_{n}-equivariant

Euler characteristic of quotients $F(X, n) / G$, where $F(X, n)$ is a configuration space of n labeled distinct points on X. This theorem was previously proved in [10] using the results of Getzler [6, 7] concerning Adams operations over the equivariant motivic rings (see also [12]). The alternative proof presented here uses only the basic properties of Euler characteristic and seems to be more geometric. It also makes the proof of the main result self-contained.

In Section [3 we apply this theorem to the universal family over \mathcal{M}_{g}, the moduli space of genus g curves. This allows us to prove in Theorem 3.3 that the coefficient $c_{k_{1}, \ldots, k_{r}}$ is equal to the orbifold Euler characteristic of $\mathcal{M}_{g}\left(k_{1} \ldots, k_{r}\right)$. These Euler characteristics are then computed in Theorem 3.8 using the results of Harer and Zagier.

Acknowledgements

The author is grateful to J. Bergström, S. Gusein-Zade, M. Kazaryan and S. Lando for useful discussions. This work was partially supported by the grants RFBR-007-00593, RFBR-08-01-00110-a, NSh-709.2008.1 and the Möbius Contest fellowship for young scientists.

2. EQuivariant Euler characteristics

Let X be a complex quasi-projective variety with an action of a finite group G. Let us denote by $F(X, n)$ the configuration space of ordered n-tuples of distinct points on X. For each n, the action of the group G on X can be naturally extended to the action of G on $F(X, n)$, commuting with the natural action of S_{n}.

In the computations below we will use the additivity and multiplicativity of the Euler characteristic, as well as the Fubini formula for the integration with respect to the Euler characteristic ([15, 19], see also [16]).
Lemma 2.1. The following equation holds: $\sum_{n=0}^{\infty} \frac{t^{n}}{n!} \chi(F(X, n))=(1+t)^{\chi(X)}$.
Proof. The map $\pi_{n}: F(X, n) \rightarrow F(X, n-1)$, which forgets the last point in the n-tuple, has fibers isomorphic to X without $n-1$ points. Therefore $\chi(F(X, n))=(\chi(X)-n+1)$. $\chi(F(X, n-1))$, and $\chi(F(X, n))=\chi(X) \cdot(\chi(X)-1) \cdot \ldots \cdot(\chi(X)-n+1)$.

Let p_{k} denote the k th power sum and let V_{λ} denote the irreducible representation of S_{n} labelled by the Young diagram λ. We define the S_{n}-equivariant Euler characteristic of $F(X, n) / G$ by the equation

$$
\chi^{S_{n}}(F(X, n) / G)=\sum_{i, \lambda}(-1)^{i} a_{i, \lambda} s_{\lambda},
$$

where $\mathrm{H}^{i}(F(X, n) / G)=\bigoplus_{\lambda} a_{i, \lambda} V_{\lambda}$ and s_{λ} is the Schur polynomial.
Lemma 2.2. The following equation holds:

$$
\chi^{S_{n}}(F(X, n) / G)=\frac{1}{n!} \sum_{\sigma \in S_{n}} p_{1}^{k_{1}(\sigma)} \cdot \ldots \cdot p_{n}^{k_{n}(\sigma)} \cdot \chi\left([F(X, n) / G]^{\sigma}\right),
$$

where $k_{i}(\sigma)$ is the number of cycles of length i in a permutation σ.
Proof. It is well known that for every i

$$
\sum_{\lambda} a_{i, \lambda} s_{\lambda}=\left.\frac{1}{n!} \sum_{\sigma \in S_{n}} p_{1}^{k_{1}(\sigma)} \cdot \ldots \cdot p_{n}^{k_{n}(\sigma)} \cdot \operatorname{Tr}(\sigma)\right|_{\mathrm{H}^{i}(F(X, n) / G)},
$$

hence

$$
\chi^{S_{n}}(F(X, n) / G)=\left.\frac{1}{n!} \sum_{i}(-1)^{i} \sum_{\sigma \in S_{n}} p_{1}^{k_{1}(\sigma)} \cdot \ldots \cdot p_{n}^{k_{n}(\sigma)} \cdot \operatorname{Tr}(\sigma)\right|_{H^{i}(F(X, n) / G)}
$$

Now the statement follows from the Lefschetz fixed point theorem.

Lemma 2.3. Let $\sigma \in S_{n}$. Then

$$
\chi\left([F(X, n) / G]^{\sigma}\right)=\frac{1}{|G|} \sum_{g \in G} \chi\left(F(X, n)^{g^{-1} \sigma}\right)
$$

Proof. For a point $\mathbf{y} \in F(X, n)$ whose projection on $F(X, n) / G$ is σ-invariant there exists an element $g \in G$ such that $\sigma \mathbf{y}=g \mathbf{y}$. Consider the set of pairs

$$
S=\{(g, \mathbf{y})|g \in G, \mathbf{y} \in F(X, n)| \sigma \mathbf{y}=g \mathbf{y}\}
$$

and its two-step projection $S \rightarrow F(X, n) \rightarrow F(X, n) / G$. The fiber of the first projection over a point \mathbf{y} is isomorphic to G-stabiliser of \mathbf{y} or empty, the fiber of the second projection containing \mathbf{y} is exactly the orbit of \mathbf{y}. Therefore the cardinality of every fiber of the composition is equal to $|G|$.
Definition 2.4. For any $g \in G$ we denote by $X_{k}(g)$ the subset of X consisting of points with g-orbits of length k. For example, $X_{1}(g)$ is a set of g-fixed points. Let $\widetilde{X}_{k}(g)=X_{k}(g) /(g)$, where (g) is a cyclic subgroup in G generated by g.
The following theorem was deduced in [10] from the results of Getzler [6, 7], here we would like to present a more geometric and straightforward proof.
Theorem 2.5. The generating function for the S_{n}-equivariant Euler characteristics of the quotients $F(X, n) / G$ is given by the following equation:

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}(F(X, n) / G)=\frac{1}{|G|} \sum_{g \in G} \prod_{k=1}^{\infty}\left(1+p_{k} t^{k}\right)^{\frac{\chi\left(X_{k}(g)\right)}{k}} \tag{1}
\end{equation*}
$$

Proof. Since all points in $X_{k}(g)$ have g-orbit of length k, we have $\chi\left(\widetilde{X}_{k}(g)\right)=\chi\left(X_{k}(g)\right) / k$. From Lemma 2.1 one gets:

$$
\left(1+p_{j} t^{j}\right)^{\chi\left(\widetilde{X}_{j}(g)\right)}=\sum_{k_{j}=0}^{\infty} \frac{p_{j}^{k_{j}} t^{j k_{j}}}{\left(k_{j}\right)!} \chi\left(F\left(\widetilde{X}_{j}(g), k_{j}\right)\right),
$$

Therefore the coefficient at t^{n} in the right hand side of (1) equals to:

$$
\frac{1}{|G|} \sum_{g \in G} \sum_{\sum j k_{j}=n} \prod_{j} \frac{p_{j}^{k_{j}}}{k_{j}!} \chi\left(F\left(\widetilde{X}_{j}(g), k_{j}\right)\right)
$$

On the other hand, by Lemma 2.2 and Lemma 2.3, the left hand side of (1) can be rewritten as following:

$$
\frac{1}{|G|} \sum_{g \in G} \frac{1}{n!} \sum_{\sigma \in S_{n}} p_{1}^{k_{1}(\sigma)} \cdot \ldots \cdot p_{n}^{k_{n}(\sigma)} \cdot \chi\left([F(X, n)]^{g^{-1} \sigma}\right) .
$$

If for a tuple $\mathbf{y} \in F(X, n)$ we have $\sigma(\mathbf{y})=g(\mathbf{y})$, the action of (g) at this tuple has $k_{j}(\sigma)$ cycles of length j. Every cycle of length j corresponds to a point in $\widetilde{X}_{j}(g)$, hence for every g we can define a map

$$
\alpha_{g}: \sqcup_{\sigma \in S_{n}}[F(X, n)]^{g^{-1} \sigma} \rightarrow \prod_{j} F\left(\tilde{X}_{j}(g), k_{j}\right) / S_{k_{j}}
$$

Given a g-invariant n-tuple of distinct points in X, there are n ! ways to label them and make an ordered tuple \mathbf{y}. Every such ordering defines a unique permutation σ such that $\sigma(\mathbf{y})=g(\mathbf{y})$, therefore all fibers of α_{g} have cardinality n ! and

$$
\frac{1}{n!} \sum_{\sigma \in S_{n}} \chi\left([F(X, n)]^{g^{-1} \sigma}\right)=\prod_{j} \chi\left(F\left(\widetilde{X}_{j}(g), k_{j}\right) / S_{k_{j}}\right)=\prod_{j} \frac{\chi\left(F\left(\widetilde{X}_{j}(g), k_{j}\right)\right)}{k_{j}!} .
$$

3. Moduli spaces of curves

Let us apply Theorem 2.5 to the study of moduli spaces of curves. Let \mathcal{M}_{g} denote the moduli space of genus g algebraic curves and let $\mathcal{M}_{g, n}$ denote the moduli space of genus g algebraic curves with n parked points (we will always assume $g \geq 2$). Let $\mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right)$ be the moduli space of pairs (C, τ) where C is a genus g curve and τ is an automorphism of C such that $\chi\left(C_{i}(\tau)\right)=i k_{i}$ for all i. Since $g \geq 2$, every automorphism of C has finite order, hence one can choose r such that $k_{r} \neq 0$ and $k_{i}=0$ for $i>r$.

There is a natural forgetful map $\pi_{g, \underline{k}}: \mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right) \rightarrow \mathcal{M}_{g}$ sending (C, τ) to C. For a curve C we define $\operatorname{Aut}_{\underline{\underline{k}}}(C)=\pi_{g, \underline{k}}^{-1}(C) \subset \operatorname{Aut}(C)$.
Proposition 3.1. Suppose that $\mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right)$ is not empty. Then $k_{r}<0, k_{i}=0$ for $i \nmid r$ and $k_{i} \geq 0$ for $i \mid r, i<r$. Moreover, we have the following bounds on r and k_{i} :

$$
r \leq 4 g+2,\left|k_{r}\right| \leq 2 g, \sum_{i=1}^{r-1} k_{i} \leq 2 g+2
$$

Proof. Let τ be an automorphism of a genus g curve C such that $\chi\left(C_{i}(\tau)\right)=i k_{i}$ for all i. Note that $C_{i}(\tau)$ are finite sets for $i<r$ and

$$
\begin{equation*}
\chi(C)=2-2 g=\sum_{i=1}^{r-1} i k_{i}-r\left|k_{r}\right| \tag{2}
\end{equation*}
$$

The quotient $C_{1}=C / \tau$ is a smooth curve of some genus h, and the Riemann-Hurwitz formula yields its Euler characteristic:

$$
\begin{equation*}
\chi\left(C_{1}\right)=2-2 h=\sum_{i=1}^{r-1} k_{i}-\left|k_{r}\right| . \tag{3}
\end{equation*}
$$

The projection of C to C_{1} is a ramified covering of order r with $s=\sum_{i=1}^{r-1} k_{j}$ ramification points. The automorphism τ has order r, so $i \mid r$, if $k_{i} \neq 0$. By a theorem of Wiman ([20], see also [14]), the maximal order for an automorphism of a genus g curve equals $4 g+2$, hence $r \leq 4 g+2$.

Since proper divisors of r cannot exceed $r / 2$, equation (3) implies:

$$
\sum_{i=1}^{r-1} i k_{i} \leq \frac{r}{2} \sum_{i=1}^{r-1} k_{i}=\frac{r}{2}\left(2-2 h+\left|k_{r}\right|\right)
$$

hence by (2):

$$
\begin{equation*}
2 g-2=r\left|k_{r}\right|-\sum_{i=1}^{r-1} i k_{i} \geq \frac{r}{2}\left(2 h+\left|k_{r}\right|-2\right) . \tag{4}
\end{equation*}
$$

Therefore $\left|k_{r}\right|-2 \leq 2 g-2$ and $\left|k_{r}\right| \leq 2 g$. Finally, $\sum_{i=1}^{r-1} k_{i}=\left|k_{r}\right|+2-2 h \leq 2 g+2$.
Remark 3.2. The bounds on r and on k_{i} are sharp. Indeed, consider a hyperelliptic curve P covering $\mathbb{C P}^{1}$ with ramifications at the vertices of a regular $(2 g+1)$-gon and at its center. The covering can be chosen such that the automorphism of P induced by the rotation of this polygon acts nontrivially in the fibers and hence has order $r=2(2 g+1)=4 g+2$.

On the other hand, consider a hyperelliptic curve C with involution τ. We have

$$
\chi\left(C_{1}(\tau)\right)=2 g+2, \chi\left(C_{2}(\tau)\right)=2-2 g-(2 g+2)=-4 g,
$$

hence a pair (C, τ) belongs to the moduli space $\mathcal{M}_{g}(2 g+2,-2 g)$.

Theorem 3.3. The following equation holds:

$$
\begin{equation*}
\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)=\sum_{\underline{k}} \chi^{o r b}\left(\mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right)\right) \cdot \prod_{j=1}^{r}\left(1+p_{j} t^{j}\right)^{k_{j}} \tag{5}
\end{equation*}
$$

Proof. Consider the forgetful map $\pi_{g, n}: \mathcal{M}_{g, n} \rightarrow \mathcal{M}_{g}$. Its fiber over a point representing a curve C is isomorphic to $F(C, n) / \operatorname{Aut}(C)$, hence one can apply Theorem [2.5 to compute its equivariant Euler characteristic:

$$
\begin{gathered}
\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\pi_{g, n}^{-1}(C)\right)=\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}(F(C, n) / \operatorname{Aut}(C))= \\
\frac{1}{|\operatorname{Aut}(C)|} \sum_{\tau \in \operatorname{Aut}(C)} \prod_{i}\left(1+p_{i} t^{i}\right)^{\frac{\chi\left(C_{i}(\tau)\right)}{i}}=\sum_{\underline{k}} \frac{1}{|\operatorname{Aut}(C)|} \sum_{\tau \in \operatorname{Aut}_{\underline{\underline{E}}}(C)} \prod_{i}\left(1+p_{i} t^{i}\right)^{k_{i}} .
\end{gathered}
$$

Therefore:

$$
\begin{gathered}
\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)=\int_{\mathcal{M}_{g}} \sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\pi_{g, n}^{-1}(C)\right) d \chi= \\
\sum_{\underline{k}} \prod_{i}\left(1+p_{i} t^{i}\right)^{k_{i}} \int_{\mathcal{M}_{g}} \frac{\left|\operatorname{Aut}_{\underline{k}}(C)\right|}{|\operatorname{Aut}(C)|} d \chi .
\end{gathered}
$$

On the other hand,

$$
\chi^{\text {orb }}\left(\mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right)\right)=\int_{\mathcal{M}_{g}} \frac{\left|\pi_{g, \underline{k}}^{-1}(C)\right|}{|\operatorname{Aut}(C)|} d \chi=\int_{\mathcal{M}_{g}} \frac{\left|\operatorname{Aut}_{\underline{k}}(C)\right|}{|\operatorname{Aut}(C)|} d \chi
$$

Using the Proposition 3.1, we conclude that the sum in the right hand side of (5) is finite.
Corollary 3.4. The generating function $\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)$ is a rational function in t. Furthermore, for any n,

$$
\chi^{S_{n}}\left(\mathcal{M}_{g, n}\right) \in \mathbb{Z}\left[p_{1}, \ldots, p_{4 g+2}\right] .
$$

The orbifold Euler characteristic of $\mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right)$ can be computed using the combinatorial results of Harer and Zagier [13]. We will denote the greatest common divisor of integers a and b by (a, b). Let $\varphi(n)$ and $\mu(n)$ denote the Euler function and the Möbius function respectively. Define

$$
c(k, l, d):=\mu\left(\frac{d}{(d, l)}\right) \frac{\varphi(k / l)}{\varphi(d /(d, l))},
$$

Definition 3.5. Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right)$ be a partition. We define a number

$$
N(r ; \lambda)=\left|\left\{\left(x_{1}, \ldots, x_{s}\right) \in(\mathbb{Z} / r \mathbb{Z})^{s}: x_{1}+\ldots+x_{s} \equiv 0(\bmod r),\left(x_{i}, k\right)=\lambda_{i}\right\}\right| .
$$

Lemma 3.6. ([13]) The following equation holds:

$$
N(r ; \lambda)=\frac{1}{r} \sum_{d \mid r} \varphi(d) \prod_{i=1}^{s} c\left(k, \lambda_{i}, d\right) .
$$

Theorem 3.7. ([13]) The orbifold Euler characteristic of the moduli space $\mathcal{M}_{h, s}$ of genus h curves with s marked points is given by the formula:

$$
\chi^{o r b}\left(\mathcal{M}_{h, s}\right)=(-1)^{s} \frac{(2 h-1) B_{2 h}}{(2 h)!}(2 h+s-3)!
$$

where B_{k} denote Bernoulli numbers.

Theorem 3.8. The generating function for the S_{n}-equivariant Euler characteristics of $\mathcal{M}_{g, n}$ has the form

$$
\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)=\sum_{\underline{k}} c_{k_{1}, \ldots, k_{r}} \prod_{j=1}^{r}\left(1+p_{j} t^{j}\right)^{k_{j}}
$$

where p_{j} are power sums and the coefficients $c_{k_{1}, \ldots, k_{r}}$ are defined by the equation:

$$
\begin{equation*}
c_{k_{1}, \ldots, k_{r}}=\chi^{o r b}\left(\mathcal{M}_{h, s}\right) r^{2 h} \prod_{p \mid \gamma}\left(1-p^{-2 h}\right) \cdot \frac{N(r ; \lambda)}{r \prod_{i=1}^{r-1} k_{i}!} . \tag{6}
\end{equation*}
$$

Here $h=\frac{1}{2}\left(1-\sum_{j=1}^{r} k_{j}\right), s=\sum_{j=1}^{r-1} k_{j}, \gamma=\operatorname{GCD}\left(i: k_{i}>0\right), \lambda=\left(1^{k_{1}} 2^{k_{2}} \ldots(r-1)^{k_{r-1}}\right)$
Proof. By Theorem 3.3 one has $c_{k_{1}, \ldots, k_{r}}=\chi^{o r b}\left(\mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right)\right)$. Consider the moduli space $\mathcal{M}_{g}\left(k_{1}, \ldots, k_{r}\right)$ of pairs (C, τ). As in Proposition 3.1 to such a pair one can associate a genus h curve $C_{1}=C / \tau$. The projection from C to C_{1} is ramified in s points subdivided into groups of size k_{1}, \ldots, k_{n-1}. The orbifold Euler characteristic of the moduli space of genus h curves with such markings equals $\chi^{o r b}\left(\mathcal{M}_{h, s}\right) / \prod_{i=1}^{r-1} k_{i}$!.

The number of pairs (C, τ) associated to a curve C_{1} with fixed marked points was computed in [13, pages 478-479] and equals

$$
\frac{1}{r} r^{2 h} \prod_{p \mid \gamma}\left(1-p^{-2 h}\right) \cdot N(r ; \lambda)
$$

This completes the proof.
The non-equivariant Euler characteristic of $\mathcal{M}_{g, n}$ has been computed in [3. Theorem 4.3]. It can be compared with Theorem 3.8 since

$$
\chi\left(\mathcal{M}_{g, n}\right)=n!\cdot \chi^{S_{n}}\left(\mathcal{M}_{g, n}\right)\left[p_{1}=1, p_{k}=0 \text { for } k>1\right] .
$$

Example 3.9. The generating function for the S_{n}-equivariant Euler characteristics of the moduli spaces of genus 2 curves with marked points has a form [10]:

$$
\begin{gathered}
\sum_{n=0}^{\infty} t^{n} \chi^{S_{n}}\left(\mathcal{M}_{2, n}\right)=-\frac{1}{240}\left(1+p_{1} t\right)^{-2}-\frac{1}{240}\left(1+p_{1} t\right)^{6}\left(1+p_{2} t^{2}\right)^{-4}+ \\
+\frac{2}{5}\left(1+p_{1} t\right)^{3}\left(1+p_{5} t^{5}\right)^{-1}+\frac{2}{5}\left(1+p_{1} t\right)\left(1+p_{2} t^{2}\right)\left(1+p_{5} t^{5}\right)\left(1+p_{10} t^{10}\right)^{-1}+ \\
+\frac{1}{6}\left(1+p_{1} t\right)^{2}\left(1+p_{2} t^{2}\right)\left(1+p_{6} t^{6}\right)^{-1}-\frac{1}{12}\left(1+p_{1} t\right)^{4}\left(1+p_{3} t^{3}\right)^{-2}- \\
-\frac{1}{12}\left(1+p_{2} t^{2}\right)^{2}\left(1+p_{3} t^{3}\right)^{2}\left(1+p_{6} t^{6}\right)^{-2}+\frac{1}{12}\left(1+p_{1} t\right)^{2}\left(1+p_{2} t^{2}\right)^{-2}+ \\
+\frac{1}{4}\left(1+p_{1} t\right)^{2}\left(1+p_{4} t^{4}\right)\left(1+p_{8} t^{8}\right)^{-1}-\frac{1}{8}\left(1+p_{1} t\right)^{2}\left(1+p_{2} t^{2}\right)^{2}\left(1+p_{4} t^{4}\right)^{-2} .
\end{gathered}
$$

These coefficients can be matched with the ones defined in Theorem 3.8.

References

[1] J. Bergström. Cohomologies of moduli spaces of curves of genus three via point counts. J. Reine Angew. Math. 622 (2008), 155-187.
[2] J. Bergström, O. Tommasi. The rational cohomology of $\overline{\mathcal{M}}_{4}$. Math. Ann. 338 (2007), no. 1, 207-239.
[3] G. Bini, J. Harer. Euler Characteristics of Moduli Spaces of Curves. J. Eur. Math. Soc. (JEMS) 13 (2011), no. 2, 487-512.
[4] G. Bini, G. Gaiffi, M. Polito. A formula for the Euler characteristic of $\overline{\mathcal{M}}_{2, n}$. Math. Z. 236 (2001) 491-523.
[5] C. Faber, G. van der Geer. Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes. I, II. C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 381-384; no. 6, 467-470.
[6] E. Getzler. Mixed Hodge structures of configuration spaces. arXiv:math.AG/9510018
[7] E. Getzler. Resolving mixed Hodge modules on configuration spaces. Duke Math. J. 96 (1999), no. 1, 175203.
[8] E. Getzler. Euler characteristics of local systems on \mathcal{M}_{2}. Compositio Math. 132 (2002), 121-135.
[9] E. Getzler, E. Looijenga. The Hodge polynomial of $\overline{\mathcal{M}}_{3,1}$. arXiv:math.AG/9910174
[10] E. Gorsky. On the S_{n} - equivariant Euler characteristic of $\mathcal{M}_{2, n}$. arXiv:0707.2662
[11] E. Gorsky. On the S_{n}-equivariant Euler characteristic of moduli spaces of hyperelliptic curves. Math. Res. Lett. 16 (2009), no. 4, 591-603.
[12] E. Gorsky. Adams operations and power structures. Mosc. Math. J. 9 (2009), no. 2, 305-323.
[13] J. Harer, D. Zagier. The Euler characteristic of the moduli space of curves. Invent. Math. 85 (1986), 457-485.
[14] W. J. Harvey. Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford Ser. (2) $\mathbf{1 7}$ (1966), 86-97.
[15] A. Khovanskii, A. Pukhlikov. Integral transforms based on Euler characteristic and their applications. Integral Transform. Spec. Funct. 1 (1993), no. 1, 19-26.
[16] R. MacPherson. Chern classes for singular algebraic varieties. Ann. of Math. (2) 100 (1974), 423-432.
[17] O. Tommasi. Rational cohomology of the moduli space of genus 4 curves. Compos. Math. 141 (2005), no. 2, 359-384.
[18] O. Tommasi. Rational cohomology of $\mathcal{M}_{3,2}$. Compos. Math. 143 (2007), no. 4, 986-1002.
[19] O. Viro. Some integral calculus based on Euler characteristic. Topology and geometry - Rohlin Seminar, 127-138, Lecture Notes in Math., 1346, Springer, Berlin, 1988.
[20] A. Wiman. Ueber die hyperelliptischen Curven und diejenigen vom Geschlechte $p=3$ welche eindeutigen Transformationen in sich zulassen. Bihang Till. Kongl. Svenska Veienskaps-Akademiens Hadlingar 21 (18956) $1-23$.

Mathematics Department, Stony Brook University, Stony Brook NY, 11794-3651, USA
E-mail address: egorsky@math.sunysb.edu

