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Abstract

Motivation: High-parameter single-cell technologies can reveal novel cell populations of interest,

but studying or validating these populations using lower-parameter methods remains challenging.

Results: Here, we present GateFinder, an algorithm that enriches high-dimensional cell types with

simple, stepwise polygon gates requiring only two markers at a time. A series of case studies of

complex cell types illustrates how simplified enrichment strategies can enable more efficient

assays, reveal novel biomarkers and clarify underlying biology.

Availability and implementation: The GateFinder algorithm is implemented as a free and open-

source package for BioConductor: https://nalab.stanford.edu/gatefinder.

Contact: gnolan@stanford.edu or naghaeep@stanford.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modern single-cell analysis platforms can measure up to 42 anti-

body-based markers per cell in normal and malignant tissues (Han

et al., 2015; Inoue et al., 2016). Such high-parameter cytometry

data enables the identification of novel cell populations defined by

numerous, unexpected or unintuitive combinations of markers.

A host of computational tools are available to facilitate clustering of

cell phenotypes in n-dimensional cytometry data (Saeys et al., 2016;

Weber and Robinson, 2016), but human interpretation of these clus-

ters can be challenging due to biologically irrelevant or redundant

markers and the vast number of possible marker combinations.

The computational method introduced here, termed GateFinder,

constructs simple phenotypic signatures for target cell populations

identified through high-dimensional single-cell cytometry.

By inspecting all possible two-dimensional spaces and prioritizing

the most informative markers, GateFinder provides a series of poly-

gon filters (‘gates’) that best discriminate the target cell population

from all other cells. The practical uses for this concise visual descrip-

tion of a target population include (i) designing fluorescence-

activated cell sorting strategies for physical isolation of cells, (ii)

communicating novel cell types in figures for publication, (iii) creat-

ing purpose-built assays for large-scale studies, or (iv) facilitating as-

signment into cell ontogenies (Bakken et al., 2017).

2 Materials and methods

Multi-parameter cytometry data can be conceptualized as a cloud of

points in n-dimensional space. Selecting cells from this high-parameter
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cloud using a low-dimensional filter, or gate, is fundamentally imper-

fect and entails a tradeoff in terms of purity (i.e. the proportion of the

captured cells that were desired by the researcher) and yield (i.e. the

proportion of desired cells that were successfully captured). The goal of

the GateFinder algorithm is to produce a series of two-dimensional

polygon gates that best discriminates the target cells from non-target

cells according to the user’s desired balance of purity and yield.

The typical GateFinder workflow begins with the researcher

selecting a target cell population of interest such as a manually gated

sub-population or the output of a clustering algorithm (Fig. 1A, left

panel). Depending on the goals of the analysis, the parameter(s) that

were originally used to define the target population may be withheld

from the GateFinder algorithm. Briefly, the algorithm takes a ran-

domly selected sub-sample of the complete high-dimensional dataset

and projects it in all possible two-dimensional scatter plots (i.e. 861

plots for a 42-parameter dataset; Fig. 1A, second panel; see

Supplementary Material for details). For each scatter plot of target

cells, a bootstrapped outlier-detection test is used to eliminate outliers

based on a user-defined threshold. Next, a non-convex polygon gate

is constructed around the remaining target cells on each scatter plot,

which reflects the type of gates manually drawn by researchers.

The enrichment of target cells achieved by each gate is quantified by

the F-measure statistic (i.e. the harmonic mean of purity and yield).

The gate that achieves the best enrichment of the target cells is

selected as the first gate in the overall gating strategy, and the markers

defining that gate are excluded from subsequent rounds of the algo-

rithm (Fig. 1A, third panel). These steps are then repeated on the cells

within the gate, attempting to further enrich for the target cell popula-

tion using only the remaining markers. This process is repeated until

all markers have been exhausted, with each marker being used exactly

once. Finally, to produce a robust and reproducible gating strategy

(Fig. 1A, right panel), the entire gate-finding sequence is repeated sev-

eral times (five times by default) using unique random sub-samples of

the original data to avoid sub-optimal solutions. In cases where ex-

ploration of all sub-spaces is not feasible, GateFinder uses a super-

vised feature selection algorithm to limit the search to the most

relevant markers (see Supplementary Material for details).

3 Results

In the arena of clinical research, GateFinder has great potential to

translate a complex phenotypic signature identified during the dis-

covery phase into a concise, readily interpretable, low-cost assay

suitable for clinical validation. As an example, we re-analyzed a

public 15-parameter digital optical flow cytometry dataset contain-

ing measurements of peripheral blood from HIV-positive patients

(n¼466; Ganesan et al., 2010). A version of this dataset was recent-

ly used as a benchmark to evaluate automated flow cytometry ana-

lysis algorithms (FlowCAP-IV; Aghaeepour et al., 2016).

Unsupervised k-means clustering of this dataset (k¼50) identified a

cell population that was strongly associated with survival (i.e. days

from first detection of HIV until either progression to AIDS or

death). The 15-dimensional definition of this population, termed

‘Cluster 3’ (Fig. 1B), would be challenging to implement as a fluores-

cent flow cytometry assay in a clinical pathology environment due

to the high number of simultaneous fluorescent channels required.

Visual inspection of the heatmap (Fig. 1B, left panel) reveals that

Cluster 3 is a type of memory T cell (CD45ROþ Ki-67þ CD3þ

CCR5þ CD14dim), but it is unclear which markers should be priori-

tized when distilling this 15-dimensional phenotype down to a prac-

tical signature for a clinical assay. Toward this end, GateFinder

analysis was performed on a composite data file representing 10 000

cells randomly sub-sampled from each patient, with the cells from

Cluster 3 configured as the target population. The first two gates in

the GateFinder-computed gating strategy identified the cells from

Cluster 3 with 38% purity and 67% yield (Supplementary Fig. S1

and Fig. 1B, center panels). Notably, the gating strategy suggested

an unintuitive but potent combination of three markers with inter-

mediate expression (i.e. CCR7, CD57 and Ki-67), and only one

marker with high expression (i.e. CD3). When the complete dataset

was re-analyzed using only these first two gates, the strong associ-

ation with patient survival was retained (Supplementary Fig. S2 and

Fig. 1B, right panel). At least two gates were necessary, as predictive

power was lost when only one gate was used (Supplementary Figs

S3 and S4). The co-expression of CD57 and Ki-67, markers of repli-

cative senescence and recent cell cycle activity, respectively, points

toward a model that these cells have recently divided and have since

committed to senescence. In this example, the GateFinder algorithm

provided a rapid and unbiased method of simplifying a 15-param-

eter signature into a 4-parameter signature that could be more prac-

tically translated to a clinical setting, as well as provided a

mechanistic hypothesis to guide further investigation. Two addition-

al examples are provided in Supplementary Material.

4 Conclusions

GateFinder uses a combination of supervised feature-selection, heur-

istic local search and bootstrapping to address several related chal-

lenges in cytometry analysis: The identification of surrogate

phenotypes, the design of efficient follow-up experiments and

distilling mechanistic insights from high-dimensional signatures.

This flexible automated tool can accelerate the analysis pipeline for

high-dimensional single-cell experiments.

Fig. 1. GateFinder produces optimal serial gating strategies for high-dimen-

sional single-cell populations. (A) The researcher selects a target cell popula-

tion using any number of dimensions (left panel). The algorithm searches all

possible pairwise plots for the convex polygon gate that best segregates the

target population (red) from the other cells in the dataset (black; center pan-

els). To assemble a serial gating strategy, the search is repeated on the

selected cells, ignoring markers used by earlier gates, until no markers are

remaining (right panel). (B) In this example, the target population was defined

as the k-means cluster that best predicted survival in 15-parameter polychro-

matic cytometry data an HIV cohort (Cluster 3; left panel, blue rectangle).

Association with survival was quantified by Cox proportional hazards ratio.

The first two gates from the serial gating strategy produced by GateFinder

(center panels) clarified the phenotype of Cluster 3 as CCR7dim Ki-67dim

CD57dim CD3þ. The association with clinical outcome was nearly as strong in

the cell population captured by the first two gates as it was in the 15-dimen-

sional target population, Cluster 3 (right panel)
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