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ABSTRACT OF THE DISSERTATION

Leveraging replicable sources of variability
to increase power and interpretability

in analyses of genomic datasets

by

Michael James Thompson
Doctor of Philosophy in Bioinformatics
University of California, Los Angeles, 2022

Professor Eran Halperin, Chair

Many types of genomic datasets—including RNA sequencing (RNAseq) and DNA methyl-

ation—are influenced by innumerable sources of variability. Frequently, analyses of such vari-
ability focus on local effects due to genetics, often overlooking the components of variability
related to context-level, individual-level, or environmental effects. Here, we leverage the
idea that sources of variability are often conserved across genomic datasets to propose two
approaches to partition variability: first into distinct biological and technical components,
and second into orthogonal context-specific and context-shared genetic components. Using
our methods, we perform more powerful and interpretable genomic association studies (such
as transcriptome- or epigenome-wide association studies), and we uncover that heritability is
more context-specific at the level of single-cell RN Aseq, whereas it is more context-shared at
the level of bulk (tissue) RNAseq. Subsequently, we perform an analysis of medical records
to elucidate the informativeness and impacts of multiple genomics data types on pheno-
type imputation tasks. We show that risk scores derived from one’s methylation are more
informative than risk scores derived from one’s genotypes in imputation tasks. The work
presented here shows lasting impact on the design of multiple classes of genomic association

studies as well as studies of the utility of genomic biomarkers in electronic medical records.

1



The dissertation of Michael James Thompson is approved.
Bogdan Pasaniuc
Matteo Pelligrini
Noah A. Zaitlen

Eran Halperin, Committee Chair

University of California, Los Angeles

2022

1l



To my family,
for their cromulent encouragement and support,
and to Cara,

for reminding me life ain’t chess.

v



TABLE OF CONTENTS

List of Figures . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . s, XV
Acknowledgments . . . . . .. Lo Xix
Vita . . . xXx11
1 Introduction . . . . . . . . . 1

1.1 Scope of Research . . . . . . . . . . . .. .. 1

1.2 Contributions and Overview . . . . . . . . . . . . ... 3

2 Distinguishing biological from technical sources of variation by leveraging

multiple methylation datasets . . . . . . . . ... ... ... .. .......... 5
2.1 Background . . . . ... 5
2.2 Methods . . . . . . . 8

2.2.1 A brief introduction to canonical correlation analysis . . . . . . . .. 8
2.2.2 A formal description of CONFINED . . . .. ... ... ... .... 10
2.2.3 Simulation of low-rank structure . . . . . . . .. ..o L. 12
2.24  Permutation testing . . . . . . ... Lo 13
2.2.5  Usage of other methods . . . . .. .. ... ... ... ... ..... 13
2.2.6 Datasets analyzed . . . . . . .. .. oL 14
2.3 Results . . . . . o 17
2.3.1 A brief summary of CONFINED . . . . ... ... ... .... ... 17



2.3.2  CONFINED finds biological sources of variability with high accuracy:
Analysis across datasets of the same tissue type . . . . . . . ... .. 17

2.3.3 CONFINED distinguishes between dataset-specific and shared signal:
Real data analysis with simulated dataset-specific effects . . . . . .. 22

2.3.4 CONFINED finds the shared biology across datasets: Analysis of
datasets of different tissue types . . . . . . .. ... 24
2.4 DISCUSSION . . . . . . .. e 26

3 Multi-context genetic modeling of transcriptional regulation resolves novel

disease loci . . . . . . .. 31
3.1 Background . . . . ... 31
3.2 Methods . . . . . . . 34

3.2.1 An overview of the CONTENT model . . ... ... .. ....... 34
3.2.2  Decomposing multilevel data . . . . . . ... ... 35
3.2.3 A formal description of CONTENT . . . . ... .. ... ... .... 36
3.2.4  Controlling the false discovery rate across contexts . . . .. ... .. 38
3.2.5 Comparison to other methods . . . . . ... .. ... ... ... ... 39
3.3 Results . . . .. o 45
3.3.1 Methods overview . . . . . . . ... 45
3.3.2 CONTENT is powerful and well-calibrated in simulated data. . . . . 46

3.3.3 CONTENT improves prediction accuracy over previous methods in
the GTEx and CLUES datasets . . . . . .. ... ... ... ..... 48

3.3.4 CONTENT discovers significant context-specific components of ex-
pression in bulk multi-tissue and single-cell datasets. . . . . . .. .. 51

3.3.5 CONTENT more accurately distinguishes disease-relevant genes than
traditional TWAS approaches in simulated data. . . . . . . . .. ... 52

vi



3.3.6  Application of CONTENT to TWAS yields novel discoveries over pre-
vious methods. . . . . . ... 54
3.4 DIScussion . . . . . . ... e e e e e o8

4 Methylation risk scores are associated with a collection of phenotypes

within electronic health record systems . . . ... ... ... ... ....... 63
4.1 Background . . . ... 63
4.2 Methods . . . . . . . 65

4.2.1 Electronic Health Record Data . . . . . .. ... ... ... ... .. 65
4.2.2 Patient Ascertainment . . . . . . .. ... L 66
4.2.3 Medication Usage . . . . . . . . . ... 67
4.24 Lab Results . . . . . ... 68
4.2.5 Diagnosis Codes . . . . . . . . .o 68
4.2.6  Preprocessing of genotype data for cross-validation . . . .. .. ... 69
4.2.7 Preprocessing and imputation of genotype data for comparison to ex-
ternal models . . . . ..o 69
4.2.8 Preprocessing of methylation array data . . . . . ... ... .. ... 69
4.2.9 Imputation using baseline medical features . . . . . . . ... ... .. 70
4.2.10 Imputation using a single penalized linear model . . . . . . . . . . .. 70
4.2.11 Imputing lab results using EHR data and MRS values with softImpute 71
4.2.12 Hypothesis testing . . . . . . . ... L 72
4.2.13 Imputing external polygenic risk scores into the ATLAS cohort . . . . 73
4.3 Results . . . . . . 75
4.3.1 Risk model description . . . . . . ... 75
4.3.2 Methylation risk scores significantly outperform the baseline and PRS

models . . .. 75

vil



4.3.3

4.3.4

4.3.5

4.3.6

4.3.7

Using methylation risk scores improves imputation approaches . . . .
Methylation risk scores will improve with larger sample sizes . . . . .
Comparing MRS to UKBiobank PRS . . . . . . ... ... ... ...
Evaluation of methylation risk scores across ancestral populations . .

Replication of methylation risk scores across external datasets

4.4 DISCUSSION . . . o o o

81

82

83

85

A Supplementary Material - Methylation risk scores are associated with a

collection of phenotypes within electronic health record systems . . . . . . .

References

viil



2.1

2.2

2.3

24

LIST OF FIGURES

CONFINED compared to previous factorization approaches. Previous reference-
free methods based on single-matrix decompositions (e.g. principal component
analysis, non-negative matrix factorization) capture the dominant sources of vari-
ability which may be composed of both biological and technical effects (left).

Here, we propose a method to capture solely biological variability (right).

A comparison of CONFINED and previous reference-free methods in capturing
leukocyte composition. We used each methods’ components to capture cell-type
proportions as estimated by the reference-based method of Houseman et al. across
CD4 T cells, CD8 T cells, monocytes, B cells, natural killer cells, and granulocytes

in whole-blood data from an aging study (Hannum et al.) as well as in whole-

blood from a study of Rheumatoid arthritis (Liu et al., results omitted for brevity). 18

Biological drivers of variability captured by across a range of sparsity. We paired
a whole-blood dataset (Liu et al.) with another whole blood dataset (Hannum
et al.) and with a brain dataset (Lunnon et al.) to capture sources of variability
in each dataset. We fit a linear model for each source of variability was using 10
components to obtain an R? value. We varied the percentage of CpG sites used

from 1% (nearly entirely sparse) to 100% (no sparsity). . .. . ... ... ...

Capturing cell-composition in the presence of simulated technical noise. We added
simulated batch effects to the whole-blood datasets of Liu et al. and Hannum et
al. and compared the ability of, ReFACTor, PEER, PMA, and NNMF to capture
cell-type composition in whole-blood. Here, we show the results of the Hannum
et al. dataset, however the results of each method were quantitatively similar

across both datasets. . . . . . . . .
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2.5

2.6

3.1

3.2

Highlighting treatment effect. We removed from a dataset with simulated treat-
ment effect the components generated by CONFINED. Notably, this simulated
treatment effect was not shared across datasets. On the left, PCA performed on
the dataset prior to removing the CONFINED components, and on the right the
PCA of the dataset after regressing out the CONFINED components. . . . . .

Capturing shared biology across datasets. To validate that CONFINED finds
biology shared across datasets, we gathered 2 datasets for 9 tissue types, then
considered their CCA-based correlations as a metric of similarity. Here, we per-

form hierarchical clustering, using as a metric of similarity the mean correlation

of the top 10 CCA correlations. . . . . . . . . . . .. ... ... ... ...

Gene expression correlation across tissues in the GTEx study. Using a linear
mixed model with bivariate REML, we calculated cis-genetic and residual (which
captures variance due to both trans-genetic effects as well as residual effects)
variance and covariance components for each gene-tissue pair across GTEx. The
gray units indicate tissue pairs with less than 10% sample overlap. In both
the genetic (upper) and residual (lower) components, there was widespread cis-
genetic and residual correlation, with the brain tissues showing higher correlations

compared to other tissues. . . . . . . . . ...

Hierarchical false discovery correction. Here, we show the structure of the hy-
pothesis tests for determining whether a gene has a heritable component. A gene
(green, top level) is considered heritable if it has a heritable context-shared com-
ponent or if it was heritable for a specific context (blue, second level). A given
gene-context may be heritable due to either the full or context-specific model of

CONTENT (red, third level). . . .. ... ... . .. . ... .
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3.3

3.4

An overview of the CONTENT approach. CONTENT first decomposes the ob-
served expression for each individual into context-specific and context-shared
components following Lu et al. Then, CONTENT fits predictors for the context-
shared component of expression as well as each context-specific component of
expression (e.g., liver). Finally, for a given context, CONTENT combines the

genetically predicted components into the full model using a simple regression. .

CONTENT is powerful and well-calibrated in simulated data. Accuracy of each
method to predict the genetically regulated gene expression of each gene-context
pair for different correlations of intra-individual noise across contexts. Mean ad-
justed R? across contexts between the true (A) full (context-specific + context-
shared), (B) shared, and (C) specific genetic components of expression and the
predicted component for each method and for different levels of intra individ-
ual correlation. The context-by-context approach and UTMOST output only
a single predictor, and we show the variability captured by this predictor for
each component of expression. CONTENT, however, generates predictors for all
three components of expression, and notably, CONTENT (Specific) and CON-
TENT(Shared) capture their intended component of expression without captur-
ing the opposite (i.e. the predictor for CONTENT(Specific) is uncorrelated with
the true shared component of expression and vice versa). We show here the
accuracy for each component and method on gene-contexts with both context-
shared and context-specific effects, but show in Figure ?? the accuracy for all

gene-contexts Pairs. . . . . ... ... e e
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3.5

3.6

3.7

CONTENT outperforms existing approaches in the GTEx and scRNA-seq CLUES
datasets. (A,D) Number of genes with a significantly predictable component
(hFDR < 5%) in GTEx (A) and CLUES (D); the sample sizes for each con-
text are included in parentheses. (B,E) Ratio of expression prediction accuracy
(adjusted R?) of the best-performing cross-validated CONTENT model over the
context-by-context (green) and UTMOST (blue) approaches (median across all
genes significantly predicted by at least either method). Numbers above one in-
dicate higher adjusted R? and thus prediction accuracy for CONTENT. (C,F)
Prediction accuracy of CONTENT (Full) and CONTENT (Shared) when a gene-

tissue has a significant shared, specific, and full model. . . . . . . .. .. .. ..

Contribution of context-specific genetic regulation in GTEx and CLUES. (A,C)
Number of genes with a significant (FDR< 5%) CONTENT (Specific) model of
expression in GTEx (A) and CLUES (C). Color indicates sample size of con-
text. (B,D) Proportion of expression variance of CONTENT(Full) explained by
CONTENT (Specific) and CONTENT (Shared) for genes with a significant CON-
TENT(Full) model. . . . . . .. ...

CONTENT(Full) is powerful, sensitive, and specific in simulated TWAS data.
Average AUC from 1,000 TWAS simulations while varying the overall heritabil-
ity of gene expression. Each phenotype (1,000 per proportion of heritability)
was generated from 300 (100 genes and 3 contexts each) randomly selected gene-
context pairs’ genetically regulated gene expression, and the 300 gene-context
pairs’ genetically regulated expression accounted for 20% of the variability in
the phenotype. In genes with low heritabilityy, CONTENT(Shared) performed
similarly to CONTENT (Full), however CONTENT (Full) was the most powerful
method in discovering the correct genes for TWAS across the range of heritabil-
ity. CONTENT (Full) was significantly more powerful than UTMOST and the

context-by-context approach at all levels of heritability. . . . . . ... ... ...
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4.1

4.2

4.3

4.4

Self-reported ancestry along genetic PCs We show the primary self-identified eth-
nicity in each plot individually. For the analysis using external PRS we limited
the set of white-identifying individuals to those who additionally had a PC1 score

of — < .01. We show the individuals used in our analysis in plot E. . . . . . ..

MRS increases imputation accuracy on a variety of outcomes (Top) The perfor-
mance of the PRS (blue) and MRS (green) imputations on the y-axis with the
baseline model performance on the x-axis. The performance of binary phenotypes
(Phecodes, medications) is measured using area under the ROC curve (AUC) and
the performance of continuous phenotypes (lab results) is measured using pro-
portion of variance explained (R?). Shown is the performance on the union of
outcomes that were significantly improved over the baseline model by either the
MRS or PRS and that were significantly imputed their corresonponding predictor
(72 Phecodes, 59 medications, and 31 labs). (Bottom) The disease incidence as
a function of the PRS (blue) and MRS (green) binned by deciles (left, middle);
and the observed Urea Nitrogen lab result value plotted against its imputed value

(right). . . . o

Improvement in lab result imputation performance by including MRS For lab re-
sults that were significantly better imputed using a matrix completion imputation
procedure that included the MRS values, we compare the quality of the imputed
values (R?) using only the EHR data (SoftImpute) to the values generated when
including the MRS values in addition to the EHR data (SoftImpute4+MRS).

Imputation accuracy may improve with additional samples We downsampled the
number of individuals to evaluate the imputation performance as a function of
sample size using a well-imputed medication, lab value, and Phecode. The per-
formance is significantly affected by the number of individuals, suggesting that
there is additional power to be gained with the addition of more methylation

samples. .. oL
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4.5

4.6

Labs as imputed by methylation, genotypes, and an externally-trained polygenic
risk score The cross-validated R? between the true and imputed lab value on 541
unrelated patients of non-Hispanic-Latino white-identifying individuals using a
baseline predictor as well as a baseline predictor with methylation, genotypes, and
a PRS externally-trained from UKBiobank summary statistics. HDL corresponds

to high-density lipoprotein cholesterol and HGBA1C to glycated hemoglobin.

Best methylation-imputed Phecodes within ancestral populations. After training
a model on the entire heterogeneous population of individuals, we evaluated the
predictive performance within each population separately. We observed only 6

(of 60) significant differences between self-reported ancestral groupings.
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LIST OF TABLES

Gene Ontology Enrichment of sites ranked by CONFINED. We tested enrichment
of the highest-ranked sites by CONFINED in a blood-blood pair of datasets. Here,
we set the sparsity parameter based on a rule learned through cross-validation
(t = 2072), however we observed qualitatively similar results across a range of
sparsity parameters, with increasing significance when we included a relatively

larger number of CpG sites. . . . . . . . . . .

GWAS summary statistics used as input for TWAS. Abbreviation used for each
trait as well as and its respective study and sample size. The collection of traits
from the UKBiobank were self-reported and measured on the same set of indi-

viduals across traits. . . . . . .. L

CONTENT outperforms existing methods in TWAS across 22 complex traits
and diseases. TWAS results (unique loci, merging genes within 1MB) across
22 complex traits and diseases using weights output by CONTENT, UTMOST,
and the context-by-context method. CONTENT(AIl) refers to the collection of
all loci output by at least one CONTENT model. CONTENT(Full) added an
average of 15% and 19% of gene-trait discoveries over the CONTENT (Shared)
and CONTENT (Specific) approaches together at an hFDR of 5% in GTEx and
CLUES respectively. See Supplementary Table 3.1 for GWAS trait information.

Cohort patient demographics. AKIN is the Acute Kidney Injury Network Clas-

sification, BMI is Body Mass Index, GFR is glomerular filtration rate. . . . . . .

Polygenic scores used for the imputed genotypes. We list below the weights used
for computing the polygenic risk scores. We downloaded the weights from the

Polygenic Score Catalogue (PGS) from two studies of the UKBiobank (Methods).
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CHAPTER 1

Introduction

1.1 Scope of Research

Innovations in sequencing technologies have led to a massive expansion of genomics datasets
available to researchers[l, 2, 3, 4]. Commonly, such datasets are used to discover associa-
tions between genetic variability and the variability of a given phenotype or collection of
phenotypes (including common traits and complex diseases[5]|, or even other genomics or
biological measurements such as RNA expression[6] and CpG methylation[7]). Association
studies are typically straight-forward analyses and enable researchers to discover regions of
the genome that are related or causal to a phenotype, potentially elucidating mechanisms or
pathways that may be informative for medicine, therapeutics, or basic science[8]. While large
and densely phenotyped genomic datasets have enabled researchers to discover a substantial
number of associations, the findings from these studies must be replicated across additional

datasets before they can be further studied and considered valid[9].

Though replication is a powerful means to instill further confidence in a purported asso-
ciation, genomics datasets are affected by innumerable sources of variability that may hinder
validation of discoveries or lead to spurious findings[10, 11, 12]. For example, epigenome-
wide associations (EWAS), which aim to implicate associations between methylation levels
at various loci and phenotypic variance, are at risk for confounding by age because age is
correlated with many phenotypes and methylation sites[13, 14, 15]. Nevertheless, age is only
one of many sources of variability in single context association analyses. Other sources of
variability can include batch effects and population structure for genotypes[16, 17], as well

as batch effects, population structure, smoking status, age, sex, BMI, and cell-type compo-



sition for DNA methylation and RNA sequencing datasets[13, 18, 19, 20, 21, 22, 23]. While
the above technical sources of variability are not of interest and should undoubtedly be ac-
counted for in analyses, the biological sources of variability may provide utility in achieving a
study-specific aim, such as maximizing prediction power or conditioning in order to interpret
an association. Accordingly, it is imperative to partition the biological variability from the

technical variability in order to mitigate spurious conclusions|24].

Moreover, genomic analyses may be further complicated in the case of multi-level studies,
or studies in which the same individual is measured across multiple contexts or datasets.
Unlike single-context studies that contain independent samples or measurements, multi-
level studies introduce further complexities at the level of variability[25]. For example,
the Genotype-Tissue Expression project (GTEx) has collected the genotypes of roughly
1,000 individuals as well as their RNA-sequencing profiles in multiple tissues[1, 2, 6]. In
addition to the aforementioned sources of variability, studies like GTEx include genomic
effects that are shared across multiple contexts, genomic effects that are specific to each
context, and individual-level effects that are shared across all context measurements of a
given individual[25, 26, 27]. Since studies like GTEx not only aim to maximize their power
by modeling all individuals at once but to understand the genomic architecture and specificity
of expression and disease, they must model the individual-level and genomic effects that are

replicated across contexts[27].

Finally, it is essential to evaluate the utility of various data types and their associated
variability in downstream (e.g., medical) tasks[28]. Electronic health records (EHR)—which
are often heterogeneous and sparse due to the fact that there may exist preference toward, for
example, ordering more diagnostic tests and lab panels for individuals who are perceived to
be at greater risk for an outcome than an otherwise healthy individual—present an excellent
opportunity for highlighting the utility of external biomarkers[29]. Primarily, the sparsity
present in EHR can lead to bias when performing imputation tasks, as the collection of
individuals from which the estimator is generated is unlikely to be representative of the

individuals for whom the imputation is performed[29]. Consequently, researchers have turned



to using external measurements of risk derived from patients’ genomics measurements, such
as polygenic risk scores (PRS). PRS, though associated with many outcomes, are often
population-specific and do not replicate across groups of individuals with varying ancestry[28,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42]. Owing to these constraints, it is crucial to

use a biomarker that leverages sources of variability that are replicable across populations.

1.2 Contributions and Overview

In this dissertation, we propose two computational approaches to model the replicable sources
of variability present in genomics datasets: the first focuses on disentangling biological from
technical sources of variability, and the second on modeling intra-individual effects to par-
tition context-shared from context-specific genetic effects. We next leverage the fact that
variability in DNA methylation datasets is often comprised of a wider range of biologically
replicable sources than variability in genotype datasets to perform biomarker-informed im-

putation tasks in electronic medical records.

Chapter 2 begins by describing and classifying sources of variability in genomics datasets
to motivate our introduction of CONFINED—an approach to disentangle technical from
biological sources of variability. In brief, genomics datasets are affected by measurable and
unmeasurable confounders, both of which can be of biological (e.g., cell-type composition
or age) or technical (e.g., batch effects) origin. We developed CONFINED, an approach
based on sparse canconical correlation analysis (CCA), to model the fact that technical
variability is often dataset-specific, whereas biological effects are largely conserved across
data. CONFINED finds replicable sources of variability that are conserved across datasets
and improves over previous reference-free methods in the estimation of confounders such
as cell-type composition, age, and sex. Moreover, we use simulations and real data to show
that CONFINED is robust to batch effects and consistently generates components that reflect

shared biology (even across multiple tissue types).

In Chapter 3, we present a decomposition and model—termed CONTENT—to capture



context-shared and context-specific genetic effects while leveraging the intra-individual effect
present in multi-level studies. We apply CONTENT to GTEx and to CLUES (an in-house
single-cell RNA sequencing dataset of peripheral blood mononuclear cells) and show that
CONTENT is substantially more powerful than previous approaches when building genetic
predictors of expression. Subsequently, we perform transcriptome-wide association studies
(TWAS) on a collection of phenotypes and show that the models built by CONTENT not
only discover more associations than models built by previous approaches, but that they
are more interpretable, as they properly attribute genetic variabilty to its context-shared or
context-specific component. Finally, we use CONTENT to show that with bulk, tissue-level
RNA-sequencing, genetic effects are largely context-shared, whereas with single-cell-level

RNA-sequencing, genetic effects are mostly context-specific.

Though polygenic risk scores (PRS) are associated with a variety of outcomes, their use
in risk prediction is often coupled with covariates to improve power[28, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40]. Since methylation is influenced by many replicable sources of variability—
including genetics, age, environment, diet, smoking status, exercise and lifetyle choices—we
hypothesized that it would capture multi-factorial signal about predispositions to clinical
conditions and therefore complement one’s genetics as a clinical prediction tool[10, 13, 18, 19,
20, 21, 22, 23]. In chapter 4, we develop methylation risk scores (MRS) for over 600 outcomes
in UCLA’s EHR. We compare the MRS to in-house and external (UK Biobank) PRS and
show that MRS are substantially more accurate than PRS in terms of R* and AUC on a
variety of outcomes. Moreover, MRS replicated across multiple ancestral populations and
in several external datasets. Lastly, we show that existing state-of-the-art EHR imputation
approaches can be improved by adding MRS to their input. Our work provides one of the
most extensive comparisons of MRS to PRS and demonstrates the potential utility of MRS

as a clinical biomarker.



CHAPTER 2

Distinguishing biological from technical sources of

variation by leveraging multiple methylation datasets

2.1 Background

While technological advances have provided a surplus of methylation datasets, analyses of
these datasets are often complicated by innumerable possible sources of variability [11, 12].
In particular, epigenome-wide association studies (EWAS) and studies that aim to implicate
observed methylation signal to phenotypic variance are particularly at risk for false asso-
ciations due to unknown drivers of the observed signal that globally affect the epigenome
[43, 44, 45]. For example, age is correlated with a large number of methylation sites and
phenotypes[13, 14, 15], and thus if not corrected for, association between a specific methy-
lation site and a phenotype may be primarily driven by a confounder such as age. In order
to mitigate spurious associations in such association studies, it is crucial to elucidate and
account for the sources of variation that globally affect the methylation patterns in the

genome.

Sources of global methylation effects can be either technical or biological, and may also
be measured or unmeasured. In the case of technical sources, most typical are batch effects,
or variation resulting from different technicians or conditions during the data-preparing
steps [46]. These sources should undoubtedly be identified and accounted for in analyses,
for example by balancing cases, controls, and samples from different datasets, including
measured potential confounders as covariates, regressing out the sources of confounding

signals if they are measured, or otherwise estimating these potential sources of technical



effects and accounting for their estimates [24].

The case of biological sources is more complex; biological sources of variation such as age,
sex, cell-type composition, genetics, ethnicity, co-morbidities, or responses to environmental
factors like medication intake or smoking status indeed affect the global methylation patterns
in the genome, and they are also often correlated to the phenotype of interest[13, 19, 20, 21,
22, 23]. However, due to logistical limitations, often only a few of these sources of biological
variation are measured in a given study; moreover, it is often the case that some of the sources

of variation that are correlated with the phenotype are unknown and hence unmeasured.

Unlike technical effects, there is much debate over the best practice of using these biolog-
ical sources of variation in a model (e.g., [21, 43, 47, 48]) since one can argue that identifying
these sources is an important ingredient in understanding the disease mechanism. More-
over, identifying these biological sources of variation may be useful in prediction algorithms
related to the studied phenotype. In other words, it is context-specific whether one should
include biological sources of variation in their model-—considering the additional sources as
confounders—or simply derive a model considering only the observed signal and accounting

for the technical effects[49].

To capture signal corresponding to specific biological sources of variation, reference-based
methods have been proposed. In the case of methylation, one commonly researched source of
biological variability is cell-type composition. Houseman et al. developed an approach to es-
timate the true cell-type proportions in methylation datasets using “methylation signatures”
(estimates of cell-type-specific methylation levels across a population)[50]. Reference-based
methods and methods that leverage prior statistics, however, are limited to known sources
of variability for which such reference data exists. In many cases, either the sources of vari-
ability are unknown, or there is no reference data that can be utilized for these methods
(e.g., factors such as diet and exposure to air pollution[51, 52, 53], and tissues such as solid

tumors or adipose[54]). In such cases, reference-based methods cannot be used.

In an attempt to overcome the above limitations, many reference-free methods [55, 56,

54, 57, 58, 59, 60], have been proposed. Though these methods can correct for cell-type
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Figure 2.1: CONFINED compared to previous factorization approaches. Previous reference-
free methods based on single-matrix decompositions (e.g. principal component analysis,
non-negative matrix factorization) capture the dominant sources of variability which may
be composed of both biological and technical effects (left). Here, we propose a method to
capture solely biological variability (right).

CONFINED

composition in EWAS [61, 58] and may also capture other sources of variability, they are
limited by the fact that it is impossible to know whether their components reflect biological or
technical signal (Figure 2.1). While technical signal is not of interest and should be accounted
for in the analysis, the biological signal can provide useful insights about underlying biological

phenomena, for instance by being used to model the interaction with the methylation signal.

In this chapter, we propose a reference-free method that disentangles the technical sources
of variation from the biological sources of variation. Our method is based on the observa-
tion that the same biological sources of variation typically affect different studies that are
performed under the same conditions (e.g., on the same tissue type), while technical variabil-
ity is study-specific. Thus, unlike previous unsupervised methods that utilize single-matrix
decomposition techniques to account for covariates in methylation data, we propose the
use of canonical correlation analysis (CCA), which captures shared signal across multiple
datasets. In brief, CCA finds shared structure between two datasets by finding maximally-
correlated linear transformations of the datasets and is used across many fields including
cognitive science[62], psychology[63], and imaging[64]. CCA has been used in the context of
genomics to capture genome-wide similarities between different genomic measurements (e.g.,
gene expression and genetics[65, 66], gene expression and copy number alterations[67, 68])

for the same set of individuals. As opposed to this traditional use of CCA, our method,
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named CONFINED (CCA ON Features for INter-dataset Effect Detection), searches for
genome-wide similarities between one methylation profile across two sets of individuals. By
instead searching across a single genomic profile, we capture shared structure inherent to the

underlying biology of the datasets.

The key discrepancy between CONFINED and previous reference-free methods is that
CONFINED will only capture shared sources of variability. There are two notable examples
in which a method like CONFINED can be leveraged over unsupervised methods that capture
dataset-specific variability. First, when capturing unmeasurable and unknown sources of
variability CONFINED will distinguish between the technical and biological components of
such sources, as technical variability tends to be dataset-specific. Second, if the goal of a
study were to elucidate the effects of a dataset-specific effect such as a treatment effect,
and one wished to capture and control for covariates, single-matrix methods would fail and

adjust away the effect of interest.

We evaluated the performance of CONFINED through both simulated and real data. Our
evaluations demonstrate that CONFINED captures signal from only biologically replicable
sources of variability. We show, as examples, CONFINED’s improvement over previous
methods by comparing their performance in capturing methylation signal due to known,
measurable sources of variability such as cell-type composition, age, and sex in several whole-
blood datasets. We also demonstrate that by inducing sparsity, CONFINED prioritizes
features that recapitulate biological functionality inherent to both datasets. For example,
when pairing two whole-blood datasets together, the sites best ranked by CONFINED were

significantly enriched for immune cell function.

2.2 Methods

2.2.1 A brief introduction to canonical correlation analysis

We first explain the general idea of canonical correlation analysis (CCA) [69]. In the simplest

terms, CCA attempts to maximize the correlation of two matrices via linear transformations.



CCA takes as input two matrices X; of dimension n x m; and X, of dimension n X my where
n > mq and my. In other words, both matrices have the same number of rows but not
necessarily the same number of columns. CCA then attempts to find m;- and mso-length

vectors a; and as, such that the correlation of X;a; and Xsas is maximized:

max corr(Xjaq, Xoaz) (2.1)
ai,a2
To produce a; and as, we first obtain vectors b, and by, the eigenvectors corresponding to

the largest eigenvalues of the following matrices (where X; and Xy are column-centered):

11/2
M, = - (XT X)) V2(XT X0) (XS Xo) ™2(XT X)) (XT Xq) 712

11/2 3 _ _
M, = n (X3 X)™2(XT X)) (XT X0) ™2 (XT Xo) (XT Xp) 7'/

The vectors a; and ay are then obtained from a simple change of basis of b; and by
respectively:
1 _
a] = (—XlTXl) 1/261
n
1 _
[ (—XQTXQ) 1/262
n
The products Xia; and Xsas are referred to as the first canonical variables of the input
matrices, and we let vy = Xja; and uy = Xsas. CCA can produce up to min{m,, my} pairs

of canonical variables from the remaining eigenvectors, however, the first pair of canonical

variables (corresponding to the largest eigenvalue) has the greatest correlation.

When seeking the second and subsequent pairs of canonical variables, one additional
restriction is introduced—the new canonical variables must be orthogonal to all the previous
ones:

corr(ugi), ugj)) = Corr(ug), ugj)) =0 i<j

Given this constraint, the solution for the i*" pair of canonical variables conveniently fol-

9



lows the same formula as the first pair, only that we substitute the eigenvector corresponding
to the i*" largest eigenvalue for the eigenvector corresponding to the largest eigenvalue. We
then column-wise concatenate all ugj ) for each dataset to obtain two matrices (U; and Uy) of
canonical variables of size n x min{my, ms}. Simply put, the collection of canonical variables

for each dataset is defined as follows:
Ul = XlAl U2 - XQAQ (22)

Where A; and A, are the eigenvectors of M; and M, respectively. The canonical variables are
ordered such that their correlation (which is proportional to their corresponding eigenvalue)
is in decreasing order:
Corr(u(li),ug)) > corr(u(lj),ugj)) i<j
Additionally, the canonical variables have the properties that each of their variances equal

1, and the covariance of ugi) and ugj) (and ug) and ugj)) is equal to 0 when ¢ # j:
1 1
—U{U =1, =Uy Uy =1
n n

To reiterate, the basic goal of CCA is to find a; and as such that corr(Xja;,Xzaz) is max-
imized. There are min{m;y, ms} such vectors for each pair of datasets, yielding min{m;y,ms}

pairs of canonical variables.

2.2.2 A formal description of CONFINED

CCA has been used in genomics in many instances [70, 71, 72]. In these cases the rows
correspond to individuals, while the columns correspond to features of genomic measure-
ments. For example, each feature could be the expression of a specific gene in one matrix,
and in the other matrix it could be the genotype allele, i.e., in this case X; corresponds to a
gene expression matrix, and Xy corresponds to a genotype matrix, but both measurements

have been taken on the same set of individuals. In CONFINED, we transpose the problem.
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Rather than searching for shared directions between two sets of genomic measurements, we
instead search for shared directions of the same type of genomic measurement (in our case,
methylation), but across two sets of individuals. Moreover, since we find that in practice
many sources of variability in methylation only act on a fraction of the methylation sites in
the genome[55, 22], CONFINED uses sparsity by limiting the analysis to a fraction of the
methylation sites in the genome. We note that our method shares similarities with a recent
application of CCA to single-cell expression datasets [73]. However, unlike this method, we
search for shared structure across two sets of individuals rather than two sets of cells, and we

assume the number of genomic features is larger than the number of individuals (or cells).

Formally, CONFINED takes as input two matrices, X; with dimension mxn; and X, with
dimension m X ng, of m measured methylation sites for n; and ns individuals respectively.
In addition, it takes as input a sparsity parameter ¢, a dimensionality parameter [, and
an output parameter specifying the number of components to generate k. To generate its
components, CONFINED first selects the ¢ most informative features then runs CCA on

these t features:

1. Obtain U; and U, both of size m x min{n;, ny} following Equations (1) and (2).

2. Construct Ul and (72 both of dimension m X [ from the first { columns of U; and U,

respectively.

3. Generate a low-rank approximation of each dataset:

Xl :UlﬁlTXl XQZUQﬁgXQ

4. For each site 7 in dataset ¢ compute a score based on its correlation between itself and

its low-rank approximation:

SZ»(j) = corr(X(j),X-(j))

i

11



5. Rank the sites with the highest inter-dataset score:

6. Perform CCA using the sites with the top ¢ scores, returning CONFINED components
X{t]TUl[t] of size n; x k for X; and Xz[t]TUQM of size ny x k for Xs.

We set [ as the number of pairs of canonical variables with correlation greater than a
threshold A, or 1 in the case that no pairs have this correlation. In practice, we set A
to .95 and found this threshold using cross-validation. By finding the sites that are best
approximated by a low-rank, correlated transformation, we therefore assume that the sites
with the highest scores will be representative of features that are functionally shared (i.e.
correlated) between the datasets. This step is analogous to one taken by ReFACTor [55], only
that we leverage the correlated subspace of the two datasets rather than a variable subspace
of one dataset. Though we emphasize that CONFINED can be used for general sources of
global biological variation, for the purpose of comparing a single use-case of CONFINED
to other methods, we evaluated the effect of t for estimation of cell-type composition in
whole-blood datasets and found that CONFINED was robust when using a relatively small

number of sites (< 10000) and we therefore recommend a default use of 2000 CpGs.

CONFINED is available as an R package at https://github.com/cozygene/CONFINED.
The calculations in the R package were optimized with C++ code using Rcpp and ReppArmadillo.
Also included with the package is an ultra-fast function for performing CCA.

2.2.3 Simulation of low-rank structure

We evaluated the performance of CONFINED using a simulated study. For the simulations,

we generated 5(\1 for every dataset X;:

X = X+ ZW/
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Where Z; is a random matrix of “scores” of size m x r with every entry z;, drawn from the
standard normal distribution and W is a matrix of “weights” of size n; X r where every entry

(k)

wj, is drawn from the standard uniform distribution and each column w;"’ is standardized

to have norm 1.

In doing so, we add some structured, normally distributed noise that is specific to each
(k)

dataset. By varying the number and length of the weight vectors w,;"’, we can also control
the rank and magnitude of the structured noise. Intuitively, this noise emulates technical

variation, as each dataset will have its own unique set of weight vectors.

2.2.4 Permutation testing

To validate the enrichment results reported by missMethyl[74|, we performed permutation
testing. missMethyl takes as input a set (i.e. sample) of CpG sites used to test for enrichment
of gene ontology pathways, along with the population from which the sample of CpG sites
was chosen. For the purpose of the permutation tests, our sample of CpG sites consisted
of the top t sites reported by CONFINED, and the population of CpG sites was made up
of the m sites in the input matrices. For each number of sites ¢, we ran missMethyl 1000
times, using a random selection of ¢ sites from the m sites of the input datasets at each

iteration. We then compared the permutation p-values to the p-values from using the top ¢

CONFINED sites.

2.2.5 Usage of other methods

We compared CONFINED against several previous reference-free methods that were devel-
oped to capture cell-type composition. Notably, each method has several parameters the
user is left to select, and we wished to provide a fair comparison across methods. In the
case of PMA[67], we followed the authors’ code and used their cross-validation function to
estimate optimal parameters, which, as the reviewer mentions balances the fit of the model
by optimizing the sparsity. In the case of PEER[18] we simply used the code in the authors’

example in their github wiki. We also followed the authors’ recommendations for optimizing
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the sparsity parameter and feature-selection steps of ReFACTor[55]. In addition to the above
we also tried each of the methods using the top 1,000 to 10,000 most variable sites (with
a step size of 1,000) for a more fair comparison (similarly to how was done by Houseman
et al. [54]). When we induced sparsity in PMA, PEER and NNMF, the methods’ perfor-
mance were generally lower than when using no sparsity. In terms of R?, we describe the
results when using 10,000 sites and no sparsity respectively: R\, = .47 as opposed to .54,
Rippr = -49 compared to .52, Riyp = 49 instead of .54. ReFACTor benefited most from

sparsity and had the highest performance when using 2,000 sites R = .79.

2.2.6 Datasets analyzed

Throughout our main experiments, we used publicly available data generated from the II-
lumina Infinium Human Methylation 450k chip. Our analyses focused on four whole-blood
datasets and one brain-tissue dataset: (1) an analysis of Rheumatoid arthritis patients and
controls with 659 individuals from Liu et al. (GSE42861) [75] (2) a study of aging with 656
individuals from Hannum et al. (GSE40279) [76] (3-4) analysis and re-analysis of schizophre-
nia with 847 and 675 samples from Hannon et al. (GSE80417, GSE84727) [77] and (5) a
dataset from Lunnon et al. with brain tissue from 122 individuals that was used to study

Alzheimer’s disease (GSE59685) [78].

The whole-blood datasets were preprocessed following guidelines suggested by Lehne et
al. [79]. Using the R package minfi [80], we obtained and subsequently preprocessed the
raw IDAT methylation files from the Liu et al. and Hannon et al. datasets. As there was
no supplied IDAT file for the dataset of Hannum et al., we simply used their published
intensity values. Following the guidelines of Lehne et al., we first removed single nucleotide
polymorphism markers (total of 65) then applied the [llumina background correction to the
obtained intensity values treating autosomal and sex chromosomes separately. We set our
p-value detection threshold to 10716 and set the probes whose p-values did not fall below

this threshold as having missing values.

Further, we normalized the whole-blood data using quantile normalization of the intensity
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values, subdivided by probe type, probe sub-type, and color channel. After finalizing the
intensity levels, we calculated beta-normalized methylation levels for each probe. Probes
that had more than 10% of their values missing were discarded from the datasets, and the
remainder of missing values were imputed using R package impute. Additionally, following
[58], we used GLINT [81] to remove polymorphic and cross-reactive sites [82] as well as sites

from non-autosomal chromosomes.

The brain dataset from Lunnon et al. was already preprocessed using the function dasen
from R package wateRmelon[83]. Notably, this function also operates on the raw intensity
to generate normalized beta values and uses similar preprocessing steps, including quantile
normalization and the removal of single nucleotide polymorphisms. As CONFINED takes
as input matrices with the intersection of CpG sites in two datasets, the brain dataset was
also analyzed with the removal of polymorphic and cross-reactive sites as well as sites from

non-autosomal chromosomes.

Additionally, we removed from our analyses outliers and samples with missing information
about their sources of variability. Samples whose principal components scores were over four
standard deviations away from the mean were excluded, which led to us removing six samples

from the Hannum et al. dataset and two samples from the Liu et al. dataset.

We also followed filtering procedures from other works that also used the same datasets,
including the removal of consistently methylated or unmethylated sites [55, 58]. Prior to
running any analyses, we filtered out methylation sites with standard deviation less than
.02. After all preprocessing steps the dataset from (1) Liu et al. had 376021 sites and 658
individuals, (2) Hannum et al. had 382158 sites and 650 individuals, (3) Hannon et al.
381338 sites and 638 individuals, (4) Hannon et al. 382158 sites and 665 individuals, and
(5) Lunnon et al. 485577 sites and 451 individuals.

In the analysis across tissue types as well as the brain and adipose analyses in the sup-
plementary sections, we used the respective authors’ preprocessed datasets. Notably, in
many datasets, there were multiple studied phenotypes. When available, we used only the

healthy individuals for the clustering experiment. We also removed sites with low standard
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deviation (< .02) as well as sites with missing values. In the Huang et al. stomach dataset
[84], the authors processed the raw signal intensities to functionally normalized beta values
using minfi, and after filtering missing and low variables CpG sites, there were 304163 sites
for 61 individuals. [85] et al. used minfi to generate functionally normalized M-values from
stomach mucosa which we transformed to beta values for 42 individuals and 267858 sites.
The normalized beta values of the lung dataset from Wielscher et al. [86] were generated
using packages from Bioconductor and after our filtering contained 302023 sites measured
for 33 individuals. Shi et al. [87] generated their beta values using the R package methylumi
to perform exponential background correction and control-probed-based normalization, and
after our filtering we were left with 316992 sites for 244 individuals. The brain [88] and liver
[89] datasets of Horvath et al. contained Beta MIxture Quantile dilation (BMIQ) normalized
[90] beta values for 260 individuals at 315050 sites and 79 individuals at 346808 sites respec-
tively. The adipose and liver datasets from Bonder et al. [91] consisted of Subset-quantile
Within Array Normalization (SWAN)-normalized beta values that were preprocessed using
the minfi package, and after our filtering, the first adipose dataset had 287438 for 71 indi-
viduals, the second adipose dataset had 293425 sites for 71 individuals, and the liver dataset
had 265523 for 110 individuals. The kidney dataset of Wei et al. [92] was processed by the
R package RnBeads to conduct BMIQ normalization and background correction on their
beta values, and after filtering out unhealthy individuals and sites with missing values and
low standard deviation, we were left with 89763 sites for 46 individuals. The beta values for
the kidney dataset of Ko et al. [93] were processed using [llumina GenomeStudio Software
2011.1 Methylation Module 1.8, and after filtering contained 338312 sites measured at 85
individuals. Teschendorff et al. [94] generated their breast dataset beta values using the
minfi R package as well as their BMIQ normalization, and after our filtering, it contained
353644 for 92 individuals. The breast dataset of Song et al. [95] contained after filterting
beta values for 121 individuals at 324431 sites and was generated using Partek Genomics

Suite and SWAN normalization.
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2.3 Results

2.3.1 A brief summary of CONFINED

We developed CONFINED to capture biological sources of variability in methylation datasets.
As input, CONFINED takes two matrices with the same number of rows (methylation sites)
but not necessarily the same number of columns (individuals), k£ the number of components
to produce, and ¢ the number of CpG sites to use, or in other words, a sparsity parameter.
As output, CONFINED produces k components that can be used to model biological sources

of variability for each input dataset.

Notably, CONFINED is based on CCA which considers two datasets simultaneously. In-
tuitively, CCA performs a decomposition of two matrices simultaneously, and hence finds
linear combinations of features that define biological variation present in both datasets. Con-
versely, previous methods that decompose one matrix at a time essentially look for linear
or non-linear (kernel-based) combinations of features that preserve dominant structure in
a single dataset, and this structure may be a combination of both biological and techni-
cal signal. Thus, leveraging the shared structure of two datasets through CCA is crucial.
Nonetheless, there are two substantial differences between CONFINED and traditional uses
of CCA in genomic studies. First, CONFINED looks for shared structure of one methyla-
tion profile across two sets of individuals rather than looking for shared structure in one set
of individuals across two sets of genomic measurements. Second, CONFINED performs a
feature selection procedure that is critical to detect the shared sources of variability across

the different datasets.

2.3.2 CONFINED finds biological sources of variability with high accuracy:

Analysis across datasets of the same tissue type

We first evaluated CONFINED using a pair of whole-blood methylation datasets from Han-
num et al.[76] and Liu et al.[75]. Along with their methylation data were measured sources of

biological variation including patients’ disease status, age, and sex. In addition to evaluating
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CONFINED’s ability to capture the measured biological factors, we also evaluated its per-
formance on an unmeasured source of variation, cell-type composition. While in this section
we focused on using two datasets corresponding to the same tissue type, we note that the
studied phenotypes in the datasets were different (e.g., Hannum et al. studied aging whereas
Liu et al. studied Rheumatoid arthritis). As CONFINED looks for only shared biological
sources of variation, we excluded from our evaluations sources of variation that may only
appear in one of the datasets, e.g. patient status. As we show below, using CONFINED we
were able to produce components that correlated with both the measured and unmeasured
sources of biological signal across both datasets.

Average cell-composition prediction accuracy
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Figure 2.2: A comparison of CONFINED and previous reference-free methods in capturing
leukocyte composition. We used each methods’ components to capture cell-type proportions
as estimated by the reference-based method of Houseman et al. across CD4 T cells, CD8 T
cells, monocytes, B cells, natural killer cells, and granulocytes in whole-blood data from an
aging study (Hannum et al.) as well as in whole-blood from a study of Rheumatoid arthritis
(Liu et al., results omitted for brevity).

First, we evaluated CONFINED against other reference-free methods when capturing
unmeasured biological sources of variability in two whole-blood datasets. Here, we used
CONFINED to capture cell-type composition, which was unmeasured in both studies. We
treated cell-type proportion estimates from the reference-based algorithm of Houseman et al.
[54] as the ground-truth. Houseman et al. proposed a reference-based method for estimat-
ing proportions of immune cells in whole-blood methylation data by leveraging differentially

methylated regions of DNA to form methylation signatures for individual cell-types. They
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then use these signatures to obtain cell proportion estimates for several immune cells (CD4
T cells, CD8 T cells, B cells, natural killer cells, monocytes and granulocytes). In our
experiments, we fit a linear model of each Houseman-estimated cell-type proportion using
several components from each of the methods. CONFINED outperformed all of the pre-
vious methods we tested, with pronounced differences in its estimation of the composition
of monocytes and natural killer cells (Figure 2.2). To clarify if the gain in performance
was a result of CONFINED using more individuals or a more informative feature selec-
tion, we considered the situation in which two datasets are concatenated and supplied to a
single-matrix-decomposition method as a single dataset, as well as the situation in which a
single-matrix decomposition method leverages the features selected by CONFINED. In both
procedures, however, the components of the single-matrix method were less correlated to

cell-type composition than the components of CONFINED.

We next considered the ability of CONFINED when searching for known, measured
sources of variability. For the same pair of blood datasets CONFINED’s components cap-
tured age and sex with accuracy Rgge > .74 and R%_ > .70 respectively (Figure 2.3). In
the case of other methods, PMA [67] had the highest performance among previous methods,
but was greatly outperformed by CONFINED (RZ,, > .41 and RZ,, > .37). Notably, using

relatively less sparsity to capture age and sex achieved greater accuracy, however this trend

was not necessarily observed when using lower sparsity for capturing cell-type composition.

To better understand the implications of CONFINED’s sparsity parameter, we evalu-
ated the biological significance of the features selected by CONFINED using the R package
missMethyl [74]. For a given set of methylation sites, missMethyl tests for enrichment in
gene ontology (GO) pathways by first mapping the sites to genes (weighing the genes based
on the number of sites that map to them), then performing a test built off of Wallenius’
noncentral hypergeometric distribution. In order to avoid potential biases resulting from the
parametric assumptions in the model of missMethyl, we performed permutation testing us-
ing its reported p-values. Our test yielded significant enrichment for various ontologies across

multiple pairs of datasets. When we paired two whole-blood datasets, the highest ranked
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Figure 2.3: Biological drivers of variability captured by across a range of sparsity. We paired
a whole-blood dataset (Liu et al.) with another whole blood dataset (Hannum et al.) and
with a brain dataset (Lunnon et al.) to capture sources of variability in each dataset. We fit
a linear model for each source of variability was using 10 components to obtain an R? value.
We varied the percentage of CpG sites used from 1% (nearly entirely sparse) to 100% (no
sparsity).

features by CONFINED were enriched for pathways generally involved with the immune
response, leukocyte activation, and defense response. Notably, most of the significantly en-
riched pathways were related to the immune system or signaling (Table 2.1). When looking
at the enrichment for adipose and brain tissues, we saw pathways concerning vascularization
and sheathing respectively. These results underscore the importance of CONFINED’s spar-
sity and provide support for CONFINED’s ability to capture biologically meaningful signal,

such as tissue-specific cell-type functions.
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Table 2.1: Gene Ontology Enrichment of sites ranked by CONFINED. We tested enrichment
of the highest-ranked sites by CONFINED in a blood-blood pair of datasets. Here, we set the
sparsity parameter based on a rule learned through cross-validation (¢ = 2072), however we
observed qualitatively similar results across a range of sparsity parameters, with increasing
significance when we included a relatively larger number of CpG sites.

Ontology term p-value (permutation) p-value (missMethyl)
Immune system process .001 6.9e—18
Immune response .001 1.0e—15
Regulation of immune response .026 3.0e—11
Defense response .038 7.18e—11
Regulation of immune system response .039 7.18e—11
Response to external biotic stimulus .059 2.58e—10
Response to other organism .059 2.58e—10
Leukocyte activation .069 4.68e—10
Regulation of immune effector process .090 1.86e—09
Response to biotic stimulus .095 2.46e—09
Positive regulation of immune system process .100 2.89e—09
Response to bacterium .103 3.65e—09
Cell activation .104 3.77e—09
Immune effector process .104 3.77e—09
Response to stress .136 1.77e—08
Lymphocyte activation 139 1.25e—08
Positive regulation of immune response .143 1.49e—08
Regulation of leukocyte activation .145 1.59e—08
Regulation of cell activation .185 2.91e—08
Protein binding .190 3.10e—08
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2.3.3 CONFINED distinguishes between dataset-specific and shared signal: Real

data analysis with simulated dataset-specific effects

In the context of capturing biological signal, one of the main limitations of single-matrix
decomposition methods (e.g., PCA, ReFACTor [55], PEER [18], non-negative matrix factor-
ization (NNMF) [96]), is that each of their components may consist of a mixture of signal
reflective of technical noise specific to a dataset, such as batch effects, and the biological
signal. For instance, PCA and methods based on PCA, such as ReFACTor [55] and pe-
nalized matrix decomposition (PMA) [67], consider directions in the data that explain the
most variability, but this variability is not limited to strictly global biological or replicable
effects in the individual datasets. This issue may also be present in PEER [18], which in-
cludes a probabilistic version of factor analysis, as the latent factors driving the data may
also include some effect from technical variability. Similarly, in NNMF [96] a data matrix
is decomposed as a linear combination of different components, and some of the signal of
the data matrix may be deconstructed by a component that captures technical variation.
Intuitively, CONFINED should be robust to dataset-specific technical effects as it only looks

for shared structure across datasets.

To illustrate that CONFINED captures only replicable biological signal, we simulated
batch effects for two whole-blood methylation datasets from Hannum et al.[76] and Liu et
al.[75] and compared our method to several earlier methods based on single-matrix decom-
position. In this setting, we generated dataset-specific noise with low-rank structure and
added it to each of the datasets prior to running any feature selection or method. Naturally,
simulated batch effects induce technical variation in the datasets, and thus may interfere
with methods’ abilities to capture biological variation. We used the datasets with added
noise to capture cell-proportion estimates of the original datasets as reported by the method

proposed by Houseman et al. [50] (Figure 2.4).

We evaluated the performance of each method while varying the strength of simulated,
dataset-specific technical effects and found that the components of CONFINED best cap-

tured the biological signal and that they were the only components that were robust to
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Figure 2.4: Capturing cell-composition in the presence of simulated technical noise. We
added simulated batch effects to the whole-blood datasets of Liu et al. and Hannum et
al. and compared the ability of, ReFACTor, PEER, PMA, and NNMF to capture cell-type
composition in whole-blood. Here, we show the results of the Hannum et al. dataset, however
the results of each method were quantitatively similar across both datasets.

technical variation across all levels of noise (Figure 2.4). In addition to the biological signal,
the components of the previous methods captured signal pertaining to the simulated batch

effects (average R? ranging from .131 to .984 depending on the strength of the batch effect).

We also considered the scenario in which a preprocessing step is taken prior to running
each method in order to remove technical variation or noise. Here, we used Remove Unwanted
Variation (RUV) [46, 12] to generate components which we regressed out from the datasets
with added noise prior to running any of the previous methods. Using RUV as a preprocessing
step helped improve the single-matrix methods in the presence of simulated technical noise,
however the components generated by CONFINED in the presence of the technical noise (and
without any such preprocessing) were still more correlated with cell-type composition than

those produced by the single-matrix methods (average difference in R? between CONFINED
and ReFACTor > .10).

In the case where one wishes to elucidate the effects of a treatment that has been ad-
ministered to a set of individuals in one dataset, CONFINED may also be of use. In a
second simulation experiment, we simulated a rank-one treatment effect following a similar
strategy used in the batch effects simulations, only that we used the absolute value of the

batch effect scores (i.e. we assumed that the treatment effect had the same directionality
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across samples). We then added this positive treatment effect to a subset of individuals in
one of the whole-blood datasets prior to any analysis. We paired the dataset with added
treatment effects with one of the raw datasets and obtained the CONFINED components
for each dataset. Afterward, we regressed out the top 10 CONFINED components from
the treatment dataset. Comparing the PCA plots of the treatment dataset before and after
preprocessing (i.e. removing the shared signal) shows how CONFINED can be leveraged to
highlight a dataset-specific treatment effect (Figure 2.5). In the scenario where the treat-
ment effect was a dominant source of variability, using CONFINED as a preprocessing step

did not diminish the ability to distinguish between those who received treatment and those

who did not.
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Figure 2.5: Highlighting treatment effect. We removed from a dataset with simulated treat-
ment effect the components generated by CONFINED. Notably, this simulated treatment
effect was not shared across datasets. On the left, PCA performed on the dataset prior
to removing the CONFINED components, and on the right the PCA of the dataset after
regressing out the CONFINED components.

2.3.4 CONFINED finds the shared biology across datasets: Analysis of datasets

of different tissue types

We also used CONFINED’s components to capture measured sources of biological variation
across tissue-types (Figure 2.3). In one experiment, we paired a whole-blood dataset [75]
with a dataset from Lunnon et al.[78] composed from brain tissue. Notably, the accuracy

of CONFINED to capture each source of signal varied depending on the pairing of the
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tissue-type (i.e blood-blood vs. blood-brain) and the sparsity parameter used.

When pairing the blood dataset with the brain dataset, CONFINED’s components were
correlated with some of the whole-blood dataset’s measured biological factors with slightly
less strength than when pairing it with a dataset of the same tissue type (Rige > 27, R2, >
.39) (Figure 2.3), possibly suggesting a different architecture for genome-wide variation across
the different tissue types. Nonetheless, the cell-type composition accuracy for the blood
dataset when paired with the brain dataset was still relatively high (average RZ, = .54).
This is likely due to the fact that several types of immune cells are known to populate or have
immune-related functions in the brain (e.g. resident T cells [97, 98], glia [99] and neutrophils
(granulocytes)[100]). Therefore, the immune function of cells in the brain and immune cells
in the blood may follow similar pathways that could be reflected in the epigenome. The

biological sources of variability in the brain dataset were captured with overall less accuracy

than the whole-blood biological sources of variability (R2,, > .21, RZ_ > .33).

age sex

When pairing the blood and brain datasets, we observed enrichment results somewhat
similar to when using the blood-blood pair, but with less significance. The most enriched
pathways in the blood-brain pair included several immune system or hematopoietic processes,
but the less enriched pathways were primarily different than when pairing the two blood
datasets. The pathways in the blood-brain pair were generally not significantly enriched

using permutation testing, unless we used a relatively lower level of sparsity.

Considering CONFINED’s ability to find the biological signal shared across two datasets,
we performed an additional experiment in which we included datasets corresponding to
tissues from the following types: adipose, blood, brain, breast, kidney, liver, lung, and
stomach. For each tissue type, we gathered two datasets. Here, we wished to elucidate the
shared structure across tissue-types, e.g. if it were possible to use CONFINED to cluster
datasets based on their tissue type. For each pair of datasets, we saved the correlations
output by CONFINED (i.e. the correlations between the canonical variables as defined
in the Methods section), and used a statistic of these correlations to construct a distance

matrix for use in hierarchical clustering. We took the mean of the top 10 correlations
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between each pair of datasets, 7, j, and populated each entry of the matrix;; with this mean
correlation. Intuitively, this acts a metric of similarity between each dataset. After running
hierarchical clustering, we found that tissues of the same type clustered together for each
of the datasets. We believe that this presents evidence that CONFINED is in fact finding

signal that recapitulates the underlying biology shared between two datasets.
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Figure 2.6: Capturing shared biology across datasets. To validate that CONFINED finds
biology shared across datasets, we gathered 2 datasets for 9 tissue types, then considered their
CCA-based correlations as a metric of similarity. Here, we perform hierarchical clustering,
using as a metric of similarity the mean correlation of the top 10 CCA correlations.

2.4 Discussion

Here, we propose CONFINED, a sparse-CCA-based method to capture biologically replicable
signal by leveraging shared structure between datasets. Though CONFINED captures the
shared variability between two datasets, there may be sources of variability that are unknown
or unmeasurable present in the datasets, and we cannot evalaute CONFINED’s performance
for these sources of variability. Therefore, we have highlighted the strength of CONFINED
through examples of known measured and unmeasured sources of variability. Specifically,

we showed its use and improved accuracy over other methods in the context of capturing
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cell-type composition between datasets of the same tissue type. We also showed how it can
be used to capture other sources of biological signal shared across datasets. Moreover, we
provide evidence that CONFINED can be used as a feature selection mechanism, prioritizing

features that are functionally shared between datasets.

Across several datasets we demonstrated that CONFINED accurately captured global
biological sources of variability. In the case of cell-composition, the components produced
by CONFINED better captured cell-type composition across all cell-types in methylation
datasets (of the same tissue-type) than previous reference-free methods that were designed
for capturing signal from cell-type composition. Additionally, CONFINED’s components
captured other replicable sources of variability such as age and sex. While cell-type compo-
sition was better captured when using a pair of datasets of the same tissue-type, we note
that other biological factors may be better captured when pairing two datasets of different
tissue types. Our results provide grounds for CONFINED as a means to capture replicable

signal from biological sources across datasets.

Additionally, CONFINED is robust to technical variability. Through simulations, we
demonstrated that CONFINED accurately captures biological signal in the presence of
strong, dataset-specific technical noise. Other methods that leverage decompositions of sin-
gle matrices produced components corresponding to the simulated technical noise, but the
components produced by CONFINED were unaffected by the simulated noise. Therefore,
leveraging multiple datasets through CONFINED can provide researchers a way to robustly
account for signal arising from technical variation. Though the premise of CONFINED is
to leverage the shared structure across two datasets to distinguish technical noise, we per-
formed an experiment in which CONFINED uses a single dataset split into halves as input
instead of two separate datasets. In this experiment CONFINED suffered from issues simi-
lar to single-matrix methods, and its performance was negatively affected by the presence of
dataset-specific variability (average R? from > .73 to > .55 without and with batch effects

respectively).

Though we develop a cross-validation routine and suggest a default setting for the sparsity
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parameter (i.e. the number of features) in the specific case of capturing cell-type compo-
sition in methylation whole-blood datasets, we emphasize that the selection of the sparsity
parameter in other cases may be non-trivial. Evaluating CONFINED on multiple datasets
and sources of biological variability aside from cell-type composition, we found that the op-
timal sparsity parameter for cell-type composition may not be optimal for other covariates
of interest. For instance, with a pair of blood datasets where the sex chromosomes were
removed, sex was better captured as the number of features increased. This may be due to
the fact that specific biological functions—such as the immune response—may be confined
to several thousand methylation sites, whereas autosomal changes in methylation patterns
due to more broad characteristics—such as age or sex—are more minute, and thus require
more information or sites to capture. (Of course, when the sex chromosomes are included in

the analysis, the accuracy of CONFINED can improve dramatically (R2

sex

> .9).) We suggest
future investigations take place and considerations about underlying biology be taken into
account for selecting the optimal sparsity parameter for biological signal aside from cell-type

composition.

We also showed the utility of CONFINED as an unbiased way of selecting informative
and potentially biologically relevant methylation sites. Intuitively, as CCA finds shared
structure between datasets, this structure should be reflective of biological mechanisms that
are common to a pair of datasets. In our experiments, CONFINED found methylation sites
that capture the shared variability across different blood tissues, and this set of sites was
significantly enriched for immune function. Similarly, for the brain-blood pair, we observed
enrichment for some immune and hematopoietic function, but the enrichment was generally
not significant. Thus, our results suggest that our feature-selection method may be useful

in highlighting pathways that are similar across two datasets.

A similar concept to CONFINED has been previously introduced in the context of single-
cell RNA-sequencing by Butler et al.[73]. However, mathematically, the problem Butler et
al. solve is different as the number of “individuals” (in their case, cells) in single-cell RNA

is much larger than the number of features (genes), whereas in our setting, the number
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of individuals is much smaller than the number of features (methylation sites). Moreover,
we show that a simple application of CCA does not suffice in the case of methylation,
and thus CONFINED performs feature selection prior to performing CCA. In other words,
CONFINED utilizes sparsity.

Importantly, determining the input and usage of the output of CONFINED is goal-
specific. As the assumption of CONFINED is that the biological variability in two datasets
is shared, we suggest pairing two datasets with similar characteristics, e.g. design protocol
or sample collection. In such cases, for any pair of datasets, CONFINED can be used to
capture variability or model biological factors that are present in both datasets for use in
downstream analyses. On the other hand, CONFINED can be used as a preprocessing step
to make dataset-specific effects more prevalent. In Figure 2.5, we show how CONFINED
can be used to highlight a treatment effect that was present in a subset of individuals in
one of the input datasets. Thus, CONFINED enables researchers to decide how they wish

to model the shared or unshared variability in their datasets.

The parameters of CONFINED can be fine-tuned for downstream analyses. In general,
we recommend inducing sparsity to capture variability due to specific functions, such as
cell-type composition. For more broad characteristics, such as age and sex, we recommend
less sparsity is induced. There may be tradeoffs when attempting to optimize the correlation
of the CONFINED components and specific sources of variability, and we suggest from our
empirical results using around fifty percent sparsity. We found the correlation threshold to
be robust across a large range of values, but suggest using a relatively higher correlation such
as .95. Lastly, we suggest using a low number (e.g. 6 or 10) of CONFINED components as
people often do in EWAS with principal components [55, 101].

In summary, our results suggest that CONFINED will be a useful tool in capturing effects
of biological variability as well as highlighting shared cellular mechanisms across multiple
datasets. The components from CONFINED can be used in downstream analyses that wish
to model only the biological signal of a methylation dataset or to include certain biological

signals as confounders in statistical analyses. We suggest future research into the selection
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of ¢, the number of informative sites to use for recovering signal for specific biological factors,
as well as research into which pairs of phenotypes or datasets may be useful in extracting
signal for specific biological drivers of variability. We posit that using extensions of CCA

which include more than two datasets [67] may be a promising future direction.
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CHAPTER 3

Multi-context genetic modeling of transcriptional

regulation resolves novel disease loci

3.1 Background

A large portion of the signal discovered in genome-wide associations studies (GWAS) has
been localized to non-coding regions [102]. In light of this, researchers have developed post-
GWAS approaches to elucidate the functional consequences of variants and their impact
on the etiology of traits [6]. One notable approach has been to generate genetic predictors
of gene expression and leverage these predictors with GWAS data to associate genes with
traits of interest[103, 104]. These transcriptome-wide association studies (TWAS) have not
only shown great promise in terms of discovery and interpretation of association signals but
have also helped prioritize potentially causal genes for complex diseases [105]. Nonetheless,
methods like TWAS are limited by the accuracy and power of the genetic predictors generated
in training datasets [106, 107, 108, 109, 110, 1].

The original TWAS methodology builds genetic predictors of expression on a context-by-
context basis. For example, in a study with RNA-seq and genotypes collected across multiple
tissues, the expression of each tissue would be modeled independently [103, 104]. More recent
methods model multiple contexts simultaneously and leverage the sharing of genetic effects
across contexts [109, 108, 110, 111]. However, these approaches do not maximize predictive
power because they ignore the intra-individual correlation of gene expression across contexts
inherent to studies with repeated sampling, e.g., the Genotype-Tissue Expression (GTEx)

project [2] (Figure 3.1; [112, 113]). Moreover, they build predictors which are mixtures of
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both context-specific and context-shared (pleiotropic) genetic effects, making it difficult to
distinguish the relevant contexts for a disease gene, and are often computationally inefficient
[109]. A recent approach by Wheeler et al. [114] does model correlated intra-individual
noise with a linear-mixed model, but does not produce combined predictions of expression,
reducing overall power. Finally, existing methods with the goal of maximizing the number
of discoveries made may employ multiple testing strategies that either fail to control for
all tests performed, (e.g., by controlling the false discovery rate (FDR) within each context
separately [104, 115]), or limit their discoveries as they are based on conservative FWER
control (e.g., by using Bonferroni adjustment across all contexts [115]). Together, these

shortcomings reduce power and interpretability of TWAS.

Here, we introduce CONTENT—CONtexT spEcific geNeTics— a novel method that
leverages the correlation structure of multi-context studies to efficiently and powerfully gen-
erate genetic predictors of gene expression. Briefly, CONTENT decomposes the gene expres-
sion of each individual across contexts into context-shared and context-specific components
[26], builds genetic predictors for each component separately, and creates a final predictor
using both components. To identify genes with significant disease associations, CONTENT
employs a hierarchical testing procedure [116, 117]. CONTENT has several advantages over
existing methods. First, it explicitly accounts for intra-individual correlation across contexts,
boosting prediction performance. Second, by building specific and shared predictors, it can
distinguish context-shared from context-specific genetic components of gene expression and
disease. Third, it employs a recently developed hierarchical testing procedure [117] to not
only adequately control the FDR across and within contexts, but boost power in cases where
a gene has a significant association to disease in multiple contexts. Fourth, this adjustment
procedure allows for inclusion of other TWAS predictors [109, 103, 111, 104, 110, 108], en-
abling approaches to be complementary in discovering associations. Finally, CONTENT is

orders of magnitude more computationally efficient than several previous approaches.

We evaluated the performance of CONTENT over simulated data sets, GTEx][1, 6, 2], and
a single-cell RNA-Seq data set[118, 119]. We show in simulations that CONTENT captures
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Figure 3.1: Gene expression correlation across tissues in the GTEx study. Using a linear
mixed model with bivariate REML, we calculated cis-genetic and residual (which captures
variance due to both trans-genetic effects as well as residual effects) variance and covariance
components for each gene-tissue pair across GTEx. The gray units indicate tissue pairs with
less than 10% sample overlap. In both the genetic (upper) and residual (lower) components,
there was widespread cis-genetic and residual correlation, with the brain tissues showing
higher correlations compared to other tissues.

a greater proportion of the heritable component of expression than previous methods (at
minimum over 22% more), and that CONTENT successfully distinguishes the specific and

shared components of genetic variability on expression. In applications to GTEx, CONTENT
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improved over previous context-by-context methods both in the number of genes with a
significant heritable component (average 42% increase in significant gene-tissue pairs discov-
ered) as well as the proportion of variability explained by the heritable component (average
increase of 28%) [104, 103]. Consistent with complex cell type heterogeneity within tissues
[120, 121, 122, 123], we find that in applications to the single-cell data, genetic predictors at
the cell type level have substantially more context-specific heritability than the tissue-level
models. We then performed TWAS across 22 phenotypes using weights trained on GTEx and
scRNA and found that CONTENT discovered over 51% independent, significantly associ-
ated loci. We provide CONTENT gene expression weights for both GTEx and the single-cell
dataset at the TWAS/FUSION repository (http://gusevlab.org/projects/fusion/).

3.2 Methods

3.2.1 An overview of the CONTENT model

In this section, we detail the assumed generative model and objectives of CONTENT. CON-
TENT is based on the methodology and decomposition of a previous work by Lu et al.,
FastGxC [26]. In brief, like FastGxC, we assume that the expression of an individual in
a given gene and context is a combination of a context-shared genetic component that is
shared across different contexts and a context-specific genetic component that is specific to

a context, that is

ifi
E, = Eg™ed 4+ B 4 g,
Shared __
Eg =g

Specific
B, =97

where E. denotes the expression of the individual at the gene in context ¢, E2rad and

E%ljgred denote the components of the expression due to context-shared and context-specific
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genetic effects respectively, 8 and -, represent the context-shared and context-specific cis-
genetic effects respectively, g the individual’s cis-genotypes and €. ~ N (0, 0?) represents the

environmental effects (and non-cis-genetic effects) on the individual’s gene expression.

The objective of CONTENT is to build a genetic predictor of context-specific phenotypes.
While previous work has focused on building powerful genetic models for E., we aim to build
unbiased models that partition and estimate the context-shared g8 and context-specific
terms gv;. Specifically, we aim to maximize the power to detect the context-specific terms,
allowing some leniency in the accuracy of context-shared terms, as we are interested in
context-specific effects. Moreover, as a context-specific predictor can be used in downstream
analyses to identify the specific context(s) through which genetic variation manifests its
effect on the phenotype and disease risk, we also aim to minimize the correlation between
the predicted context-specific component and the true context-shared component. Finally,
our method must account for the correlated intra-individual noise across contexts, and do

so in a computationally efficient manner.

3.2.2 Decomposing multilevel data

Many genomic datasets, such as those of GTEx, have a multilevel nature; first the individuals
are sampled, and second an individual is measured in each context. To take the multilevel
structure of the data into account, the observed expression on gene j can be decomposed
into an offset term, a between-individual component and a within-individual component [25].
That is, if E;;. denotes the observed expression level for individual ¢ (¢ = 1,...,]) on gene

j(i=1,...,J) and context ¢ (c =1,...,C), E;j. can be decomposed as
Eije = E; + (Eyj. — E;) + (Eyje — Eij) (3.1)

where B = 15 S 529 | Ejj. the mean expression of gene j computed over all (1) indi-
viduals and all (C) contexts, and Ej;; = %Zle Ejjc the mean expression of individual ¢ on

gene j, computed over all contexts. In (1), £, is a term that is constant across individuals
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and contexts for each gene, (E;; — E ;) is the between-individuals deviation, and (E;j. — E;;.)

is the within-individual deviation of the expression on gene j in context c.

Variables that differ between but not within individuals, e.g. sex and genotype, will have
an effect on (E;;, — £ ;) but not on (E;;. — E;;). On the other hand, variables that change
within individuals but are the same between individuals, e.g. the genetic effect on a specific

context, will have an effect on (E;;. — E;;.) but not on (E;; — E ).

In the context of estimation, we first center and scale the expression of gene j in each

context ¢, i.e. %Zle E;je =0 and %Zle E2. = 1. Therefore, E; = -5 Zle chzl Eije =

1jc

0, and equation (3.1) simplifies to:

Eijc= Ei +(Eij.— Ei;) (3.2)
~~ N————
Evithared Eisjzeciﬁc

3.2.3 A formal description of CONTENT

We use the simplified decomposition in equation (3.2) to build genetic predictors of context-
specific effects while accounting for the correlated intra-individual noise across contexts.
Intuitively, the between-individuals variability serves as the component of expression that is

EShared "and the deviance from this shared component (i.e. the within-

shared across contexts,
individual variability) serves as the context-specific component of expression, ESPecific. More-
over, treating the context-specific component as a deviance from the context-shared compo-
nent leads the decomposition to have the property that as the correlation of intra-individual
noise across contexts increases, the power to detect context-specificity also increases. In
addition, the decomposition generates context-shared and context-specific components of
expression that are orthogonal to each other. Further rationale for using the decomposed

expression is included in the text by Lu et al. [26]. Lu et al. also include a description of

the decomposition’s equivalence to a linear mixed model.

For a single gene j, CONTENT takes as input centered, scaled, and residualized (over

a set of covariates) expression measured across I individuals in C' contexts and an [ x m
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genotype matrix G; with m measured cis-SNPs for gene j. CONTENT then decomposes the
expression vectors into C' context-specific components and a single context-shared component
by simply calculating the mean of expression for each individual across contexts, and setting
the context-specific expression for context ¢ as the difference between the observed expression
of context ¢ and the calculated context-shared expression. As it has been observed that cis-
genetic effects may be sparse and that the elastic net may perform best relative to other
penalized linear models in the context of genetically regulated gene-expression [104, 114],
CONTENT fits C' + 1 penalized linear models for the C'+ 1 expression components using an
elastic net. Lastly, CONTENT generates a final genetic predictor of expression by combining
the context-shared and context-specific components. Importantly, as the context-specific
component is a deviance from the context-shared component, the sign of the context-specific
component must be properly realigned when combining both components of expression to
make a final predictor. We refer to this linear combination of expression components as the

“full” model of CONTENT and fit it using a simple linear regression:

1. Obtain E?"™d and E]Sf °cific from the decomposition.
2. Generate cis-genetic predictors of each component using cross-validated elastic net:

(a) Fit cross-validated elastic net regressions for the shared and specific components:

E]Shared — aShared + G]ﬁ + €Shared (33)

Specific Specific Specific
ch = G + ij}/c + & (34>

(b) Use the estimates to generate genetic predictors of each component:

Ej%hared — @Shared+GjB (35)
EﬂjCZpeciﬁc _ CAtgpeCiﬁC‘FGj’)?c (36)

3. Regress the expression of context ¢ onto the context-shared and context-specific com-
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ponents:

__ Full 7 Sh._  Sh. v Sp._,.Sp.
ch = Oécu + EJG ch -+ EJCG ’ch + €je (37)

Within each regression, « represents the offset and we assume that all € are from a normal
distribution with mean 0 and standard deviation that is a function of the given outcome.

. . . . ~ Specifi
We save for each gene the set of estimated regression weights w5*! and w;; " from

equation (4) for use in downstream analyses. Namely, in TWAS, each context receives a
single vector of weights, and to test the association of a gene-context’s full model to a
trait, we simply use a weighted sum of the predictors learned from equation (3), szch B +
zbjsf ‘Y. We also use the same procedure for the context-specific weight to ensure the correct
directionality. To test for significance of genetic effects (i.e. to call an eGene or eAssociation),

we correlate each component of expression—the context-shared, context-specific, and full—to

its corresponding genetically predicted value.

3.2.4 Controlling the false discovery rate across contexts

Generally, methods for building genetic predictors of expression or TWAS predictors leverage
either Bonferroni correction or false discovery rate (FDR). Nonetheless, using a Bonferroni
correction may be too stringent (for example, as tests across contexts may be correlated),
and using FDR within each context or across all contexts simultaneously may lead to an
inflation or deflation to the false disovery proportion within certain contexts [116]. To si-
multaneously control the FDR across all contexts at once, a hierarchical false discovery
correction—treeQQTL—was developed [116]. The treeQTL procedure leverages the hierarchi-
cal structure of a collection of tests (e.g. gene level and gene-context level) to properly control
the FDR across an arbitrary number of contexts and levels in the hierarchy as well as boost

power in cases where a gene has a significant association in multiple contexts [116, 117, 106].

Notably, using CONTENT, our testing hierarchy contains 3 levels; (1) at the level of the
gene, (2) at the level of the context, and (3) at the level of the method or model (Figure 3.2).

Intuitively, a gene may contain a genetic component that is shared across all contexts, or a
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given context may have its own genetic architecture. In CONTENT, a given context may
have its own genetic predictor from either the context-specific component or the full model.
Using treeQTL with this structure is robust across multiple contexts, and since the tree is
structured such that a specific method/model is at the final level of testing for a context,
it enables incorporation of additional models trained from other approaches (such as those
fit on a context-by-context basis or by UTMOST'). Moreover, we can add to the shared leaf
an additional level of tests to account for additional components of effects-sharing, such as

a brain tissue-shared component.

Gene

Context- shared Context| Context,

Context- Context- ul Context-
specific specific specific

Figure 3.2: Hierarchical false discovery correction. Here, we show the structure of the
hypothesis tests for determining whether a gene has a heritable component. A gene (green,
top level) is considered heritable if it has a heritable context-shared component or if it was
heritable for a specific context (blue, second level). A given gene-context may be heritable
due to either the full or context-specific model of CONTENT (red, third level).

3.2.5 Comparison to other methods

We compared the prediction accuracy of CONTENT to a context-by-context TWAS model
[103, 104] in which the expression of each context is modeled separately, and to UTMOST
[109], a method that jointly learns the genetic effects on all contexts simultaneously. Specif-
ically the model based on TWAS fits a penalized linear model for each context. UTMOST,
on the other hand, employs a group LASSO penalty across all contexts simultaneously, al-

lowing it to gain power over the context-by-context approach by considering all individuals
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and contexts in a study at once. As we were we able to use a fast R package for penal-
ized regression[124], we used 10-fold cross-validation to fit the context-by-context model.
Owing to UTMOST’s computational intensity, we used its default value of 5 folds for cross-

validation.

We also compared CONTENT to a previous approach by Wheeler et al., orthogonal
tissue decomposition (OTD)[114]. OTD is a direct correlate of CONTENT(Shared) and
CONTENT (Specific), and is generated by fitting a mixed effects model across all contexts
for a given individual. Namely, a mixed effects model is fit as follows: an individual’s
expression across all tissues is set as the outcome, the shared expression is modeled as a
random individual-level intercept and is estimated using the posterior mean, and the specific
expression is treated as the residuals from the fit model (after adjusting for covariates).
Under infinite sample sizes, the components of OTD are equivalent to CONTENT(Shared)
and CONTENT (Specific).

Evaluations on GTEx and CLUES We residualized the expression of each gene in each
context over their corresponding covariates (e.g. PEER factors, age, sex, batch information)
prior to fitting UTMOST and an elastic-net model for each context in the context-by-context
approach. We did the same residualization before decomposing and then fitting the context-
shared and context-specific components with an elastic net for CONTENT. After gener-
ating cross-validated predictors for each method, we examined the number of significantly
predicted genes as well as the prediction accuracy (in terms of adjusted R?) between the

cross-validation-predicted and true gene expression per gene-context pair.

To properly control the false discovery proportion at .05 across-contexts and within-
methods, we employed a hierarchical FDR correction [116, 117] separately for CONTENT,
UTMOST, and the context-by-context approaches. Notably, using this correction for all
methods provides a generous comparison to previous methods, as when there exists at least
one significantly heritable gene-context association for a given gene, there is a relative gain in

power over the context-by-context FDR for other contexts tested within this gene [116, 117].

40



Application to TWAS We performed transcription-wide association studies across 24
phenotypes (Table 3.1) using FUSION-TWAS[103]. FUSION-TWAS uses GWAS summary
statistics and user-specified gene expression weights with an LD reference panel to perform
the test of association between genetically predicted gene expression and a phenotype of
interest. We tested a gene-context pair for association if the pair’s expression was predicted at
a nominal p-value of .1, and note that this threshold does not substantially alter the number
of TWAS discoveries. Notably, previous methods may use their own test of gene-context-
trait association or leverage set tests (e.g. Berk Jones[109]) to combine their associations
across all contexts for a given gene and therefore increase power. In this comparison, we
report the association as output by FUSION (a single gene-context-trait association) and
corrected by hierarchical false discovery without any sort of set test for the sake of equality
in the comparison. We ran FUSION-TWAS using the default recommended settings, with
reference data from the 1000 genomes project [125]. TWAS weights were trained on the
GTEx v7 dataset[6] as well as the CLUES[119] single-cell RNAseq dataset of PBMCs. For
a given gene-context-trio, we ran (assuming each model built a weight for the gene-context
under our nominal p-value threshold of 0.10) 5 TWAS—1) context-by-context, 2) UTMOST,
3) CONTENT (Shared), 4) CONTENT (Specific), and 5) CONTENT (Full). Notably, we re-
trained each methods’ predictors on genetic variants that are present in the LDREF cohort as
well as GTEx or CLUES to ensure selected expression weights had overlap with the reference

panel (LDREF).
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Table 3.1: GWAS summary statistics used as input for TWAS. Abbreviation used for each
trait as well as and its respective study and sample size. The collection of traits from the
UKBiobank were self-reported and measured on the same set of individuals across traits.

Symbol Trait Study Sample Size
AD Alzheimer’s disease Lambert et al. Nat Genet. 2013 74,046
Asthma Asthma (self-reported) UKBB Loh et al. 2018 Nat Genet 361141.00
Bipolar Bipolar Disorder PGC Cell 2018 73,684
CAD Coronary Artery Disease CARDIoGRAM Nat Genet. 2011 86,995
CKD Chronic Kidney Disease Wuttke et al. Nat Genet. 2019 1,046,070
Crohn’s Crohn’s Disease IIBDGC Europeans Nat Genet. 2015 13,974
Eczema Eczema (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
FastGlu Fasting Glucose MAGIC Nat Genet. 2012 96,496
HDL High-density Lipoprotein Teslovich et al. Nature 2010 99,900
1BS Irritible bowel syndrome (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
LDL Low-density lipoprotein Global lipids genetics consotrium Nat Genet 2013 188,577
Lupus Systemic Lupus Erythromous Bentham et al. Nat Genet 2015 23,210
MDD Major Depression Disorder PGC; Howard et al. Nat Neuro 2019 807,553
MS Multiple Sclerosis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
PBC Primary biliary cirrhosis Cordell et all. Nat Comm 2015 13,239
Psoriasis Psoriasis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
RA Rheumatoid Arthritis Okada et al. Nature 2013 103,638
Sarcoidosis  Sarcoidosis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
Sjogren Sjogren’s Syndrome (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141
T1D Type 1 Diabetes Inshaw et al. Diabetologia 2021 17,685
T2D Type 2 Diabetes DIAGRAM Nat Genet 2018 898,130
Ulc colitis Ulcerative Colitis (self-reported) UKBB Loh et al. 2018 Nat Genet 361,141

Simulations to evaluate prediction accuracy To evaluate the properties of our method
relative to other methods we perform a series of simulation experiments. We first simulate
genotypes for each individual, where each individual i and each locus m (m =1 : M) is

independent, and there are no rare SNPs:

Glim ~ Bin(2, Unif[.05, .50])

We then draw both context-shared (5; ) and context-specific (5;.) effect sizes for each SNP

from a normal distribution with a Bernoulli random variable I,,, controlling the probability
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that the m' SNP is causal (i.e. induce sparsity of genetic effects).:

h2 h2
I"™ ~ Bernoulli(.05), B]" ~N <O, s W) x I"™, and . ~ N (O, m) x IV

Here, h* and h? are the context-shared and context-specific heritabilities of expression on
gene j. In general, the SNPs with nonzero context-specific effect sizes were subsampled
from SNPs with nonzero context-shared effect sizes. We additionally simulate for a subset
of contexts some number of truly context-specific eQTLs drawn from Poisson(A = 1) for
randomly selected SNPs that were not eQTLs for the context-shared effects. Finally, we

simulate the expression of gene j as follows:

Eic =GB + GiBjc + €je (3.8)
O'% ... 01,0

e~N(0,Y), SeERC =] . .. (3.9)
oci .- O'gv

where ¢ € R’, represents the correlation of environment or intra-individual noise across
contexts, 02 = 1 — h? — h? is the variances of each context ¢, and ¢, ¢, = Pey.cy0¢, O, 18 the
covariance of context c; and c;. We generated data under varying levels of context-specific
heritability, truly context-specific eQTLs, causal SNPs, and correlation of intra-individual
noise across contexts. The number of contexts was set to 20, and to replicate a setting similar
to GTEx, the corresponding sample sizes of each ranged from 75 to 410 where individuals
were not necessarily measured in every context. In our simulations, we generated one train
and one test data set using the above framework. We evaluated the performance of each
method by comparing the true and predicted expression in the test data set, using the

predictor learned from the training data set.
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To assess the effect of additional sharing on a subset of contexts, we also set up a simu-
lation framework using the same generative process as above, only that a subset of contexts
also received additional genetic effects. More rigorously, for this subset of contexts (acting
as brain contexts in GTEx, for example), expression was generated as in equation (6) with

an additional term:

2

ch - Gjﬁj, + Gjﬂjc + Gjﬂjb —|— ch, Jn; ~ N (O, m) X I;\n (310)

where each variable is simulated as before, ,8]’7; corresponds to additional genetic effects that
are subsampled from SNPs that have a context-shared effect, and hg is the brain-shared

heritability.

Simulations of TWAS performance Using the above generated genotypes and gene
expression, we simulated phenotypes to evaluate the performance of each method under the
assumed model in TWAS. For a given phenotype, we randomly selected 300 gene-context
pairs (100 genes, 3 contexts each) whose expression would comprise a portion of a phenotype.

Explicitly, we generated a phenotype as follows:

02 02
z:E25 5NNO, ge, inO,l—i
Y te 0.350) € ( 300’

Where FE; is the standardized genetic expression of the 300 gene-context pairs for indi-

vidual 7, ¢ is the length-300 vector of effect sizes for each gene-contexts’ expression, 036 is
the variance in the phenotype y; due to cis-genetic gene expression, and g; corresponds to
environmental effects (or noise) as well as trans-genetic effects for individual 7. In our sim-
ulations, we varied the heritability of gene expression and fixed variability in the phenotype
due to genetic gene expression to .2. To simulate a wide range of genetic architectures, the
proportion of heritability of gene expression due to the context-shared effects was sampled

from a standard uniform distribution, and the proportion of heritability due to context-
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specific effects was (1- the context-shared proportion). Once we generated a phenotype, we
performed a TWAS using weights output from each method by imputing expression into a
simulated external, independent set of 10000 genotypes that followed the same generation

process as in the previous subsection.

3.3 Results

Predicted
Specific gene specific gene
expression cis-SNPs expression
B :co
. C T G C A
Observed @ ~ — Predicted
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Figure 3.3: An overview of the CONTENT approach. CONTENT first decomposes the
observed expression for each individual into context-specific and context-shared components
following Lu et al. Then, CONTENT fits predictors for the context-shared component of
expression as well as each context-specific component of expression (e.g., liver). Finally, for
a given context, CONTENT combines the genetically predicted components into the full
model using a simple regression.

3.3.1 Methods overview

We developed CONTENT, a method for generating genetic predictors of gene expression

across contexts for use in downstream applications such as TWAS. Briefly, for each indi-
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vidual, CONTENT leverages our recently developed FastGxC method [26] to decompose
the gene expression across C' contexts into one context-shared component and C' context-
specific components. Next, CONTENT builds genetic predictors for the shared component
and each of the C' context-specific components of expression using penalized regression. We
refer to these predictors as the CONTENT (Shared) and CONTENT (Specific) models. In
addition, CONTENT generates genetic predictors of the total expression in each context by
combining the context-shared and context-specific genetic predictors with linear regression.
We refer to these predictors as the CONTENT(Full) models. A given gene may have CON-
TENT (Specific), CONTENT(Shared), and/or CONTENT (Full) models depending on the

architecture of genetic effects.

We residualized the expression of each gene in each context over their corresponding
covariates (e.g. PEER factors, age, sex, batch information) prior to decomposing and then
fitting an elastic net with double ten-fold cross-validation for both CONTENT (Shared) and
CONTENT (Specific). We examined the number of significantly predicted genes as well as
the prediction accuracy (in terms of adjusted R?) between the cross-validation-predicted and
true gene expression per gene-context pair. To properly control the FDR for each method
across contexts and genes, we employed a hierarchical FDR correction [116, 117] (Figure
3.2 and Methods). We note that groups of contexts may comprise additional sources of
pleiotropy (e.g. in GTEx the group of brain tissues may have their own shared effects in
addition to the overall tissue-shared effects). The decomposition of CONTENT is flexible

and can account for both levels of pleiotropy among contexts (see Supplementary Methods).

3.3.2 CONTENT is powerful and well-calibrated in simulated data.

We evaluate the prediction accuracy of CONTENT in a series of simulations and compare its
performance to the context-by-context approach[103, 104], which builds predictors by fitting
an elastic net in each context separately, as well as UTMOST[109], which builds predic-
tors over all contexts simultaneously using a group LASSO penalty. Implicitly, we compare

to the method from [114] which decomposes expression into orthogonal context-shared and
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Figure 3.4: CONTENT is powerful and well-calibrated in simulated data. Accuracy of each
method to predict the genetically regulated gene expression of each gene-context pair for
different correlations of intra-individual noise across contexts. Mean adjusted R? across
contexts between the true (A) full (context-specific + context-shared), (B) shared, and (C)
specific genetic components of expression and the predicted component for each method
and for different levels of intra individual correlation. The context-by-context approach and
UTMOST output only a single predictor, and we show the variability captured by this pre-
dictor for each component of expression. CONTENT, however, generates predictors for all
three components of expression, and notably, CONTENT (Specific) and CONTENT (Shared)
capture their intended component of expression without capturing the opposite (i.e. the pre-
dictor for CONTENT (Specific) is uncorrelated with the true shared component of expression
and vice versa). We show here the accuracy for each component and method on gene-contexts
with both context-shared and context-specific effects, but show in Figure ?? the accuracy
for all gene-contexts pairs.

context-specific components, as the CONTENT(Shared) and CONTENT (Specific) models
are related to these components (See Methods). We omit comparison to other TWAS meth-
ods as many of them are built on the same framework as the context-by-context approach, or

require external data, such as curated DNase I hypersensitivity measurements [110, 111, 108].

We used simulation parameters from GTEx, the largest multi-context eQTL study to-
date, as a guideline. Specifically, we generated gene expression and genotype data such
that context-specific genetic effects mostly lie on the same loci as context-shared eQTLs,
and context-specific eQTLs without context-shared effects are rare [6, 26]. Intuitively, this

framework assumes that, most often, SNPs affect expression of a gene in all contexts, but to a
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different extent in each context (rather than, for example, acting as an eQTL in only a single
context). We varied the proportion of contexts with context-specific heritability, the number
of context-specific eQTLs without a context-shared effect, the number of causal SNPs, and
the intra-individual residual correlation while keeping the number of genes (1000), contexts
(20), c¢is-SNPs (500) and the proportion of context-shared and context-specific heritability

constant (.3 and .1 respectively).

Throughout our simulations, CONTENT significantly outperformed the context-by-context
and UTMOST approaches in terms of prediction accuracy of the total genetic contribution
to expression variability (Figure 3.4A). The average increase in adjusted R? between the true
genetic component of expression and the CONTENT (Full) predictor was .22 over UTMOST
(p<2e-16 paired two-way t-test) and .48 over the context-by-context approach (p<2e-16
paired two-way t-test). Across nearly the entirety of parameter settings, CONTENT gener-
ated context-specific components that were uncorrelated with the true context-shared com-
ponents (mean adjusted R*=.023, and vice versa .026; Figure 3.4B,C). This property is
central to the objective as it reduces confounding from pleiotropy in downstream applica-
tions such as context fine-mapping. As expected, the previous methods failed to disentangle
the context-specific and context-shared components (Figure 3.4B,C), since they were not
developed with this property in mind. Our results were consistent under different values of

the simulation parameters (figures omitted for brevity).

3.3.3 CONTENT improves prediction accuracy over previous methods in the

GTEx and CLUES datasets

We next evaluated CONTENT, the context-by-context approach, and UTMOST in terms of
prediction accuracy and power across 22,447 genes measured in 48 tissues of 519 European
individuals in the bulk RNA-seq GTEx data set [1, 6, 2]. Due to computational issues,
UTMOST was examined only on 22,307 genes rather than the entire data set of 22,447
genes. (On this smaller subset of genes, the results were nearly identical to those presented

here.) We also examined, for the first time in a large-scale TWAS context, a single-cell
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Figure 3.5: CONTENT outperforms existing approaches in the GTEx and scRNA-seq
CLUES datasets. (A,D) Number of genes with a significantly predictable component (hFDR
< 5%) in GTEx (A) and CLUES (D); the sample sizes for each context are included in paren-
theses. (B,E) Ratio of expression prediction accuracy (adjusted R?) of the best-performing
cross-validated CONTENT model over the context-by-context (green) and UTMOST (blue)
approaches (median across all genes significantly predicted by at least either method). Num-
bers above one indicate higher adjusted R? and thus prediction accuracy for CONTENT.
(C,F) Prediction accuracy of CONTENT(Full) and CONTENT(Shared) when a gene-tissue
has a significant shared, specific, and full model.

RNAseq data set from the California Lupus Epidemiology Study (CLUES) [118, 119]. The
CLUES data set contained 9,592 genes measured in 9 cell types in peripheral blood from 90

individuals.

In GTEx, CONTENT identified more gene-tissue pairs with a significantly predictable
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genetic component of expression (278,101 over 20,506 genes) than the context-by-context ap-
proach (195,607 over 17,723 genes) and UTMOST (167,865 over 11,442 genes) at an hFDR
of 5% for all approaches. These results also held when using the traditional FDR approach
within each context separately for all approaches. We also compared the performance of
each method on the union of genes that were significantly predicted (hFDR < 5%) by at
least one method. As CONTENT can generate up to three models (Shared, Specific, Full)
for a given gene-tissue pair, and because each gene may have its own unique architecture (i.e.
different proportions of specific or shared heritability), we selected the model that achieved
the greatest cross-validated adjusted R?2. CONTENT greatly outperformed the context-
by-context and UTMOST approaches across all tissues (average 28% and 22% increase in
adjusted R? across tissues and genes; Figure 3.5). Further, for genes with significant CON-
TENT (Shared), CONTENT(Specific), and CONTENT(Full) predictors, prediction accuracy
increases substantially with the addition of the context-specific component to the context-
shared component (average gain of CONTENT(Full) over CONTENT (Shared) adj. R? of
55.92%), emphasizing the need to extend previous approaches[114] with CONTENT (Full)

to build a powerful predictor.

Within the single-cell CLUES data set, CONTENT again outperformed the context-by-
context (in this case, cell type-by-cell type) and UTMOST approaches, discovering 9,080
heritable gene-cell type pairs (5,067 genes) whereas the context-by-context model and UT-
MOST found 4,314 (2,355 genes) and 804 (288 genes) respectively. The average improvement
in adjusted R? of CONTENT over the context-by-context model was 13.6%. In gene-cell
type pairs with significant CONTENT (Full), CONTENT(Specific), and CONTENT(Shared)
models, CONTENT(Full) improved the adjusted R? over CONTENT (Shared) by 104.09%.
Once more, the improvement in variability explained when including both the cell type-
specific and cell type-shared components highlights the need to consider both components

simultaneously when building a predictor.
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Figure 3.6: Contribution of context-specific genetic regulation in GTEx and CLUES. (A,C)
Number of genes with a significant (FDR< 5%) CONTENT(Specific) model of expression
in GTEx (A) and CLUES (C). Color indicates sample size of context. (B,D) Proportion
of expression variance of CONTENT (Full) explained by CONTENT(Specific) and CON-
TENT(Shared) for genes with a significant CONTENT (Full) model.

3.3.4 CONTENT discovers significant context-specific components of expres-

sion in bulk multi-tissue and single-cell datasets.

Given the ability of CONTENT to disentangle context-shared and context-specific variabil-
ity, we examined the context-specific components of expression in GTEx and CLUES. In
GTEx, CONTENT discovered 128,985 gene-tissue pairs (19,765 genes) with a significant
context-specific genetic component of expression (Figures 3.6). As with previous reports
[126, 26], we found that testis was the tissue with the greatest number of tissue-specific

genetic components. Nonetheless, we observe that the tissues with larger sample sizes more
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frequently had significant context-specific components. Consistent with previous works that
have discovered extensive eQTL sharing across tissues [127, 6, 126], we found that in gene-
tissue pairs with a CONTENT (Full) model, the variability explained was dominated by
CONTENT (Shared) model—across tissues, the context-shared component explained on av-

erage 70% of the variability explained by CONTENT (Full).

In the CLUES data set, CONTENT discovered 7,466 gene-cell type pairs (4,658 genes)
with a significant cell type-specific component of expression (hFDR < 5%). We found that
all cell types had a similar number of cell type-specific components, and emphasize that
the sample size across all cell types was equivalent. Interestingly, in genes with a CON-
TENT (Full) model, the variability was often dominated by the cell type-specific variability
(average 75% of the explained variability), unlike GTEx, in which the average tissue-specific
variability explained only 30% of total variance. Consequently, we found that within the
20,433 genes in GTEx with any genetic component, 51.50% (10,522) had a significant shared
component, whereas of the 5,067 genes in CLUES with a genetic component, only 14.25%
(722) had a shared component. This is consistent with complex cell type heterogeneity in
bulk tissues [128] since there is more power to discover eQTLs with pleiotropy across the

underlying cell types.

3.3.5 CONTENT more accurately distinguishes disease-relevant genes than tra-
ditional TWAS approaches in simulated data.

We performed a simulation study in which we evaluated the sensitivity, specificity, and power
of CONTENT, UTMOST, and context-by-context to implicate the correct gene in TWAS. In
our experiments, we simulated a phenotype in which 20% of the variability was composed of
the genetically regulated expression of 300 randomly selected gene-context pairs (100 genes
and 3 contexts each). We simulated gene expression for 1,000 genes across 20 contexts as
before, however, to capture a range of genetic architectures in the simulation, for each gene,
we sampled from a standard uniform distribution to determine the proportion of shared

variability. We varied the heritability of gene expression and considered power as a method’s
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ability to discover the correct genes associated with a phenotype. To compare power, we
calculated the area under receiver-operating curve (AUC) using the maximum association

statistic for a given gene across contexts.

TWAS gene discovery power

0.8

Average AUC
o
3

e
o
)

0.51

0.00 0.25 0.50 0.75 100
Gene expression heritability

CONTENT (Ful) ~ -- CONTENT (Shared) — UTMOST
CONTENT (Specific) — Context-by-context

Figure 3.7: CONTENT(Full) is powerful, sensitive, and specific in simulated TWAS data.
Average AUC from 1,000 TWAS simulations while varying the overall heritability of gene ex-
pression. Each phenotype (1,000 per proportion of heritability) was generated from 300 (100
genes and 3 contexts each) randomly selected gene-context pairs’ genetically regulated gene
expression, and the 300 gene-context pairs’ genetically regulated expression accounted for
20% of the variability in the phenotype. In genes with low heritability, CONTENT(Shared)
performed similarly to CONTENT (Full), however CONTENT (Full) was the most powerful
method in discovering the correct genes for TWAS across the range of heritability. CON-
TENT(Full) was significantly more powerful than UTMOST and the context-by-context
approach at all levels of heritability.

Across simulations, CONTENT(Full) was the highest powered in terms of gene dis-
covery (Figure 3.7). CONTENT(Shared) performed very similarly to CONTENT(Full)
in the setting with the lowest heritability, however, our simulations show the necessity
for CONTENT(Full) as it substantially outperforms both CONTENT (Specific) and CON-
TENT(Shared) across a range of heritabilities. Moreover, CONTENT (Full) significantly
outperformed both the context-by-context approach and UTMOST. Specifically, the range
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of percent change in AUC of CONTENT (Full) over previous methods was as follows: CON-
TENT (Shared) 1.9%-9.9%; CONTENT (Specific) 13.6%-22.4%; UTMOST 2.2%-8.6%; context-
by-context 1.2%-10.6%. Generally, we observed that CONTENT(Full) was its most powerful
for genes in which there was both shared and specific effects, UTMOST was its most power-
ful in settings with high sharing, and the context-by-context approach was its most powerful
in settings with low sharing and high specificity of genetic effects within contexts. As with
previous methods [109], we performed simulations in which the causal context(s) has been
observed. In real data applications, this may not occur, and in such cases, further complexi-
ties may arise due to genetic correlation. As they are issues of association fine-mapping, the
complexities posed by missing tissues and cell types are beyond the scope of this manuscript,

and we therefore leave the development of relevant methodology as future work.

3.3.6 Application of CONTENT to TWAS yields novel discoveries over previous

methods.

We performed TWAS across 22 complex traits and diseases collected from a variety of GWAS
(129, 130, 131, 132, 133, 134, 5, 135, 136, 137, 138, 139, 140, 141] using weights trained
by CONTENT, UTMOST and the context-by-context approach on GTEx and CLUES.
We passed forward weights to FUSION-TWAS[103]—a software that performs TWAS us-
ing GWAS summary statistics, user-specified gene expression weights, and an LD reference
panel—for a gene-context pair if the pair’s expression was predicted at a nominal p-value

less than .1.

Across all traits at an hFDR of 5%, CONTENT discovered a median of 51% (range of
5 to 178%) and 135% (51-400%) more associations (unique TWAS loci) than the context-
by-context approach and UTMOST respectively with GTEx weights, and 62% (0-289%)
and 101% (47-600%) more loci than the context-by-context approach and UTMOST respec-
tively with weights built from the CLUES dataset (Table 3.2). We find that, with GTEx
weights, the associations implicated by the context-by-context approach had more overlap

with the associations implicated by CONTENT (Specific) (median Jaccard similarity (JS)
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across traits =.419) than CONTENT(Shared) (JS=.234). This is consistent with our simu-
lation results in which the context-by-context approach was most powerful in cases of high
context-specificity and low context-sharing. Conversely, the associations discovered by UT-
MOST, which leverages pleiotropy, had slightly higher overlap with CONTENT(Shared)
(JS=.221) than CONTENT(Specific) (JS=.177). With CLUES weights, the context-by-
context approach again had greater similarity with CONTENT(Specific) (JS=.291) than
CONTENT (Shared) (JS=.098), however UTMOST discovered TWAS genes that had sim-
ilar overlap between CONTENT(Shared) (JS=.119) and CONTENT (Specific) (JS=.135).
As UTMOST, CONTENT, and the context-by-context approach discovered both overlap-
ping and unique associations, we suggest that the approaches complement—rather than

replace—one another.

We next compared the different CONTENT models to understand their properties in
real data. With GTEx weights, CONTENT (Full) replicated an average of 98.3% and 67.3%
of the associations discovered by CONTENT (Shared) and CONTENT (Specific) respectively
(hFDR < 5%). CONTENT(Full) replicated an average of 81.2% and 61.6% of the asso-
ciations discovered by CONTENT(Shared) and CONTENT (Specific) respectively with the
CLUES weights. Notably, CONTENT(Full) is the best predictor out of all the CONTENT
models on average, and particularly when there exist both shared and specific effects. Con-
sequently, across all traits, the inclusion of CONTENT (Full) with CONTENT(Shared) and
CONTENT(Specific) led to an average increase of 12% and 21% in the number of genes with
significant TWAS associations with GTEx weights and CLUES weights respectively.

We investigated the genes implicated by CONTENT(Full) that were not significant in
CONTENT(Shared) or CONTENT (Specific) and found that many of the discoveries repli-
cated known gene-trait associations. For example, CONTENT(Full) discovered a significant
association of fasting glucose levels and CAMK2 (p=2.44e-23, brain cortex), a gene responsi-
ble for calcium signaling and regulation of hepatic glucose production [142], as well as BLVRA
(4.21e-06, CD8 T cell), a gene involved in insulin signaling and likely metabolic syndrome
[143]. Furthermore, CCL2, which is thought to be involved in HDL internalization and choles-
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Table 3.2: CONTENT outperforms existing methods in TWAS across 22 complex traits and
diseases. TWAS results (unique loci, merging genes within 1MB) across 22 complex traits
and diseases using weights output by CONTENT, UTMOST, and the context-by-context
method. CONTENT(AIL) refers to the collection of all loci output by at least one CONTENT
model. CONTENT(Full) added an average of 15% and 19% of gene-trait discoveries over
the CONTENT (Shared) and CONTENT (Specific) approaches together at an hFDR of 5% in
GTEx and CLUES respectively. See Supplementary Table 3.1 for GWAS trait information.

GTEx CLUES
by-tissue (AIl) (Full) | (Specific) | (Shared) | by-tissue (All) (Full) | (Specific) | (Shared)

AD 17 9 24 20 20 1 7 5 15 9 13 3
Asthma 155 90 237 181 181 67 74 63 127 101 104 34
Bipolar 42 45 83 63 63 39 9 14 35 20 25 5
CAD 10 1 23 18 18 8 6 6 10 7 6 0
CKD 26 19 42 31 31 18 2 4 6 1
Crohn’s 77 63 95 73 73 47 27 22 44 30 37 9
Eczema 32 13 57 44 44 10 8 5 1 3
FastGlu 16 8 19 12 12 7 3 3 6 6 6 0
HDL 58 29 79 60 60 36 21 14 28 23 25 6
IBS 9 5 25 20 20 3 3 1 7 5 6 1
LDL 89 57 132 107 107 58 47 29 51 40 44 14
Lupus 93 54 129 94 94 51 36 27 58 42 48 1
MDD 99 79 169 132 132 62 20 29 47 32 39 3
MS 20 10 42 32 32 9 9 7 1 8 10 5
PBC 62 42 65 55 55 33 21 14 30 24 26 6
Psoriasis 47 22 58 46 46 16 13 10 21 17 16 6
RA 73 56 99 79 79 46 40 20 51 33 45 9
Sarcoidosis 19 13 30 27 27 8 6 4 6 6 2
Sjogren 17 9 31 25 25 6 4 2 7 6 1
T1D 77 64 109 88 88 49 26 23 41 36 29 13
T2D 193 115 246 208 208 112 76 76 112 77 98 17
Ulc colitis 16 10 40 30 30 7 5 4 11 9 7 2

terol efflux [144], was not implicated by either CONTENT (Shared) or CONTENT (Specific),
but was implicated in the TWAS of HDL with CONTENT (Full) (p=2.30e-08, small intestine
terminal ileum). CONTENT (Full) also discovered a significant association of F2 (prothrom-
bin) and primary biliary cirrhosis (PBC) (1.47e-07, liver), whereas CONTENT (Shared) and
CONTENT(Specific) did not; PBC patients have been shown to have higher prothrombin
times than controls [145]. Moreover, CONTENT (Full) discovered an association of GIT1—
a gene involved with synaptic transmission and plasticity[146, 147]—with bipolar disorder
(BIP; B cell, p=3.20e-06 ) as well as an association of GSDMB—a gene involved with airway
remodeling and airway-hyperresponsiveness[148]—and asthma (CD4 T cell, p=1.25¢-20).

Moreover, the genes implicated by CONTENT but neither UTMOST nor the context-by-
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context approach (at an hFDR of 5%) replicated previously associated genes-trait pairs, sev-
eral of which with known biological relationships to the trait of interest. Within Alzheimer’s
disease, these genes included VGF[149], FZD4[150], and TRPV6 (a transient receptor po-
tential channel) [151, 152] with the GTEx weights, as well as IRF7[153] and GANC[154]
with CLUES weights. Additionally, in Crohn’s disease, CONTENT implicated the follow-
ing genes, whereas previous methods did not: STAT3[155] and CTBP2[156] with GTEx
weights, as well as ATG16L[157] and PKAR2A[158] using CLUES weights. For major de-
pression disorder (MDD), CONTENT implicated SYN2M[159] and CYB56AD1[160] using
GTEx weights, and GAB1 [161], TLR4[160] and ARL3[162] using CLUES weights.

As the individuals comprising the GTEx and CLUES datasets are disjoint, we also in-
vestigated whether using both datasets could highlight relevant biological genes (akin to a
replication study). We first examined LDL genes and found SORT'1, which alters plasma LDL
levels (GTEx min. p=2.15e-251, CLUES min. p=2.41e-19) [163, 164, 165]. We next found
an association between S100A4, S100A8, SI00A10, SI00A11 as well as SI00A12 (part of the
epidermal differentiation complex) and Eczema using both datasets (S100A10 p=2.78e-41,
p=2.90e-11)[166, 167]. Additionally, when we looked at discoveries made with GTEx and
CLUES weights for Alzheimer’s disease, we found MARK4 (p=8.72e-20, p=6.39¢-63), a gene
associated with tau phosphyrlation in granulovacuolar degeneration bodies [168]. Finally,
both sets of weights produced a significant association of immune checkpoint gene CTLA4

(p=1.71e-11, p=2.28e-21) with Rheumatoid Arthritis[169].

While CONTENT discovered substantially more loci and genes than previous approaches,
we also wished to verify that it does not enrich for false positives. To do so, we performed
an analysis similar to one carried out by Ndungu et al. [170]. Briefly, Ndungu et al. eval-
uated the extent to which TWAS associations may be driven by horizontal pleiotropy or
linkage disequilibrium by examining TWAS associations for a set of genes with a known
causal relationship to a set of metabolites. In our analyses, we examined the within-locus
(& 1MDb) rank of the causal TWAS gene with its suspected metabolite when using weights
built by CONTENT and the context-by-context approach on the GTEx dataset. To order
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genes within a method, we first filtered for statistically significant gene-context-metabolite
associations, then sorted genes by their maximum absolute TWAS association statistic be-
tween a given metabolite across contexts (and models for CONTENT). In line with our
applications of TWAS to GTEx and CLUES, CONTENT discovered additional loci that
were not discovered by the context-by-context approach (39 compared to 36 of 58 known
gene-metabolite pairs). Moreover, despite having more models built per locus, CONTENT
ranked the known causal gene similarly to the context-by-context approach on the intersec-
tion of gene-metabolite pairs discovered by both methods (CONTENT average rank of 2.257

compared to context-by-context rank of 2.371, where a ranking of 1 is ideal).

3.4 Discussion

We introduced CONTENT, a computationally efficient and powerful method to estimate the
genetic contribution to expression in multi-context studies. CONTENT can distinguish the
context-shared and context-specific components of genetic variability and can account for
correlated intra-individual noise across contexts. Using a range of simulation and real studies,
we showed that CONTENT outperforms previous methods in terms of prediction accuracy of
the total genetic contribution to expression variability in each context. Interestingly, we also
found that when there exists a gene with a genetic component of expression, the heritability
is often dominated by the context-specific effects at the single-cell level, but at the tissue
level, the heritability is dominated by the context-shared effects. Finally, CONTENT was

more powerful, specific, and sensitive than previous approaches in applications to TWAS.

Using weights trained by CONTENT, UTMOST and the context-by-context approach,
we discovered 12,150 unique gene-trait associations through TWAS. To our knowledge, we
present the first application of TWAS trained on a single-cell RNAseq dataset for a col-
lection of 90 individuals’” PBMCs. For both the weights generated by GTEx and CLUES,
CONTENT was largely more powerful than UTMOST and the context-by-context approach
in TWAS. However, we emphasize that the approaches often capture genes unique to each

approach. Each method may therefore complement each other and may be combined in
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TWAS to maximize the number of discoveries made as different methods are likely favorable
under different genetic architectures. Though we show that CONTENT may be useful in
fine-mapping the specific tissue relevant for a TWAS association in simulations, we note that
fine-mapping to the correct tissue in real data is a particularly difficult task. For example,
throughout this manuscript, we assume that the causal tissue is included in the measured
tissues, however, when this is not the case, CONTENT and all TWAS approaches may as-
sociate an incorrect, correlated tissue. For example, in the case of chronic kidney disease,
CONTENT implicated GATM-a gene thought to be involved with kidney disease and GFR
levels [171, 172, 173]-however, the significant association was within the thyroid. This may
be due to the fact that kidney expression is not measured in this version of the GTEx dataset.
Future work may explore using the CONTENT-trained weights and jointly fitting all TWAS

Z scores, or otherwise accounting for missingness.

We also leveraged recently developed methodology for controlling the false discovery
rate when summarizing significantly predicted genes, gene-contexts, and TWAS associations
[116, 117]. This approach has been shown to effectively control the FDR across contexts
in eQTL studies, and to our knowledge, it is the first time such an approach has been
used to effectively control the FDR when predicting expression values and when making
discoveries using TWAS. While our analyses focused on the comparison of CONTENT,
UTMOST, and the context-by-context approach, we emphasize that by using this type of
false discovery correction, all methods can be used in combination with one another, rather
than in replacement of one another. For downstream analysis, combining all prediction
methods is crucial, as certain genes or gene-context pairs may be (better) predicted by one
method and not others. In the GTEx data for example, when we included models built by
UTMOST and the context-by-context approach to the correction scheme for CONTENT,
the number of genes for which there was a significant model for a given tissue increased on

average by 7.56%.

Importantly, neither UTMOST nor the context-by-context method distinguishes the

context-specific and context-shared components of genetic effects on expression. Implic-
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itly, by modeling all contexts independently, the context-by-context fit is best-suited for
cases in which there is no effect-sharing across contexts. As UTMOST considers all contexts
simultaneously, its power is maximized in cases where the genetic effects are mostly shared.
Additionally, these methods do not account for the shared correlated residuals between sam-

ples, thus they do not maximize their predictive power.

While a previous approach proposed by Wheeler et al. [114] does model the correlated
intra-individual noise, CONTENT offers several advantages. The previous decomposition
does not include an option to leverage both the context-shared and context-specific compo-
nents of expression to form a final predictor of the observed expression for a given context.
We show that this is especially crucial in the context of single-cell data wherein the prediction
accuracy for a given gene-context increases drastically when using both components (Fig-
ure 3.5). Further, without properly combining both components (e.g. via regression), the
context-specific genotype-expression weights produced by the previous decomposition may
have the incorrect sign, as they are considered residuals of the context-shared component and
are not properly re-calibrated to the observed expression. Unlike the novel decomposition
proposed by CONTENT, this previous approach also does not intuitively allow for additional
sources of pleiotropy or effects-sharing (see Supplementary Text for discussion of brain level
sharing in GTEx). Finally, the decomposition used in the previous method is based on
a linear mixed model fit on a per-gene basis, and is therefore much less computationally

efficient.

Notably, a limitation of TWAS methods in general is interpretability, as associations
may be confounded by linkage disequilibrium or horizontal pleiotropy [174, 170]. We empha-
size that CONTENT discovered substantially more independent loci than previous methods,
however, since CONTENT is more powerful than previous methods, it may build more mod-
els within a given locus relative to previous approaches. We performed a brief set of analyses
in line with Ndungu et al. [170], in which we evaluated the ability of TWAS approaches
to associate the suspected causal gene to a collection of metabolites. Despite CONTENT

building more models than the context-by-context approach, it prioritized suspected genes
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the same as or better than the context-by-context approach in addition to discovering several
more loci than did the context-by-context approach (Supplementary Table ?7). We therefore
conclude that, similarly to GWAS fine-mapping studies, resolution of downstream TWAS
fine-mapping methods (e.g., FOCUS [174] should increase with the use of our models, as our
gain in performance is akin to that expected from an increase in sample size. Moreover, since
CONTENT discovers additional loci over previous approaches, it undoubtedly will present

additional useful information for such studies.

In this manuscript we focused on prediction of the total genetic contribution to expression
as well as the context-shared and context-specific components of expression. Nonetheless,
future work using the methodology presented here can be extended to a wide variety of
problems. Primarily, the decomposition can be used to efficiently estimate GenexContext
heritability using existing software for heritability estimation, e.g. GCTA [113], on the
decomposed components offering computational speed up over existing methods for cross-
context heritability estimation [127]. Additionally, the decomposed components from CON-
TENT may also be included in previous approaches, e.g. UTMOST, to gain further power.
Further, by training each method on the single-cell level data, we offer researchers the means
to pursue their own association analyses at a lower level of granularity than was previously

available.

Notably, we found that single-cell data may have lower levels of effects-sharing than tissue-
level data. While this may be due to genuine biological differences in genetic regulation, this
finding is also consistent with a large degree of sharing of cell types across contexts. For
example, endothelial cells can be found in tissues such as breast, endometrium, esophagus,
eye, heart muscle, liver, lung, ovary, pancreas, placenta, prostate, skeletal muscle, and skin
and often make up a substantial fraction of the collected tissue [175, 176]. We believe our
work is consistent with this observation: primarily, the proportion of genes with a heritable
component of expression that also have a shared component is substantially lower at the
single cell level. What’s more is that the ability to discover context-specific components of

expression is indeed related to sample size in the GTEx dataset. Despite the above, and
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having a lower number of individuals in the single-cell data, we discover a greater proportion
of genes with a context-specific component than in GTEx. Further, when there exists a
CONTENT(Full) model, it is dominated by the specific variability at the single-cell level,
whereas it is dominated by the shared variability at the tissue level. Nonetheless, as this

finding, to our knowledge, was previously unappreciated, it warrants further investigation.

In summary, we present a novel approach for generating context-shared and context-
specific predictors that is much simpler than previous approaches [114, 26]. Moreover, unlike
previous methods, we offer a way to combine both predictors, as well as extend the decompo-
sition to additional levels of pleiotropy. Finally, we show utility of existing hierarchical FDR
correction methods to properly adjust for analyses that take advantage of multiple methods
as well as investigate genes in the space of multiple contexts. The increased prediction ac-
curacy, specificity, computational speed, and hierarchical testing framework of CONTENT
will be paramount to unveiling context-specific effects on disease as well as uncovering the

mechanisms of context-specific genetic regulation.
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CHAPTER 4

Methylation risk scores are associated with a collection

of phenotypes within electronic health record systems

4.1 Background

Widespread adoption of electronic health record systems coupled with an increasing interest
in hospital biobanking systems has spurred research efforts spanning machine-learning and
genomics communities[30, 31, 32, 177, 178, 179, 180]. These efforts have produced increas-
ingly accurate imputation (current state) and prediction (future state) of patient phenotypes
from medical records [181, 182] and polygenic risk scores [30, 31, 32, 33, 34, 35, 28, 36], and
are already being investigated in translational contexts [37, 38, 39, 40]. For example, re-
cent work has shown that machine learning can leverage high-dimensional data to aid in the
prediction of a multitude of clinical phenotypes including cardiac function and arrhythmia
[183, 184, 185], post-operative complications [181, 182], sepsis [186], breast cancer [187, 34],
and prostate cancer [188]. Nonetheless, a genetics-based predictor such as the polygenic
risk score may be limited in predictive utility as it does not account for changes in disease

risk—for example, due to age, or changes in environment—throughout one’s lifespan [28].

In this work we examine the potential for epigenetic information to improve phenotype
inference in combined biobank-EHR systems. As DNA methylation, henceforth referred to
as simply “methylation”, is affected by both genetics and environment—such as lifestyle
choices, diet, exercise, and smoking status—it captures multi-factorial information about
predispositions to clinical conditions [189, 19, 23, 190, 191, 192, 193]. Moreover, methylation

is readily available for use in existing biobanks that collect DNA samples, and recent advance-
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ments in methylation profiling technologies have enabled an abundance of large-scale studies
of methylation and its role as a biomarker for a variety of phenotypes and health-related
outcomes [189, 194, 195, 196, 197, 198, 199, 193]. It is therefore a natural candidate for an
extension of PRS, and we hypothesized that methylation can be used to complement genetics
as a clinical prediction tool. To that end, we have generated and evaluated methylation risk

scores (MRS), which are linear combinations of CpG methylation states[189].

To comprehensively investigate the utility of MRS and characterize its properties, we
conducted a study of 607 EHR~derived phenotypes spanning medications (e.g. vasopressers,
glucocorticosteroids, fluoroquinolones), labs (e.g. creatinine, glucose, prothrombin time),
and diagnoses (e.g. T2D, bacterial pneumonia, anemia) that were available for a sufficient
number of patients in the cohort. The cohort contained 831 patients—to the best of our
knowledge, the largest epigenetic biobank dataset to date (including genetics, methylation,
and EHR)—from the UCLA Health ATLAS cohort across a wide range of ages (18-90), racial
and ethnic groups, and overall health (including patients ascertained on kidney and heart
disease, with matched controls), with corresponding genetic and EHR data. This provides
the opportunity to study the potential contribution of methylation to larger biobanks and in
multiple clinical contexts. We find that the MRS-based imputations were more informative
compared to PRS in 84 (92%) medications, 32 (94%) labs, and 123 (82%) diagnoses, more
than doubling the imputation accuracy in over half of the outcomes considered. We also
show that the MRS improves the imputation accuracy over PRS for cases in which the
PRS is trained on very large external biobanks (roughly 3 orders of magnitude larger), as
opposed to 831 samples that are available in this study. We observe that MRS improves
over PRS learned from large biobanks in 40% of the tested phenotypes. Further, as our
cohort was ethnically diverse, we performed replicability analyses within each racial and
ethnic subset of our data. We broadly showed the replicability of the five best-imputed
(by MRS) medications, labs, and diagnoses—46% and 100% of which replicated in (n=118)
non-white Hispanic-Latino- and (n=>543) white non-Hispanic-Latino-identifying individuals

respectively. Finally, we demonstrate the ability of MRS to transfer between methylation
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arrays and cohorts by conducting an association study of kidney-related MRS in an external

diabetic nephropathy EWAS [200], where the minimum replication p-value was 2.72 x 1077,

These results provide evidence for the utility of methylation in phenotype imputation in
general, and in biobank settings in particular. However, the promise of clinical translation of
genomic risk scores, including PRS or MRS is highly dependent on the clinical context of the
patient. There is a large body of work investigating phenotype imputation and prediction in
clinical settings using EHR data alone, typically with machine learning techniques, without
any genomic data. To the best of our knowledge, the question of whether genomic data can
be used to complement such algorithms has not been studied. Since the application of MRS
or PRS to clinical data without taking into account the EHR data provides a limited clinical

utility, this is a natural question.

Here, we demonstrate that MRS can be used in conjunction with EHR data to improve
the imputation of clinical data of patients. Critically, most machine learning approaches rely
on imputation because of the inability of such algorithms to process missing data, making
accurate imputation a crucial step. We found that the combination of MRS with a gold
standard imputation approach—SoftImpute [201]—for clinical data imputation, provides
improved accuracy (R?) in 37.3% of the examined phenotypes with a median increase of
47.6%. This result provides the potential to improve machine learning algorithms that use

the EHR data, by complementing the data with methylation information for the patients.

In summary, our results quantify the contribution of methylation information in clinical
settings, both in isolation and in conjunction with the EHR data, and they demonstrate the

potential utility of epigenetic biobanks in clinical settings.

4.2 Methods

4.2.1 Electronic Health Record Data

De-identified electronic health record data for this study was extracted from the perioperative

data warehouse (PDW), a custom-built, robust data warehouse containing all patients who
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have undergone surgery at UCLA Health since the implementation of UCLA’s EMR (EPIC
Systems, Madison, WI, USA) in March 2013. The PDW, which has been described previously
[202], has a two-stage design. First, data are extracted from EPIC’s Clarity database into
29 tables organised around three distinct concepts: patients, surgical procedures, and health
system encounters. Then, these data are used to populate a series of 4000 distinct measures
and metrics such as procedure duration, admission ICD codes, lab results, and medication

orders.

4.2.2 Patient Ascertainment

Methylation and genotype samples were collected using blood from 831 patients as part of the
UCLA ATLAS precision health initiative between October 26, 2016 and December 10, 2018
[203]. We include the following statements from [203] detailing IRB approval. Retrospective
data collection and analysis was approved by the UCLA IRB. Patient Recruitment and Sam-
ple Collection for Precision Health Activities at UCLA is an approved study by the UCLA
Institutional Review Board (UCLA IRB). IRB17-001013. All necessary patient/participant

consent has been obtained and the appropriate institutional forms have been archived.

The samples were collected from patients before undergoing surgery with general anes-
thesia at UCLA Health, and the patients had not undergone surgery in the 30 days prior
to blood sample collection. Of these patients, 302 were selected for inclusion based on the
presence of acute kidney injury (AKI), defined as an Acute Kidney Injury Network (AKIN)
classification of one or greater, after undergoing surgery. An additional 348 patients were
risk-matched controls, with either glomerular filtration rate (GFR) less than or equal to
38 (210 patients), or GFR greater than 38 and a propensity risk score that matched case
patients (348 patients). The propensity score was created using available EHR features such
as age, weight, BMI, and other preoperative features that were measured in the hospital.
Within the control group, we also performed a similar procedure ascertained on whether
individuals were a heart attack case. Controls for heart attack patients were also selected

using propensity scoring. Demographics of the patient population are further described in
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Table 4.1 below.

Table 4.1: Cohort patient demographics. AKIN is the Acute Kidney Injury Network Clas-
sification, BMI is Body Mass Index, GFR is glomerular filtration rate.

Missing  Overall
n 831
Age, mean (SD) 0 61.0 (15.8)
Sex, n (%) F 0 352 (42.4)
479 (57.6)
BMI, mean (SD) 1 27.2 (6.6)
AKIN Classification, n (%) 0.0 0 537 (64.6)
1.0 189 (22.7)
2.0 27 (3.2)
3.0 78 (9.4)
GFR > 38, n (%) False 0 375 (45.1)
True 456 (54.9)
Heart Attack, n (%) False 601 146 (63.5)
True 84 (36.5)
Self-Reported Ethnicity, n (%) Cuban 0 2 (0.2)
Hispanic or Latino 116 (14.0)
Hispanic/Spanish origin Other 14 (1.7)
Mexican, Mexican American, Chicano/a 37 (4.5)
Not Hispanic or Latino 655 (78.8)
Patient Refused 5 (0.6)
Puerto Rican 2 (0.2)
Self-Reported Race, n (%) American Indian 0 2 (0.2)
Asian 73 (8.8)
Black 72 (8.7)
Declined to Specify 6 (0.7)
Other Race 132 (15.9)
Pacific Islander 3(0.4)
Unknown 1(0.1)
White or Caucasian 542 (65.2)

4.2.3 Medication Usage

For each medication, a patient was labeled as using a medication if the electronic health

record contained a medication order that occurred before the methylation sample collection

date.

Medications were grouped by pharmaceutical subclass using the Generic Product

Identifier (GPI) hierarchical classification system codes. Any medications that were ordered
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in fewer than 5% of the patients were excluded from the analysis. In total, 168 pharmaceutical
subclasses were considered in our analysis. The number of patients using medications from
each subclass is shown in Supplementary Table A.1. In Supplementary Table A.2, we show

for each pharmaceutical subclass the specific medication that patients in our cohort received.

4.2.4 Lab Results

The most recent lab result prior to the methylation sample collection was extracted from the
PDW for each patient. Any labs with a result date that occurred more than 365 days before
the methylation sample collection date were excluded from the analyses. Additionally, labs
for which there were less than 50 patients with valid results were excluded. We were left

with a total of 69 lab values on which to run our models.

4.2.5 Diagnosis Codes

International Classification of Diseases, Ninth Revision (ICD-9) and International Classifi-
cation of Diseases, Tenth Revision (ICD-10) codes are a standard set of diagnosis codes,
primarily used for billing purposes. While these codes provide a standardized methodology
for describing a diagnosis, they are very specific. To map these specific diagnosis codes into
meaningful, distinct diseases/traits, Denny et al. aggregated the ICD codes into phenotype
codes (Phecodes) [204, 205]. Specifically, for each patient, we queried all diagnoses prior
to the methylation sample collection date, and used the Phecode (version 1.2) mapping to
aggregate ICD-9 and ICD-10 codes to unique, meaningful phenotypes. If a patient’s diag-
nosis record had both ICD-9 and ICD-10 labels, the ICD-10 to Phecode mapping was used
instead of the ICD-9 to Phecode mapping. Each Phecode was treated as a binary variable,
indicating the presence or absence of a relevant diagnosis code at any point in time before
sample collection. We excluded rare Phecodes (occurrence less than 5% of the patients) and,

in total, our cohort contained 370 unique Phecode phenotypes.
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4.2.6 Preprocessing of genotype data for cross-validation

We measured the genotypes for 831 individuals based on their DNA sampled from whole
blood using the ATLAS genotype array. We preprocessed the genotype data using Beagle
(d20) [206], PLINK (1.07) [207], and GCTA (1.93.2) [208]. We restricted the genotypes to
autosomal variants, removed rare variants (MAF < .05), and filtered for variants that met
Hardy-Weinberg equilibrium with p-value threshold 107¢. We also removed individuals and
variants with more than 1% missing values. For the purpose of running cross-validation, we
used Beagle to impute only any remaining missing values, but did not impute to an external
dataset. With our sample size and phenotypes evaluated, using genotypes imputed to an
external reference did not significantly improve our results. In total we were left with 292,808

SNPs. To obtain principal components, we ran PCA using plink on the chipped genotypes.

4.2.7 Preprocessing and imputation of genotype data for comparison to exter-

nal models

We used a version of the ATLAS genotype data that was imputed to an external dataset,
as detailed in [203]. Briefly, after performing quality control, genotypes were uploaded the
Michigan Imputation Server [209]. The server phases the genotype data using FEagle v2.4
[210] and performs imputation using the TOPMed Freeze5 imputation panel [211] using
minimac4[212]. We applied the same quality control and filters to the imputed genotypes as
we did the chipped genotypes, and we were left with a total of 5,574,956 SNPs.

4.2.8 Preprocessing of methylation array data

We measured methylation data for 831 individuals based on their DNA sampled from whole
blood using the EPIC Illumina array. To generate beta-normalized methylation levels at
each CpG, we ran the default pipeline of ENmix (1.22.0) [213] on the the raw probe data
(IDAT files), which performs background correction, RELIC dye bias correction, and RCP

probe-type bias adjustment. We removed from our analysis CpGs that coincided with SNP
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loci as well as CpGs on the sex chromosome. We also filtered out outlier samples, defined
as having a PC score more than 4 standard deviations away from the average PC score
in the first two principal components. In the imputation tasks, we removed sites with low

variability (standard deviation < 0.02) leading to a total of 269,471 sites.

4.2.9 Imputation using baseline medical features

To establish a baseline level of imputation performance, we constructed a set of features
derived from basic patient information. We trained a simple linear (or logistic) model with
10-fold cross validation using an intercept and patients’ age, sex, BMI, methylation-based
cell-type proportions (from the reference-based method of Houseman et al. [214]), self-
reported ancestry, first ten genetic principal components, and smoking status (never, former
or current). Importantly, we wished to establish how well an outcome (medication, Phecode,
or lab value) could be imputed by using covariates (e.g. ancestry, age, smoking status) that

are known to be captured by genomics.

4.2.10 Imputation using a single penalized linear model

After establishing a baseline level of imputation performance, we performed penalized lo-
gistic and linear regression using either individuals’ methylation, genotypes, or both. More
concretely, we fit 10-fold cross-validation using LASSO, elastic net and ridge regularization

under the following two models:

y = oag+GBe+Chec+eq (4.1)

y = ay+MBy+Clc+cen (4.2)

where y corresponds to the outcome, o the model-specific intercept, G the n x s geno-
types, M the n x ¢ methylation data, § the vector of length-s or -c effect sizes for the

given explanatory variable, C' and ¢ the covariates from the baseline model and their cor-
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responding effect sizes, and e the length n noise vector. We refer to models (2) and (3) as
the PRS and MRS respectively, and note that they also include the baseline features. After
fitting all three penalized linear models for a given datatype and outcome, we selected a
final model as determined by the model with the highest cross-validated metric (AUC or R?
if the outcome was binary or continuous, respectively). We fit all penalized models using
package bigstatsr[124]. We share MRS weights for outcomes that were significantly imputed

at https://github.com/cozygene/EHR MRS _UCLA.

4.2.11 Imputing lab results using EHR data and MRS values with softlImpute

Imputing a partially-observed matrix of values is often formulated as a matrix-completion
problem. In a matrix completion problem, the observed values of the matrix are used to
estimate the values of the unobserved values by assuming that there is some underlying
structure that is responsible for generating the data. For example, in the popular SoftImpute
method [201], the data is assumed to be well-approximated by a low-rank representation, and
the error between the observed values and the reconstructed values is minimized through a
convex optimization procedure. However, since the unobserved values are, by definition, not
observed, and therefore cannot be used to assess the imputation performance, the primary
method for measuring the performance involves masking (removing) observed values and

comparing the imputed values to these held-out, true values.

The EHR data used in the imputation procedure included demographic information,
diagnosis codes, medication usage, and lab results, which were extracted from the EHR
database using the previously described criteria. In addition to the EHR data, we also ran
the imputation procedure while including relevant MRS values. Specifically, we included
the MRS values for demographics, diagnosis codes, medication usage, and lab results that
were imputed at a statistically significant level. These MRS values were added as additional

observed features to the EHR matrix.

To estimate the imputation performance, we randomly masked 10% of the observed lab

result values, and performed the imputation procedure (Softlmpute matrix completion) to
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generate estimates of the missing values. However, since labs are most often ordered in
panels, for example a metabolic panel, if a lab is missing then typically other labs that
are part of the same panel are also missing. We simulated a more realistic missingness
scenario by, instead of masking out values only from a specific lab [, masking out all labs
that are ordered as a panel that include lab [. This masking procedure was done per lab,
using 10-fold cross-validation, such that 10% of the non-missing values of a particular lab
result (and its associated lab panels) were masked (removed), and the remaining 90% of the
observed values were used to complete the matrix. Matrix completion was performed using
the SoftImpute algorithm, as implemented in the fancyimpute [215] python package (version
0.5.5). The proportion of variance explained (R?) of the true lab values by the imputed lab
values was used to measure the imputation performance. Confidence intervals were derived

using bootstrapping.

4.2.12 Hypothesis testing

To determine whether an imputation was significant or whether one predictor offered signifi-
cant additional explanatory signal, we conducted our hypothesis tests using a linear (logistic)
regression framework. Primarily, after running cross-validation or generating a single predic-
tor g for an outcome y, we would test whether the imputation was significant by comparing
it to y:

y=a+yB+e (4.3)

Where Equation (4) corresponded to linear regression when the outcome was continuous,
and logistic regression when the outcome was binary, a was the intercept, and 5 was an effect
size indicating association of the predictor with the outcome. Notably, by building our testing
framework as a linear model, we can easily extend it to include additional predictors in order
to test whether the additional predictors significantly improve the fit of the regression—or
more simply, whether predictor y; offers additional predictive power over y; by conducting

a likelihood ratio test of the following nested models:

72



y = a+ubite (4.4)

y = o4 + Ui + 955 + i (4.5)

Where ¢ and j index either the baseline, MRS, or PRS models. We corrected for multiple
hypothesis tests within each outcome and method by using a Bonferroni adjustment at «

level .05.

4.2.13 Imputing external polygenic risk scores into the ATLAS cohort

We compared our in-house built risk scores to risk scores learned in the UKBiobank dataset[216,
217]. In both [216, 217] the authors construct their PRS using penalized regression akin to as
we have done in our analyses. Notably, using penalized regression on individual-level geno-
types allows one to automatically, optimally control for shrinkage and variable selection at
the step of model generation[124, 218|. This is in contrast with many commonly used poly-
genic risk score tools such as LDPred[219] or PRSCS[220], that attempt to perform shrinkage
or variable selection post-hoc on the level of summary statistics. After downloading the PRS
from the PGS catalog[221] listed in Table 4.2, we imputed PRS into our cohort using our
imputed genotypes using the score function of Plink. To account for population structure,
we limited our analysis to individuals who self-identified as white, and passed filtering using

manual inspection of principal components (Figure 4.1).

Ethical Approval and Patient Consent Retrospective data collection and analysis was
approved by the UCLA IRB. All research was conducted in accordance with the tenets set
forth in the Declaration of Helsinki. We include the following statements from [203] detailing
IRB approval. Patient Recruitment and Sample Collection for Precision Health Activities at
UCLA is an approved study by the UCLA Institutional Review Board (UCLA IRB). IRB17-

001013. All necessary patient/participant consent has been obtained and the appropriate
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Table 4.2: Polygenic scores used for the imputed genotypes. We list below the weights used
for computing the polygenic risk scores. We downloaded the weights from the Polygenic
Score Catalogue (PGS) from two studies of the UKBiobank (Methods).

Lab

PGS accession

Study

Number of variants

Number of variants

in weight present in our data
Albumin PGS000669 Sinnott-Armstrong et al. 11,912 9,172
Cholesterol PGS000677 Sinnott-Armstrong et al. 17,204 13,401
Creatinine PGS000679 Sinnott-Armstrong et al. 5,469 4,242
HGBA1C PGS000685 Sinnott-Armstrong et al. 14,658 11,208
HDL PGS000686 Sinnott-Armstrong et al. 25,070 19,123
Hematocrit PGS001225 Tanigawa et al. 15,721 11,898
Hemoglobin PGS001400 Tanigawa et al. 15,602 11,770
Mean corpuscular hemoglobin PGS001219 Tanigawa et al. 13,003 9,853
Mean corpuscular volume PGS001220 Tanigawa et al. 17,311 13,181
Urea nitrogen PGS000701 Sinnott-Armstrong et al. 12,351 9,473
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Figure 4.1: Self-reported ancestry along genetic PCs We show the primary self-identified
ethnicity in each plot individually. For the analysis using external PRS we limited the set
of white-identifying individuals to those who additionally had a PC1 score of — < .01. We
show the individuals used in our analysis in plot E.
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institutional forms have been archived.

4.3 Results

4.3.1 Risk model description

Analogous to the PRS[222, 124], we defined the MRS by a linear combination of m CpG site
beta values ¢ and weights w:

i=1
To ensure the methylation risk score added predictive value over commonly captured features
(e.g. age and sex), we created a baseline predictive model that included patients’ age,
sex, reference-based methylation cell-type composition estimates [214], self-reported race-
ethnicity, self-reported smoking status, and the first ten genetic principal components [23].
We fit the baseline model using a linear or logistic regression model depending on whether
the outcome was continuous or binary. We compared the baseline model to models that
included the baseline features as well as either methylation or genotype data. For both the
MRS and PRS, we used regression with LASSO, elastic net, and ridge regularization over the
genomic features while treating the baseline features as fixed covariates. We fit all models
using 10-fold double cross-validation, wherein each training set an additional cross-validation
was performed for hyperparameter selection, then this training-set cross-validated model was
used to predict the held-out test set. We tested for significance using an association test
(via linear regression) between the cross-validated predicted outcome (i.e. the concatenated

predictor across all folds) and the true outcome. For full details see Methods.

4.3.2 Methylation risk scores significantly outperform the baseline and PRS

models

From our EHR database, we extracted diagnosis codes , medication orders, and the most

recent lab results, all of which occurred before the methylation samples were collected. We
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aggregated the ICD codes into higher-level phenotypes according to the phenotype code
(Phecode) mapping proposed by Denny et al. [204, 205] and grouped individual medications

by pharmaceutical subclass to increase generalizability and power.

We trained penalized linear models to predict clinical phenotypes for which there was
a sufficient number of patient data available, which included 168 medication subclasses, 69
lab values, and 370 Phecodes. Using a Bonferroni-adjusted association test, the baseline
and MRS models significantly imputed the usage of 69 and 88 medications, 18 and 33 labs,
and 106 and 139 Phecodes respectively. We compared the performance of the MRS to a
model that used both the PRS and baseline features on the same set of individuals, which
significantly imputed the usage of 53 medications, 20 lab results, and 93 Phecodes. Notably,
the baseline model imputed a greater number of medications and Phecodes than models that
leveraged a PRS, which suggests that including genomic features may either add noise or our
sample size may not have been sufficient to discover their effects for certain outcomes. We
also found that the baseline model gains some of its predictive power from genomics-derived
features like ancestry PCs or estimated cell counts, and therefore a PRS or MRS may not
offer a substantial improvement over these features for certain outcomes under the current

sample sizes.

Next, we investigated outcomes for which genomics-based predictors add predictive power
to the baseline features and, in such cases, the extent to which their inclusion improves
predictive accuracy. On the outcomes for which the genomics-based predictors produced
statistically significant imputations, we conducted a likelihood ratio test comparing an asso-
ciation test of the true outcome using the cross-validated baseline predictor alone, to a model
that included the cross-validated baseline predictor as well as the cross-validated predictor
that included both baseline and genomic features (Methods). The methylation significantly
improved the baseline predictor for 54 medications, 29 labs, and 56 Phecodes, and led to
a median increase of 10.74%, 141.52%, and 15.46% over the baseline predictor’s accuracy
(AUC, R?) in each outcome, respectively (Figure 4.2). The genotypes significantly improved

the baseline predictor for 8 medications, 3 labs, and 11 Phecodes, and led to a median in-
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Figure 4.2: MRS increases imputation accuracy on a variety of outcomes (Top) The perfor-
mance of the PRS (blue) and MRS (green) imputations on the y-axis with the baseline model
performance on the x-axis. The performance of binary phenotypes (Phecodes, medications)
is measured using area under the ROC curve (AUC) and the performance of continuous
phenotypes (lab results) is measured using proportion of variance explained (R?). Shown is
the performance on the union of outcomes that were significantly improved over the baseline
model by either the MRS or PRS and that were significantly imputed their corresonponding
predictor (72 Phecodes, 59 medications, and 31 labs). (Bottom) The disease incidence as
a function of the PRS (blue) and MRS (green) binned by deciles (left, middle); and the
observed Urea Nitrogen lab result value plotted against its imputed value (right).

crease of 18.42% over the baseline in the R? of the labs, but a median decrease of 1.75%
and 0.94% in AUC of the medications and Phecodes respectively (Figure 4.2). We note that
our internal sample size is likely underpowered to discover small genetic effects and therefore
suggest the contributions made by the genotypes may be due to additional ancestry signal

that was not captured by the first few genetic PCs.

The medications that improved the greatest using methylation corresponded to drugs

often prescribed to individuals with neutropenia (hematopoeitic growth factors, AUC base-
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line .706 95% CI [.661,.748] to AUC methylation .840 [.807,.871]) or chronic kidney dis-
ease (phosphate binder agents AUC from .731 [.683, .777] to .876 [.842, .907]). The lab
panels best improved with the addition of the methylation-based predictor included those
related to kidney function as well as cell counts (Urea nitrogen baseline adjusted R? .032
[.007,.057] compared to .443 [.377,.509] with methylation, hemoglobin .107 [.063,.151] to .289
[.232,.346]). The addition of the genotype-based predictor improved the imputation of hema-
tocrit (adjusted R? from .077 [.041,.114] to .092 [.052,.132]) and total protein (adjusted R?
.094 [.047,.141] to .111 [.060,.162]), both of which are influenced by ancestry [223, 224]. In
the context of Phecodes, methylation greatly increased the imputation of advanced renal
disease over the baseline and genotype models (for example, AUC baseline .720 [.673,.762]
to 0.898 [.867,.927] with methylation), and the genotype model increased the imputation of
actinic keratosis (AUC from .694 [.631,.747] to .728 [.672,.784]).

Overall, when looking at the intersection of medications significantly imputed by either
the methylation and genotypes or methylation and baseline, 92% were better imputed by
methylation sites than genotypes (median 9.13% increase) and 78% were better imputed by
methylation compared to the baseline (median 6.81% increase). Methylation improved the
baseline imputation accuracy by over 15% for 14 medications. In the context of significantly
imputed lab values, methylation explained more variability than the baseline (median 398%
increase) and genotype (median 274% increase) predictors in 97% and 94% of the respective
union of significantly imputed labs. For 22 labs, the percent increase of imputation accuracy
was greater than 15% over the baseline model. Methylation was more accurate than the
baseline (median 3.48% increase) or genotypes (median 6.58% increase) for 70% and 83%
of each respective union of Phecodes. For 29 Phecodes, the methylation offered over a 15%
increase in predictive accuracy compared to the baseline model. For a substantial proportion
of outcomes, the MRS predictor added statistically significant predictive value over the PRS
predictor. This was generally not true when comparing whether the PRS added predictive
value over the MRS. For the imputation performance on the full list of phenotypes, see

Supplemental Tables A.3, A.4, and ?7?.
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Importantly, cell-type composition, age, sex, BMI, smoking status and ancestry provide
sufficient power for the imputation of many EHR outcomes. Moreover, it is likely that
genomics derived features such as cell-type composition and ancestry PCs likely contribute
to accurate imputation of several outcomes. In our analyses, we directly compared the power
gained by methylation over the aforementioned set of baseline features. However, we note
that obtaining these baseline features may be unnecessary as the methylation alone may
capture their signal [225, 194, 23, 192, 226]. Further, previous reports have suggested that
approaches that fit all methylation probes simultaneously with regularization may perform
better when excluding latent confounders, such as cell type composition [227]. We therefore
suggest that using the methylation alone is sufficient to replicate a substantial proportion of

the associations generated from the baseline features.

4.3.3 Using methylation risk scores improves imputation approaches

Due to significant heterogeneity in patient populations, the diagnosis and treatment process
can vary widely between patients, causing many variables to be left unobserved. This sparse
structure in the data must be reconciled before performing many downstream analyses, and
the imputation accuracy of these unobserved variables is therefore crucial to subsequent
steps. A commonly-used approach for imputation is matrix completion, for example, Soft-
Impute [201], where the data matrix is reconstructed from a low-rank representation. Often,
one would jointly use demographic information, diagnosis codes, lab results, and medications
to generate an estimate of the unobserved EHR values using an imputation method such as

SoftImpute, and therefore we used this as our baseline imputation estimate [228].

To investigate whether methylation can add additional useful information to the im-
putation, we included the MRS values as part of imputation procedure and compared the
performance to the estimates that do not take methylation data into account (see Methods).
Specifically, we included cross-validated MRS values for diagnosis codes, lab results, med-
ications, and demographics that were significantly imputed as 261 additional features (i.e.

columns of the input matrix) in the imputation procedure. We randomly removed a subset
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Figure 4.3: Improvement in lab result imputation performance by including MRS For lab
results that were significantly better imputed using a matrix completion imputation proce-
dure that included the MRS values, we compare the quality of the imputed values (R?) using
only the EHR data (SoftImpute) to the values generated when including the MRS values in

addition to the EHR data (Softlmpute+MRS).

of the observed lab results, including other labs that are ordered as part of the same lab
panel(s), and imputed the masked values using the remaining observed values. The imputed
values were then compared to the held-out, masked values to assess the quality of the impu-

tation. In Figure 4.3, we show the imputation accuracy (R? between the masked true and
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imputed values) for labs where the addition of cross-validated MRS to the baseline SoftIm-
pute procedure explained significantly more variability. Of the 67 lab results considered, 25
(37.3%) were significantly better imputed by including the MRS values. Including the MRS
values led to a median increase of 47.6% (95% CI 17.3%-90.9%) in the imputation R? values.

4.3.4 Methylation risk scores will improve with larger sample sizes

Prediction of Hepatic Fibrosis Prediction of Alpha—-Beta Blockers Prediction of Chloride
1.01 0.71 0.15
0.81 0.6 0.10+
g g / .
2 064 < 051 X 0.05
0.41 0.00
0.41
0.31 -0.05 1
0.21
25 50 75 100 25 50 75 100 25 50 75 100
Percent of sample size (n=779) Percent of sample size (n=828) Percent of sample size (n=686)

Baseline == Methylation

Figure 4.4: Imputation accuracy may improve with additional samples We downsampled the
number of individuals to evaluate the imputation performance as a function of sample size
using a well-imputed medication, lab value, and Phecode. The performance is significantly
affected by the number of individuals, suggesting that there is additional power to be gained
with the addition of more methylation samples.

In this study, our analyses of imputation accuracy were performed on 831 individuals’
methylation and genetic features. For many phenotypes, the genetic effects are relatively
small and require large sample sizes to identify associations between genomic features and the
outcome of interest. Consequently, in many biobanks the number of individuals with mea-
sured genomic features is several orders of magnitude larger than our sample size [30, 31, 32].
While the methylation data provided sufficient power to significantly impute numerous out-
comes, there may remain much power to be gained by increasing the number of methylation

samples to numbers approaching biobank-scale.

To determine the role of sample size in our imputation accuracy, we performed an exper-
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iment in which we downsampled the number of individuals in our data and trained models
on the subsampled data. From the set of outcomes most accurately imputed by methylation
and that also significantly improved the baseline’s imputation, we chose 10 medications,
labs, and Phecodes on which to perform 10-fold cross-validation. For each sample size, we
repeated the procedure 20 times to attempt to mitigate variance due to ascertainment effect.
Though we selected features that had high accuracy using the full set of data, our results
suggest that our models may become more accurate as the sample size increases (Figure 4.4).
We further posit that there may be additional outcomes that will be significantly imputed

as the number of methylation samples increases.

4.3.5 Comparing MRS to UKBiobank PRS

Urea Nitrogen 1
Creatinine -
Hemoglobin 4

Hematocrit 1
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Figure 4.5: Labs as imputed by methylation, genotypes, and an externally-trained polygenic
risk score The cross-validated R? between the true and imputed lab value on 541 unrelated
patients of non-Hispanic-Latino white-identifying individuals using a baseline predictor as
well as a baseline predictor with methylation, genotypes, and a PRS externally-trained from
UKBiobank summary statistics. HDL corresponds to high-density lipoprotein cholesterol
and HGBA1C to glycated hemoglobin.
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As expected, due to a small sample size and the likely small effects of SNPs on pheno-
types, the PRS developed using the UCLA cohort did not add substantial predictive power
over the baseline features. Studies leveraging biobanks with sample sizes several magnitudes
larger than the cohort at UCLA however, have shown non-zero heritability for a variety of
phenotypes [30, 216, 229, 217]. Therefore, we sought to compare the MRS and PRS gen-
erated with the UCLA data to a polygenic risk score created using the UKBiobank data
[30]. To do so, we obtained the genotype weights corresponding to 10 polygenic risk scores
trained on the UKBiobank (Table 4.2) [30, 217, 229, 221] data and imputed the external
risk scores into our health record system using PLINK [207]. We included in the comparison
labs that were significantly imputed by the baseline model and excluded labs that corre-
sponded to cell counts or labs for which the internal PRS outperformed the external PRS
(indicating a mismatch in the phenotypes or cryptic population structure that was unac-
counted for by principal components). While the external polygenic risk score improved
substantially the imputation performance relative to the internal polygenic risk score, it did
not significantly outperform the methylation for any of the tested phenotypes (Figure 4.5).
The methylation remained the best predictor in general—even when trained on fewer than
1000 samples—significantly outperforming the other models in the imputation of urea ni-
trogen, creatinine, hemoglobin, hematocrit, and albumin. The externally-derived polygenic
risk score greatly outperformed both the internally-derived PRS and the MRS when pre-
dicting glycated hemoglobin (HGBA1C) and HDL levels, however the improvement was not

significant.

4.3.6 Evaluation of methylation risk scores across ancestral populations

Previous reports have suggested that a significant confounder to the application and ver-
satility of polygenic risk scores is population structure, where a population-specific bias is
induced that affects generalizability of PRS to different ancestries [42, 230, 41]. The collec-
tion of samples analyzed throughout this study is ethnically heterogeneous—individuals were

self-identified as non-Hispanic/Latino European, Hispanic/Latino, Black, or Asian. Methy-
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lation data is also influenced by differences in population [231], and in particular the first
several methylation principal components sufficiently capture population structure in Euro-
pean and African groups [232, 233]). Consequently, we examined the performance of the

methylation risk scores within and across ancestral populations.

Primarily, after training the models on the entire heterogeneous set of samples, we exam-
ined the predictive performance within each ancestral population. When we examined the
top 10 best-imputed (by MRS across the entire set of individuals) lab panels, medications,
and Phecodes, only 10 of the entire 180 possible comparisons ((;1) comparisons across 30
outcomes) displayed significant differences between the predictive performance within each

population separately (7 of which are displayed in Figure 4.6).

Phecodes - Methylation

End stage renal
disease

Neutropenia
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Cirrhosis of liver
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Noninflammatory W Black
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Figure 4.6: Best methylation-imputed Phecodes within ancestral populations. After training
a model on the entire heterogeneous population of individuals, we evaluated the predictive
performance within each population separately. We observed only 6 (of 60) significant dif-
ferences between self-reported ancestral groupings.

In a second replication analysis we trained predictive models within ancestral groupings

separately. As the individuals self-identified as either Black or Asian comprised less than 100
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individuals in both groupings, we focused our analyses on Hispanic/Latino- and white-non-
Hispanic/Latino-identifying individuals. We retrained models for the top 5 best-imputed
(by MRS) medications, lab panels, and unique Phecodes on the Hispanic/Latino individuals
and white non-Hispanic/Latino individuals alone and treated a prediction as significant
if its association p-value was lower than .01. Creatinine, hemoglobin, and urea nitrogen
replicated across both groupings, however, hematocrit and mean corpuscular hemoglobin did
not replicate in the Latino/Hispanic grouping (Table 4.3). In the context of medications,
CMYV agents, osmotic diuretics, phosphate binder agents, hematopoietic growth factors, and
immunosuppressive agents replicated within the white non-Hispanic/Latino population but
only CMV and immunosuppressive agents replicated within the Hispanic/Latino population
(Table 4.3). Finally, Phecodes corresponding to immunity deficiency, hypertensive renal
disease and end-stage renal failure replicated within both groupings, however, neutropenia
and anemia replicated only within the white non-Hispanic/Latino set of individuals (Table

4.3).

4.3.7 Replication of methylation risk scores across external datasets

To evaluate the transferability of the MRS to a different population, we performed several
experiments in which we imputed the MRS into external datasets. Primarily, we focused
on imputation of kidney-related outcomes as they were the most accurately imputed in
our own cohort. To do so, we leveraged a dataset that used the HumanMethylation27k
array to measure the methylation of 194 individuals who had Type 1 Diabetes, 49.7% of
whom had nephropathy (cases) [234]. We re-trained the models for a Phecode corresponding
chronic renal disease as well as labs corresponding to creatinine and urea nitrogen on our
in-house data, limiting our analysis to the 27,000 sites that belonged to the external dataset.
The imputed chronic renal disease was significantly associated with nephropathy in the
external dataset (p=8.32e-05, AUC=.684 [.615,.758]. Further, both of the imputed values
for creatinine and urea nitrogen were significantly associated with nephropathy (p=5.11e-

07, AUC=.739 [.670,.808] and p=3.71e-05 AUC=.693 [.619,.767], respectively). Importantly,
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Table 4.3: Replication statistics within ethnic groupings Predictive accuracy (R? and AUC)
for MRS trained within only Latino/Hispanic- or white-non-Latino/Hispanic-identifying in-
dividuals compared to the accuracy trained on the entire, cross-ethnic cohort.

Accuracy, p-value
Accuracy, p-value Accuracy, p-value

white, non-

Outcome Metric Hispanic/Latino Hispanic,Latino all ethnicities
(n=118) (n=543) (n=833)
Creatinine R2 217, 4.63e-07 .356, 7.47e-46 457, 1.27e-95
Hematocrit R? .045, 2.91e-02 .188, 1.87e-21 1246, 1.14e-42
Hemoglobin R2 .096, 1.21e-03 .204, 2.54e-23 1283, 3.02e-50
Mean corpuscular hemoglobin R? .050, 2.12e-02 122, 9.70e-14 .208, 7.04e-35
Urea nitrogen R? .289, 2.97e-09 .349, 7.61e-44 435, 2.50e-87
CMV Agents AUC .874, 9.27e-07 .875, 3.47e-16 .905, 1.72e-38
Osmotic Diuretics AUC .530, 0.841 842, 2.27e-12 848, 6.37e-34
Phosphate binder agents AUC .608, 0.321 .819, 7.76e-17 .876, 1.11e-50
Hematopoietic growth factors AUC 567, 0.476 .780, 1.51e-19 .840, 1.75e-45
Immunosuppressive agents AUC 721, 1.43e-04 .823, 6.36e-22 .828, 9.44e-41
Neutropenia AUC .689, 5.60e-02 .800, 7.68e-10 .836, 1.11e-19
Immunity deficiency AUC .889, 4.06e-09 .818, 3.26e-19 .821,9.74e-33
Anemia AUC .637, 9.75e-02 .698, 3.13e-08 789, 1.40e-32
Hypertensive renal disease AUC 715, 1.35e-04 .688, 6.74e-10 .801,1.45e-42
End-stage renal failure AUC .677, 1.80e-03 .868, 2.51e-29 .898, 5.46e-72

when limiting our internal analysis to sites only on the 27k array, the association signal
decreased (for chronic renal disease from p=6.81e-51 to p=3.13e-29, creatinine p=1.27e-
95 to p=3.14e-62, and urea nitrogen p=2.50e-87 to p==8.44e-34). However, likely due to
correlation between CpGs, the association tests for outcomes trained on the smaller set of

sites were still significant.

Second, we expanded our replication analyses to include phenotypes that were unre-
lated to kidney function. In these analyses, we revisited epigenome-wide association studies
(EWAS) of Schizophrenia [235] and Rheumatoid Arthritis [236] and imputed commonly pre-
scribed medications for each dataset—for Schizophrenia we used phenothiazines, and for
Rheumatoid Arthritis we used glucocorticosteroids. To ensure our MRS captured medi-
cation intake status and were not merely serving as proxies for the disease, we re-trained

our models while conditioning on the trait of interest. The imputed phenothaizine intake

was significantly associated with Schizophrenia case-control status (p=8.71e-04, AUC=.568

86



[.527,.611]) and the imputed glucocorticosteroids usage was significantly associated with
Rheumatoid Arthritis case-control status (p=2.72e-07, AUC=.626 [.584,.669]. Weights for
both medications were trained on CpGs corresponding to those present on the Human-
Methylation450k array and also included their corresponding disease in the baseline set of
covariates. Accordingly, the association signal of phenothiazines dropped from 1.14e-07 to
3.99¢-05 and the performance of glucocorticoids dropped from 1.35e-16 to 1.82e-15 when
compared to the MRS trained on the set of EPIC array CpGs and with the baseline features

as covariates.

4.4 Discussion

In this study, we provide a comprehensive investigation of the utility of methylation risk
scores in a clinical setting. We used (to our knowledge) the largest methylation biobank
cohort produced to date, which includes methylation, genotype, and comprehensive EHR
data for all patients. We find that the MRS improved imputation performance over a baseline
model by 10.65%, 156.31%, and 14.59% when predicting medication usage, lab panel values,
and diagnosis codes respectively. These contributions are significantly more substantial than

those obtained by PRS.

The vision of genomic biobanks is that the genomic data will be translated into improved
clinical diagnosis and treatment decisions [28, 237, 35]. In practice, clinical decisions are
not expected to be based solely on genomic information, but rather on the combination of
the genomic, medical, and demographic information of the patient. While previous studies
have used a limited number of key features as a baseline for imputation of a phenotype (e.g.,
age, sex, and major comorbidities) [228, 238, 239, 240], to the best of our knowledge, these
studies did not take into account the entire familial-genetic or environmental history of the
patients. Thus, the question of whether genomic data (methylation or genetics) can be used
to improve imputation over the EHR data is critical in order to claim clinical relevance.
Our results demonstrate that adding MRS to existing EHR-based imputation frameworks

improve imputation accuracy by over 29% in a clinical context.
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It is well appreciated that PRS are sensitive to the studied population, and it is often
the case that a PRS developed for one ethnic group performs poorly on others [41, 42]. It is
therefore important to evaluate the population effect on MRS performance. For this reason,
we measured the transferability of our results across different populations, and we observe
that the accuracy of the MRS was robust to population structure. This is likely driven by
the diversity of the training cohort used, but also due to the fact the we are under-powered
to discover subtle differences in imputation accuracy due to our sample sizes. Nonetheless,
since we observed very few large differences in accuracy across populations, we are hopeful
that our results will inspire future investigations to continue to recruit diverse cohorts and

to examine these differences at length with greater sample sizes.

While our study was focused on methylation, there are many other possibilities for the
introduction of genomic data in clinical settings. First and foremost, genetic data has been
heavily studied by others and large biobanks including genetic data of patients already exists.
However, other measurements such as RNA, microbiome, metabolomics, or proteomics may
also be relevant. Some of these have logistic and cost considerations at scale. One of the
advantages of methylation is that DNA biobanks already exist in large numbers, and the
cost of measuring methylation is close to that of measuring genetic data. Moreover, different
genomic measurements may provide different snapshots of the patient’s data, risk, or health
status. Methylation, for example, is known to capture one’s smoking status[19], and may
therefore be particularly useful for cases in which researchers intend to use self-reported
features that may suffer from patient recall bias or honesty. Tangentially, while polygenic risk
scores provide a lifetime risk for a patient, methylation risk scores may provide the current
risk of the patient over the last few months [241, 242, 243], and other genomic information
may provide risk with the resolution of days or hours (e.g., RNA or certain metabolomics
(244, 245, 246, 247]). Nonetheless, owing to the dynamic nature of methylation, it is currently
unclear what the range or duration of the methylation risk score are. Furthermore, while
methylation patterns are associated with outcomes, it is generally unknown if they cause a

disease or are a response to a disease [248].

88



To assist the research community in investigating methylation in the context of disease,
we provide the MRS predictors for all significantly predicted outcomes at
https://github.com/cozygene/EHR MRS_UCLA. While our samples were ascertained on kid-
ney and heart disease, we show that our weights successfully replicated across three inter-
nal datasets, including studies of Rheumatoid Arthritis and Schizophrenia. Consequently,
our weights may be used by researchers and clinicians in different ways. For example, in
many epigenome-wide association studies (EWAS), in which associations between specific
methylation CpG sites and a phenotype are studied, one may wish to account for patients’
comorbidities and medications, which are often not available to the study. Using the MRS
database, the researchers leveraging EWAS will be able to incorporate such covariates into

their model.

There are multiple potential next steps for the examination of methylation in clinical
contexts. First, in this work we focused our attention on the imputation of the phenotypes, or
in other words, the inference as to whether the patient is currently diagnosed with a disease.
We hope that our findings will be able to be translated to the inference of future clinical
events, i.e., prediction of future deterioration or disease occurrence. Second, our analyses did
not focus on generating models for a specific patient demographic (e.g. only senior patients)
and we were limited to methylation collected from blood samples. As methylation is known
to vary across age and tissue type, models may be improved by focusing on individuals of
a specific demographic, or by assaying a tissue relevant for a given phenotype (e.g. liver
tissue for metabolic disorders. Third, although our evaluation is across the largest dataset
which includes both EHR, methylation, and genotype data, the sample size of our study
is still moderate compared to genetic studies that are performed on biobanks. Indeed, we
demonstrate that for some of the phenotypes, an increase in sample size will likely lead to a
substantially improved imputation accuracy (Figure 4.4). Moreover, larger sample size data
may be able to reveal the quantity or contribution of genetics verses methylation to the MRS
imputation accuracy [227]. In light of our results, as well as the fact that many biobanks

have already obtained blood or DNA samples, we recommend that future biobanks consider
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measuring methylation in addition to the genotypes across a large number of patients.
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APPENDIX A

Supplementary Material - Methylation risk scores are
associated with a collection of phenotypes within

electronic health record systems

Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Sodium 699 (80.9%)
Opioid Agonists 639 (74.0%)
Local Anesthetics - Amides 589 (68.2%)
Non-Barbiturate Hypnotics 584 (67.6%)
5-HT3 Receptor Antagonists 549 (63.5%)
Analgesics Other 544 (63.0%)
Radiographic Contrast Media 535 (61.9%)
Anesthetics - Misc. 507 (58.7%)
Glucocorticosteroids 499 (57.8%)
Salicylates 459 (53.1%)
Heparins And Heparinoid-Like Agents 459 (53.1%)
Opioid Combinations 458 (53.0%)
HMG CoA Reductase Inhibitors 456 (52.8%)
Proton Pump Inhibitors 443 (51.3%)
Oil Soluble Vitamins 434 (50.2%)

Continued on next page
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Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Vasopressors 421 (48.7%)
Surfactant Laxatives 398 (46.1%)
Electrolyte Mixtures 390 (45.1%)
Antiarrhythmics Type I-B 383 (44.3%)
Beta Blockers Cardio-Selective 383 (44.3%)
Cephalosporins - 1st Generation 369 (42.7%)
Calcium Channel Blockers 367 (42.5%)
Loop Diuretics 346 (40.0%)
Miscellaneous Contrast Media 341 (39.5%)
Nondepolarizing Muscle Relaxants 336 (38.9%)
Fluoroquinolones 327 (37.8%)
Stimulant Laxatives 326 (37.7%)
Nonsteroidal Anti-inflammatory Agents (NSAIDs) 313 (36.2%)
Sympathomimetics 308 (35.6%)
Antihistamines - Ethanolamines 301 (34.8%)
Laxatives - Miscellaneous 293 (33.9%)
Magnesium 290 (33.6%)
Local Anesthetics - Topical 280 (32.4%)
Potassium 277 (32.1%)
Insulin 269 (31.1%)
Benzodiazepines 265 (30.7%)
Diagnostic Radiopharmaceuticals 264 (30.6%)
Anticonvulsants - Misc. 260 (30.1%)
Carbohydrates 252 (29.2%)
Saline Laxatives 250 (28.9%)

Continued on next page
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Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Antispasmodics 250 (28.9%)
H-2 Antagonists 232 (26.9%)
Angiotensin II Receptor Antagonists 231 (26.7%)
ACE Inhibitors 225 (26.0%)
Penicillin Combinations 219 (25.3%)
Cephalosporins - 3rd Generation 217 (25.1%)
Nitrates 215 (24.9%)
Glycopeptides 213 (24.7%)
Alpha-Beta Blockers 210 (24.3%)
Calcium 207 (24.0%)
Multivitamins 207 (24.0%)
Local Anesthetic Combinations 200 (23.1%)
Anti-infective Misc. - Combinations 198 (22.9%)
Anti-infective Agents - Misc. 193 (22.3%)
Plasma Proteins 190 (22.0%)
Diagnostic Drugs 189 (21.9%)
Water Soluble Vitamins 188 (21.8%)
Phenothiazines 184 (21.3%)
Gastrointestinal Stimulants 182 (21.1%)
Corticosteroids - Topical 182 (21.1%)
Central Muscle Relaxants 181 (20.9%)
Viral Vaccines 175 (20.3%)
Iron 170 (19.7%)
Vasodilators 168 (19.4%)
Antibiotics - Topical 166 (19.2%)

Continued on next page
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Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Hematopoietic Growth Factors 165 (19.1%)
Azithromycin 164 (19.0%)
Antacids - Calcium Salts 164 (19.0%)
Antimyasthenic/Cholinergic Agents 158 (18.3%)
Nasal Steroids 158 (18.3%)
Selective Serotonin Reuptake Inhibitors (SSRIs) 157 (18.2%)
Thiazides and Thiazide-Like Diuretics 157 (18.2%)
Misc. Nutritional Substances 155 (17.9%)
Opioid Antagonists 155 (17.9%)
Platelet Aggregation Inhibitors 154 (17.8%)
Thyroid Hormones 149 (17.2%)
Antifungals - Topical 149 (17.2%)
Bacterial Vaccines 144 (16.7%)
Immunosuppressive Agents 142 (16.4%)
Phosphate Binder Agents 140 (16.2%)
Serotonin Modulators 136 (15.7%)
Laxative Combinations 136 (15.7%)
Biguanides 135 (15.6%)
Depolarizing Muscle Relaxants 135 (15.6%)
Genitourinary Irrigants 134 (15.5%)
Prostatic Hypertrophy Agents 134 (15.5%)
Bronchodilators - Anticholinergics 131 (15.2%)
Antiflatulents 130 (15.0%)
Antacid Combinations 127 (14.7%)
Aminopenicillins 126 (14.6%)

Continued on next page
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Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Imidazole-Related Antifungals 125 (14.5%)
Diagnostic Tests 120 (13.9%)
Cobalamins 118 (13.7%)
Folic Acid/Folates 116 (13.4%)
B-Complex w/ Folic Acid 116 (13.4%)
Antihistamines - Non-Sedating 113 (13.1%)
Anesthetics Topical Oral 108 (12.5%)
Diabetic Supplies 107 (12.4%)
Osmotic Diuretics 106 (12.3%)
Tetracyclines 105 (12.2%)
Multiple Vitamins w/ Minerals 105 (12.2%)
Ophthalmic Anti-infectives 104 (12.0%)
Metabolic Modifiers 102 (11.8%)
Potassium Removing Agents 102 (11.8%)
Potassium Sparing Diuretics 101 (11.7%)
Hemostatics - Topical 101 (11.7%)
Ophthalmics - Misc. 101 (11.7%)
Gout Agents 100 (11.6%)
Alternative Medicine - M’s 99 (11.5%)
Parenteral Therapy Supplies 99 (11.5%)
Cough/Cold/Allergy Combinations 99 (11.5%)
Antiseptics - Mouth/Throat 98 (11.3%)
Direct Factor Xa Inhibitors 97 (11.2%)
Anti-infectives - Throat 94 (10.9%)
Anti-inflammatory Agents - Topical 93 (10.8%)

Continued on next page
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Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Coumarin Anticoagulants 92 (10.6%)
Posterior Pituitary Hormones 91 (10.5%)
Antidotes and Specific Antagonists 90 (10.4%)
Antiadrenergic Antihypertensives 90 (10.4%)
Ophthalmic Steroids 90 (10.4%)
Antitussives 88 (10.2%)
Lincosamides 84 (9.7%)
Dibenzapines 83 (9.6%)
Bone Density Regulators 81 (9.4%)
Antianxiety Agents - Misc. 80 (9.3%)
Phosphate 78 (9.0%)
Antiemetics - Anticholinergic 77 (8.9%)
Antiperistaltic Agents 76 (8.8%)
Herpes Agents 76 (8.8%)
Bicarbonates 75 (8.7%)
Liquid Vehicles 72 (8.3%)
Antiarrhythmics Type II1 72 (8.3%)
Artificial Tears and Lubricants 71 (8.2%)
Antidiarrheal /Probiotic Agents - Misc. 71 (8.2%)
Toxoid Combinations 70 (8.1%)
Urinary Antispasmodic - Antimuscarinics (Antich... 67 (7.8%)
Lozenges 67 (7.8%)
CMV Agents 66 (7.6%)
Thrombolytic Enzymes 66 (7.6%)
Impotence Agents 65 (7.5%)

Continued on next page
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Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Alternative Medicine - C’s 64 (7.4%)
Sulfonylureas 63 (7.3%)
Antihypertensive Combinations 63 (7.3%)
Specialty Vitamins Products 63 (7.3%)
Aminoglycosides 61 (7.1%)
Cephalosporins - 2nd Generation 60 (6.9%)
Alkalinizers 59 (6.8%)
Opioid Partial Agonists 73 (6.8%)
Urinary Anti-infectives 58 (6.7%)
Irrigation Solutions 58 (6.7%)
Influenza Agents 57 (6.6%)
Expectorants 57 (6.6%)
Beta Blockers Non-Selective 56 (6.5%)
Tricyclic Agents 56 (6.5%)
Serotonin-Norepinephrine Reuptake Inhibitors (S... 56 (6.5%)
Cephalosporins - 4th Generation 55 (6.4%)
Antihistamines-Topical 55 (6.4%)
Antacids - Bicarbonate 54 (6.2%)
Bulk Laxatives 53 (6.1%)
Alpha-2 Receptor Antagonists (Tetracyclics) 52 (6.0%)
Ophthalmic Local Anesthetics 49 (5.7%)
Hemostatics - Systemic 49 (5.7%)
Zinc 48 (5.6%)
Dipeptidyl Peptidase-4 (DPP-4) Inhibitors 47 (5.4%)
Gallstone Solubilizing Agents 47 (5.4%)
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Table A.1: Number of samples with reported usage of medications in the pharmaceutical
subclasses. Pharmaceutical subclasses are sorted by number of samples.

Pharmaceutical Subclass Number of Samples (Percent)
Cycloplegic Mydriatics 47 (5.4%)
Protamine 58 (5.4%)
Butyrophenones 46 (5.3%)
Antidepressants - Misc. 45 (5.2%)
Mucolytics 45 (5.2%)
Leukotriene Modulators 44 (5.1%)
B-Complex Vitamins 44 (5.1%)
Acne Products 44 (5.1%)
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Table A.2: Medications used in each pharmaceutical subclass

Pharmaceutical Subclass Drug Name
ALKALINIZERS BICITRA
ALKALINIZERS CITRIC
ALKALINIZERS CYTRA-2
ALKALINIZERS CYTRA-3
ALKALINIZERS POT
ALKALINIZERS POTASSIUM
ANTI-INFECTIVES - THROAT CLOTRIMAZOLE
ANTI-INFECTIVES - THROAT MICONAZOLE
ANTI-INFECTIVES - THROAT NYSTATIN
B-COMPLEX W/ FOLIC ACID B
B-COMPLEX W/ FOLIC ACID B-COMPLEX
B-COMPLEX W/ FOLIC ACID DIALYVITE
B-COMPLEX W/ FOLIC ACID FULL

B-COMPLEX W/ FOLIC ACID
B-COMPLEX W/ FOLIC ACID
B-COMPLEX W/ FOLIC ACID
B-COMPLEX W/ FOLIC ACID
B-COMPLEX W/ FOLIC ACID
B-COMPLEX W/ FOLIC ACID
B-COMPLEX W/ FOLIC ACID
BIGUANIDES

CALCIUM CHANNEL BLOCKERS
CALCIUM CHANNEL BLOCKERS
CALCIUM CHANNEL BLOCKERS

CALCIUM CHANNEL BLOCKERS

NEPHRO-VITE

NEPHROCAPS

RENA-VITE

RENAL

RENAL-VITE

VOL-CARE

VP-VITE

METFORMIN

ADALAT

AFEDITAB

AMLODIPINE

CARTIA
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Table A.2: Medications used in each pharmaceutical subclass

Pharmaceutical Subclass Drug Name
CALCIUM CHANNEL BLOCKERS DILT-XR
CALCIUM CHANNEL BLOCKERS DILTIAZEM
CALCIUM CHANNEL BLOCKERS FELODIPINE
CALCIUM CHANNEL BLOCKERS ISRADIPINE
CALCIUM CHANNEL BLOCKERS NICARDIPINE
CALCIUM CHANNEL BLOCKERS NIFEDICAL
CALCIUM CHANNEL BLOCKERS NIFEDIPINE
CALCIUM CHANNEL BLOCKERS NIMODIPINE
CALCIUM CHANNEL BLOCKERS NORVASC
CALCIUM CHANNEL BLOCKERS VERAPAMIL
CMV AGENTS VALCYTE
CMV AGENTS VALGANCICLOVIR
DIBENZAPINES OLANZAPINE
DIBENZAPINES QUETIAPINE
DIBENZAPINES ZYPREXA
HEMATOPOIETIC GROWTH FACTORS ARANESP
HEMATOPOIETIC GROWTH FACTORS DARBEPOETIN
HEMATOPOIETIC GROWTH FACTORS EPOETIN
HEMATOPOIETIC GROWTH FACTORS EPOGEN
HEMATOPOIETIC GROWTH FACTORS FILGRASTIM

HEMATOPOIETIC GROWTH FACTORS

HEMATOPOIETIC GROWTH FACTORS

HEMATOPOIETIC GROWTH FACTORS

HEMATOPOIETIC GROWTH FACTORS

HEMATOPOIETIC GROWTH FACTORS

FILGRASTIM-SNDZ

MIRCERA

NEULASTA

NEUPOGEN

PEGFILGRASTIM
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Table A.2: Medications used in each pharmaceutical subclass

Pharmaceutical Subclass

Drug Name

HEMATOPOIETIC GROWTH FACTORS

HEMATOPOIETIC GROWTH FACTORS

HEMATOPOIETIC GROWTH FACTORS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

IMMUNOSUPPRESSIVE AGENTS

METABOLIC MODIFIERS

METABOLIC MODIFIERS

METABOLIC MODIFIERS

METABOLIC MODIFIERS

METABOLIC MODIFIERS

METABOLIC MODIFIERS

PROCRIT

ROMIPLOSTIM

ZARXIO

ANTI-THYMOCYTE

AZATHIOPRINE

BASILIXIMAB

BELATACEPT

CELLCEPT

CYCLOSPORINE

EVEROLIMUS

IDS

MYCOPHENOLATE

MYCOPHENOLIC

MYFORTIC

NEORAL

PROGRAF

RAPAMUNE

SIROLIMUS

TACROLIMUS

CALCITRIOL

CINACALCET

DOXERCALCIFEROL

HECTOROL

PARICALCITOL

ROCALTROL

Continued on next page

101



Table A.2: Medications used in each pharmaceutical subclass

Pharmaceutical Subclass Drug Name
METABOLIC MODIFIERS SENSIPAR
METABOLIC MODIFIERS ZEMPLAR
OSMOTIC DIURETICS MANNITOL
PHOSPHATE BINDER AGENTS AURYXIA
PHOSPHATE BINDER AGENTS CALCIUM
PHOSPHATE BINDER AGENTS FERRIC
PHOSPHATE BINDER AGENTS FOSRENOL
PHOSPHATE BINDER AGENTS LANTHANUM
PHOSPHATE BINDER AGENTS PHOSLO
PHOSPHATE BINDER AGENTS RENAGEL
PHOSPHATE BINDER AGENTS RENVELA
PHOSPHATE BINDER AGENTS SEVELAMER
PHOSPHATE BINDER AGENTS SUCROFERRIC
PHOSPHATE BINDER AGENTS VELPHORO
POTASSIUM REMOVING RESINS KALEXATE
POTASSIUM REMOVING RESINS KAYEXALATE
POTASSIUM REMOVING RESINS KIONEX
POTASSIUM REMOVING RESINS PATIROMER
POTASSIUM REMOVING RESINS SODIUM
POTASSIUM REMOVING RESINS VELTASSA
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) CITALOPRAM
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) ESCITALOPRAM
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) FLUOXETINE
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) FLUVOXAMINE
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) LEXAPRO
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Table A.2: Medications used in each pharmaceutical subclass

Pharmaceutical Subclass Drug Name
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) PAROXETINE
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) SERTRALINE
SELECTIVE SEROTONIN REUPTAKE INHIBITORS (SSRIS) ZOLOFT
SPECIALTY VITAMINS PRODUCTS MG-PLUS
SPECIALTY VITAMINS PRODUCTS ONE-A-DAY
SPECIALTY VITAMINS PRODUCTS PROSTATE
SULFONYLUREAS GLIMEPIRIDE
SULFONYLUREAS GLIPIZIDE
SULFONYLUREAS GLYBURIDE
THROMBOLYTIC ENZYMES ALTEPLASE
VASODILATORS HYDRALAZINE
VASODILATORS MINOXIDIL
VASODILATORS NITROPRUSSIDE
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Table A.3: Mean (95% confidence interval) area under the ROC curve for predicting medi-
cation usage, grouped by pharmaceutical subclass, using the baseline, methylation data, and
genotype data. Confidence intervals determined using bootstrapping.

Pharmaceutical Subclass

Baseline

Methylation

Genotypes

CMV Agents

Phosphate Binder Agents
Osmotic Diuretics
Hematopoietic Growth Factors
B-Complex w/ Folic Acid
Immunosuppressive Agents
Metabolic Modifiers

Prostatic Hypertrophy Agents
Antacids - Bicarbonate
Anti-infectives - Throat
Cycloplegic Mydriatics
Thrombolytic Enzymes
Plasma Proteins

Potassium Removing Agents
Cephalosporins - 4th Generation
Gallstone Solubilizing Agents
Imidazole-Related Antifungals
HMG CoA Reductase Inhibitors
Alkalinizers

Bone Density Regulators
Parenteral Therapy Supplies
Vasodilators

Salicylates

Ophthalmic Local Anesthetics

0.80 (0.75-0.85)
0.73 (0.68-0.77)
0.74 (0.69-0.78)
0.70 (0.66-0.75)
0.69 (0.64-0.74)
0.77 (0.72-0.81)
0.69 (0.63-0.74)
0.76 (0.72-0.79)
0.78 (0.71-0.85)
0.72 (0.67-0.77)
0.76 (0.71-0.82)
0.67 (0.60-0.74)
0.67 (0.62-0.72)
0.64 (0.59-0.70)
0.67 (0.59-0.74)
0.59 (0.50-0.69)
0.69 (0.64-0.73)
0.72 (0.67-0.75)
0.70 (0.62-0.76)
0.70 (0.63-0.75)
0.52 (0.45-0.59)
0.54 (0.49-0.59)
0.69 (0.65-0.72)

0.69 (0.63-0.76)

0.90 (0.86-0.94)
0.88 (0.84-0.91)
0.85 (0.81-0.88)
0.84 (0.81-0.87)
0.84 (0.79-0.87)
0.83 (0.79-0.86)
0.81 (0.77-0.86)
0.78 (0.74-0.81)
0.78 (0.71-0.83)
0.77 (0.71-0.82)
0.75 (0.68-0.81)
0.75 (0.68-0.81)
0.74 (0.69-0.78)
0.74 (0.69-0.79)
0.73 (0.64-0.80)
0.72 (0.64-0.79)
0.72 (0.67-0.77)
0.72 (0.68-0.75)
0.71 (0.63-0.78)
0.71 (0.65-0.75)
0.71 (0.65-0.76)
0.70 (0.66-0.75)
0.70 (0.66-0.73)

0.69 (0.63-0.76)

0.79 (0.74-0.84)
0.74 (0.70-0.78)
0.73 (0.68-0.78)
0.70 (0.66-0.75)
0.67 (0.62-0.72)
0.76 (0.70-0.80)
0.70 (0.63-0.75)
0.76 (0.71-0.79)
0.75 (0.69-0.81)
0.72 (0.66-0.78)
0.76 (0.69-0.82)
0.63 (0.56-0.70)
0.66 (0.61-0.71)
0.62 (0.56-0.67)
0.65 (0.57-0.74)
0.50 (0.41-0.59)
0.68 (0.63-0.73)
0.71 (0.68-0.74)
0.68 (0.59-0.75)
0.70 (0.64-0.76)
0.60 (0.54-0.66)
0.48 (0.43-0.52)
0.68 (0.64-0.72)

0.68 (0.61-0.76)
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Table A.3: Mean (95% confidence interval) area under the ROC curve for predicting medi-
cation usage, grouped by pharmaceutical subclass, using the baseline, methylation data, and
genotype data. Confidence intervals determined using bootstrapping.

Pharmaceutical Subclass

Baseline

Methylation

Genotypes

Proton Pump Inhibitors
Impotence Agents

Ophthalmic Steroids

Diabetic Supplies

Phosphate

Loop Diuretics

Antiseptics - Mouth/Throat
Anti-infective Agents - Misc.
Specialty Vitamins Products
Anti-infective Misc. - Combinations
Iron

Cephalosporins - 3rd Generation
Glucocorticosteroids
Antihistamines - Ethanolamines
Fluoroquinolones

Calcium

Benzodiazepines

Biguanides

Local Anesthetic Combinations
Ophthalmics - Misc.

Antacid Combinations
Dibenzapines

Nitrates

Insulin

0.62 (0.58-0.66)
0.70 (0.64-0.75)
0.70 (0.64-0.75)
0.64 (0.58-0.69)
0.65 (0.57-0.72)
0.63 (0.60-0.67)
0.63 (0.57-0.68)
0.61 (0.56-0.65)
0.60 (0.52-0.68)
0.64 (0.59-0.68)
0.66 (0.62-0.71)
0.62 (0.57-0.66)
0.59 (0.55-0.63)
0.62 (0.58-0.65)
0.54 (0.50-0.58)
0.61 (0.57-0.65)
0.61 (0.57-0.66)
0.67 (0.62-0.71)
0.57 (0.53-0.62)
0.66 (0.60-0.72)
0.63 (0.58-0.68)
0.62 (0.56-0.68)
0.64 (0.61-0.68)

0.63 (0.58-0.67)

0.69 (0.66-0.73)
0.68 (0.62-0.74)
0.68 (0.62-0.73)
0.67 (0.62-0.72)
0.67 (0.60-0.74)
0.67 (0.63-0.71)
0.67 (0.62-0.73)
0.67 (0.62-0.72)
0.67 (0.58-0.75)
0.67 (0.62-0.72)
0.67 (0.62-0.71)
0.66 (0.63-0.71)
0.66 (0.63-0.70)
0.66 (0.62-0.70)
0.66 (0.62-0.70)
0.66 (0.62-0.71)
0.66 (0.62-0.70)
0.66 (0.61-0.71)
0.66 (0.61-0.70)
0.66 (0.60-0.71)
0.66 (0.61-0.70)
0.66 (0.58-0.72)
0.66 (0.61-0.70)

0.66 (0.61-0.69)

0.61 (0.57-0.66)
0.67 (0.60-0.73)
0.68 (0.62-0.74)
0.62 (0.56-0.67)
0.60 (0.52-0.66)
0.63 (0.59-0.67)
0.62 (0.54-0.67)
0.60 (0.55-0.65)
0.61 (0.52-0.69)
0.62 (0.57-0.66)
0.66 (0.61-0.71)
0.61 (0.57-0.65)
0.58 (0.54-0.62)
0.62 (0.58-0.66)
0.52 (0.48-0.57)
0.60 (0.56-0.64)
0.61 (0.56-0.64)
0.65 (0.60-0.70)
0.56 (0.52-0.61)
0.65 (0.60-0.70)
0.62 (0.56-0.67)
0.58 (0.52-0.63)
0.63 (0.59-0.67)

0.62 (0.57-0.66)
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Table A.3: Mean (95% confidence interval) area under the ROC curve for predicting medi-
cation usage, grouped by pharmaceutical subclass, using the baseline, methylation data, and
genotype data. Confidence intervals determined using bootstrapping.

Pharmaceutical Subclass

Baseline

Methylation

Genotypes

Liquid Vehicles

Alternative Medicine - M’s
5-HT3 Receptor Antagonists
Antiperistaltic Agents
Analgesics Other
Carbohydrates

Laxatives - Miscellaneous
Alpha-Beta Blockers

Saline Laxatives

Potassium

Stimulant Laxatives

Urinary Anti-infectives
Calcium Channel Blockers
Glycopeptides

Magnesium

Heparins And Heparinoid-Like Agents
Bicarbonates

Electrolyte Mixtures

Thyroid Hormones
Antihypertensive Combinations
Folic Acid/Folates

Diagnostic Radiopharmaceuticals
Surfactant Laxatives

Thiazides and Thiazide-Like Diuretics

0.59 (0.51-0.67)
0.55 (0.49-0.61)
0.57 (0.53-0.60)
0.55 (0.48-0.62)
0.59 (0.55-0.63)
0.61 (0.57-0.65)
0.61 (0.57-0.65)
0.57 (0.52-0.61)
0.59 (0.54-0.63)
0.59 (0.55-0.63)
0.60 (0.56-0.64)
0.60 (0.53-0.67)
0.59 (0.56-0.63)
0.60 (0.56-0.65)
0.58 (0.54-0.62)
0.62 (0.58-0.65)
0.60 (0.53-0.67)
0.58 (0.55-0.62)
0.64 (0.58-0.69)
0.64 (0.56-0.70)
0.61 (0.54-0.67)
0.58 (0.54-0.62)
0.60 (0.57-0.64)

0.65 (0.61-0.71)

0.65 (0.58-0.73)
0.65 (0.59-0.71)
0.65 (0.61-0.69)
0.65 (0.57-0.73)
0.65 (0.61-0.68)
0.65 (0.61-0.69)
0.65 (0.61-0.68)
0.65 (0.60-0.69)
0.64 (0.60-0.70)
0.64 (0.60-0.68)
0.64 (0.60-0.68)
0.64 (0.55-0.71)
0.64 (0.60-0.67)
0.64 (0.59-0.68)
0.64 (0.60-0.67)
0.64 (0.60-0.67)
0.63 (0.56-0.70)
0.63 (0.60-0.67)
0.63 (0.58-0.68)
0.63 (0.57-0.71)
0.63 (0.58-0.69)
0.63 (0.60-0.67)
0.63 (0.58-0.66)

0.63 (0.58-0.68)

0.58 (0.51-0.66)
0.59 (0.52-0.64)
0.55 (0.51-0.60)
0.51 (0.44-0.58)
0.58 (0.54-0.62)
0.59 (0.54-0.64)
0.59 (0.55-0.64)
0.57 (0.53-0.61)
0.58 (0.54-0.62)
0.58 (0.54-0.62)
0.60 (0.56-0.64)
0.51 (0.42-0.58)
0.60 (0.56-0.63)
0.59 (0.54-0.63)
0.57 (0.53-0.61)
0.61 (0.57-0.64)
0.61 (0.53-0.68)
0.57 (0.54-0.61)
0.63 (0.58-0.68)
0.59 (0.50-0.67)
0.60 (0.55-0.66)
0.57 (0.52-0.61)
0.60 (0.56-0.64)

0.63 (0.58-0.67)
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Table A.3: Mean (95% confidence interval) area under the ROC curve for predicting medi-
cation usage, grouped by pharmaceutical subclass, using the baseline, methylation data, and
genotype data. Confidence intervals determined using bootstrapping.

Pharmaceutical Subclass

Baseline

Methylation

Genotypes

Expectorants

Platelet Aggregation Inhibitors
Antiflatulents

Vasopressors

Opioid Antagonists
Antibiotics - Topical

Antidiarrheal /Probiotic Agents - Misc.

Serotonin-Norepinephrine Reuptake Inhibitors (S...

Phenothiazines

Beta Blockers Cardio-Selective
Misc. Nutritional Substances
Alpha-2 Receptor Antagonists (Tetracyclics)
Bronchodilators - Anticholinergics
Tetracyclines

Antacids - Calcium Salts
Penicillin Combinations

Gout Agents

Radiographic Contrast Media
Sodium

Diagnostic Tests
Sympathomimetics
Antiarrhythmics Type III
Antihistamines-Topical

Antidotes and Specific Antagonists

0.57 (0.47-0.65)
0.64 (0.59-0.68)
0.56 (0.50-0.61)
0.57 (0.53-0.61)
0.60 (0.54-0.65)
0.55 (0.50-0.60)
0.56 (0.49-0.63)
0.68 (0.61-0.74)
0.52 (0.46-0.56)
0.54 (0.51-0.58)
0.55 (0.49-0.59)
0.66 (0.56-0.75)
0.63 (0.58-0.67)
0.51 (0.45-0.59)
0.58 (0.53-0.63)
0.57 (0.52-0.61)
0.65 (0.60-0.69)
0.61 (0.57-0.64)
0.47 (0.43-0.52)
0.60 (0.55-0.65)
0.59 (0.55-0.62)
0.56 (0.48-0.62)
0.48 (0.41-0.57)

0.39 (0.33-0.46)

0.63 (0.54-0.72)
0.63 (0.58-0.67)
0.63 (0.58-0.68)
0.62 (0.59-0.65)
0.62 (0.58-0.67)
0.62 (0.58-0.67)
0.62 (0.55-0.69)
0.62 (0.54-0.70)
0.62 (0.56-0.66)
0.61 (0.58-0.65)
0.61 (0.56-0.67)
0.61 (0.51-0.70)
0.61 (0.56-0.67)
0.61 (0.56-0.67)
0.61 (0.56-0.66)
0.61 (0.56-0.65)
0.61 (0.54-0.66)
0.61 (0.57-0.64)
0.61 (0.56-0.65)
0.61 (0.55-0.66)
0.61 (0.57-0.65)
0.60 (0.53-0.67)
0.60 (0.53-0.68)

0.60 (0.54-0.67)

0.44 (0.36-0.52)
0.62 (0.58-0.67)
0.54 (0.48-0.60)
0.55 (0.52-0.60)
0.60 (0.54-0.65)
0.50 (0.45-0.56)
0.51 (0.43-0.59)
0.66 (0.58-0.73)
0.46 (0.41-0.50)
0.53 (0.49-0.57)
0.54 (0.49-0.59)
0.67 (0.58-0.75)
0.61 (0.56-0.66)
0.40 (0.35-0.46)
0.55 (0.48-0.60)
0.55 (0.51-0.60)
0.63 (0.57-0.68)
0.60 (0.56-0.63)
0.54 (0.48-0.59)
0.57 (0.52-0.63)
0.57 (0.53-0.61)
0.53 (0.46-0.61)
0.39 (0.31-0.47)

0.59 (0.52-0.65)
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Table A.3: Mean (95% confidence interval) area under the ROC curve for predicting medi-
cation usage, grouped by pharmaceutical subclass, using the baseline, methylation data, and
genotype data. Confidence intervals determined using bootstrapping.

Pharmaceutical Subclass

Baseline

Methylation

Genotypes

Coumarin Anticoagulants
Bacterial Vaccines

Genitourinary Irrigants
Anesthetics Topical Oral
Cobalamins

Posterior Pituitary Hormones
Gastrointestinal Stimulants
Antiadrenergic Antihypertensives
Angiotensin II Receptor Antagonists
Antitussives

B-Complex Vitamins
Cephalosporins - 1st Generation
Diagnostic Drugs

Potassium Sparing Diuretics
Selective Serotonin Reuptake Inhibitors (SSRIs)
Anesthetics - Misc.

Irrigation Solutions

Lozenges

Aminoglycosides
Non-Barbiturate Hypnotics
Ophthalmic Anti-infectives
Antiarrhythmics Type I-B

Oil Soluble Vitamins

Direct Factor Xa Inhibitors

0.62 (0.57-0.68)
0.56 (0.51-0.62)
0.41 (0.36-0.46)
0.63 (0.57-0.69)
0.60 (0.54-0.65)
0.56 (0.50-0.62)
0.52 (0.47-0.57)
0.55 (0.48-0.60)
0.61 (0.56-0.66)
0.50 (0.43-0.56)
0.49 (0.41-0.57)
0.55 (0.51-0.59)
0.59 (0.54-0.63)
0.60 (0.53-0.66)
0.59 (0.55-0.64)
0.53 (0.49-0.56)
0.58 (0.50-0.64)
0.58 (0.50-0.65)
0.55 (0.48-0.62)
0.55 (0.51-0.59)
0.61 (0.56-0.66)
0.54 (0.50-0.58)
0.57 (0.53-0.61)

0.58 (0.52-0.64)

0.60 (0.55-0.66)
0.60 (0.55-0.65)
0.60 (0.55-0.65)
0.60 (0.53-0.66)
0.60 (0.55-0.66)
0.59 (0.53-0.66)
0.59 (0.55-0.65)
0.59 (0.54-0.65)
0.59 (0.55-0.63)
0.59 (0.53-0.65)
0.59 (0.47-0.67)
0.59 (0.55-0.63)
0.59 (0.54-0.63)
0.58 (0.52-0.66)
0.58 (0.53-0.64)
0.58 (0.55-0.62)
0.58 (0.51-0.64)
0.58 (0.49-0.66)
0.58 (0.50-0.64)
0.57 (0.53-0.61)
0.57 (0.53-0.63)
0.57 (0.54-0.62)
0.57 (0.53-0.61)

0.57 (0.51-0.63)

0.58 (0.52-0.62)
0.56 (0.52-0.61)
0.54 (0.49-0.59)
0.60 (0.54-0.67)
0.57 (0.52-0.63)
0.50 (0.43-0.56)
0.53 (0.48-0.57)
0.49 (0.43-0.54)
0.58 (0.54-0.62)
0.50 (0.44-0.55)
0.48 (0.40-0.56)
0.53 (0.49-0.58)
0.59 (0.54-0.63)
0.57 (0.50-0.64)
0.57 (0.52-0.62)
0.52 (0.49-0.55)
0.55 (0.47-0.62)
0.51 (0.43-0.60)
0.45 (0.38-0.54)
0.53 (0.49-0.57)
0.61 (0.54-0.66)
0.51 (0.48-0.55)
0.59 (0.56-0.64)

0.57 (0.51-0.63)
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Table A.3: Mean (95% confidence interval) area under the ROC curve for predicting medi-
cation usage, grouped by pharmaceutical subclass, using the baseline, methylation data, and
genotype data. Confidence intervals determined using bootstrapping.

Pharmaceutical Subclass

Baseline

Methylation

Genotypes

H-2 Antagonists

Multivitamins

Hemostatics - Topical

Artificial Tears and Lubricants
Anti-inflammatory Agents - Topical
Opioid Agonists

Leukotriene Modulators
Antianxiety Agents - Misc.

Local Anesthetics - Amides

Water Soluble Vitamins

Nondepolarizing Muscle Relaxants

Urinary Antispasmodic - Antimuscarinics (Antich...

Bulk Laxatives

Antiemetics - Anticholinergic
Aminopenicillins

Serotonin Modulators

Viral Vaccines

Laxative Combinations
Antimyasthenic/Cholinergic Agents
Azithromycin

Local Anesthetics - Topical
ACE Inhibitors

Herpes Agents

Influenza Agents

0.52 (0.48-0.57)
0.51 (0.46-0.55)
0.57 (0.50-0.63)
0.56 (0.48-0.63)
0.58 (0.52-0.65)
0.58 (0.53-0.62)
0.55 (0.46-0.63)
0.58 (0.52-0.65)
0.58 (0.53-0.62)
0.57 (0.52-0.62)
0.56 (0.52-0.60)
0.59 (0.51-0.66)
0.53 (0.46-0.61)
0.53 (0.46-0.60)
0.55 (0.49-0.60)
0.53 (0.48-0.58)
0.56 (0.51-0.61)
0.57 (0.52-0.63)
0.54 (0.50-0.59)
0.59 (0.54-0.63)
0.54 (0.49-0.58)
0.51 (0.47-0.55)
0.53 (0.45-0.59)

0.51 (0.44-0.58)

0.57 (0.53-0.62)
0.57 (0.52-0.62)
0.57 (0.50-0.64)
0.57 (0.51-0.64)
0.57 (0.51-0.64)
0.57 (0.53-0.61)
0.57 (0.48-0.66)
0.57 (0.50-0.64)
0.57 (0.53-0.61)
0.57 (0.52-0.62)
0.57 (0.52-0.61)
0.57 (0.49-0.64)
0.56 (0.50-0.64)
0.56 (0.50-0.63)
0.56 (0.51-0.62)
0.56 (0.51-0.61)
0.56 (0.51-0.60)
0.56 (0.50-0.61)
0.56 (0.50-0.60)
0.55 (0.51-0.60)
0.55 (0.51-0.60)
0.55 (0.50-0.60)
0.55 (0.48-0.62)

0.54 (0.48-0.61)

0.50 (0.47-0.55)
0.52 (0.47-0.57)
0.53 (0.47-0.58)
0.58 (0.51-0.65)
0.58 (0.51-0.64)
0.55 (0.51-0.60)
0.50 (0.40-0.57)
0.53 (0.46-0.60)
0.56 (0.51-0.60)
0.56 (0.51-0.61)
0.54 (0.51-0.58)
0.59 (0.51-0.66)
0.53 (0.45-0.61)
0.45 (0.39-0.51)
0.54 (0.48-0.59)
0.53 (0.48-0.59)
0.52 (0.47-0.57)
0.55 (0.50-0.61)
0.52 (0.46-0.58)
0.57 (0.53-0.63)
0.52 (0.47-0.56)
0.48 (0.43-0.52)
0.48 (0.41-0.55)

0.45 (0.38-0.53)
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Table A.3: Mean (95% confidence interval) area under the ROC curve for predicting medi-
cation usage, grouped by pharmaceutical subclass, using the baseline, methylation data, and
genotype data. Confidence intervals determined using bootstrapping.

Pharmaceutical Subclass

Baseline

Methylation

Genotypes

Beta Blockers Non-Selective
Sulfonylureas

Nasal Steroids

Antispasmodics
Cough/Cold/Allergy Combinations
Cephalosporins - 2nd Generation
Opioid Combinations
Anticonvulsants - Misc.

Multiple Vitamins w/ Minerals
Protamine

Lincosamides

Hemostatics - Systemic
Antihistamines - Non-Sedating
Acne Products

Miscellaneous Contrast Media
Nonsteroidal Anti-inflammatory Agents (NSAIDs)
Toxoid Combinations
Corticosteroids - Topical
Tricyclic Agents

Central Muscle Relaxants
Depolarizing Muscle Relaxants
Antifungals - Topical

Cardiac Glycosides

Alternative Medicine - C’s

0.52 (0.44-0.59)
0.59 (0.51-0.66)
0.56 (0.51-0.60)
0.56 (0.52-0.60)
0.58 (0.52-0.65)
0.52 (0.44-0.59)
0.53 (0.49-0.57)
0.54 (0.49-0.58)
0.58 (0.51-0.65)
0.53 (0.46-0.61)
0.52 (0.46-0.59)
0.46 (0.37-0.55)
0.54 (0.47-0.60)
0.59 (0.49-0.66)
0.49 (0.46-0.53)
0.52 (0.49-0.57)
0.55 (0.49-0.63)
0.51 (0.46-0.56)
0.53 (0.44-0.61)
0.52 (0.48-0.57)
0.53 (0.47-0.58)
0.50 (0.44-0.55)
0.52 (0.42-0.60)

0.53 (0.47-0.60)

0.54 (0.45-0.64)
0.54 (0.47-0.62)
0.54 (0.50-0.59)
0.54 (0.50-0.58)
0.54 (0.48-0.61)
0.54 (0.47-0.62)
0.54 (0.50-0.58)
0.54 (0.50-0.58)
0.54 (0.47-0.59)
0.54 (0.44-0.64)
0.53 (0.47-0.59)
0.53 (0.44-0.62)
0.52 (0.46-0.57)
0.50 (0.41-0.60)
0.50 (0.46-0.54)
0.49 (0.45-0.53)
0.49 (0.42-0.57)
0.49 (0.43-0.53)
0.48 (0.39-0.56)
0.48 (0.43-0.52)
0.46 (0.40-0.51)
0.45 (0.40-0.50)
0.43 (0.33-0.52)

0.37 (0.30-0.44)

0.59 (0.50-0.69)
0.61 (0.55-0.69)
0.51 (0.46-0.57)
0.56 (0.52-0.59)
0.55 (0.49-0.63)
0.49 (0.42-0.56)
0.50 (0.46-0.53)
0.51 (0.47-0.55)
0.54 (0.49-0.60)
0.50 (0.39-0.59)
0.52 (0.44-0.59)
0.54 (0.47-0.62)
0.53 (0.46-0.58)
0.41 (0.33-0.50)
0.53 (0.49-0.57)
0.53 (0.48-0.57)
0.55 (0.48-0.63)
0.43 (0.38-0.47)
0.58 (0.51-0.65)
0.48 (0.43-0.53)
0.49 (0.43-0.54)
0.48 (0.43-0.54)
0.54 (0.46-0.63)

0.51 (0.45-0.60)
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Table A.4: Mean (95% confidence interval) R? for predicting the most recent lab result
using the baseline, methylation data, and genotype data. Confidence intervals determined
using bootstrapping. Activated Partial Thromboplastin Time (APTT); Point of care (POC);
Pulmonary function test (PFT); Forced expiratory volume in 1 second (FEV1)

Lab Test

Baseline

Methylation

Genotypes

Troponin

Creatinine

Troponin interpretation

Urea nitrogen

Absolute eosinophil count
Hemoglobin

Neutrophil percent (auto)
PFT FEV1 (pre)

Hematocrit

Mean corpuscular hemoglobin
Mean corpuscular volume
Absolute lymphocyte count
Platelet count (auto)
Absolute neutrophil count
Albumin

Chloride

Absolute immature granulocyte count
Absolute monocyte count
White blood cell count
Neutrophils absolute (prelim).
HgbA1C

Total protein

Sodium

0.65 (0.53-0.74)
0.08 (0.01-0.13)
0.46 (0.31-0.62)
0.01 (-0.04-0.05)
-0.06 (-0.10-0.03)
0.10 (0.04-0.15)
0.23 (0.12-0.32)
0.12 (-0.18-0.36)
0.07 (0.02-0.11)
0.07 (0.01-0.13)
0.09 (0.03-0.14)
0.06 (-0.04-0.17)
-0.00 (-0.05-0.05)
0.08 (0.01-0.13)
0.07 (0.01-0.13)
-0.01 (-0.05-0.03)
-0.09 (-0.25-0.01)
0.08 (0.00-0.14)
-0.01 (-0.07-0.04)
0.07 (0.01-0.13)
-0.07 (-0.15-0.01)
0.09 (0.03-0.14)

-0.00 (-0.04-0.04)

0.62 (0.51-0.72)
0.43 (0.38-0.47)
0.41 (0.26-0.54)
0.40 (0.35-0.45)
0.33 (0.27-0.40)
0.28 (0.23-0.33)
0.26 (0.18-0.33)
0.26 (0.07-0.38)
0.24 (0.20-0.28)
0.20 (0.15-0.26)
0.18 (0.12-0.24)
0.17 (0.08-0.33)
0.16 (0.12-0.21)
0.15 (0.10-0.20)
0.14 (0.08-0.18)
0.13 (0.09-0.18)
0.13 (0.05-0.20)
0.12 (0.06-0.17)
0.11 (0.05-0.19)
0.11 (0.06-0.18)
0.11 (0.06-0.17)
0.11 (0.06-0.16)

0.10 (0.07-0.14)

0.60 (0.50-0.70)
0.09 (0.04-0.13)
0.33 (0.20-0.48)
0.03 (-0.00-0.05)
-0.01 (-0.02-0.00)
0.10 (0.05-0.14)
0.22 (0.13-0.30)
0.18 (-0.02-0.32)
0.07 (0.04-0.11)
0.08 (0.04-0.12)
0.09 (0.04-0.13)
0.10 (0.03-0.23)
0.02 (-0.00-0.04)
0.08 (0.04-0.11)
0.08 (0.04-0.12)
0.01 (-0.01-0.03)
-0.00 (-0.04-0.02)
0.07 (0.01-0.13)
0.02 (-0.01-0.05)
0.08 (0.03-0.13)
-0.01 (-0.04-0.01)
0.08 (0.04-0.12)

0.03 (0.00-0.05)
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Table A.4: Mean (95% confidence interval) R? for predicting the most recent lab result
using the baseline, methylation data, and genotype data. Confidence intervals determined
using bootstrapping. Activated Partial Thromboplastin Time (APTT); Point of care (POC);
Pulmonary function test (PFT); Forced expiratory volume in 1 second (FEV1)

Lab Test

Baseline

Methylation

Genotypes

Ferritin

Sedimentation rate erythrocyte
Iron binding capacity
Absolute basophil count
Glucose

Qrs.duration

Cholesterol HDL

Hematocrit OSL

Cholesterol

Ventricular rate

Anion gap

Alanine aminotransferase

R axis

Magnesium

Alkaline phosphatase

T.axis

Cholesterol LDL (calculated)
Potassium

Aspartate aminotransferase
International normalized ratio (INR)
Bilirubin total

Prothrombin time

QT interval

-0.21 (-0.39-0.07)
-0.10 (-0.38-0.12)
-0.10 (-0.19-0.00)
-0.10 (-0.25-0.02)
-0.02 (-0.07-0.02)
-0.04 (-0.11-0.02)
0.03 (-0.07-0.12)
-0.31 (-0.81-0.09)
-0.05 (-0.11-0.02)
-0.06 (-0.14-0.01)
-0.04 (-0.07-0.01)
-0.05 (-0.09-0.02)
-0.03 (-0.10-0.03)
-0.11 (-0.19-0.04)
-0.02 (-0.07-0.02)
-0.08 (-0.19-0.01)
-0.10 (-0.22-0.02)
-0.03 (-0.07-0.00)
-0.02 (-0.07-0.03)
-0.02 (-0.06-0.02)
-0.05 (-0.16-0.01)
-0.02 (-0.10-0.02)

-0.07 (-0.12-0.01)

0.10 (0.04-0.15)
0.10 (-0.01-0.18)
0.09 (0.03-0.14)
0.07 (0.05-0.11)
0.07 (0.04-0.10)
0.05 (0.00-0.08)
0.04 (-0.03-0.10)
0.04 (-0.13-0.19)
0.03 (-0.02-0.08)
0.03 (-0.00-0.06)
0.02 (-0.00-0.05)
0.02 (0.01-0.04)
0.01 (-0.01-0.04)
0.01 (-0.02-0.05)
0.01 (-0.01-0.03)
0.01 (-0.02-0.04)
0.01 (-0.02-0.04)
0.01 (-0.01-0.02)
0.01 (-0.01-0.03)
0.01 (-0.01-0.03)
0.01 (-0.02-0.02)
0.01 (-0.01-0.03)

0.00 (-0.02-0.02)

-0.02 (-0.05-0.00)
0.08 (-0.01-0.17)
-0.00 (-0.03-0.03)
-0.01 (-0.02-0.00)
0.01 (-0.01-0.02)
0.01 (-0.01-0.02)
0.06 (0.00-0.12)
-0.05 (-0.22-0.08)
0.01 (-0.02-0.04)
0.02 (-0.01-0.04)
-0.00 (-0.02-0.01)
-0.01 (-0.01-0.00)
0.00 (-0.02-0.03)
-0.00 (-0.03-0.02)
0.00 (-0.01-0.01)
-0.00 (-0.01-0.01)
-0.01 (-0.03-0.01)
-0.01 (-0.02-0.01)
0.00 (-0.02-0.02)
0.00 (-0.02-0.02)
-0.00 (-0.02-0.00)
0.00 (-0.01-0.02)

0.01 (-0.01-0.02)
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Table A.4: Mean (95% confidence interval) R? for predicting the most recent lab result
using the baseline, methylation data, and genotype data. Confidence intervals determined
using bootstrapping. Activated Partial Thromboplastin Time (APTT); Point of care (POC);
Pulmonary function test (PFT); Forced expiratory volume in 1 second (FEV1)

Lab Test Baseline Methylation Genotypes
Glucose (POC) ~0.08 (-0.21-0.02) 0.00 (-0.03-0.03)  0.00 (-0.04-0.04)
X saturation -0.18 (-0.30-0.06) 0.00 (-0.04-0.04)  -0.01 (-0.03-0.00)
PR interval -0.05 (-0.15-0.03) 0.00 (-0.04-0.03)  -0.00 (-0.03-0.02)
Brain natriuretic peptide (BNP) -0.51 (-1.38-0.03) 0.00 (-0.08-0.05) 0.03 (-0.07-0.11)
Glucose whole blood -0.24 (-0.49-0.09) -0.00 (-0.03-0.03)  -0.03 (-0.08-0.00)
Atrial rate -0.05 (-0.13-0.01) -0.00 (-0.02-0.01)  -0.00 (-0.02-0.02)
P axis -0.04 (-0.10-0.01) £0.00 (-0.02-0.02)  -0.00 (-0.02-0.02)
QtC calculation (bezet) -0.07 (-0.14-0.01) -0.00 (-0.02-0.02) -0.00 (-0.02-0.01)
PFT FEV1 (pre) (percent ref) -0.31 (-0.58-0.06) -0.00 (-0.06-0.04)  -0.03 (-0.07-0.01)
Blood lactate -0.29 (-0.64-0.02) -0.01 (-0.08-0.05) 0.0 (-0.06-0.05)
APTT -0.05 (-0.12-0.01) -0.01 (-0.02-0.00)  -0.01 (-0.03-0.00)
Triglycerides -0.13 (-0.23-0.05) -0.01 (-0.03-0.01)  -0.01 (-0.03-0.00)
Thyroid stimulating hormone (TSH) -0.13 (-0.37-0.05) -0.01 (-0.04-0.01) -0.02 (-0.04-0.00)
Calcium -0.05 (-0.08-0.02) -0.01 (-0.02-0.00)  -0.02 (-0.03-0.00)
Iron -0.13 (-0.26-0.00) -0.02 (-0.06-0.03)  -0.02 (-0.05-0.01)
Urea nitrogen (OSL) ~0.61 (-1.93-0.00) -0.04 (-0.17-0.05)  -0.04 (-0.22-0.03)
Bilirubin conjugated -0.57 (-1.25-0.17) -0.06 (-0.18-0.00) -0.06 (-0.17-0.03)
C reactive protein (CRP) -0.44 (-1.14-0.13) -0.06 (-0.24-0.01) -0.01 (-0.08-0.02)
Left ventricular ejection fraction -1.80 (-3.29-0.91) -0.06 (-0.21-0.01) -0.07 (-0.28-0.03)
Hemoglobin (OSL) -2.66 (-12.80-0.23) 0.07 (-0.37-0.02)  -0.09 (-0.45-0.02)
Chloride (OSL) -1.96 (-4.43-0.46) -0.19 (-0.70-0.03)  -0.17 (-0.65-0.04)
Sodium (OSL) -304.86 (-2851.16-0.13)  -2.03 (-16.23-0.02)  -1.57 (-16.42-0.01)
Potassium (OSL). -178.77 (-828.09-0.14)  -2.33 (-8.10-0.02)  -2.42 (-8.14-0.02)
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