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Screening ecological risk of pesticides and emerging contaminants under 
data limited conditions – Case study modeling urban and agricultural 
watersheds with OrganoFate 
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A B S T R A C T   

The increasing number of chemicals used by society requires accessible, easy to implement tools to perform 
screening-level ecological risk assessments. However, field data to calibrate and validate screening tools is 
challenging to obtain for many watersheds. Thus, the evaluation must be done under data limited conditions. 
Here we employ a fate and transport model, OrganoFate, to predict environmental concentrations of contami
nants of emerging concern (CECs) as well as a number of pesticides. CECs evaluated include antibacterial 
compounds sulfamethoxazole and triclocarban and a flame-retardant tris(1,3-dichloro-2-propyl)phosphate 
(TDCPP). We also evaluated widely used pesticides chlorpyrifos, bifenthrin and esfenvalerate. We predict con
centrations of the contaminants in high-risk watersheds which were dominated by either urban or agricultural 
development and have small aquatic compartments. Screening-level predictions were in good agreement with 
observed concentrations in surface water and sediment. Maximum predicted concentrations were close to the 
highest observed concentrations for CECs, only ~0.1 μg/L greater for sulfamethoxazole and triclocarban con
centrations, and for TDCPP <5 μg/L higher. ChemFate was also employed to screen possible aquatic health 
impacts. Results demonstrated possible CEC aquatic health risk for TDCPP and triclocarban (risk quotients of 0.9 
and 1.1 respectively). For pesticides, exceedance of effect (EC50) and lethal (LC50) endpoints was predicted for 
various taxonomic groups which include aquatic invertebrates, fish, amphibians, and benthic organisms.   

1. Introduction 

Each year, hundreds of new chemicals are introduced to the US in 
consumer products (e.g., pharmaceuticals, food additives, personal care 
products, paints and coatings). To understand and mitigate risks asso
ciated with these chemicals in the US, the United States Environmental 
Protection Agency (USEPA) is tasked with evaluating human and envi
ronmental health risks. To evaluate most chemicals, the Toxic Sub
stances Control Act (TSCA) serves as the primary legal framework 
(USEPA, 2017; Krimsky, 2017). However, in the first ~30 years of TSCA, 
less than 10% of the 36,000 chemicals proposed for use were reviewed, 
and 62,000 chemicals already in use were grandfathered in without 
review (Wilson and Schwarzman, 2009). In light of the limited number 
of chemicals assessed for health risks, the enormous quantities of 
chemicals sold annually, and increasing chemical diversification, 

concerns for adverse effects of chemicals in use is on the rise (Malaj 
et al., 2014; Snyder et al., 2003; USEPA; Gogoi et al., 2018). 

Models have served as an important complement to observation as 
an approach for filling in data gaps, extending the available observa
tions, and for pro-active risk assessment. Since the 1980’s, fate and 
transport models have been employed by the USEPA to describe the 
behavior of crop protection products in the environment (Jones and 
Mangels, 2002). Today, a suite of models are employed by the USEPA, 
each targeting different risk factors (e.g. exposure pathways and bio
accumulation) and organisms which include humans, terrestrial and 
aquatic flora and fauna. For pesticides alone there exist a tool suite of 16 
models for predicting environmental exposures. (odels for Pestici) While 
many fate and transport models have been developed and employed by 
the USEPA, none are able to simulate radically different chemicals 
within a single framework (e.g., nanoparticles, ions and organic 
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contaminants). A new modeling framework, ChemFate (Tao and Keller, 
2020), has been demonstrated to achieve this aim. Here, we evaluate a 
model within ChemFate, namely OrganoFate, for screening the risk of 
diverse organic contaminants. 

ChemFate is a dynamic, multi-media modeling framework. Chem
Fate contains a suite of chemical-class specific models, while employing 
the same watershed compartment characterization and common pro
cesses for each chemical class (e.g., atmospheric deposition, soil erosion, 
deposition and resuspension of suspended sediments) for predicting fate 
and transport. Collectively these features significantly reduce the user 
effort to simulate chemicals from different classes. ChemFate includes 
OrganoFate (non-ionizable organic contaminants), ionOFate (ionizable 
organic contaminants), MetalFate (metal ions), and nanoFate (nano
materials). Additionally, to simplify the risk assessment process using 
ChemFate, more than 20 default environmental scenarios have been 
developed to represent unique environmental characteristics, including 
predominantly agricultural (e.g., Central Valley, California and Des 
Moines, Iowa) or urban (e.g., New York City, San Francisco, Los Angeles, 
Austin, London, and Zurich) areas. The user can modify all default in
puts or develop additional scenarios using data from USGS, USDA and 
NOAA for the United States, or the approach indicated in previous work 
(Parker and Keller, 2019) for European regions. For further details, see 
Supplementary Information (SI) ChemFate User Guide. 

In previous work, ChemFate has been employed to predict nano- 
particle concentrations (Parker and Keller, 2019; Garner et al., 2017) 
as well as ionizable organics, metal ions, organic compounds (Tao and 
Keller, 2020). In this investigation, we evaluate the use of OrganoFate 
for comparing predicting concentrations of diverse organic contami
nants of contemporary concern, in monitoring data limited watersheds, 
which is very common. Chemical classes considered include pesticides, 
pharmaceuticals, an anti-bacterial agent and a flame retardant. To 
highlight key module attributes for predicting environmental exposure, 
we compare OrganoFate to the current model that USEPA uses to screen 
pesticides during registration, the Pesticides in Water Calculator (PWC) 
2.0 model, (USEPA; Xie et al., 2018). 

PWC predicts concentrations in soil and surface waters at a daily 
time-step for organic contaminants. Terrestrial processes accounted for 
include plant uptake, foliar wash-off, dispersion, diffusion, retardation/ 
sorption, erosion, degradation/transformation, volatilization (as a loss 
term), runoff, leaching, management operations (timing of pesticide 
application and irrigation). In the receiving water body, deposition/ 
sedimentation, burial, volatilization, and degradation are accounted for. 
Although there are many similarities between OrganoFate and PWC in 
the processes and compartment considered, there are also important 
differences in terms of compartments, processes and model outputs (see 
Table 1), and in the some of the algorithms employed to simulate fate 
and transport. PWC is focused on the interaction between the landscape 
and its soil with a receiving freshwater stream, while OrganoFate also 
simulates concentrations in estuarine, coastal water, and atmospheric 
compartments. They also differ in that the PWC employs Freundlich 
isotherms as well as boundary conditions to simulate diffusive transport 
(odels for Pestici; Young and Fry, 2020). OrganoFate employs the 
fugacity approach with rate-limited mass transfer from one compart
ment to another (Tao and Keller, 2020). 

While the PWC has been demonstrated to have general agreement 
with field observations (Xie et al., 2018), the model has several limita
tions for screening chemical exposure within the environment relative to 
OrganoFate. Within the PWC framework, users can only consider 
non-ionizable organic pesticides. For OrganoFate, the only requirement 
to simulate different contaminants is to provide contaminant physico
chemical properties and use rates. The PWC is also limited in that it 
cannot account for important pesticide processes (e.g., atmospheric 
deposition, resuspension of dust to the atmosphere, sediment resus
pension in the water column) nor atmospheric concentrations and 
transport which are an important pathway for pesticide fate and expo
sure (Zhang et al., 2018; Yao et al., 2008). Moreover, the PWC requires 

the user to enter pesticide use data manually (e.g. no import function) 
which is severely limits its use for high resolution pesticide use data 
available in California (CDPR). Given the sensitivity of pesticide trans
port to the date of application (Boithias et al., 2014), accurate daily 
inputs of pesticide use are important in predicting high exposure events. 

Relative to OrganoFate and the PWC, there are watershed fate and 
transport models which are can simulate chemical concentrations at 
multiple catchments within a hydrologic system (e.g., watershed or river 
basin). Examples include the Soil and Water Assessment Tool (SWAT) 
(Srinivasan et al., 1998; Arnold et al., 1998; Wang et al., 2019), the 
Watershed Assessment Risk Management Framework (WARMF) (Zheng 
and Keller, 2006; Keller et al., 2014) and the Hydrologic Simulation 
Program Fortran (HSPF) (USEPA; Xie and Lian, 2013; Saleh and Du, 
2004). However, there are important tradeoffs to consider when 
employing watershed models for regulatory risk assessments. Although 
they can provide model output for multiple catchments, they require 
higher resolution spatiotemporal data or knowledge of environmental 
characteristics and chemical use data, which is often unavailable. 
Moreover, the watershed-scale models require more computational 
power, user expertise, and often take hundreds of hours to implement 
and calibrate for a given watershed. Data for calibrating a watershed 
model at multiple locations for pesticides and other low use (but 
potentially high toxicity) chemicals is sparse. In addition, these models 
are also mostly limited to considering only non-ionizable organic 
pesticides. 

Other dynamic multi-media models, similar to OrganoFate, have 
been employed by government or international agencies for organic 
chemical risk assessment. Examples include SimpleBox (Hollander et al., 
2016) which is employed by the European Chemical Agency, Stochastic 
Human Exposure and Dose Simulation (SHEDS) (tochastic Human E) 

Table 1 
Summary of key similarities and differences in compartments and major pro
cesses accounted for in PWC and OrganoFate. X indicates inclusion of a 
compartment or process.  

Compartments/ 
Advective Processes 

PWC 
Simulation 

OrganoFate 
Simulation 

PWC 
Output 

OrganoFate 
Output 

Freshwater X X X X 
Water Column X X  X 
Suspended Solids X X  X 
Sediment Pore-Water X X X X 
Sediment Solids X X X X 
Variable Water 

Volume 
X    

Water Column 
Advection 

X X  X 

Sediment Advection  X  X 
Estuarine or Coastal 

Waters  
X  X 

Suspended Solids  X  X 
Sediment Pore-Water  X  X 
Sediment Solids  X  X 
Water Column 

Advection  
X  X 

Sediment Advection  X  X 
Land Uses/Crop 

Types 
1 4 0 4 

Soil X X  X 
Soil Horizons 8 2 0 2 
Soil Air X X  X 
Soil Solids X X  X 
Groundwater X X X X 
Erosion X X X X 
Runoff X X X X 
Leaching X X  X 
Lateral Flow X X  X 
Air  X  X 
Aerosols  X  X 
Air  X  X 
Air Advection  X  X 
Vegetation X     
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utilized by the USEPA, CalTOX (Mckone et al., 2002) used by the Cali
fornia Department of Toxic Substances Control, and the Berkeley Trent 
(BETR)-North America (MacLeod et al., 2001) which the Organization 
for Economic Coordination and Development (OECD) uses to evaluate 
chemical risk. Most of these models are limited to organic contaminants. 
Additionally, OrganoFate offers higher spatial resolution via the 
consideration of more environmental compartments. In total, Organo
Fate predicts environmental concentrations in 26 sub-compartments (e. 
g., aerosols; suspended sediments in freshwater and seawater; soil air, 
water and solid phases in four different types of land uses). 

In this investigation, we explore the use of OrganoFate as a means to 
accelerate the pace of chemical risk assessment with an advanced pre- 
screening tool. For the study, we evaluate current risks of diverse 
organic contaminants in the aquatic compartment of regions of Cali
fornia which represent a high degree of urbanization and agricultural 
activity. Chemicals evaluated include the antibiotic sulfamethoxazole, 
anti-bacterial agent triclosan, flame retardant tris(1,3-dichloro-2- 
propyl) phosphate (TDCPP), as well as the insecticides chlorpyrifos 
(organophosphate), bifenthrin and esfenvalerate (pyrethroids). The 
CECs were selected due to suspected/known toxicity at environmentally 
relevant concentrations and due to the need to predict their risks even 
with limited available monitoring data. Notably, TDCPP is a known 
animal carcinogen which has been used to replace pentabromodiphenyl 
ether (PBDE) flame retardants in products such as flexible polyurethane 
foams, furniture, coatings, bedding products, baby products, and elec
tronic equipment (Wang et al., 2020). The insecticide chlorpyrifos was 
chosen due to the attention it has drawn in recent years for adverse 
health effects, principally due to studies demonstrating the impairment 
of childhood neurological development, which ultimately led to its ban 
in California as of 2020 (CDRP, 2019; Mohan, 2020). The ban of 
chlorpyrifos provides an opportune time for predicting the risk of likely 
chemical alternatives such as bifenthrin and esfenvalerate which have 
substantially different physicochemical properties. These chemicals 
were considered likely alternatives due to their use as insecticides on the 
six crops chlorpyrifos was most widely used to treat in 2005–2014: al
falfa, almonds, corn, cotton, oranges, and walnuts (CDPR). Moreover, 
for crops such as almonds and walnuts, esfenvalerate and bifenthrin are 
already employed to treat nearly equal or greater acreage of the crop 
relative to chlorpyrifos. 

2. Methods 

2.1. Study areas 

In this investigation, we evaluated OrganoFate for the prediction of 
organic contaminants in the aquatic compartment of three different 
watersheds for a 10-year period, 2005–2014. The selected analysis 
period and sites (watershed) coincide with the time period and water
sheds for which monitoring data was available for the contaminants of 
interest. Sites selected for analysis were highly developed watersheds 
with a Mediterranean climate. Site #1, the upper Santa Clara River 
Watershed (~1300 km2), is located just north of Los Angeles (see Fig. 1). 
During the analysis period, the site received a mean average annual 
precipitation of 290 mm, and its flow is dominated by wastewater 
treatment effluent for most of the year. Developed land in the watershed 
is ~90% urban and the rest agricultural. The concentrations of sulfa
methoxazole, triclocarban, and TDCPP were predicted for Site #1, the 
only location with available monitoring data. 

To evaluate the prediction of the pesticide concentrations, the other 
sites, #2 and #3, were selected to represent intensive agricultural wa
tersheds in the Central Valley. Site #2 is the Visalia Watershed and Site 
#3 the San Joaquin River Watershed. Site #2 (~22,000 km2) is located 
at the southern end of the Central Valley (see Fig. 1) and had an average 
annual precipitation of 170 mm for the analysis period. Site #3 
(~35,000 km2) encompasses the entire drainage network upstream of 
the USGS monitoring site at Vernalis, CA. This area was selected for Site 

#3 because at the Vernalis monitoring site, many detections of chlor
pyrifos have been observed. Located just north of Site #2, Site #3 had a 
higher mean annual precipitation of 290 mm. Both Site #2 and Site #3 
are hydrologically connected to the Sierra Nevada Mountain range from 
which most of the instream flow is derived. Additionally, the proportion 
of developed land in both watersheds is ~90% agricultural. 

For the watersheds considered, area boundaries were delineated 
utilizing the area of interest as best fitted to watershed boundaries 
(hydrologic unit codes (HUC) 8 and 12 (USDA, 2011)). Three different 
land use compartments, with their corresponding soils, were considered 
for each site. The proportion of urban, agricultural, and natural land 
uses were obtained from the National Land Cover Data (2016) (Multi-
Resolution Land Cha). Soil, climate, and hydrologic data for regions 
were compiled according to methodologies published in the ChemFate 
User Guide (Tao and Keller, 2020). All site parameter values employed 
for these sites can be viewed in SI Table S1. 

2.3. Generation of PECs 

To generate PECs, we developed input files for (1) the physico
chemical parameters for each pollutant; (2) watershed characteristics 
including daily meteorology and streamflow for each site; and (3) daily 
release rates for each pollutant. To view parameterization employed for 
all contaminants and physicochemical properties and loads, see SI 
Tables S–1 to S4. OrganoFate then calculates transport (e.g., advection, 
diffusion/dispersion, mass transfer between phases, runoff transport, 
erosion and sediment transport, sedimentation within the water column, 
resuspension of sediments) and fate (i.e., degradation processes) for 
each compartment indicated in Table 1, at a daily time step. The model 
was run for the 2005–2014 analysis period. OrganoFate can be run 
assuming zero background concentrations (i.e., the chemical has never 

Fig. 1. Watersheds under investigation; note the subwatershed is too small to 
be visible on the map and is indicated with a star. 
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been used in the region before) or with some initial background con
centrations in the case the chemical has been in use for some time before 
the simulation period. The background concentrations can be based on 
monitoring data, or in their absence with a “warm-up” run. For Site #1. 
instead of assuming zero initial concentrations, we opted to run the 
model one time for 10% of the total simulation time, and then used the 
predicted concentrations as initial concentrations for the entire analysis 
period. For Sites 2 and 3, initial pesticide concentrations were predicted 
by employing pesticide use data from 1995 to 2004 using all other 
OrganoFate parameterization for the 2005–2014 analysis period. The 
environmental concentrations observed at the end of the 1995–2004 
simulation were used as initial data for the analysis period 2005–2014. 

2.2. Contaminant loads 

At Site #1, the CECs sulfamethoxazole, triclocarban, and TDCPP 
loads were simulated by calculating the mass of chemical present in 
wastewater treatment plant effluent during monitoring. Monitoring was 
conducted by the Southern California Coastal Water Research Program 
(SCCWRP) immediately downstream of the upper most wastewater 
treatment plant on the river during dry, low flow conditions when flow 
is predominantly wastewater treatment plants (WWTP) discharge 
(Maruya et al., 2016). Given that upstream of the WWTP over 90% of 
developed land is urban, we assumed that all CEC loads were from 
WWTPs (e.g., no antibiotic loads in runoff from livestock paddocks). 
Loads were estimated by calculating the product of observed concen
trations and the daily discharge of the two WWTP in the study area. 
Given that only two sample event dates were available, one on July 27 
and October 15 of 2013, and that the flow was lowest on the July sample 
date, concentrations observed for the July sample event were employed 
to estimate the daily release rates of the contaminants. 

In this investigation, pesticides were evaluated at Site #2 and Site 
#3. For chlorpyrifos, bifenthrin, and esfenvalerate, we employed 
pesticide use reports to simulate chemical release. The pesticide use 
reports are required and collated by the California Department of Pes
ticides Regulation (CDPR). From the use reports, agricultural pesticide 
application data is available at the daily time-step and 2.6 km2 resolu
tion. However, professional pesticide use is only reported at the county 
level and no residential pesticide use is recorded. Since 90% of devel
oped land at Site #2 and Site #3 was agriculture, where the majority of 
pesticide use occurs, and given the low resolution of pesticide applica
tions in urban areas, only agricultural pesticide use data was employed. 
The pesticide load data employed was the mass of active ingredient 
applied. 

2.4. Evaluation of PECs 

Predicted environmental concentrations (PECs) for all contaminants 
and sites were compared to environmental monitoring concentration 
data from SCCRWP (SCCWRP, 2015) and the CDPR Surface Water 
Monitoring Program (Surface Water Datab). When evaluating PECs 
relative to observed, it is important to consider that monitoring cam
paigns can only reliably capture contaminant concentrations above the 
limit of quantification (LOQ), yet concentrations can be predicted below 
the LOQ. The LOQ is the lowest concentration from which quantification 
with accuracy can be determined. Due to the inability to compare PECs 
to concentrations below detection limits, only sample detect data were 
employed to evaluate OrganoFate predictions. 

When validating fate and transport models, it is common practice to 
calibrate the model and analyze the residuals of variance between 
monitoring and predicted concentrations (Moriasi et al., 2007). In this 
study, given the limited monitoring data we employed OrganoFate 
without calibration (i.e., no adjustment to the initial model parameter
ization) to predict contaminant concentrations. To evaluate the model, a 
comparative analysis of observed and predicted chemical concentrations 
was performed for the range and median values. This method was 

employed rather than analyzing the variance of residuals because of the 
inability for monitoring data to capture concentrations below the LOQ 
and the highly limited spatiotemporal resolution of the data. For CECs, 
monitoring data was only available on 2 different dates (at 5 different 
sites for each date). For pesticides at Site #2 and #3, the comparative 
analysis was performed because the watersheds encompass over 20,000 
km2 and a number of rivers/streams. Across such a large extent, the 
timing of precipitation will vary widely, although the climate data 
employed from weather stations within the watershed may be repre
sentative of climate conditions across the watershed. Our aim was to 
predict the range of concentrations within the sites surface water, not 
the timing of the rain event. A comparative analysis rather than residual 
variance on the days for which monitoring data was available was 
therefore better suited to the aim of this investigation, a screening-level 
risk assessment. 

Observed surface water CEC concentrations at the various sites 
varied by orders of magnitude. To accommodate the wide range of ob
servations for which extreme observations are of environmental signif
icance, boxplots of the respective concentrations were compared 
whereby the inter-percentile range considered was the 90th percentile of 
concentrations, whiskers 99th percentile, and outliers all values greater 
than the 99th percentile. To compare median values, the quotient of 
predicted values with respect to observed values was calculated (QPEC). 
Since the QPECs can span multiple orders of magnitude, the QPECs were 
logarithmically transformed to log10 (QPEC) (denominated pQPEC from 
here on, for brevity) and to improve interpretability. 

2.5. Ecological risk screening 

The ecological health risk of chemicals in this investigation was 
predicted for aquatic organisms by comparing predicted concentrations 
to observed ecotoxicological endpoints. For pesticides, aquatic health 
benchmarks were obtained from the USEPA Office of Pesticide Protec
tion and California State Water Resources Control Board (SWRCB). 
USEPA water quality criteria adopted here reflect the maximum con
centration at which chemicals may occur prior to causing adverse health 
impacts; these criteria are used during the pesticide registration process 
for risk assessment. Two databases were considered since the USEPA 
criteria are used for developing pesticide labels for the United States 
(USEPA, 2017), while the SWRCB (sub-entity of California Environ
mental Protection Agency) criteria are more sensitive and were devel
oped by the agency in consideration of adverse aquatic health impacts 
observed in California’s waterways. For bifenthrin and esfenvalerate, 
SWRCB ecotoxicological endpoints were adopted from the water quality 
control plan for pyrethroid pesticide discharges in the Central Valley, 
which was published in 2017 (Regional Water Quality Co, 2017). For 
chlorpyrifos, the endpoint was adopted from water quality goals of the 
SWRCB, published in 2016 (Marshack, 2016). 

To explore the accuracy of predictions, it was important to consider 
the LOQ of monitoring data. For pesticides the LOQ was often above 
aquatic effect thresholds and OrganoFate can predict concentrations 
below the LOQ of observed data. The consequence is that many samples 
for which monitoring data indicated a non-detect, the concentration of 
the contaminant may have been above an aquatic health criterion. 
Moreover, the median observed concentration is dependent on the LOQ 
of the analyses. Thus, the median LOQ of each pesticide’s samples were 
calculated and compared to aquatic health benchmarks and PECs. 

To evaluate aquatic risks for the CECs, for which there are no 
established regulatory criteria, toxicological data compiled from the 
USEPA database ECOTOX was employed. (USEPA) The database was 
thus used to provide an aquatic health benchmark for CECs and to 
evaluate health risks across a broad range of taxa for all chemicals in this 
investigation. The ECOTOX database contains ~50,000 toxicological 
studies for ~12,000 chemicals and ~1,000,000 toxicological endpoints. 
(X. at < https) Ecotoxicological data for each chemical was compiled for 
freshwater organisms belonging to Animalia, which are more sensitive to 
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the mode of action of the chemicals evaluated than other taxa belonging 
to the domain Eukarya. The one exception was ecotoxicological data for 
the half maximal effect concentration for triclocarban, for which 
seawater organisms were included as a proxy for freshwater organisms 
due to limited freshwater test data (n = 1). Data for the following eco
toxicological thresholds was compiled: half maximal effect concentra
tions (EC50), half maximal lethal concentrations (LC50), and for 
chemicals with no EC50 data available, the no observable effect con
centration (NOEC). 

To calculate aquatic benchmarks for CECs, Species Sensitivity Dis
tribution (SSD) curves were constructed using EC50 data for a minimum 
of eight species, from which the HC5 (i.e., the he hazardous concen
tration for 5 percent of species) could be determined. SSDs are cumu
lative probability density functions describing the likely fraction of 
species for which adverse effects are expected at a given contaminant 
concentration (Wheeler et al., 2002; Kooijman, 1987). SSDs were 
generated for acute (≤4 day) and chronic (>4 days) ecotoxicological 
data using the fitdistr function in the MASS package for the data analysis 
software R, and were modified such that all available effect data were 
used. For instance, if two endpoints existed for the same species, all 

values were used to generate the sensitivity curve. If the number of 
species studied for a particular chemical and ecotoxicological endpoints 
were fewer than eight, no SSDs were generated. Instead, the lowest 
ecotoxicological endpoint was considered. 

3. Results and discussion 

3.1. Urban PECs –site #1 

For sulfamethoxazole, triclocarban, and TDCPP, OrganoFate pre
dicted concentrations in the freshwater column were within the range of 
monitoring data (see Fig. 2 as well as SI Table S5 and Figure S10). The 
median modeled and observed concentrations also exhibited reasonable 
agreement with the quotient of predicted and observed concentrations 
(log transformed); the pQPEC, of each CEC was less than 0.4. 

For sulfamethoxazole, no observed or predicted concentrations 
exceeded the HC5. For TDCPP, insufficient data was available to 
calculate the HC5 (n = 4), but the chronic NOEC for the fish Danio rerio 
(6.4 μg/L) was not exceeded for either the maximum observed (1.4 μg/ 
L) or predicted concentrations (5.8 μg/L). Danio rerio was the only 

Fig. 2. Predicted and observed freshwater column and sediment concentrations of triclocarban, sulfamethoxazole, TDCPP, and bifenthrin. Boxplot interquartile 
ranges reflect the 90th percentile of predictions. Aquatic health criteria for the water column are also depicted if they were within the range of observed or predicted 
concentrations. 
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organism for which data was available, and the predicted risk quotient 
with respect to the most sensitive endpoint (PEC/NOEC) was 0.9. For 
triclocarban, the maximum observed concentration (0.11 μg/L) was 
near the most sensitive chronic EC50 endpoint (0.21 μg/L), and the 
maximum predicted concentration of triclocarban (0.22 μg/L) slightly 
exceeded the endpoint. The predicted risk quotient for triclocarban was 
1.1. Thus, OrganoFate was able to predict that TDCPP and triclocarban 
may pose a hazard at Site #1, even without adjusting parameter values. 
This demonstrates the value of the model for screening risk assessment. 

For concentrations in freshwater sediment, observed data were only 
available for triclocarban and TDCPP. The predicted concentrations 
were within the observed range, but unlike predictions in surface water, 
there were observations higher than the predicted range. While the 
range of predicted concentrations were still similar to observed for 
TDCPP, the maximum observed triclocarban concentration was sub
stantially higher than the maximum PEC (see Fig. 1(d)). This discrep
ancy, which also was observed for triclocarban, may be attributable to 
the representation of the stream bed organic carbon as homogenous 
throughout the site, even though a high degree of heterogeneity of 
organic carbon may exist in these stream beds (Angradi, 1996; Hill and 

Sanmugadas, 1985). Organic contaminants sorb more readily to high 
organic carbon content sediment, especially triclocarban owing to its 
high organic carbon partitioning coefficient (~17,000 L/kg). To more 
accurately model the concentrations of triclocarban in the vicinity of the 
WWTP, the analysis region could be reduced to closer proximity to the 
WWTP, as demonstrated in previous work (Parker and Keller, 2019). An 
evaluation of concentrations immediately downstream of the WWTP 
was not conducted here due to the absence of instream flow data near 
the WWTP. 

3.2. Agricultural PECs– sites #2 and #3 

In the agricultural Site #2, while observed bifenthrin and esfenval
erate concentrations were within the range of predicted concentrations 
(Fig. 3 as well as SI Table S6 and Figure S11), the observed values were 
all greater than the 99th percentile of predicted concentrations. This is 
likely attributable to the high LOQ of samples, for which the median 
LOQ was greater than the 95th percentile of predicted concentrations. 
Notably, the median LOQ was also higher than the USEPA and SWRCB 
health benchmarks, which demonstrates the analytical capabilities for 

Fig. 3. Predicted and observed concentrations of chlorpyrifos, bifenthrin, and esfenvalerate in the freshwater column of Site #2. Also displayed is the median LOQ of 
observed concentrations, the SWRCB water quality indices and USEPA aquatic health benchmarks. The boxplot range reflects the 90th percentile of observations, the 
whiskers the 99th percentile, and outliers the remaining values. 
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the majority of samples collected in monitoring campaigns were not 
sensitive enough to capture concentrations of concern to aquatic or
ganisms. Thus, while there were few positive detections at Site #2 for 
each compound in the CDPR SURF database (detection frequency of 
~2% for each), the actual concentrations may frequently exceed aquatic 
health benchmarks. Moreover, the observed concentrations exceeded at 
least one aquatic health benchmark at the site. 

Chlorpyrifos PECs at Site #2 were also within the observed range for 
the freshwater column and encompassed all observed concentrations. 
With the higher number of observations and median LOQ similar to the 
median predicted and observed concentrations, predictions of Organo
Fate were close to observed concentrations, with a pQPEC of 0.68. The 
results demonstrate good agreement between PECs generated by Orga
noFate and observed concentrations. With respect to aquatic health 
benchmarks, chlorpyrifos was in exceedance for at least one of the 
criteria set forth by the SWRCB and USEPA for nearly 100% of predicted 
and observed concentrations. Within the analysis period for pesticides at 
Site #2, OrganoFate predicted that SWRCB criteria would be exceeded 
for chlorpyrifos, bifenthrin, and esfenvalerate 363 days, 356 days, and 
183 days out of 365 days, respectively. Predicted days of exceedance of 
USEPA criteria for chlorpyrifos, bifenthrin, and esfenvalerate are 356 
days, 9 days, and 2 days, respectively. Collectively, observed and pre
dicted concentrations provide strong supporting evidence that protec
tion goals for aquatic fauna are not achieved with current pesticide use 
regimes at Site #2. 

The accuracy of predictions for chlorpyrifos in the freshwater 
compartment at Site #3 were similar to Site #2, with an observed 
pQPEC of 0.4 and the range of predicted values encompassing all ob
servations (SI Table S7, Figure S12, and Figure S13). For Site #3, the 
upper 95th percentile of observed chlorpyrifos concentrations and upper 

50th percentile of predicted concentrations exceeded the SWRCB 
criteria. Unlike Visalia, there were no observed exceedances of the 
USEPA aquatic life benchmark, only for predicted concentrations in the 
>95th percentile. 

In sediment, similar to the water column, the predicted and observed 
concentrations of chlorpyrifos were in close agreement. For Sites #2 and 
#3, a difference in the predicted and observed median concentrations 
was <2 μg/kg. Similar ranges between PECs and monitoring data were 
also observed. However, the range of predicted concentrations did not 
encompass all sample data. After review of monitoring site locations (see 
SI Figure S3), this may reflect that many observations were for small 
tributaries. For bifenthrin and esfenvalerate, the sediment median PECs 
were within about an order of magnitude of observed values. However, 
the maximum observed concentrations were orders of magnitude 
greater than predicted. The disparity between predicted and observed 
sediment concentrations of bifenthrin and esfenvalerate may, like for 
chlorpyrifos, be attributable to monitoring on small tributaries. Another 
factor is the more localized use of the chemicals (see SI Figure S3- 
Figure S5). Additionally, it is likely attributable to heterogeneity of 
organic carbon in the sediment discussed for Site #1 and the high 
sorption tendency of the pesticides. The organic partitioning coefficient 
of bifenthrin and esfenvalerate are 236,600 L/kg and esfenvalerate 
341,000 L/kg, respectively, while that of chlorpyrifos is substantially 
lower (5460 L/kg). 

3.3. Ecological risk screening 

Given the paucity of CEC toxicological data, species specific hazards 
are only discussed for pesticides. The acute and chronic HC5, based on 
the EC50, were exceeded for all three pesticides, for the observed data 

Fig. 4. (a–d). Observed and predicted concentrations (PEC) relative to species sensitivity distribution models derived for the half maximal effect concentration 
(EC50) in studies with the duration of observation greater than 96 h (sub-chronic to chronic). Depicted for the Site #2 are (a) chlorpyrifos, (b) bifenthrin, and (c) 
esfenvalerate. Chlorpyrifos within the San Joaquin Watershed is depicted in (d). 
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and PECs (Fig. 4). Exceedances of the EC50 for several species were also 
observed for each pesticide. For Site #2, chlorpyrifos, observed and 
predicted concentrations exceeded the EC50 for water fleas, aquatic flies 
(e.g., caddis flies, mayflies, damsel flies), mosquitos, pigmy back
swimmers, crustaceans, and fish. Predicted chlorpyrifos concentrations 
also exceeded the EC50 for mussels and frogs. For bifenthrin, the EC50 
for water fleas, aquatic flies, and fish were exceeded by observed and 
predicted concentrations. Observed Esfenvalerate concentrations 
exceeded EC50 for rotifers, water fleas, and aquatic flies, while PECs 
exceeded EC50 for water flea, aquatic flies, aquatic beetles, crustaceans, 
and fish. 

3.4. Significance and limitations 

This investigation demonstrated that parameterization of Organo
Fate based strictly on data available in easily accessible databases can 
predict environmental concentrations of diverse organic contaminants 
generally within the observed range. The model parameters were not 
adjusted, yet the model was able to provide reasonably accurate PECs 
and important insights with regards to current chemical hazards in the 
environment. A notable observation from this investigation is that the 
pesticides bifenthrin and esfenvalerate, which have displaced chlor
pyrifos and other earlier generations of pesticides, are likely to be of 
substantial concern to biodiversity in the surface waters of the agricul
tural watersheds of this investigation. While this is only a screening level 
analysis, it is an important concern, identified by OrganoFate, which 
warrants further investigation with more frequent observations and 
lower LOQs. The advantage of employing OrganoFate for this analysis is 
that it is a part of ChemFate, a tool able to predict concentrations for 
diverse chemical classes, including pesticides based on ionizable or
ganics, metal ions or nanomaterials, which cover a wide range of com
mercial products. It is advantageous for users to be able to employ the 
same tool for these analyses as it requires considerable effort to 
parameterize models as well as for a user to familiarize themselves with 
tools necessary to conduct analyses for current use chemicals. ChemFate 
provides a unique environment within which users can quickly screen 
risks for unique compounds and environmental hazards. 

In all environmental models, including multimedia and watershed 
scale models, environmental media are represented by homogenous 
compartments at some scale. Yet, there is often significant variability in 
properties, such as the organic carbon in soils and sediments, as well as 
concentrations, due to incomplete mixing. In surface water, small 
streams and creeks may have concentrations which are significantly 
higher than in larger rivers, since there is less dilution in smaller water 
bodies compared to larger ones (Schulz, 2004). Distinguishing fate in 
different areas of the bulk water compartment is also important because 
small waterbodies have been demonstrated to not only have higher 
concentrations, but greater biodiversity (Lorenz et al., 2017). A limita
tion of OrganoFate with respect to watershed scale models is the 
contiguous representation of compartments which simulates a lower 
resolution of concentration gradients in the landscape. Though 
compartment representation is subject to more simplification than other 
tools, this mitigates over parameterization in data limited regions, re
duces model complexity, and offers greater efficiency. While predictive 
tools such as OrganoFate do not displace the need for monitoring, they 
can be leveraged to provide important insight with regards to PECs and 
ecological risks at a higher spatiotemporal resolution than is typically 
achievable with monitoring data. 

4. Conclusions 

Chemical use will continue to increase for the foreseeable future as 
we seek to improve living conditions and sustain a growing population. 
Our evaluation of OrganoFate for the prediction of the concentration of 
organic CECs and pesticides within aquatic environments demonstrated 
the model to predict concentrations within the range of available 

monitoring data. Moreover, we were able to employ the tool to evaluate 
probable adverse aquatic health impacts for chemicals with very limited 
monitoring data (the CECs) and of chemicals for which monitoring an
alyses often do not capture concentrations that are hazardous to fauna 
(bifenthrin and esfenvalerate). These results are of import to the broader 
field of chemical risk assessment in that it validates an important sub- 
module of the tool ChemFate which can provide these types of ana
lyses for an even broader class of contaminants with limited monitoring 
data such as ionized organics, metals, and nanomaterials. 
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