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Remotely sensed terrestrial open 
water evaporation
Joshua B. Fisher 1,2*, Matthew B. Dohlen 3, Gregory H. Halverson 3, Jacob W. Collison 4, 
Christopher Pearson 5 & Justin L. Huntington 5

Terrestrial open water evaporation is difficult to measure both in situ and remotely yet is critical for 
understanding changes in reservoirs, lakes, and inland seas from human management and climatically 
altered hydrological cycling. Multiple satellite missions and data systems (e.g., ECOSTRESS, OpenET) 
now operationally produce evapotranspiration (ET), but the open water evaporation data produced 
over millions of water bodies are algorithmically produced differently than the main ET data and are 
often overlooked in evaluation. Here, we evaluated the open water evaporation algorithm, AquaSEBS, 
used by ECOSTRESS and OpenET against 19 in situ open water evaporation sites from around 
the world using MODIS and Landsat data, making this one of the largest open water evaporation 
validations to date. Overall, our remotely sensed open water evaporation retrieval captured some 
variability and magnitude in the in situ data when controlling for high wind events (instantaneous: 
 r2 = 0.71; bias = 13% of mean; RMSE = 38% of mean). Much of the instantaneous uncertainty was due 
to high wind events (u > mean daily 7.5 m·s−1) when the open water evaporation process shifts from 
radiatively-controlled to atmospherically-controlled; not accounting for high wind events decreases 
instantaneous accuracy significantly  (r2 = 0.47; bias = 36% of mean; RMSE = 62% of mean). However, 
this sensitivity minimizes with temporal integration (e.g., daily RMSE = 1.2–1.5 mm·day−1). To 
benchmark AquaSEBS, we ran a suite of 11 machine learning models, but found that they did not 
significantly improve on the process-based formulation of AquaSEBS suggesting that the remaining 
error is from a combination of the in situ evaporation measurements, forcing data, and/or scaling 
mismatch; the machine learning models were able to predict error well in and of itself  (r2 = 0.74). Our 
results provide confidence in the remotely sensed open water evaporation data, though not without 
uncertainty, and a foundation by which current and future missions may build such operational data.

Knowledge of terrestrial open water evaporation is necessary in understanding how and why changes in reser-
voirs, lakes, and inland seas occur, and how to manage these  changes1,2. As climate extremes and human demand 
on freshwater sources increase, both society and natural ecosystems are impacted by shrinking reservoirs, lakes, 
and inland  seas3–8. Two causes can shrink all these water bodies for a given known water height and surface 
discharge or human abstraction: (1) surface evaporation; and, (2)  leakage9,10. Evaporation and leakage are very 
difficult to estimate and monitor accurately, yet only evaporation can change significantly from day to day, 
diurnally, and  seasonally11. Half the water loss may be from evaporation alone, and could be roughly equal to 
human abstraction, which in summation may be approximately equal to total inputs if water levels stay constant; 
a shift in any of those can alter the equilibrium  balance12,13. Understanding surface evaporation rates can help 
close the water balance equation and inform decision-makers on how to manage abstraction and movement of 
water from these  bodies10,14–16. For instance, water managers may have multiple interconnected reservoirs in 
their purview, and may be able to move water from one reservoir to the next if that can enable them to reduce 
evaporative  loss17–20.

Measuring open water evaporation is challenging for two primary reasons: (1) instrumentation; and, (2) 
 representation1,16. It is difficult to set up and maintain in situ evaporation equipment in the middle of an unstable 
water  body21–24. Eddy covariance assumptions about stability and fetch are often ill-constrained25, Bowen ratio 
approaches lose temporal  fidelity26, and bulk aerodynamic or mass transfer methods are sensitive to user-(mis)
calibration27. Further, most methods are indirect estimates of evaporation. Related, representation of point 
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measurements to the larger water body is often error-prone as evaporation rates vary widely across the body 
depending on underlying bathymetry—and associated radiative storage and cycling—and exposure to varying 
wind and humidity especially from on-shore28–30.

Remote sensing has the potential to overcome the spatial representation problem, especially given high spatial 
resolution measurements of surface  temperature31,32. Such resolution not only can identify spatial variability in 
evaporation, but also dynamically changing surface area related to water height and subsequent volumetric water 
 loss33. In conjunction with high frequency in situ measurements, this combination can be a powerful pair both 
to produce a fused spatiotemporal capability, as well as provide calibration of the satellite  data9,34. Still, there are 
challenges with remotely based evaporation estimates both in terms of retrieval mathematical formulation and 
physical process assumptions, as well as available data to drive those  models35–37. Numerous models have been 
developed to estimate open water  evaporation38–46.

Here, we are motivated by NASA’s ECOSTRESS mission, which now operationally produces open water 
evaporation data over millions of water  bodies47 using the AquaSEBS  approach45 in the global evapotranspi-
ration (ET) product (L3_ET_PT-JPL)32. Initially in data Collection 1, ECOSTRESS masked out water bodies 
because the open water evaporation algorithm had not been evaluated. The analysis that went into this paper 
provided confidence in the open water evaporation  data48, which are now un-masked in Collection 2. Because 
back-processing of the ECOSTRESS Collection 2 data takes a long time (e.g., > 1 year) and were consequently 
unavailable, we evaluated the ECOSTRESS open water evaporation algorithm using MODIS and Landsat data 
here. Moreover, PT-JPL with AquaSEBS is a core model in the OpenET system, including the open water evapora-
tion component, which is linked to the ECOSTRESS  implementation49. Our primary objective here is to establish 
the dataset and approach, and provide a first initial evaluation (Stage 1) of the AquaSEBS open water evaporation 
model as implemented in both ECOSTRESS and OpenET. We compiled in situ data from 19 sites from around 
the world, making this paper one of the largest evaluations of remotely sensed terrestrial open water evaporation 
to date. We also benchmarked AquaSEBS against a suite of 11 machine learning approaches to determine what 
the best accuracy is for a calibrated and optimized statistical model. This paper establishes a foundation on which 
subsequent analyses may be done with ECOSTRESS and OpenET data and provides an important reference for 
science investigations that use the open water evaporation data.

Methods
Data: in situ. In situ measurements and estimates of open water evaporation and ancillary data were col-
lected from sample size (n) 19 sites from around the world (Fig. 1). The sites included reservoirs and lakes of 
varying sizes and seven different Köppen-Geiger climate  zones50: humid subtropical (Cfa; n = 6), warm-summer 
humid continental (Dfb; n = 5), hot desert (BWh; n = 3), cold semi-arid (BSk; n = 2), hot semi-arid (BSh; n = 1), 
cold desert (BWk; n = 1), and hot-summer humid continental (Dfa; n = 1). Data were obtained from the Great 
Lakes Evaporation Network (GLEN) (superiorwatersheds.org/GLEN)21,29, the US Bureau of Reclamation’s Open 
Water Evaporation Network (OWEN) (owen.dri.edu)51, data in Zhao and  Gao9, as well as primary data collected 
by  us52 (Table 1). Data contained within these sources (especially Zhao and  Gao9) contain compilations of data 
from other studies as  well22,53–64. Measurement techniques varied across sites including eddy covariance (n = 11), 
Bowen ratio energy balance (n = 5), bulk mass transfer (n = 2), and floating evaporation pan (n = 1). Ultimately, 
each site was handled consistently in comparisons despite differences in measurement technique and processing. 
Data spanned the years 1986 to 2019.

Data were available in different time units: (i) half-hourly (n = 9); (ii) hourly (n = 1); (iii) daily average (n = 1); 
and, (iv) monthly average (n = 8). Data were reported in different physical units as well. For half-hourly and 
hourly measurements, we converted them to match the units of the instantaneous overpass satellite data where 
needed, i.e., W·m−2. For daily and monthly data, we created daily and monthly satellite products from the 

Figure 1.  In situ terrestrial open water evaporation data from 19 sites around the world were used to validate 
the remote sensing data. QGIS version 3.18 and Microsoft PowerPoint version 16.72 were used to add map 
elements to the figures.
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instantaneous data (“Model: aquasebs water heat flux”). We did not construct new daily data for the sites with 
sub-daily data because of missing data. In situ data were filtered for bad quality flags as provided.

Data: satellite: Landsat and MODIS. We produced fine spatial resolution 30 m images of water evapora-
tion using the Landsat Analysis Ready Dataset (ARD) Surface Temperature (ST) and Surface Reflectance (SR) 
 products65. This record provides a historical analog to the 70 m surface temperature from ECOSTRESS, with the 
limitation that the overpass time from Landsat is consistently around 10:30 AM, whereas ECOSTRESS provides 
sampling throughout the day. Landsat 5, 7, and 8 were used to cover the in situ record from 1986 to 2019. The 
Landsat ARD ST product provides resampled 30 m images of atmospherically corrected surface temperature 
from the 120 m Landsat 5, 60 m Landsat 7, and 100 m Landsat 8 thermal infrared instruments. Albedo was 
estimated by applying near-to-broadband coefficients to the SR  product66.

To expand the temporal data volume beyond the 8–16 day revisit of the Landsat satellites, we opted to include 
daily Terra MODIS data (~ 10:30 AM overpass) at 1 km as well and conduct a comparison between the two data 
sources, from 2000 to 2019. Surface temperature was taken from the daily 1 km MOD11A1  product67. Albedo was 
taken from the 16-day, 500 m MCD43A3 product, which processes the bi-directional reflectance function over 
a combination of MODIS Terra and Aqua images from a 16-day repeat  orbit68. Near surface air temperature and 
humidity were derived from the MOD07_L2 product following Famiglietti,  Fisher69. Aerosol optical thickness 
from MOD04_L2 and cloud optical thickness from MOD06_L2 were used to derive solar radiation. Satellite data 
were filtered for bad quality flags and clouds. For Landsat, because the data volume was much smaller than that 
for MODIS, we additionally visually inspected each image manually to confirm success of the cloud filtering.

For the half-hourly and hourly data in situ data, the data point closest in time to satellite overpass was selected 
for comparison, accounting for differences in satellite overpass times. To capture some of the in situ fetch and to 
reduce any potential pixel noise, we calculated spatial aggregates of pixels at each of the in situ geographic coor-
dinates and compared these aggregates to the single pixel overlying each site center  point32. We note that a more 
sophisticated approach would be to conduct a temporally dynamic footprint-aware analysis for each  site70–73, 
and adjust the corresponding pixels accordingly; the absence of this approach may reduce the goodness of fit in 
some  instances74. Landsat was re-sampled to 30 m and a 5-by-5 pixels area of 150 m × 150 m was used for each 
site. MODIS, at a much coarser resolution, was limited in the area of extrapolation; we assessed a 3-by-3 pixels 
area for MODIS where possible. We screened for land intrusion through manual comparison to high resolution 
Google Earth RGB imagery. For each spatial aggregate, we calculated the mean, median, and interquartile range. 
We identified the optimal combination of spatial representation and statistical aggregate per  site32.

Model: AquaSEBS water heat flux. We used the AquaSEBS model to estimate the water heat flux, G0w 
(W·m−2)45:

Table 1.  List of 19 validation sites for in situ open water evaporation data. The sites included reservoirs and 
lakes of varying sizes and seven different Köppen climate zones: humid subtropical (Cfa), warm-summer 
humid continental (Dfb), hot desert (BWh), cold semi-arid (BSk), hot semi-arid (BSh), cold desert (BWk), and 
hot-summer humid continental (Dfa). Measurement techniques varied (BREB: Bowen ratio energy balance), 
as well as sample rate of available data.

Site Latitude Longitude Climate Method Sample rate

American Falls 42.899761 −112.75799 Bsk Bulk mass transfer 30 min

Calm 28.142088 −82.582044 Cfa BREB Monthly average

Cochiti 35.616928 −106.31541 Bsk Floating evaporation pan 1 h

Five-O 30.42177 −85.664162 Cfa BREB Monthly average

Granite Island 46.7207104 −87.413556 Dfb Eddy covariance 30 min

Kasumigaura 36.0430556 140.411667 Cfa Eddy covariance Monthly average

Kinneret 32.8166667 35.6 Bsh BREB Monthly average

Lahontan 39.4501944 −119.06874 Bwk Bulk mass transfer 30 min

Long Point 42.56667 −80.05 Dfb Eddy covariance 30 min

Mead 36.0834882 −114.78053 Bwh Eddy covariance 30 min

Mohave 35.4272222 −114.64806 Bwh Eddy covariance 30 min

Nasser 23.953539 32.877671 Bwh BREB Monthly average

Ross Barnett 32.43823 −90.03168 Cfa Eddy covariance Monthly average

Spectacle Reef 45.77581 −84.135914 Dfb Eddy covariance 30 min

Stannard Rock 47.18361 −87.225 Dfb Eddy covariance 30 min

Starr 27.956697 −81.588115 Cfa BREB Daily average

Taihu 31.382029 120.195508 Cfa Eddy covariance Monthly average

White Bear 45.07703 −92.98331 Dfa Eddy covariance Monthly average

White Shoal 45.77333 −85.13667 Dfb Eddy covariance 30 min
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where T0 is water surface temperature (°C); Td is near surface air dew point temperature (°C); u is wind speed 
(m·s−1); and, Rs is net shortwave radiation (W·m−2). S(W) represents a wind function (m·s−1); β represents a 
thermal exchange coefficient (W·m−2·°C−1); and, Te represents a hypothetical equilibrium temperature (°C) when 
the net heat flux exchange between the water surface and the atmosphere equals zero. Formulation, definitions, 
and nomenclature match Abdelrady,  Timmermans45 here for consistency.

G0w was used in the Priestley–Taylor75 equation to calculate total evaporation, E (W·m-2):

where α is the Priestley–Taylor coefficient of 1.26 (unitless), � is the slope of the saturation-to-vapour pressure 
curve, dependent on near surface air temperature ( Ta ; °C) and water vapour pressure ( ea ; kPa), γ is the psychro-
metric constant (0.066 kPa·°C−1), and Rn is net radiation (W·m−2).

Landsat and MODIS (and ultimately ECOSTRESS) provide T0 . Td can be obtained from  MODIS69, weather 
stations, or reanalysis. u can be obtained from weather stations or reanalysis. Rs can be obtained from MODIS, 
weather stations, or reanalysis. For MODIS-based modeling, we used MODIS for Td , Rs , and Rn following the 
ECOSTRESS Collection 1 retrieval for evapotranspiration for the global product (L3_ET_PT-JPL)32 with tem-
poral upscaling for daily estimates following Verma,  Fisher76; and, u from the NCEP-NCAR Reanalysis I dataset 
at 6-hourly, 2.5° resolution (psl.noaa.gov)77. Specifically, Rs was retrieved using the Forest Light Environmental 
Simulator (FLiES)78,79 and Breathing Earth System Simulator (BESS)80–82. Downwelling shortwave radiation 
( RSD ) was calculated from eight inputs: (1) solar zenith angle; (2) aerosol optical thickness at 550 nm; (3) cloud 
optical thickness; (4) land surface albedo; (5) cloud top height; (6) atmospheric profile type; (7) aerosol type; 
and, (8) cloud  type81. Upwelling shortwave radiation ( RSU ) was calculated from broadband surface albedo, which 
integrates black and white sky albedo, and RSD . For Landsat-based modeling, we used Rs , Td , humidity, and u 
from NCEP-NCAR Reanalysis I.

The remotely sensed open water evaporation was produced as instantaneous at the time of overpass. How-
ever, some of the in situ data were available only as daily sums. As such, we produced an additional daily total 
remotely sensed evaporation product following the ECOSTRESS Collection 1 approach for the daily PT-JPL 
evapotranspiration  product83. Specifically, diurnal incoming net radiation was sinusoidally modeled based on 
date and latitude, and the evaporative fraction ratio between the instantaneous evaporation and net radiation 
was carried forward throughout the  day84. For brevity, we refer further details of these equations to  Fisher83 and 
Bisht,  Venturini84. To compare to those sites providing only monthly sums, we averaged all daily satellite data 
for a given month to make respective comparisons. We note that ECOSTRESS switches to AquaSEBS when the 
MODIS land/water mask is water.

Model: machine learning. We ran a suite of 11 machine learning models to determine what the best accu-
racy was for a given calibrated and optimized non-mechanistic model. This creates a benchmark to differentiate 
error between AquaSEBS and the in situ data that can be attributed to the remote sensing or the in situ data. For 
example, if AquaSEBS explained 50% of the variation in the in situ data, and the best machine learning model 
predicted 60%, then this suggests that AquaSEBS predicted most of the explainable variation. Secondarily, we 
also used the machine learning models to predict the error.

The models used were: (I) Ordinary Least Squares; (II) Ridge Regression; (III) LASSO; (IV) Elastic Net; (V) 
Multilayer Perceptron; (VI) Tensorflow Neural Network; (VII) Decision Tree; (VIII) Random Forest; (IX) Support 
Vector Machine; (X) K-Nearest Neighbors; and, (XI) Gradient  Boosting85–94. We created a testing harness to train 
and fine tune multiple models simultaneously using Sklearn in  Python95. Statistics on model performance and 
hyperparameter grid search for optimal hyperparameters were automatically saved; k-fold cross validation was 
used in conjunction with grid  search96. Under/over fitting and convergence were tracked through loss and learn-
ing curve  plots97. Preprocessing the data for machine learning required additional manual flagging of extended 
periods (> 2 weeks) of missing data. Data also required min–max scaling prior to ingestion into these models.

Software packages. Python version 3.9.5 was used to process all data, run the machine learning models, 
and produce the map figures and machine learning scatterplot. Microsoft Excel version 16.72 was used to verify 
the statistics and improve the aesthetics of the validation scatterplots. QGIS version 3.18 was used to add map 

(1)Tn = 0.5(T0 − Td)

(2)η = 0.35+ 0.015T0 + 0.0012(Tn)
2

(3)S(W) = 3.3u

(4)β = 4.5+ 0.05T0 + (η + 0.47)× S(W)

(5)Te = Td +
Rs

β

(6)G0w = β(Te − T0)

(7)E = α
�

�+ γ
(Rn − G0w)
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elements to the figures and Microsoft PowerPoint version 16.72 was used to add aesthetic improvements to the 
maps.

Results
We produced 30 m landscape-scale maps of open water evaporation (AquaSEBS) and land evapotranspiration 
(PT-JPL) from Landsat over the 19 validation sites. The high spatial resolution and surface temperature sensi-
tivity uncovered dynamic spatial patterns in evaporation across the reservoirs and lakes (Fig. 2). These patterns 
encompassed near shore changes related to bathymetry, north–south/east–west gradients across the water bod-
ies, and circulation-based patterns as heat distributes via currents. Open water evaporation was typically larger 
than land evapotranspiration even in irrigated or mountainous settings during late summer and fall periods.

The bulk of the remotely sensed data used for validation against half-hourly and hourly in situ data came from 
MODIS given its daily cadence. 11,016 images aligned with the available in situ data, which was filtered down to 
686 cloud-free scenes. For the available in situ daily and monthly data, 52 cloud-free scenes were available. For 
the MODIS instantaneous data only with high wind filtering (u > mean daily 7.5 m·s-1), the remote sensing data 
captured the variability in the open water evaporation reasonably well  (r2 = 0.71; RMSE = 53.7 W·m-2; RMSE = 38% 
of mean; Bias = -19.1 W·m-2; Bias = 13% of mean) (Fig. 3). As this is a single model (AquaSEBS) run universally 
across all 19 sites, this bodes well for robust extrapolation beyond the sites, which vary widely in physical and 
environmental characteristics.

However, the instantaneous results were particularly sensitive to short-term high wind events. Failure 
to account for these events resulted in missed high evaporation moments  (r2 = 0.47; RMSE = 84.4 W·m−2; 
RMSE = 62% of mean; Bias = −49.5 W·m−2; Bias = 36% of mean) (Fig. 4). Nonetheless, the daily results are 
not as sensitive to these high wind events; in fact, the Bias and RMSE were remarkably small, although the 
scatter was still large given the small sample size  (r2 = 0.47; RMSE = 1.5 mm·day−1; RMSE = 41% of mean; 
Bias = 0.19 mm·day−1; Bias = 1% of mean) (Fig. 5a).

We next asked what the change in accuracy is with increasing spatial resolution from MODIS to Landsat. 
Although the sample size was small and the comparison was not 1-to-1, it appeared that there may be a modest 
increase in correlation with Landsat; RMSE and Bias remained relatively low though larger than that of MODIS 
 (r2 = 0.56; RMSE = 1.2 mm·day−1; RMSE = 38% of mean; Bias = −0.8 mm·day−1; Bias = 26% of mean) (Fig. 5b). 
The small sample size was sensitive to outliers; the three outlier points in the Five-O data caused a reduction in 
 r2 from 0.71 to 0.56.

The top performing machine learning models were: (1) Multilayer Perceptron; (2) Elastic Net; (3) LASSO; 
(4) Ridge Regression; and, (5) TensorFlow Neural Network. However, none of the machine learning models 
outperformed AquaSEBS, which provides confidence for AquaSEBS and its application beyond the validation 
sites. Nonetheless, the machine learning models outperformed basic multiple linear regression and residual 
analyses in predicting AquaSEBS error (Table 2). Although error predictability varied from site to site, generally 
wind speed was the predominant predictor of open water evaporation error at most, but not all, sites and mostly 
only for the instantaneous/half-hourly/hourly data. The TensorFlow Neural Network with two hidden layers, 
256 neurons at each hidden layer, dropout of 0.5 added after each layer, 0.001 regularization alpha, an Adam 
optimizer, ReLU for the dense layers activation function, and a loss function of mean absolute error was able to 
capture with reasonable speed a large amount of the variability in open water evaporation error  (r2 = 0.74) (Fig. 6).

Figure 2.  High spatial resolution (30 m Landsat) and surface temperature sensitivity of AquaSEBS reveals 
dynamic spatial patterns in evaporation across reservoirs and lakes. These patterns encompass near shore 
changes related to bathymetry, north–south or east–west gradients across the water bodies, and circulation-
based patterns as heat distributes via currents. Here, three examples are shown for Lahontan Reservoir, Nevada 
(left); American Falls Reservoir, Idaho (middle); and, White Shoal, Lake Michigan (right). Python version 3.9.5 
was used to process all data and produce the map figures. QGIS version 3.18 was used to add map elements to 
the figures.
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Discussion
AquaSEBS is a relatively new model and has been used in only a few studies thus far. Abdelrady,  Timmermans45, 
who developed AquaSEBS, reported RMSE’s of 20–35 W·m−2 and 1.5 mm·day−1, depending on site and meas-
urement method; they reported a high  r2 of 0.98 at one site though the  r2 for their sensible heat flux was 0.70. 
Rodrigues,  Costa98 and Rodrigues,  Costa37 used AquaSEBS across multiple sites and reported RMSE’s of 
0.81–1.25 mm·day−1 in the former and 0.03–0.58 mm·day−1 in the latter, with  r2’s of 0.51–0.65 and 0.32–0.63, 
respectively. Our results compare similarly to all these studies (outside of the anomalous high  r2 in Abdelrady, 
 Timmermans45). Our instantaneous RMSE was a little larger than Abdelrady,  Timmermans45 at 53.7 W·m−2, but 
our daily RMSE’s of 1.2–1.5 mm·day−1 compare similarly to the 1.5 mm·day−1 of Abdelrady,  Timmermans45 and 
the high end of 1.25 mm·day−1 from Rodrigues,  Costa98.
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Figure 5.  Remotely sensed daily open water evaporation data compared well with in situ data available from 
a limited number of sites. The daily data were less sensitive to high wind events. Results were similar between 
MODIS (a) and Landsat (b), though the scatter improved with the higher spatial resolution of Landsat.

Table 2.  Simple ordinary least squares linear regression analysis of ancillary predictors of error in remotely 
sensed open water evaporation relative to in situ measurements highlights the sensitivity to wind speed. 
Significant values are in bold.

Variable Coef Std err t P >|t| [0.025 0.975]

Air temperature (Celsius) −2.00 1.54 −1.30 0.19 −5.03 1.02

Net radiation (W·m−2) −0.05 0.04 −1.19 0.24 −0.14 0.03

Relative humidity (%) −1.56 0.40 −3.92 0.00 −2.34 −0.77

Water vapor density (g·m−3) 4.69 2.61 1.80 0.07 −0.45 9.82

Wind direction (°) 0.14 0.06 2.40 0.02 0.03 0.26

Wind speed (m·s−1) 20.10 1.81 11.13 0.00 16.55 23.66
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What are the sources of error in the model-data mismatch? Although we often attribute errors entirely to the 
model, the error is in fact a combination of multiple sources including: (1) the model; (2) the in situ data; (3) 
the forcing data; (4) scale mismatch; and, (5) user  error35,36. In situ measurement of open water evaporation is 
challenging, as described in the Introduction; therefore, some of the model-data mismatch is due to the in situ 
validation data alone. Error characterization of these measurements is also challenging, and there have been 
numerous community efforts and controversies to make these  systematic99–103.

Similarly, model forcing data have inherent uncertainties and errors that propagate through to the final 
model  error104–108. Related, the model forcing data and final model output may be of a coarser spatial resolution 
than the footprint of the in situ measurements. So, the model may be “seeing” fluxes, surface, and meteorologi-
cal features not captured by the in situ measurements; or, the pixels may be fine resolution, but the in situ fetch 
footprint is dynamic in space and time not aligned with the pixel  analysis32,70–73. For instance, horizontally or 
laterally advected air, energy, and moisture can lead to both contamination in in situ measurements as well as 
remote sensing  pixels49,106,109,110. For our validation, we accounted for it by a combination of: (A) placement of 
in situ measurements far from shore; and, (B) selection of pixels far from shore. This minimized bias from wind 
direction; we find no significant biases by waterbody area or shape (Table 2). However, beyond the validation, 
pixels at sharp wet/dry boundaries, especially in arid areas, will likely be impacted by  advection49,106,110.

Temporal aggregation is another source of scale mismatch error, which is particularly acute when compar-
ing instantaneous remotely sensed estimates to daily or monthly in situ  data82,111. Such temporal mismatches, in 
turn, circle back to controls on the open water evaporation process and how they are represented in the model 
formulation. If additional model capabilities, such as machine learning approaches to predict and integrate many 
of these ill-constrained error sources (e.g., Fig. 6), can be combined with the process model, then there may be 
avenues for improving the uncertainty of remotely sensed estimates of open water evaporation.

Taken together, these challenges and limitations in both model-data mismatch and site representation present 
some opaqueness with understanding how accurate our remotely sensed open water evaporation data are glob-
ally. Our validation sites, while among the largest open water validate site collections to date, are not globally 
representative, lacking important low- and high-latitudes (and altitudes)112,113. Nonetheless, we chose to proceed 
with this collection as a critical step forward in understanding the accuracy of our data but recognize that there 
are more steps to be had in future analyses. On the other hand, the net gain of insight from this analysis far 
outweighs these limitations, making these results a significant contribution to the scientific literature.

Penman44 described and formulated evaporation from open water over a lifetime ago. Since then, multiple 
papers have described and synthesized how the controls on open water evaporation are not static but vary in space 
and  time1,12,114. Still, study of terrestrial open water evaporation has been overshadowed by much more work 
done on evapotranspiration from land and  plants115 or implicitly subsumed into analyses of pan  evaporation116. 
Studies of ocean evaporation have been mature with low uncertainties having been reported for  decades117–121. 
However, the processes controlling open water evaporation from reservoirs and lakes, while perhaps not dif-
ferent in name from those controlling land and plant evapotranspiration, have notably distinctive sensitivities 
and impacts on open water evaporation. Certainly, standard variables of radiation, humidity, wind, and air and 
surface temperature control both evaporation  processes122,123. Plants and land introduce additional surface, 
aerodynamic, and stomatal resistances, as well as varying access to  water110,124. But, open water introduces much 
deeper radiation-absorbing characteristics than do plants and land that ultimately manifest in evaporation, 
though not necessarily immediately or even in the same location, as heat is circulated throughout the water 
 body12,125. These characteristics are, in turn, strongly determined by the physical structure of the water holding 
landform and associated underlying  bathymetry1. Open water may be more sensitive to wind events than in 
forested ecosystems, which provide some physical structural  buffering126. Indeed, open water evaporation may 

Figure 6.  A neural network (TensorFlow) predicted error in instantaneous satellite vs. in situ open water 
evaporation mismatch capturing 74% of variability.
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be near zero even on the hottest and driest day if there is no  wind127. Still, evaporation formulations that incor-
porate wind speed are highly vulnerable to uncertainties in wind speed  measurements105. Salinity may impact 
predictive capacities in both  systems45,128. Ultimately, radiation continues to be the dominant driver of both land 
and open water evaporation at large space and time scales; but, the process shifts to atmospherically-controlled 
at short time  scales32,129–131.

The future of remotely sensed terrestrial open water evaporation is promising with new missions emerging 
that increase the spatial resolution and frequency of surface temperature measurements, and operational data 
products including open water evaporation over millions of water bodies. The Landsat record continues to be 
supported with regular launches to replace aging  satellites132. ECOSTRESS has increased the temporal resolu-
tion to 1–5 days with diurnal  sampling32. SBG, TRISHNA, and LSTM will provide consistent, high quality, 
and well-calibrated surface temperature measurements every 3  days133–135. Hydrosat will provide the highest 
spatiotemporal surface temperature measurements at 50 m, daily, multiple times per  day136–138. In a very com-
plementary approach, radar measurements from SWOT will enable monitoring of changes in reservoir and lake 
water height levels, at least for large water  bodies139. Synergies among all these missions, in conjunction with 
operational open water evaporation data production, can provide a step-change in our ability to estimate and 
monitor open water evaporation. Moreover, synergies with operational meteorological reanalyses and forecasting 
agencies and datasets enable diurnally integrated open water evaporation accounting from the instantaneous 
remote sensing  measurements49. While reanalysis can provide fine scale temporal information, remote sensing 
can provide fine scale spatial measurements that can also be used to downscale the coarse reanalysis  pixels140. 
Together, these tools can complement and build on foundational work done by Zhao,  Li2 characterizing 1.42 
million lakes globally, and beyond. Finally, bottom-up support of in situ monitoring networks such as  GLEN21,29, 
 OWEN51, the Global Lake Ecological Observatory Network (GLEON)141, the Western Reservoir Evaporation 
Network (WREN)1, and AmeriFlux/FLUXNET142 is necessary to provide and expand the validation and diurnal 
scaling as these satellite data come online.

Conclusion
Here, we conducted the first evaluation of the AquaSEBS open water evaporation model as implemented in the 
ECOSTRESS mission and OpenET, applied to MODIS and Landsat data across 19 sites from around the world, 
making it among the largest open water validations to date. Our paper provides the foundational reference of 
preliminary results that provide confidence in the model and data, which enable both ECOSTRESS and OpenET 
to move forward with operational production and public releases of these data, and by which further research can 
build off. As those data begin to be produced, this evaluation should be re-visited with the new data across more 
sites. Moreover, further investigation is warranted to increase the sophistication from this analysis, particularly 
with incorporation of approaches to reduce uncertainties. These range from improving the quantification of 
the in situ data error and dynamic footprints to integration with machine learning techniques to predict error. 
There continues to be scope for improving the mechanistic formulation of the open water evaporation process 
within AquaSEBS with respect to environmental sensitivities and temporal dynamics for future data produc-
tion collections and expanded validation sites. Synergies with upcoming missions from SBG, TRISHNA, LSTM, 
and Hydrosat, as well as SWOT, in conjunction with expanded and standardized in situ networks will be key to 
ensuring water management and analysis of changes in climate and hydrological cycling best leverage these data 
as such operational information becomes increasingly important into the future.

Data availability
The satellite datasets analyzed during the current study are available from the LP DAAC AppEEARS tool: lpdaac.
usgs.gov/tools/appeears. The reanalysis data are available from: psl.noaa.gov. The in situ data were manually 
compiled and are available from the corresponding author on reasonable request.
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