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Abstract

In this dissertation, I analyze the economic effects of weather, climate change, adaptation,

and natural resource scarcity through the lens of agriculture in California.

Quality is central to much of agriculture because of its role in price determination and

contractual arrangements. Nevertheless, prior work on the effect of weather and climate

change on agricultural production mostly focuses on staple crop yields. Ignoring quality

will likely bias estimates of the impact of weather and climate change on productivity and

farm income. In the first essay co-authored with Timothy Beatty, we quantify the effect of

temperature exposure and climate change on the revenue of specialty crop growers through

two pathways: quality and yield. In contrast to earlier work on irrigated crops, we find

extreme temperatures negatively affect both yield and quality leading to reduced grower

revenue in a setting where irrigation is the norm. While the yield effect dominates, failing

to account for quality significantly underestimates the true effect of temperature exposure

on revenue by up to 20%. We predict climate change will significantly reduce yield, quality,

and revenue by century’s end absent additional adaptation.

In the second essay, I investigate how natural resource scarcity affects farmers’ decision

making. Using a panel of 3,300 irrigated fields in California, I ask whether farmers respond

to water scarcity by changing whether they plant, what they plant and how they produce.

Novel data provide evidence of the mechanisms by which growers use water more efficiently

– insights unattainable in publicly available or survey data. I find that during a water scarce

year, growers are more likely to plant earlier, plant fast-maturing varieties, and preferentially
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plant fields equipped with drip irrigation rather than less water-efficient technologies. Water

access drives how growers conserve water: growers with low-priority access rely on more

costly margins, such as fallowing or changing growing practices in ways that reduce revenue

per acre. This demonstrates that agricultural producers engage in water-saving practices

more than what has been previously found and that these practices help growers avoid

fallowing, a much more costly response.

The first and second essays use proprietary data on California’s $1 billion processing

tomato industry, which produces nearly one-third of the world’s processing tomatoes. Toma-

toes are the second-most consumed vegetable in the United States and contain nutrients that

are important to human health, but often under consumed. These novel data are collected

by a large tomato processor for the purposes of contracting and payment, and include field-

level quality, yield, price, and grower practices for many independent farmers operating in

California.

The third essay returns to the relationship between quality, weather, and climate for a

different specialty crop product: wine. Wine is the most differentiated of all agricultural

products, with much of the differentiation based on the combination of wine grape vari-

eties and “terroir”: the natural environment in which the grapes are grown. Co-authored

with Julian Alston, the objective of this study is analyze the complex relationship between

collective reputation, climate, weather, and price premia and quality for varietal wine in

California. We find temperatures warmer than the regional norm had negative effects on

both Cabernet Sauvignon and Chardonnay wine prices and scores. We also find that wines

from premier regions are less influenced by deviations in temperature from regional climate.

This supports the notion that producers of higher-value wines intervene more to mitigate

the negative effects of weather.

Quality matters for all agricultural producers but some more than others. Prices of

processing tomatoes vary plus or minus 20% in my sample whereas wine grape prices vary

by a factor of 50, even for the same variety and vintage produced in the same region.
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For processing tomatoes, we benefit from detailed and precisely measured data on quality

attributes and how they affect grower revenue. Quality variation is arguably more important

for wine grapes and wine but also more complex, which makes it more difficult to cleanly

link weather effects to attributes that affect prices of grapes and wine. Rather than direct

observations of quality attributes, we use expert ratings and recommended retail prices as

indicators of wine and wine grape quality. Both papers contribute to our understanding of

how weather and climate influence agricultural product quality.

Each of these three papers contributes to our understanding of how economic agents are

affected by and respond to weather, climate, and climate change. Most of what we know

about agricultural production in the face of climate change comes from research on yields of

staple crop. This dissertation contributes by analyzing specialty crops that are understudied

despite making up 40% of the total value of U.S. crops. Taken together, the research in this

dissertation highlights potential harm from a hotter and drier climate absent adaptation.
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Essay 1

Climate Change and Field-Level Crop

Quality, Yield, and Revenue

1.1 Introduction
The value of every agricultural product depends on its quality. Grain, meat, and milk are

graded according to USDA quality standards, and fresh produce is sorted by size, color,

and defects. Products grown under contract often face quality incentives and low quality

can violate contractual obligations or make products unmarketable. But work quantifying

the economic impacts of extreme weather and climate change on agricultural production

focuses almost exclusively on yield (see Carter et al. (2018) or McCarl & Hertel (2018)

for summaries). Ignoring quality may bias estimates of the impact of weather and climate

change on agricultural productivity and farm income.

We ask three related questions: Has historical weather impacted the revenues of specialty

crop producers through both yield and quality? What are the relative magnitudes of the

yield and quality effects? To what extent does failing to account for quality bias estimates

of weather’s impact on farm revenue? We answer these questions using 12,000 field-level

observations of processing tomato yield, quality, and grower practices from across Califor-

nia between 2011 and 2020. These data are collected by a large tomato processor for the

1



purposes of contracting and payment and capture the behavior of hundreds of farmers. We

use standard gridded weather data from PRISM and the well-established panel specification

(Deschênes & Greenstone (2007); Schlenker & Roberts (2009)) to facilitate comparison to

earlier work.

We find that extreme weather conditions affect the revenue of growers despite their use of

irrigation. Yield responds negatively to exposure to hot temperatures and, to a lesser extent,

cool temperatures. An additional 24 hours of exposure above 30◦C causes yields to decrease

by up to 1.8% relative to 24 hours of average temperatures. Further, quality declines with

exposure to hot temperatures, causing growers to receive a lower price. Taken as a whole, we

find that, relative to 24 hours of average temperatures, exposure to temperatures in excess

of 30◦C decreases revenue by up to 2.3%. Exposure to cool temperatures below 10◦C causes

a statistically significant, but smaller, decrease in revenue. Failing to account for quality

effects would bias downward the effect of exposure to heat on revenue by up to 20%.

This paper is among the first to document the effect of weather and climate change

on agricultural product quality. Kawasaki & Uchida (2016), Kawasaki (2019), Dalhaus

et al. (2020), and Ramsey et al. (2020) all find negative, economically important, effects of

weather on grower revenue with quality being a key pathway. Our setting and novel data

offer advantages relative to earlier work.

First, quality attributes are precisely measured. California’s processing tomato industry

has mandatory quality testing by an independent third party, so neither grower nor processor

can accidentally or intentionally misstate quality. We observe several individual quality

attributes for each field-year observation, which allows us to estimate the impact of weather

and climate change on each attribute individually.

Second, our measures of quality have economic significance. Growers are paid a price per

ton that depends on observed quality attributes, which introduces variation in price of plus

or minus 20%. We cleanly link quality attributes to price using observable contract terms

established prior to planting. The contract structure allows us to remove price variation
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driven by potentially endogenous market conditions and isolate variation in price resulting

from variation in quality alone.

Third, in almost all empirical settings, researchers observe the subset of production that

exceeds a quality threshold and is selected to be graded or harvested. This selection biases

unconditional measures of both quality and yield. As detailed below, selection in California’s

processing tomato industry is relatively small compared to other settings. We replicate

the sample selection problem common in other settings and find that selection bias affects

estimates of the effect of weather on quality, yield, and revenue.

Taking a step back, prior work on the effects of weather and climate change on agriculture

has mostly focused on yields of staple crops – primarily major grains and oilseeds (Schlenker

& Roberts (2009); Lobell et al. (2011); Tack et al. (2015); Chen et al. (2016); Gammans et al.

(2017); Shew et al. (2020); Malikov et al. (2020); Schmitt et al. (2022)). In contrast, specialty

crops are understudied despite making up 40% of the total value of U.S. crops (USDA NASS,

2017). By focusing on an irrigated specialty crop, we extend a literature that has largely

focused on rain-fed staple crops. Irrigated specialty crops have distinct production functions

and likely respond differently to weather shocks than rainfed field crops. Prior work finds

that irrigated water application essentially eliminates the negative effect of extreme heat and

climate change on yields of staple crops (Shaw et al. (2014); Carter et al. (2016); Tack et al.

(2017a); Wing et al. (2021)), and agricultural total factor productivity (Ortiz-Bobea et al.,

2018). But in a setting where irrigation has long been the rule rather than the exception, we

find both yield and quality are affected by exposure to hot temperatures and climate change,

leading to lower grower revenue.

Finally, we predict the impact of climate change accounting for climate uncertainty, emis-

sions uncertainty, and regression uncertainty. We find that without additional adaptation,

by century’s end yield, quality, and revenue will all be reduced by climate change by cen-

tury’s end without additional adaptation. Assuming a middle-of-the-road emissions scenario

(SSP2-4.5) and predicting distant future yield and quality based on model parameters ap-
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plicable to today’s technology, by the end of the century we predict a median loss of yield of

13% with a 95% confidence interval of 6% to 31%. We predict losses in quality of 1% to 5%

by century’s end. Together, we predict declining yield and quality will cause grower revenue

to fall.

1.2 The Setting
Tomatoes are the second-most produced fruit or vegetable globally by value (behind pota-

toes) (FAO, 2023) and the second-most consumed in the United States (USDA ERS, 2020).

Tomatoes can be either consumed fresh or processed into paste, ketchup, or a canned prod-

uct. They contain nutrients like vitamin E, potassium and lycopene that are important to

human health but often under consumed (Wu et al., 2022).

Tomatoes destined for processing (henceforth processing tomatoes) are specific varieties,

distinct from fresh tomatoes, bred and grown to enhance qualities desirable for processing

into paste or for canning. California’s $1 billion processing tomatoes industry produces more

than 90% of U.S. processing tomato output (California Department of Food and Agriculture,

2019). In California, processing tomatoes are planted between February and June to facilitate

continuous harvesting between July and October. They are mostly grown in outdoor fields

in the San Joaquin and Sacramento Valleys (California Department of Food and Agriculture,

2019). Processing tomatoes are a warm-season crop – during California’s growing season,

maximum temperatures average around 30◦C and precipitation is scant. Growers irrigate to

ensure crops receive enough water and can tolerate high temperatures during the height of

summer (Hartz et al., 2008).

Our data are from a large tomato processor that purchases processing tomatoes under

contract from growers in the San Joaquin Valley, Sacramento Valley, and Central Coast

regions of California. Processors contract with growers because quality of the raw material

input used in the processing tomato industry is crucial to produce consistent and high-

quality output of processed products. Processors incentivize growers by paying a price that

depends on the quality of tomatoes delivered. Contracts are negotiated between individual

4



processors and the California Tomato Growers Association (CTGA) on behalf of all growers.

Negotiations establish each processor’s seasonal base price, quality adjustments, and bonuses,

which processors then offer to growers on a take it or leave it basis.

Table 1.1 summarizes the eight quality attributes we observe and their effect on price.

The processor deducts a percentage of the base price for the presence of defects (mold, green

tomatoes, worms, material other than tomatoes (MOT) and limited use (LU) tomatoes). The

processor employs an incentive program whereby growers receive a bonus (or penalty) if the

brix (soluble solids or sugar content) of delivered tomatoes is more (or less) than the average

for the same variety in the same county in which they were grown. Quality adjustments

are proportional to the quality achieved by growers as measured by the Processing Tomato

Advisory Board (PTAB). Finally, the processor values staggered harvesting and delivery

to minimize bottlenecks at processing facilities. Producers receive a bonus for delivering

tomatoes early or late in the season. Quality incentives are economically important and

introduce price variation of plus or minus 20% relative to average prices.

In most empirical settings, researchers observe only a subset of production that exceeds a

minimum quality threshold and is selected to be harvested or graded. Our data are unique in

that we observe most of the selection and sorting process. First, there is limited opportunity

to selectively harvest and grade processing tomatoes. Unlike many specialty crops, processing

tomatoes are mechanically harvested1. Mechanical harvesters sort in the field and we do not

observe what is rejected at harvest. However, the processor implements minimal sorting at

harvest. The processor prefers to sort tomatoes at the processing plant because their sorting

machines are more accurate than the sorter aboard the harvester. Any selection at harvest

is therefore relatively small.

The processor closely manages harvesting logistics because operating processing plants

near full capacity is key to profitability. Almost all processing tomato production in Cal-

ifornia is grown under a contract between a grower and processor (USDA NASS, 2021b).
1See Just & Chern (1980) for details on the introduction and widespread adoption of mechanical harvesters
in California’s processing tomato industry during the 1960s.
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Contracts are written for specific fields and the processor typically harvests and transports

tomatoes to the processing plant. As a consequence, growers have little opportunity to

strategically sort prior to sale.

Further, each and every truckload of processing tomatoes in California undergoes manda-

tory grading, including quality measurement, at an independent state inspection station prior

to delivery. Administered by PTAB, the California Processing Tomato Inspection Program

was established in 1987 to create and uphold quality standards for California’s processing

tomatoes. Quality observations are shared with processors and growers and are used for

price determination.

Finally, the processor engages in a small degree of sorting in which foreign matter and

some very low quality tomatoes are deducted from the quantity used for payment. However,

we are able to fully observe this sorting. The processor records total tons prior to sorting as

well as paid tons after sorting. In sum, compared with other studies, the institutional setting

for our work means the quality and yield observations more accurately reflect conditions in

the field and our analysis is consequently less susceptible to selection problems.

The processing tomato agronomic literature (Hartz et al., 2008) finds that maximum

temperatures between 25◦C and 35◦C are ideal for vegetative growth, plant development, and

fruit set, so long as plants have sufficient access to water. Hot temperatures without adequate

moisture cause tomato plants to become stressed, affecting yield and quality. Temperatures

below 10◦C slow development and also affect quality. The extent of damage caused by

extreme temperature depends on its timing in the phenological cycle. Cool temperatures at

the beginning of the growing season are believed to benefit brix, while hot temperatures at

the beginning and end of the growing season reduce yield and increase the limited use share

(Personal correspondence with the processor, 2020).

Lobell et al. (2007) find that maximum temperatures in April and June explain 58% of

yield variability in California’s processing tomatoes between 1980 and 2003. Hot tempera-

tures benefit seedling growth during April. However, yields decrease when processing tomato
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ploants are exposed to maximum temperatures above 32◦C in June. Marklein et al. (2020)

estimate that 34–87% of land on which tomatoes are grown in California will no longer be

suitable by mid-century because summer temperatures will be too hot. This estimate may be

an upper bound as they assume hot temperatures translate directly to heat stress. Tomato

plants can withstand considerable heat so long as they have access to water (Hartz et al.,

2008). Cammarano et al. (2022) project a decrease in global processing tomato production

by 2050, driven by temperatures rising above the optimal threshold (28◦C) in California and

Italian growing regions.

When using proprietary data, there is a tradeoff between internal and external validity.

In this case, we obtain a level of detail not available in public data. These data are not

from surveys but rather from administrative records of every field contracting with the

processor between 2011 and 2020. Our data are at the field-year level and contains a range

of information about fields such that we can observe and control for field-specific factors.

Detail enhances internal validity but may limit external validity.

One concern is that the hundreds of growers in this proprietary dataset are not represen-

tative of the broader processing tomato industry. Several factors argue against this concern.

The fields in our sample are geographically dispersed across 18 counties in California and

closely match patterns of production locations in California (Figure 1.1). Field-level yields

averaged to the county level are 10% higher than county yields reported by NASS. However,

the series are highly correlated. Nevertheless, it is always possible that there is selection on

unobservables that may affect the type of grower we observe and thus the external validity

of our results.

1.3 Data

1.3.1 Field-level dataset

As described above, we use data on all tomatoes grown and sold under contract to a large

tomato processor in California, between 2011 and 2020. Observations are at the field-year
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(a) Location of fields contracted with processor
in 2020

(b) Production in 2020, by county (USDA NASS,
2021a)

Figure 1.1: Map of processing tomato production in California

level (n = 11, 926) and include information on field acreage, variety, total tons, paid tons,

yield, quality attributes, and the latitude and longitude of the field centroid. Observations

of quality attributes and tonnage are from PTAB mandatory testing that occurs prior to

delivery. The field-specific data also include information about the growing practices, includ-

ing planting and harvesting dates, irrigation technology, and the crop previously planted on

the field. Field-level observations are linked to an unbalanced panel of 438 growers and

247 grower groups. The grower group identifier links growers within the same network or

organization2.

1.3.2 Contract terms

We also observe pricing terms negotiated between the processor and the California Tomato

Growers Association for each year. All growers are offered the same contract in a year and
2An example of a grower group is four children dividing a family farm. Each child would have a distinct
grower id and the four would share a common grower group id.
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do not negotiate individual pricing terms with the processor. Every year, a base price is

established at the start of the growing season that reflects current and expected market

conditions. Contracts also establish bonuses and deductions. As summarized in Table 1.1,

there are eight measures of quality of which six are linked to price bonuses or deductions.

In addition, growers receive an early (late) season bonus if they deliver tomatoes at the

beginning (end) of the growing season.

1.3.3 Outcomes

Yield for field i in year t is defined as total tons divided by acres:

yieldit =
total tonsit

acresit
(1.1)

Next, we calculate price for each field-year observation using observed quality and the

schedule of quality bonuses and deductions established at the beginning of the growing

season. Processing tomatoes are used to produce storable products and therefore base prices

are temporally correlated across years. This could introduce endogeneity into our panel

model (see Section 1.4 for more details). Instead, we isolate variation in price driven by

quality by applying the estimated adjustments to the 10-year average base price. This

removes common price movements driven by potentially endogenous market shocks while

preserving common and individual quality shocks. This “quality-adjusted price” is not the

real price, rather it is effectively a quality index with weights equal to each quality attribute’s

effect on price.

pricequality adjust
it = base price × (1− deductsit) + bonusit (1.2)

where base price is the average base price over the 10 year sample and deductsit and bonusit

are adjustments that depend on observed quality and date of delivery of tomatoes from field

i in year t.

Finally, we estimate field-level revenue per acre (henceforth revenue) by multiplying
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quality-adjusted price by paid tons and dividing by acreage. The processor doesn’t count

flawed tonnage towards the quantity on which producers are paid. The revenue estimate

uses paid tons, which is on average 7% less than total tons used in the yield calculation. The

difference between total and paid tons is quantity of tonnage that is not commercially viable

and is disposed of by the processor.

revenueit =
paid tonsit

acresit
× pricequality adjust

it (1.3)

1.3.4 Weather data

We obtain weather data from PRISM (PRISM Climate Group, Oregon State University,

2020), which publishes daily temperature and precipitation data interpolated to 4km grids

for the whole time span. We match weather data to each field-level observation by identifying

the PRISM grid in which the field centroid falls. In Section 1.4.1, we explain how we translate

daily observations of temperatures into measures of temperature exposure for each field-year

observation.

1.3.5 Control variables

We also gather data on several controls. We source information on tomato varieties from

AgSeeds (AgSeeds, 2020), which includes key attributes and use categories for each of the

159 varieties in the processor dataset. Finally, we match each field to its major soil type in

the National Cooperative Soil Survey (NRCS USDA, 2020).
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Table 1.2: Summary statistics

units mean sd min max
Area acres 57.31 43.47 0.3 323.2
Growing days no. 133.72 9.50 96.0 175.0
Yield tons/acre 52.49 13.32 6.7 99.9
Quality attributes

Brix 5.08 0.49 3.5 7.2
LU percent 1.42 1.17 0.0 13.1
MOT percent 1.64 1.23 0.0 13.3
Green percent 3.02 2.33 0.0 24.3
Mold percent 1.66 1.92 0.0 27.5
Worm percent 0.00 0.01 0.0 0.5
Color score 20.98 1.74 13.3 34.4
pH 4.41 0.09 2.9 4.8

Weather
Average minimum temperature ◦ C 13.79 1.08 9.8 17.6
Average maximum temperature ◦ C 31.19 1.62 24.5 35.4
Total precipitation mm 24.45 25.80 0.0 198.9

Soil type
Alluvium prop. 0.96 0.20 0.0 1.0
Eolian prop. 0.00 0.04 0.0 1.0
Organic material prop. 0.03 0.17 0.0 1.0
Lacustrine prop. 0.00 0.03 0.0 1.0
Residuum prop. 0.01 0.08 0.0 1.0

Irrigation technology
Drip irrigation prop. 0.75 0.43 0.0 1.0
Furrow irrigation prop. 0.13 0.33 0.0 1.0
Missing irrigation tech. prop. 0.10 0.31 0.0 1.0
Sprinkler irrigation prop. 0.02 0.14 0.0 1.0

Varietal attributes
Extended field storage variety prop. 0.55 0.50 0.0 1.0
Tomato spotted wilt resistant prop. 0.45 0.50 0.0 1.0
Fusarium Wilt resistant prop. 0.15 0.36 0.0 1.0
Powdery Mildew resistant prop. 0.04 0.19 0.0 1.0
Fusarium Crown Rot resistant prop. 0.00 0.05 0.0 1.0
Bacterial Spot resistant prop. 0.00 0.05 0.0 1.0
High solids prop. 0.06 0.23 0.0 1.0
High yield prop. 0.06 0.23 0.0 1.0
Early prop. 0.13 0.33 0.0 1.0
Thin prop. 0.14 0.35 0.0 1.0
Intermediate prop. 0.23 0.42 0.0 1.0
Thick prop. 0.58 0.49 0.0 1.0
Pear-shaped prop. 0.01 0.08 0.0 1.0
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1.4 Methods
The aim is to estimate the effect of weather on processing tomato yield, quality, and revenue.

Since precipitation during the growing season is scant and growers control the amount of

water applied through irrigation, we focus on the effect of temperature exposure and include

precipitation as a control.

Since we are interested in the direct and indirect effects of temperature exposure, we

take care not to introduce bad controls – variables that are themselves outcome variables. A

key example is irrigation volumes, which is itself a function of temperature and also affects

the outcome variable. If irrigation volumes were included, the coefficient on temperature

exposure could be biased because some effects of temperature may be incorrectly attributed

to irrigation volume.

We follow the standard approach proposed by Schlenker & Roberts (2009) and adopted

by Gammans et al. (2017) and Shew et al. (2020) among others. Ortiz-Bobea (2021) provides

a comprehensive summary. We take an off-the-shelf econometric approach to emphasize that

results are driven by differences in focus and setting rather than differences in methodology.

We estimate:

yit =

∫
h

f(h)ϕit(h)d(h) + δzit + αg(i) + ψ(t) + ϵit (1.4)

where yit is a log-transformed outcome variable (yield, quality, and revenue) in field i in year

t, αg(i) is a grower fixed effect, and ψ(t) is a quadratic year trend. The first term characterizes

the relationship between temperature exposure and the outcome variable, where f(h) is the

marginal effect of temperature h and ϕit(h) is the growing-season density of exposure at h

for field i in year t. This continuous representation is not tractable for estimation, but can be

approximated using the restricted cubic spline specification detailed in Section 1.4.2. Field-

year specific control variables zit include variety-specific attributes (extended field storage,

various disease-resistance traits, high solids, high yield, early, thin, intermediate, thick, and
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pear-shaped), irrigation technology (drip, sprinkler, furrow), soil type (alluvium, eolian,

organic material, lacustrine, and residuum), growing season precipitation, a dummy for

planting week, and the difference between actual growing days and estimated growing days

specified by the seed manufacturer.

As with any annual crop, growers influence the weather they expect to receive through

their choice of planting date. In our setting, tomatoes planted earlier are exposed to cooler

temperatures on average, whereas tomatoes planted later are exposed to hotter temperatures

on average. The implication is that weather is potentially endogenous and coefficients on

temperature exposure may be biased. We include dummies for planting week-of-year to

account for this endogeneity in weather. If we fail to control for planting date we obtain

biased estimates of effects on quality, but results for yield and revenue are largely unchanged

(see Appendix 1.A).

The error term ϵit is likely heteroskedastic, spatially correlated, and temporally correlated

within similar growers over time. We use heteroskedatic robust standard errors two-way

clustered by grower group3 and county by year. We cluster at the grower group level to

account for possible dependence among growers within the same grower group. We do not

cluster by year as we observe only 10 years of data. Even in a multiway cluster, too few

clusters in any cluster group will result in incorrect statistical inference (Cameron et al.,

2011). Instead, we cluster county by year to account for spatial correlation. Results are

robust to using spatial heteroscedasticity and autocorrelation consistent errors that allow for

spatial correlation between nearby fields and serial correlation in panel data (see Appendix

1.B).

We include grower fixed effects αg(i), where individual growers can be associated with

multiple fields – on average, each grower is associated with 27 field-year observations. This

controls for time-invariant, grower-specific factors that may be related to outcome or explana-

tory variables. Our preferred specification uses grower fixed effects as regular crop rotation
3Recall that the grower group identifier links growers within the same network or organization.
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results in an unbalanced panel of field-year observations. Note that results are robust to

using field fixed effects in place of grower fixed effects (see Appendix 1.C). Results are also

robust to replacing quadratic year trends with (a) linear year trend, and (b) county-specific

quadratic trends.

We refrain from using year fixed effects. Adding year fixed effects (akin to adding state-by-

year fixed effects since we only observe one state) would absorb much of the useful variation

in temperature exposure used to identify the effects of interest. The inclusion of state-

by-year fixed effects in Deschênes & Greenstone (2007) is critiqued by Fisher et al. (2012)

because “state-by-year [fixed effects] absorb almost all variation and the identification rests

on very slim margins, so even small amounts of measurement error will be greatly amplified”.

Without the inclusion of year fixed effects, we observe considerable variation in temperature

exposure (Appendix 1.D shows the distribution of temperature exposure across counties).

Since we do not include year fixed effects, one may be concerned that we are not con-

trolling for temporal correlation in the prices and revenue from common market conditions.

Indeed, processing tomatoes are used to produce a storable commodity and therefore base

prices are temporally correlated. For example, a negative production shock caused by poor

weather in year t−1 will induce processors to draw down stores and offer a higher base price

in year t. The amount moving in and out of storage is an omitted variable and forms part

of the error in the price and revenue regressions. This causes the error to be correlated with

weather in the previous year, thus introducing endogeneity bias. We avoid this issue through

the way we construct price and revenue, explained in Section 1.3. Before any analysis, we

remove variation in price (and revenue) that stems from market conditions including changes

in storage and preserve variation caused by quality.

1.4.1 Estimating temperature exposure

We translate daily observations of minimum and maximum temperatures to a measure of

temperature exposure for each field-year observation. For each day of the growing season4,
4The growing season starts on the day of planting and ends on the last day of harvest for each field.
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we estimate how many hours are spent in 1◦C temperature intervals by fitting a sinusoidal

curve between each day’s minimum and maximum temperature. We then sum over days

to estimate the number of days spent in each 1◦C temperature interval during the entire

growing season. The result is xit, a 1-by-J vector of temperature exposures for field i during

the growing season in year t, where J is the number of temperature bins. In our setting, we

bin temperatures from 5◦C to 41◦C, so J = 37.5

xit =

(
xit,5 xit,6 . . . xit,40

)
(1.5)

where xit,j is the number of days spent between j◦C and (j+1)◦C during the growing season

in year t.

This approach has several advantages. First, it addresses the empirical challenge of mixed

frequency between regressor and outcome variables. We have many daily observations of

minimum and maximum temperatures to match with one annual observation of an outcome

variable. Averaging daily temperatures across the growing season would mask differences

in exposure to extreme temperatures. The second advantage of this approach is that it

preserves the temperature distribution. This allows us to uncover the marginal effect of

exposure to different temperatures.

1.4.2 Restricted cubic spline specification

Next, we choose a functional form to characterize the relationship between outcome variables

and temperature exposure. Mid-range temperatures are thought to be ideal for yield and

quality of processing tomatoes, but these may be reduced by hot or cool temperatures if

exposure occurs during key stages of the plant’s growth cycle (Hartz et al., 2008). The

implication is that the relationship between temperature exposure and outcome variables is

nonlinear.

To capture nonlinearity in the response of the outcome variable to temperature, we
5Temperatures range from −1◦C to 45◦C. We aggregate temperature exposure below 5◦C and above 41◦C to
avoid bins with little exposure.
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estimate a restricted cubic spline model (otherwise known as a natural cubic spline). The

restricted cubic spline model has become popular because it offers several benefits over alter-

native methods for estimating nonlinear temperature effects (Berry et al. (2014); D’Agostino

& Schlenker (2016); Ortiz-Bobea et al. (2019); Blanc & Schlenker (2020); Bucheli et al.

(2022)). First, it offers smooth parsimonious semiparametric estimation without needing to

define critical temperature thresholds. Second, it imposes a restriction that its tails (i.e.

before the first knot and after the last knot) are linear. This reduces overfitting in the data-

sparse tails of the temperature distribution, an issue with the polynomial and cubic spline

functional forms. We estimate a piecewise linear degree day model as a robustness check.

Overall, results from the two specifications – a piecewise linear degree day model and a re-

stricted cubic spline model – are consistent in terms of economic and statistical significance

(see Appendix 1.E).

We identify K = 4 temperatures that split the distribution of temperature exposure by

interval into quintiles. This accounts for the fact that relatively less time is spent at extreme

temperatures. Unlike the piecewise linear model, knot placement does not strongly influence

the cubic spline results because the marginal effect of exposure is allowed to vary smoothly

between knots.

Next, we introduce a basis matrix B and a vector of coefficients Γ. B is J-by-P while Γ

P -by-1, where P is the number of parameters on temperature to be estimated, and is directly

related to the number of knots K. A restricted cubic spline with K = 4 knots results in

P = 3, which is smaller than the number of temperature exposure bins J = 37. This is an

advantage of the spline model – it reduces the dimensionality while still allowing for flexible

semiparametric estimation. The derivation of the basis matrix B that corresponds to the

restricted cubic spline is shown in Appendix 1.F.

Under these assumptions, we can write Equation 1.4 as:

yit = xitBΓ + δzit + αg(i) + ψ(t) + ϵit (1.6)
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Stacking n observations across fields and years gives Equation 1.6 in matrix notation:

Y = XBΓ + δZ + α + ψ + ϵ (1.7)

where X is a n-by-J matrix of temperature exposures, and Y , δZ, α, ψ and ϵ are n-by-1

vectors of outcomes, controls, grower fixed effects, quadratic time trends, and errors respec-

tively.

After estimation, we recover the marginal effect of temperature exposure evaluated at

each interval. We pre-multiply the vector of estimated coefficients Γ̂ by the corresponding

B matrix. The resulting J-by-1 vector β̂ is the marginal effect of spending one additional

day at each temperature bin j = 1, . . . , J .

β̂
J×1

= B
J×P

× Γ̂
P×1

(1.8)

Last, we derive an estimate of the variance-covariance matrix for β̂:

v̂ar(β̂)
J×J

= B
J×P

× v̂ar(Γ̂)
P×P

× B′

P×J

(1.9)

1.5 Results
Figure 1.2 displays results for the effects of temperature exposure on our three key outcome

variables: yield, quality, and revenue. In each figure, the top graph shows the effect of an

additional 24 hours spent in a given temperature interval on the outcome variable relative

to 24 hours spent at 26◦C. This temperature has the greatest exposure in our sample and

represents average temperatures. The 95% confidence intervals account for the possibility

of heteroskedasticity, spatial correlation, and temporal correlation in the errors. The gray

vertical lines show the positions of the knots. The histogram at the bottom of the frame

shows the average exposure to each temperature interval during the growing season across

all fields in all years.
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For yield, we find that the optimal temperature is around 28◦C. Exposure to tempera-

tures above 35◦C leads to significantly lower yields. An additional 24 hours of exposure to

40◦C decreases yield by almost 2% on average relative to 24 hours of average temperatures.

Exposure to cold temperatures below 10◦C causes a small but significant decline in yield by

0.7% relative to 24 hours at average temperatures.

We isolate variation in price driven by quality by applying quality adjustments to the

10-year average base price. For quality, we find that the optimal temperature is around 20◦C.

Quality declines with exposure to hot conditions. An additional 24 hours of exposure above

30◦C causes quality to drop by up to 0.2% relative to 24 hours spent at average temperatures.

We show results for individual quality defects and bonuses in Appendix 1.G Figures 1.G.1

and 1.G.2. The presence of defects, specifically limited-use tomatoes, material other than

tomatoes, green tomatoes, and mold, all increase with exposure to hot temperatures although

imprecision in the estimates means we cannot rule out null effects. The presence of limited

use tomatoes significantly declines with exposure to cool temperatures relative to average

temperatures, resulting in higher quality. The effect of temperature on the solids bonus is

imprecise but the point estimate declines with exposure to hot temperatures.

Revenue is maximized with exposure to temperatures around 27◦C. An additional 24

hours of exposure to 40◦C decreases revenue by 2.3% compared to 24 hours of average

temperatures. This is expected since both yield and quality respond negatively to hot con-

ditions. Exposure to cool temperatures below 10◦C causes a smaller but significant decrease

in revenue by almost 1% relative to 24 hours at average temperatures.

It is plausible that the effect of temperature exposure varies across growers and across

years. For example, a high base price increases the quality incentive on a dollar per ton basis

which may induce growers to put more effort into raising quality than they would in a low

base price year. These estimates average over all responses, which may be heterogeneous.

Appendix 1.H shows the estimated effects of the control variables. Precipitation nega-

tively affects yield (and therefore revenue), but the magnitude is relatively small – a one
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Figure 1.2: Restricted cubic spline results
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Figure 1.2: Restricted cubic spline results

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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standard deviation increase in precipitation decreases yield by 0.2% on average. Fields with

drip irrigation are associated with higher yields on average compared to fields using furrow

or sprinkler irrigation techniques. Soil type and varietal characteristics are also associated

with yield and quality. For example, an early variety, one that requires fewer days to reach

maturity and therefore has a shorter season, is associated with lower yields but higher quality

on average. The quadratic year trend is insignificant, suggesting that yield and quality were

stationary over the course of our 10-year sample.

1.5.1 Decomposition

We find that temperature exposure significantly affects both yield and quality. However, the

relative importance of each pathway is unclear a priori. Here, we decompose the effect of

temperature exposure on revenue per acre (total effect) into the effect on revenue driven by

yield (yield effect) and effect on revenue driven by quality (quality effect). This allows us to

answer two questions. What is the relative importance of the yield and quality effects? And,

would estimates of yield and quality effects be biased if quality considerations were omitted?

The total effect, which captures both yield and quality pathways, is equal to the effect of

temperature exposure on revenue estimated above. Since we use log-transformed variables,

the yield effect is similarly equal to the effect of exposure on yield estimated above. The

quality effect, however, is slightly larger than the effect of exposure on quality index shown

above. Recall revenue is a function of paid tons – the processor won’t pay producers for some

poor quality tonnage. Therefore, quality can affect revenue via (a) changes in price captured

in the quality index, and (b) changes in paid tonnage. We estimate the quality effect as

the difference between the yield effect and total effect in Equation 1.10, which captures the

effect of temperature on both price and unpaid tons.

quality effect = total effect − yield effect

= β̂ln(revenue per acre) − β̂ln(yield)
(1.10)

As shown in Figure 1.3, while the yield effect dominates grower revenue, quality also plays
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Figure 1.3: Decomposing the effect of exposure on revenue into the yield effect and quality
effect

an important role. Without access to data on quality, a researcher can only recover the yield

effect: an additional 24 hours of exposure to 40◦C decreases revenue by 1.8% compared to

24 hours of average temperatures. This underestimates the effect of exposure on revenue by

up to 0.5 percentage points, or 20% of the point estimate at 40◦C. Failing to account for

quality’s effect on revenue biases estimates of temperature on revenue.

1.5.2 Selection

In almost all published work, researchers rely on the assumption that observations of quality

and yield accurately reflect conditions at harvest to recover unbiased estimates of tempera-

ture and climate change damages. For many agricultural products, data are available only

for the subset of production that producers select to be graded. This may bias observa-

tions of both quality and yield – e.g. if only high quality product is graded, yield will be

underestimated and quality overestimated.

A benefit of our setting is that selection is minimal. Recall from Section 1.2 that ob-
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servations of quality and yield are close to those in the field because of mandatory grading,

as well as contracting and harvesting practices. Moreover, the processor engages in sorting

in which some defective tonnage isn’t counted towards the quantity on which producers are

paid. We are able to observe this sorting through differences in total tons (before sorting)

and paid tons (after sorting) – paid tons is on average 7% smaller than total tons6. This

gives us the opportunity consider the consequences of selection for the resulting estimates.

For estimates with selection, we assume that the researcher only observes yield and

quality of the paid tons i.e. a portion of total tons is now unobserved. Consistent with

the processor sorting defective tonnage, we assume that unobserved tons had defects. Yield

under selection is artificially reduced because it is calculated using a smaller tonnage (paid

tons) than what is actually harvested from the field (total tons). Quality under selection is

artificially improved because some tonnage with defects is no longer observed. Figure 1.4

compares the actual distribution of defects to its distribution with selection.

Our first hypothesis is that the effect of exposure to high temperatures on quality will
6Recall that the quantity for which producers are paid does not include some flawed tonnage because it is not
commercially viable and is disposed of by the processor.
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be biased towards zero under selection. This follows from the result that high temperatures

negatively affect quality, and the assumption that lower quality products are being withheld.

Our second prediction is that the negative effect on quality will be incorrectly assigned to

yield, causing the negative yield effect to increase in magnitude.

We compare estimates from our preferred specification with estimates using observations

with added selection. Consistent with our hypothesis, the effect of exposure on yield is biased

upwards by up to 10%. The effect of high temperatures on quality is indeed biased towards

zero under selection by up to 66%. The upward bias in yield partially offsets the downward

bias in quality. However, bias still remains and the effect of exposure to high temperatures

on revenue is attenuated by up to 6%. Our results suggest that estimates will be biased in

settings with selection but that the magnitude will depend on (a) the actual effect of weather

on quality, and (b) how much selection is occurring.

1.6 Climate projection
Armed with the knowledge that processing tomatoes are susceptible to extreme tempera-

tures, a natural follow-up question is: How will climate change affect production of processing

tomatoes? We estimate the impact of climate change by comparing predicted outcomes using

realized weather with predicted outcomes using future weather projected in climate models.

We select four global climate models – Access CM2, HadGEM 3 GC31-LL, EC Earth 3,

and EC Earth 3 - Veg – that are included in Coupled Model Intercomparison Project Phase

6 (CMIP6) and used by the Intergovernmental Panel on Climate Change in their latest

assessment report (IPCC, 2023). These models best capture relevant aspects of California’s

climate (Krantz et al., 2021) and have been statistically downscaled by Pierce et al. (2023)

to a 3km resolution and daily time step (available on Cal-Adapt (2023)).

Uncertainty in the impact of climate change on economic outcomes stems from several

sources. First, there is statistical uncertainty in the historical relationship between weather

variables and the outcomes of interest. Second, it is unclear how much emissions the world

will emit into the future. Third, conditional on a particular emissions scenario, there is model
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Figure 1.5: Selection bias
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Figure 1.5: Selection bias

uncertainty in how a particular level of emissions will change the climate in a particular

location.

We estimate the impact of climate change on processing tomato yield, quality, and revenue

following Burke et al. (2015) to account for all three sources of uncertainty. To account for

emissions uncertainty, we present results for two emissions scenarios in CMIP6: SSP2-4.5,

a middle-of-the-road global emissions scenario, and SSP5-8.5, a very-high global emissions

scenario.

To account for climate model uncertainty, we implement the model democracy approach

routinely used by climate scientists (Burke et al., 2015). We use four climate models and

where available, we collect multiple climate projections or “ensembles” from each model

that have varying baseline conditions. This yields a total of 10 modeled projections for

each emissions scenario. Each projection is given an equal vote in determining the impact

estimate.
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For each combination of projection and emissions scenario, we do 1,000 wild cluster

bootstrap replications to account for statistical uncertainty in the historical relationship

between weather variables and the outcomes. The wild cluster bootstrap preserves spatial

dependence in the resampled data and performs well even if there are relatively few clusters

(Cameron et al., 2011). The wild cluster bootstrap procedure is as follows. First, we obtain

residuals ϵ̂ and predicted coefficients after estimating our regression model in Equation 1.7.

Next, we generate bootstrap samples denoted by ∗ and indexed by b for each grower group

and year cluster g:

Y ∗b
g = XgBΓ̂ + δ̂Z + α̂ + ψ̂ + ϵ∗bg , ϵ∗bg = w∗b

g ϵ̂g (1.11)

where ϵ∗bg is the randomly reshuffled residuals ϵ̂g from the same grower group and year

cluster multiplied by a wild weight w∗b
g drawn from the Rademacher distribution (i.e. -1

or 1 with equal probability). We then regress Y ∗b on X to obtain Γ̂∗b. Finally, we predict

Ŷ ∗b
itp which replaces xit, temperature exposure experienced at field i during year t, with xip,

temperature exposure projected to be experienced at field i in future year p at mid-century

(p = 2041, . . . 1950) or end of century (p = 1991, . . . , 2100). All other controls and fixed

effects are kept at their year t levels. This simulates outcomes as if the field was exposed to

temperatures from future year p instead of the actual temperatures experienced in year t.

We estimate the climate change impact for each bootstrap replication as the difference

between the predicted outcome using actual temperatures and predicted outcomes using

projected temperatures from two time frames: mid-century, 2041-2050, and end of century,

2091-2100. Finally, we stack the 1,000 bootstrap estimates from each of the 10 projections

into a vector of 10,000 impact estimates to form a distribution that accounts for both sta-

tistical and climate uncertainty. We construct a confidence interval by taking the 2.5th and

97.5th percentiles to calculate the range containing 95% of impact estimates.

We predict climate change will result in economic damages for processing tomato growers,

as shown in Figure 1.6. By mid-century, yield and revenue per acre are predicted to be
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significantly lower than their 2011-2020 levels. We estimate median losses of yield from 5%

to 9% and revenue from 9% to 14% depending on the emissions scenario. The median effect

on quality by mid-century is negative but the 95% confidence interval includes zero for both

emission scenarios. By the end of the century, yield and quality are expected to both decline

significantly by 13% and 2% respectively under a middle-of-the-road emissions scenario, with

even larger losses predicted under a very-high emissions scenario (53% and 8% respectively).

Revenue per acre is predicted to decline significantly by the end of the century, with median

losses of 21% or 80% depending on the emissions scenario. However, this analysis does not

account for general equilibrium effects that would likely see an increase in the base price,

partially offsetting losses in revenue.

An implicit assumption is that producers, processors, seed manufacturers, and other

industry participants respond to future changes in climate in a similar way to how they

respond to weather shocks during our sample period. Our results highlight the need for new

adaptive responses to reduce the effect of weather and climate change on yield and quality.

1.7 Discussion and Conclusion
Studies of the impacts of climate change on agriculture typically focus on yield (see Ortiz-

Bobea (2021)) or farmland values (e.g. Mendelsohn et al. (1994); Bareille & Chakir (2023)).

Quality matters because of its role in contractual arrangements and price determination

but is typically ignored in earlier work. We use novel data from a large tomato processor

to study the effects of temperature exposure on yield, quality, and grower revenue. We

find exposure to hot temperatures reduces grower revenue through two channels: yield and

quality. If we had failed to account for quality’s effect on revenue, our estimates of the

effects of temperatures on revenue would have been biased by up to 20%. Our uniquely

detailed data gives us a complete and precise picture of how weather and climate change

affect product quality.

Prior work uses observational data to analyze effects of weather and climate on the

quality of different agricultural products, including grains like rice and wheat (Kawasaki &
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Figure 1.6: Projection of climate impacts by mid-century, 2041-2050, and end of century,
2091-2100, relative to a 2011-2020 baseline
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Figure 1.6: Projection of climate impacts by mid-century, 2041-2050, and end of century,
2091-2100, relative to a 2011-2020 baseline
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Figure 1.6: Projection of climate impacts by mid-century, 2041-2050, and end of century,
2091-2100, relative to a 2011-2020 baseline

Notes: Each point is an estimate of the projected impact derived from a single combination of projection, emissions scenario,
and wild cluster bootstrap replication. The thick black lines represent the median impact estimate and the shaded grey areas
represent the 95% confidence intervals that account for statistical and climate uncertainty.
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Lichtenberg (2014); Kawasaki & Uchida (2016); Kawasaki (2019)), field crops like peanuts

(Ramsey et al., 2020), and specialty crop products like wine (see Ashenfelter & Storchmann

(2016)), apples (Dalhaus et al., 2020), and tobacco (Ramsey & Rejesus (2021), although the

consequences of climate change are not considered). Of these papers, Kawasaki & Uchida

(2016), Kawasaki (2019), Dalhaus et al. (2020) and Ramsey et al. (2020) link changes in

quality to grower revenue as required to quantify the economic consequences of weather and

climate change. Dalhaus et al. (2020) infer quality from unexplained differences in price.

Kawasaki & Uchida (2016) and Kawasaki (2019) use quality grades which inhibits their

ability to analyze individual quality attributes. Ramsey et al. (2020) observe one aspect

of peanut quality, kernel size, and proxy for its effect on price using value formulas from

the Commodity Credit Corporation’s loan rates. It is unclear if this captures actual market

pricing and all relevant dimensions of quality. In our setting, quality attributes are precisely

measured, rather than inferred, and directly linked to price using a schedule of bonuses and

deductions established prior to planting.

In addition, studying the effects of climate change on agricultural production with ob-

servational data presents identification challenges. Typically, data are available only for

the subset of production that growers choose to market because it exceeds an implicit or

explicit quality threshold7. This has two consequences. First, observations of quality are

biased measures of quality at harvest. Kawasaki & Uchida (2016) find low quality rice is less

likely to undergo the costly process of being graded and more likely to be withheld for self-

consumption or sale on informal markets (such as to local households or for animal feed).

Quality measures for hand-harvested crops, such as berries, stone fruit, apples, and leafy

greens, may also be biased. Harvesting guidelines (e.g. instructions to only pick high-quality

produce), adequate access to labor, and how labor is paid can all affect the observed quality

of hand-harvested crops (e.g. Hill & Beatty (2020)).

Second, yield estimates will be biased if weather affects quality and quantities are mea-
7An exception is data from field trials such as those used by Ramsey et al. (2020), Tack et al. (2015) and
Tack et al. (2017b), which are less likely to suffer from selection bias.
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sured after farmers screen out low-quality products. In this situation, quality effects will be

attributed falsely to yield and estimates of the effects of weather on both yield and quality

will be biased. For example, wet conditions around harvest can result in quality problems

in grain that may cause growers to withhold low quality grain from sale. If this withheld

grain is not counted towards production totals, an outside observer will incorrectly describe

the effects of wet conditions around harvest as reducing yield instead of quality. The overall

effect on estimates of revenue or profit is ambiguous since bias in estimated yield is at least

partially offset by bias in estimated quality. This concern is not limited to papers focusing

on quality but also applies to all studies estimating the effects of weather on yield or revenue

that don’t address selection.

In our setting, processing tomatoes are always grown under contract, mechanically har-

vested, and graded at an independent state inspection station. These institutional factors

mean that our analysis is unlikely to suffer from significant selection bias. It also gives us

the opportunity to estimate selection as experienced in other settings and quantify the mag-

nitude of the bias. We find that selection biases estimates of the effect of temperature on

quality, yield, and revenue. These results illustrate the consequences of data limitations that

should be carefully considered in all empirical work.

Finally, continued warming predicted under climate change is a cause for concern. Grow-

ers cannot fully mitigate damages caused by extreme heat, indicating that the processing

tomato industry will be susceptible to the harm from the continued warming predicted as

the climate changes. Absent additional adaptation, we predict climate change will cause

both yield and quality of California’s processing tomatoes to decline by the end of the cen-

tury, inducing a significant loss of grower revenue. This stands in contrast to previous work

that finds irrigation can mitigate the effects of heat on yield. Rather, our results suggest

that irrigated agriculture can be susceptible to climate change. These findings reinforce the

need for investment in research into and development of heat-tolerant varieties and related

technologies.
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A caveat of our research is its focus on a single processor operating in one specific agri-

cultural industry. While our narrow focus comes at the expense of potentially limiting the

external validity of our results, we benefit from detailed and reliable observations of produc-

tion by individual farmers. This provides new insights into the effect of weather and climate

on individual commercial agricultural producers.
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1.A Endogeneity in weather
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Figure 1.A.1: Results without a planting date control
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Figure 1.A.1: Results without a planting date control

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.

1.B Spatial Heteroscedasticity and Autocorrelation Con-

sistent Errors
Our preferred specification clusters standard errors by grower group and county by year to

account for the possibility of heteroskedasticity, spatial correlation, and temporal correlation

in the errors. An alternative method to correct for possible dependence in standard errors is

to estimate spatial heteroscedasticity and autocorrelation consistent (HAC) errors that allow

for spatial correlation and serial correlation in panel data (Conley, 1999). Using code from

Hsiang (2010), we allow for spatial correlation for field observations that are within 200km

(124 miles) of each other. The correlation between observations is assumed to decay linearly

with distance.
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Results are robust to using spatial HAC errors, however the appropriateness of using this

method on an unbalanced panel remains an open question.
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Figure 1.B.0: Results using spatial HAC errors

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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1.C Robustness checks
Our preferred specification uses grower fixed effects. Grower fixed effects capture time-

invariant characteristics of the growers and characteristics of their respective fields that are

both time-invariant and common across fields. One might be concerned that fields differ in

ways that are correlated with weather, which would introduce omitted variables bias into

our estimation. To alleviate this concern, we estimate Equation 1.15 using field fixed effects

instead of grower fixed effects. Some fields do not appear multiple times in our sample

because of crop rotation. We drop around 30% of field-year observations because they do

not make a field-level panel. The results from this estimation are similar to those from the

estimation using grower fixed effects.

We also replace the quadratic year trend with a (a) linear year trend, and (b) county-

specific quadratic year trends. The results are robust to the choice of functional form for the

time trend.
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Figure 1.C.1: Yield, robustness checks
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(c) Restricted spline with county-specific quadratic year trends

Figure 1.C.1: Yield, robustness checks

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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(b) Restricted spline with linear year trend

Figure 1.C.2: Quality, robustness checks
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(c) Restricted spline with county-specific quadratic year trends

Figure 1.C.2: Quality, robustness checks

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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Figure 1.C.3: Revenue per acre, robustness checks
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(c) Restricted spline with county-specific quadratic year trends

Figure 1.C.3: Revenue per acre, robustness checks

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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1.D Variation in weather
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Figure 1.D.1: Histogram of degree days below 10◦C by county, with county-average in red
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Figure 1.D.3: Histogram of degree days above 35◦C by county, with county-average in red

1.E Linear piecewise degree day specification
The piecewise linear degree day model is widely used in the agronomic and agricultural

economic literature. It imposes more structure than flexible, semiparametric models. It also

relies on the econometrician to correctly choose knot locations where the marginal effects

change. However, it is less likely to overfit the data and has been shown in some contexts to

perform better out-of-sample (Schlenker & Roberts, 2009).

To implement the piecewise linear degree day functional form, we first need to calculate

degree days. Degree days are related to, but different from, temperature exposure. Tem-

perature exposure measures how long is spent in a given temperature interval. Degree days

measure how long and by how much temperatures exceed the lower bound of a temperature

interval while being truncated at an upper bound (Snyder, 1985). When the temperature

interval is small (e.g. 1◦C), the difference between the two methods is relatively small be-

cause the “how much” dimension is unimportant relative to the “how long” dimension. When
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the temperature interval is large, as is the case in a piecewise linear model, the difference

between the two methods will be large. For example, if we use temperature exposure, we

assume that the damage of one day of exposure at 35◦C is equal to the damage of one day

at 40◦C. If we use degree days, we assume the damage of five days at 35◦C is equal to the

damage of one day at 40◦C. The underlying assumption of degree days is that the effect

of temperature exposure increases linearly with temperature between the lower and upper

bounds.

Degree days can be computed from the temperature exposure vector xit. The expression

for calculating degree days between a lower bound of h and upper bound of h is:

DDit,[h,h] =
h−1∑
j=h

xit,j × (j − h+ 1) (1.12)

Next, we choose knot locations. In the first set of results, we use knot locations sug-

gested by the agronomic literature. Mid-range temperatures are ideal for yield and quality

outcomes, but these outcomes may be damaged by hot (greater than 35◦C) or cool (less than

10◦C) temperatures (Hartz et al., 2008). Accordingly, we choose two knots at κ1 = 10◦C and

κ2 = 35◦C. We estimate degree days using Equation 1.12 for each of the three “segments”:

below 10◦C, between 10◦C and 35◦C, and above 35◦C.

Equation 1.4 can then be modelled as:

yit = β0 + β1DDit,(−∞,10] + β2DDit,[10,35] + β3DDit,[35,∞) + δzit + αg(i) + ψ(t) + ϵit (1.13)

In the second set of results, we use knot locations that correspond to the turning points

in the restricted cubic spline estimates.
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Figure 1.E.1: Piecewise linear degree day results, agronomic knots
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Figure 1.E.1: Piecewise linear degree day results, agronomic knots

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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Figure 1.E.2: Piecewise linear degree day results, spline knots
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Figure 1.E.2: Piecewise linear degree day results, spline knots

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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1.F Details on restricted cubic spline specification
The B matrix for a cubic spline combines the B matrix for the cubic polynomial and a

K × J matrix Z. First, define 1 × J temperature vector W =

(
5 6 7 . . . 41

)
. Z is

the resulting matrix after applying the cubic spline basis function to W with K knots at

κ1, . . . , κK .

Bcubic.spline =

(
Bcubic.polynomial Z

)

=



5 25 125 (5− κ1)
3
+ (5− κ2)

3
+ . . . (5− κK)

3
+

6 36 216 (6− κ1)
3
+ (6− κ2)

3
+ . . . (6− κK)

3
+

...
...

...
... . . . ...

41 412 413 (41− κ1)
3
+ (41− κ2)

3
+ . . . (41− κK)

3
+


(1.14)

Stone & Koo (1985) use the linearity constraints to develop a restricted cubic spline

function. Using this function, a restricted cubic spline withK knots requires the estimation of

only K−1 parameters on temperature (as opposed to K+3 parameters for the cubic spline).

Equation 1.15 is the restricted spline function that we apply to W for i = 1, 2, . . . , K − 2 8.

V1 = W

Vi+1 =
(W − κi)

3
+ − (κK − κK−1)

−1{(W − κK−1)
3
+(κK − κi)− (W − κK)

3
+(κK−1 − κi)}

(κK − κ1)2

for i = 1, 2, . . . , K − 2

(1.15)

Together, W and V2 to VK−1 make up the B matrix for the restricted cubic spline, where

Vi,j is the j-th element of the Vi vector.
8For more details, see the Stata manual for the function mkspline
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Brest.cubic.spline =

(
W V2 . . . VK−1

)

=



5 V2,0 . . . VK−1,0

6 V2,1 . . . VK−1,1

7 V2,2 . . . VK−1,2

...
... . . . ...

41 V2,45 . . . VK−1,45


(1.16)

1.G Results for individual quality attributes
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(b) Material other than tomatoes (MOT)

Figure 1.G.1: Restricted cubic spline results for individual quality defects
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Figure 1.G.1: Restricted cubic spline results for individual quality defects
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(f) Total defects

Figure 1.G.1: Restricted cubic spline results for individual quality defects

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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Figure 1.G.2: Restricted cubic spline results for individual quality bonuses
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Figure 1.G.2: Restricted cubic spline results for individual quality bonuses

Notes: For each figure, the graph at the top of the frame shows the effect of an additional 24 hours spent at a given temperature
interval on the outcome variable relative to 24 hours spent at 26◦C. The histogram at the bottom of the frame shows the
average exposure to each temperature interval during the growing season across all fields in all years.
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1.H Estimated effect of control variables

Table 1.H.1: Coefficient estimates on control variables

(1) (2) (3)
log yield log quality log revenue

Precipitation -0.0008∗ -0.0001 -0.0009∗∗∗
(0.0003) (0.0001) (0.0003)

Soil type

Eolian 0.0558 -0.0042 0.0581
(0.1151) (0.0070) (0.1152)

Organic material -0.0478∗∗∗ 0.0057∗ -0.0384∗∗
(0.0136) (0.0027) (0.0136)

Lacustrine -0.0069 0.0445∗∗∗ 0.0629
(0.1485) (0.0065) (0.1475)

Residuum 0.0168 -0.0043 0.0063
(0.0519) (0.0050) (0.0544)

Varietal attributes

Extended field storage variety -0.0063 0.0221∗∗∗ 0.0313∗∗
(0.0092) (0.0029) (0.0111)

Tomato spotted wilt resistant 0.0047 0.0015 0.0036
(0.0081) (0.0024) (0.0099)

High solids 0.0221 -0.0194 -0.0086
(0.0485) (0.0127) (0.0498)

Fusarium Wilt resistant -0.0161 -0.0075∗ -0.0335∗
(0.0144) (0.0037) (0.0167)

Powdery Mildew resistant -0.0457 0.0204∗∗∗ -0.0044
(0.0245) (0.0049) (0.0258)

High yield 0.0115 0.0283∗ 0.0552
(0.0497) (0.0133) (0.0522)

Fusarium Crown Rot resistant -0.0149 0.0008 -0.0163
(0.0362) (0.0110) (0.0507)

Bacterial Spot resistant -0.1381∗ 0.0136 -0.1279∗
(0.0544) (0.0116) (0.0583)

Early -0.0512∗∗ 0.0221∗∗∗ -0.0242
(0.0167) (0.0037) (0.0178)

Thick -0.0240∗ 0.0012 -0.0204
(0.0113) (0.0027) (0.0126)

Thin -0.0530∗∗∗ 0.0051 -0.0471∗∗
(0.0140) (0.0035) (0.0141)

Pear-shaped -0.0940∗ 0.0041 -0.0921∗
(0.0433) (0.0065) (0.0431)

Irrigation technology

Drip irrigation 0.0495∗ -0.0054 0.0496∗
(0.0207) (0.0034) (0.0210)

Furrow irrigation -0.0478∗ 0.0084 -0.0341
(0.0231) (0.0053) (0.0238)

Sprinkler irrigation -0.1102∗∗∗ 0.0081 -0.1148∗∗∗
(0.0199) (0.0083) (0.0315)

Harvesting early -0.0017∗ 0.0001 -0.0018∗
(0.0008) (0.0002) (0.0008)

Year trend 0.0040 0.0008 0.0037
(0.0137) (0.0036) (0.0166)

Year trend sqrd -0.0006 0.0000 -0.0003
(0.0012) (0.0003) (0.0013)
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Essay 2

Doing More with Less: Margins of

Response to Water Scarcity in Irrigated

Agriculture in California

2.1 Introduction
Irrigation is used to produce 40 percent of global calories (FAO, 2023) and is a key adaptive

response to warming temperatures under climate change. But water supplies are predicted to

become more variable and scarce in many important growing regions of the world, including

California’s $50 billion agricultural zone (Arias et al., 2021). During periods of water scarcity,

a key margin of response to climate–applying more water–is constrained. The future of

agriculture will depend on farmers’ ability to respond to the challenges of a changing climate

and to “do more with less.”

Existing work finds little evidence that U.S. farmers rainfed growing staple crops are

adapting to a changing climate (Schlenker & Roberts (2009); Burke & Emerick (2016); Moore

et al. (2017)). Focusing on outcome variables that implicitly embed producers’ response to

weather and climate, such as yield or profit, allows researchers to estimate the net effect

of adaptive behavior yet it does not allow them to unpack the processes by which farmers
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respond. Shedding light on current and future adaptation actions requires opening the black

box of farmer decision-making. While recent work has made progress to fill this gap (Taraz

(2017); Jagnani et al. (2021); Aragón et al. (2021)), many margins and settings remain

understudied.

In this paper, I analyze if and how farmers respond to water scarcity along the extensive

and intensive margins, and uncover the mechanisms through which farmers save water. I use

a fixed effects model to causally identify the effect of water availability on farmer behavior

on 3,300 fields in California between 2011 and 2021. California is an ideal setting to study

this question. First, it is a highly productive yet water constrained agricultural region that

relies on irrigation to produce crops. Second, California’s system of surface water allocations

introduces variation in water supplies that are plausibly exogenous to growers’ cropping and

input decisions. I bring together public data on crop choice and water supplies and novel,

spatially-detailed data on growing practices and irrigation. These data capture extensive

and intensive margin decisions made by individual farmers.

This paper adds to the literature on adaptation to water scarcity in agriculture. One

well-studied response is along the extensive margin: changes in land use. Previous work has

found fallowing increases during periods of water scarcity (or higher water prices) (Moore

et al. (1994); Schoengold et al. (2006); Hendricks & Peterson (2012); Manning et al. (2017);

Hagerty (2021)). But fallowing is a blunt instrument–it is costly to growers who forgo

income when land is left idle. A reliance on fallow implies that long-term water scarcity

will force widespread fallowing and potential exit from agriculture. A focus on the extensive

margin ignores other interventions producers can employ to use available water resources

more efficiently.

Earlier work is inconclusive about the role of intensive margin adjustments, in other words

growing practices that influence water use per acre. Using econometric analysis (Schoengold

et al. (2006); Hendricks & Peterson (2012); Drysdale & Hendricks (2018)) and program-

ming models (Cortignani & Severini (2009); Medellín-Azuara et al. (2012); Graveline &
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Mérel (2014); Sapino et al. (2022)), some papers find that growers meaningfully reduce their

water intensity. But other evidence suggests that California growers do not adjust along

the intensive margin in response to changes in surface water availability (Hagerty, 2021) or

groundwater pumping costs (Burlig et al., 2021). I bring new, remotely-sensed and spatially-

detailed evapotranspiration data to directly test whether California growers adjust along the

intensive margin.

I also unpack the mechanisms by which growers save water. Growing practices are rarely

systematically observed but I am able to fill this gap using detailed proprietary data on every

field contracted with a large tomato processor operating in California’s $1 billion processing

tomato industry. These field-level panel data are collected for the purposes of contracting

and payment and does not rely on grower self-reports. Some growing practice decisions are

made jointly by growers and the processor, however I control for the processor’s preferences

and focus on how growers respond. These data provide insights into farmer behavior at a

level of detail and accuracy that cannot be obtained in publicly available data or survey

data.

I first estimate the effect of water availability on the extensive margin using satellite

imagery of land use between 2011 and 2021 from USDA NASS (2022). Consistent with

earlier work, I find that growers fallow a greater proportion of their acreage during periods

of water scarcity. Water scarcity also affects crop choice: I find that growers are more likely

to maintain acreage in low-water crops and reduce acreage of high-water crops.

In addition to changing whether they plant and what they plant, farmers also change

how they produce. On average, growers plant 1.6 days earlier during a water scarce year (a

one-standard deviation decrease in surface water supply). Planting earlier exposes plants to

cooler temperatures on average which in turn reduces the plant’s water demands. Growers

are more likely to plant varieties that require fewer days to reach maturity and are more

likely to use fields with drip irrigation than fields with less efficient irrigation systems.

I also find that water access priority drives how growers choose to conserve water. During
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a water-scarce year, growers with high-priority water access experience smaller declines in

their water supply and adjust by planting low-water crops in place of high-water crops.

By comparison, growers with low-priority access experience large declines in their water

availability during a water-scarce year. These growers fallow acreage that would otherwise

be planted to high-water crops. In addition to extensive margin adjustments, they also

adjust their growing practices to conserve water on their remaining crops. Growers with

low-priority access are more likely to plant fast-maturing varieties of processing tomatoes

earlier in the season. However, these practices come at the cost of lower yield, which leads

to less revenue per acre.

Using a back-of-the-envelope calculation, I find that intensive margin response to water

scarcity cost California processing tomato growers $20 million in lost revenue in a water-

scarce year. While adapting growing practices may cause a loss of revenue, it helps farmers

avoid fallowing, which is significantly more costly.

2.2 The Setting
Details on processing tomatoes can be found in 1.2. Here, I expand on agriculture and water

in California more broadly.

California is one of the most agriculturally productive regions in the world yielding $50

billion in agriculture (CDFA, 2021), of which more than 70 percent is specialty crop output

(USDA NASS, 2017). With very little rainfall during key growing months, virtually all

agricultural crops in California are irrigated.

In California, water used for irrigation comes from two main sources. First, surface water

comes from snow that falls on nearby mountain ranges and then melts and flows through

rivers and streams. Around 40 percent of surface water is diverted to farmland via a system of

reservoirs and canals. The second source is groundwater pumped from underground aquifers.

Groundwater contributes around 40 percent of California’s water supply in a typical year

and up to 60 percent during a drought year (DWR, 2022).

Most farmers in California source surface water from an irrigation district–a term I use to
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designate any organization that acquires and distributes surface water to farmers within its

jurisdiction. Irrigation districts choose how to distribute water to their farmers. In keeping

with historical convention, many irrigation districts divide surface water acquisitions evenly

across farmland in the district and allow farmers to make decisions on how to use water

allocated to them.

Irrigation districts in California may hold long-term water rights called “appropriative

rights:” the right to divert and use a specific quantity of surface water from rivers or streams.

Many irrigation districts also hold contracts with state and federal water projects. Districts

in the Sacramento Valley and San Joaquin Valley may hold contracts with the California

state government’s State Water Project (SWP) and/or the federal government’s Central

Valley Project (CVP). Under each project, a district’s contract specifies a water entitlement

and contract type. However, a district is not guaranteed to receive its full entitlement. Each

year, contract-holders are permitted to use a proportion of their entitlement or “allocation”

that ranges from 0 to 100 percent. Allocations are set by the relevant government agencies

and vary year-to-year based on environmental conditions affecting surface water availability,

including winter precipitation stored as snowpack and prevailing reservoir levels.

Figure 2.1: Spatial and temporal variation in allocations from water projects

Figure 2.1 shows how allocations from water projects vary both temporally and spatially.

In years of ample water supplies, such as 2017, all districts are allocated (close to) 100 percent
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of their entitlement. In water scarce years, a district is assigned a proportion of its entitle-

ment that depends on the contract type held by the district and degree of water scarcity.

For example, during the drought in 2015, districts with high-priority contracts experienced

smaller declines in their allocation compared to districts with low-priority contracts.

Information about surface water availability is salient to farmers when they make planting

decisions in the spring. Preliminary allocations are released by government agencies in winter

and revisions, if any, are typically small1. Therefore, the environmental conditions that affect

allocations are largely known before the growing season begins.

Climate change is projected to affect future water availability in many regions around

the world (Arias et al., 2021). In California, climate change is predicted not only to reduce

snow accumulation but also to cause earlier and faster melting of the snowpack, leading to

a decrease in summer surface water availability (Hayhoe et al., 2004). Declines in surface

water may be partially offset by groundwater pumping. However, changes in precipitation

patterns may also affect groundwater recharge. Excessive pumping drops the groundwater

levels and increases the cost of water extraction. In extreme cases, wells run dry because

groundwater levels fall below the installed capacity of existing wells, for example during the

2014 drought (Howitt et al., 2014). While environmental conditions strongly influence water

supply, 80 percent of US irrigation districts do not have a formal plan for responding to

future water scarcity (Wallander et al., 2022).

The State of California introduced a legislation package with the long-term goal of sus-

tainably managing groundwater by 2042 called the Sustainable Groundwater Management

Act (2014). Groundwater sustainability agencies for medium and high-priority groundwater

basins are obligated to prepare and implement groundwater management plans. Groundwa-

ter management plans were required by January 2022 for the Department of Water Resources

to evaluate. Importantly for this study, the plans were not binding during the period of anal-
1From 2011 to 2021, the largest downward revision in an irrigation district’s allocation from the Central Valley
Project was in 2013 when the allocation for Agricultural Contractors South of the Delta declined from the
25% (announced on February 25th) to 20% (revised on March 22nd).
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ysis from 2011 to 2021.

2.3 Data
Estimating the effect of water scarcity on growers’ decisions requires spatially-detailed data

on water availability and potential margins of response. I collect public data on water rights

and allocations, weather, and land use. Comparable data on the intensive margin are scant.

To fill this gap, I use novel proprietary data on processing tomato growers and satellite-

derived estimates of irrigation. The proprietary data include the latitude and longitude of

each field centroid which I use to match fields to observations of estimated irrigation, water

supplies, and land use during years when fields were not contracted with the processor.

Figure 2.2 summarizes the key datasets, their sources, and linkages across datasets. Summary

statistics for the merged data are in Tables 2.1 and 2.2.

2.3.1 Explanatory Variable: Surface Water Supply

Irrigation districts play a key role in acquiring and delivering surface water to fields within

their jurisdiction. Most districts acquire surface water from two sources: appropriative rights

and project contracts from state and federal water projects. I match each district to the

quantity of water it is permitted to divert from rivers and streams under its appropriative

right using data from the State Water Resources Control Board’s Electronic Water Rights

Information Management System.

Districts often hold contracts with the State Water Project (SWP) and/or Central Valley

Project (CVP). These contracts establish a district’s fixed maximum entitlement from which

a proportion or “allocation” will be available to the district in a given year. In a year of ample

water supplies, districts are allocated close to 100 percent of their entitlement. In a water

scarce year, districts are allocated a proportion of their entitlement that depends on the

district’s contract type and overall degree of water scarcity. Allocations vary from 0 percent

to 100 percent across years and contract types in the sample. I collected data on entitlements,

contract types, and allocations from the California Department of Water Resources and the

U.S. Bureau of Reclamation.
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practices
8,600 field-year obs
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data from OpenET
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Satellite imagery on land use from

USDA Cropland Data Layer

36,000 field-year obs


2011-2021
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Depth to groundwater by well
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Surface water supply

Appropriative rights from
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1,000 district-year obs
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Weather


Daily ppt, tmin,
and tmax from

PRISM

Soil type

Major soil type

from USDA
SSURGO

Figure 2.2: Diagram of key datasets and links between datasets
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I defined surface water supply as the proportion of total surface water supplies available

to the water district d in year t:

surface waterdt =

=
appropriatived + entitlementCVP

d × allocationCVP
dt + entitlementSWP

d × allocationSWP
dt

appropriatived + entitlementCVP
d + entitlementSWP

d
(2.1)

where appropriatived is the fixed annual appropriative right for district d, entitlementCVP
d and

entitlementSWP
d are d district’s entitlement from CVP and SWP respectively. The allocations

allocationCVP
dt and allocationSWP

dt are the annual allocations for district d in year t from CVP

and SWP respectively that depend on the contract types held by the district.

Finally, I spatially matched fields to the irrigation district(s) in which they are located

using district boundaries from the California Department of Water Resources mapped in

Figure 2.3. Irrigation districts can overlap and so a field may match with multiple districts.

I assigned these fields a surface water supply equal to the average surface water supply across

the multiple districts.
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Figure 2.3: Irrigation districts and field locations

2.3.2 Outcomes: Extensive Margin

Growers can respond to water scarcity by changing whether they fallow or plant a crop,

and which crop they plant. I use the USDA’s Cropland Data Layer (USDA NASS, 2022) to

identify the land use on a sample of fields predominately in the Sacramento Valley and San

Joaquin Valley in California. I select the sample of fields to match fields in the proprietary

data i.e. for at least one season, these fields grow processing tomatoes and I observe each

field’s acreage and centroid.

The Cropland Data Layer is an annual raster where each 30-by-30 meter pixel is identified

as a crop or other land use category. In lieu of field boundaries, I create a circular buffer

around each field’s centroid that encloses an area equal to 20 percent of the field’s acreage.

For every field-year observation, I identify the land use that covers more than 50 percent of
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the pixels within the buffer2. This generates a panel of around 36,000 field-year observations

of land use from 2011 to 2021. The most common land use is processing tomatoes (34 percent

of field-year observations), followed by grain (8 percent wheat and 8 percent other grain),

fallow (9 percent), cotton (9 percent), and alfalfa (7 percent).

I classify crops as high-water or low-water crops based on their average applied water per

acre from the University of California Agriculture and Natural Resources crop production

guides (UC ANR, 2022). High-water crops are those that use more than 3 acre-feet per

acre on average, such as cotton, alfalfa, nut trees, and pasture. Low-water crops include

tomatoes, wheat, melons, and most other grains and vegetables.

2.3.3 Outcomes: Intensive Margin

Processing Tomato Data

In addition to extensive margin adjustments, growers can respond to water scarcity along the

intensive margin by changing how they grow. However, information about growing practices

is rarely systematically collected and published. To fill this gap, I use detailed proprietary

data on every field contracted with a large tomato processor from 2011–2021. These data are

not from surveys but rather from administrative records collected by the processor for the

purposes of contracting and payment. Fields are linked to anonymized grower identifiers so I

can track growers across years. Crucially, they include the coordinates of each field centroid

which I use to merge the datasets.

Growers can change their practices in several ways to conserve water. The first growing

practice I observe is the date a grower plants a field. Planting date affects expected tem-

perature exposure: planting earlier exposes plants to cooler temperatures on average which

decreases the plant’s water demands. I convert planting date to planting day of year so that

timing can be compared across years. The average planting day of year is 107 or mid-April,

with the earliest fields planted in mid-February and the latest planted at the end of June.
2If the modal pixel is less than 50 percent, the field is classified as having missing data. Further, fields
identified as developed, open water, wetlands, shrubland, and forest are also classified as having missing
data.
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The second intensive margin adjustment I observe is the season length: the number of

days between planting and the final day of harvest3. Since tomato plants require adequate

access to water every day they are in the ground, a shorter season uses less water. The

average season length is 134 days but this varies from a low of 98 days to a high of 175 days.

The third intensive margin adjustment I observe is the variety of tomato grown in a

field. There are many varieties of processing tomatoes identified in the processor data with

varying characteristics to suit particular growing practices or end uses. I collect additional

information about each variety’s attributes from AgSeeds (AgSeeds, 2020). I focus on va-

rieties characterized as “early” – a variety that requires fewer days to reach maturity and

therefore has a shorter season. On average, around 15 percent of acreage is planted with a

fast-maturing variety.

The final growing practice I observe is the irrigation technology used on each field. I mea-

sure the likelihood tomatoes are grown using drip irrigation technology rather than sprinkler

or furrow irrigation technologies in a given year. Most fields are equipped with drip irriga-

tion (87% of field-year observations). The remaining fields are fitted with less water-efficient

furrow (10 percent) or sprinkler (3 percent) irrigation systems. Growers infrequently change

irrigation systems on their fields: only 100 fields (2 percent of all fields) change irrigation

systems over the 11 year period, of which 80 percent were upgraded to drip irrigation.

This detailed dataset also includes field-level observations of tonnage of tomatoes har-

vested, acreage, quality attributes of fruit, and how each individual quality attribute affects

price (see 1.3 for more details). I calculate yield as total tons divided by harvested acres for

each field-year observation. Following 1.3, I calculate an economically meaningful measure

of quality by isolating the effect of quality on price. Finally, I calculate field-level revenue

per acre by multiplying quality-adjusted price by paid tons and dividing by harvested acres.
3For large fields, harvest can occur over several days.
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Estimated Irrigation

I estimate irrigation applied to fields growing processing tomatoes using novel remotely-

sensed evapotranspiration (ET) data from OpenET, a joint venture between NASA, the

Desert Research Institute, and the Environmental Defense Fund. These recently released

data offer several advantages over other data on water use. First, they do not rely on data

disclosed by growers that may mistakenly or intentionally be misreported. Second, OpenET

publish ET at a very fine spatial resolution of 30 meters by 30 meters—0.4 percent of the

average field size in my sample. OpenET assures its data quality by undergoing extensive

ground-truth validation and peer-review processes. A disadvantage of these data are their

span: they are currently only available from 2016 onward4.

The variable of interest is applied irrigation, which is the amount of water a producer

applies to the plants. ET measures a component of applied irrigation known as consumptive

water use—water used by the plants to facilitate crop growth and cooling. As shown in

Figure 2.4, applied irrigation (blue) is not equal to consumptive water use (red) because

(a) plants consume water from both irrigation and precipitation, and (b) not all irrigated

water applied is used by the plant because of irrigation inefficiencies. I estimate applied

irrigation from consumptive water use by first deducting precipitation from consumptive

water use to calculate consumptive irrigation water use. Unreliable meteorological data

may bias estimates of precipitation and introduce error into estimates of irrigation volumes

(Foster et al., 2020). This is of little concern in my setting. Meteorological data for California

are high quality and there is very little precipitation during the summer growing season to

estimate.

The final consideration is nonconsumptive irrigation water use or irrigation inefficiency:

water applied through irrigation that is not used by the plants because of run-off or deep per-

colation. I later show that grower-level time-invariant heterogeneity in irrigation inefficiency

is controlled through the inclusion of grower fixed effects. This allows irrigation inefficiency
4OpenET plan to release data on earlier years in the near future.
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Figure 2.4: Estimating applied irrigation

to vary across growers but assumes it remains fixed over the six year period5.

2.3.4 Covariates

Finally, I compile publicly available data on covariates that may be correlated with water

scarcity.

Groundwater Supply

Unlike surface water, groundwater pumping was effectively unregulated between 2011 and

20216. However, groundwater pumping is energy intensive and groundwater depth is a critical

factor driving pumping costs. I use depth to groundwater in feet below the ground’s surface

as a proxy for groundwater availability.

Data on well locations and periodic groundwater depth measurements come from the

Department of Water Resources via the California Natural Resources Agency. These include

data collected through the California Statewide Groundwater Elevation Monitoring Program

and Sustainable Groundwater Management Act Portal’s Monitoring Network Module. For

each year (2011-2021) and each well, I calculate the average depth to groundwater in feet

below the ground’s surface for the duration of the processing tomato growing season (Febru-
5An alternative is to allow irrigation inefficiency to vary across fields rather than growers. I later show that
the two approaches produce similar results.

6The State of California introduced a new groundwater management legislation package in 2014 but it was
not binding during the period of analysis
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Figure 2.5: Groundwater basins and well locations

ary to October). I exclude wells missing two or more years of data. This generates a panel

of 50,906 well-year observations for 4,744 wells shown in Figure 2.5. I match each field to

the groundwater level at the well nearest the field centroid7. Multiple fields can match to

the same well: indeed, the 3,300 fields match to 578 unique wells.

Weather

I collect gridded, daily temperature and precipitation data from PRISM (PRISM Climate

Group, Oregon State University, 2020). I match weather data to each field-level observation

by identifying the 4km PRISM grid in which the field centroid falls.

I convert daily observations of minimum and maximum temperature into degree days: a

measure of accumulated exposure to heat pioneered by Snyder (1985) and popularized by

Schlenker & Roberts (2009) (see Ortiz-Bobea (2021) for details). Mid-range temperatures
7An alternative is to match fields to the average groundwater level for the basin in which a field is located. I
use this measure as a robustness check (see Appendix 2.B.)
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are ideal for processing tomato growth while exposure to hot temperatures (above 35◦C)

and cool temperatures (below 10◦C) slows growth and potentially damages the plant (e.g.

Hartz et al. (2008)). For each field-year observation, I calculate growing season degree days

for three intervals: below 10◦C, between 10◦C and 35◦C, and above 35◦C. This method has

several advantages over averaging temperature across the growing season. First, degree days

preserves the distribution of temperature exposure throughout the day and thus captures

exposure to extreme temperatures. Second, since each interval enters the model separately,

this method allows for possible nonlinearity in the effect of temperature exposure as suggested

by Hartz et al. (2008).

Soil type

A farm may consist of fields of varying quality. One observable aspect of field quality is

soil type. I collect data on soil composition from the National Cooperative Soil Survey

(NRCS USDA, 2020). I spatially match each field centroid to its major soil type. Most fields

have alluvial soils with the remaining fields being categorized as either eolian, lacustrine,

residuum, or high in organic material.
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Table 2.1: Summary statistics: extensive margin

units count mean sd min max
Surface water supply % 36162 64.99 37.42 0.00 100.00
Land use

High-water crop % 36162 30.35 45.98 0.00 100.00
Alfalfa % 36162 7.09 25.66 0.00 100.00
Cotton % 36162 9.11 28.78 0.00 100.00
Garlic % 36162 1.85 13.47 0.00 100.00
Grapes % 36162 0.49 6.99 0.00 100.00
Onions % 36162 1.49 12.13 0.00 100.00
Other grain % 36162 4.74 21.26 0.00 100.00
Tree crop % 36162 5.58 22.94 0.00 100.00

Low-water crop % 36162 60.99 48.78 0.00 100.00
Corn % 36162 4.17 19.99 0.00 100.00
Dry Beans % 36162 1.96 13.85 0.00 100.00
Melons % 36162 1.48 12.09 0.00 100.00
Other grain % 36162 3.53 18.44 0.00 100.00
Other vegetable % 36162 1.82 13.36 0.00 100.00
Peppers % 36162 0.16 4.01 0.00 100.00
Sunflowers % 36162 5.80 23.38 0.00 100.00
Tomato % 36162 34.23 47.45 0.00 100.00
Tree crop % 36162 0.03 1.83 0.00 100.00
Wheat % 36162 7.81 26.83 0.00 100.00

Fallow % 36162 8.67 28.13 0.00 100.00
Covariates

Groundwater level feet 36162 97.94 99.89 -42.50 625.50
Average min. temp. ◦ C 36162 11.46 0.98 7.60 14.94
Average max. temp. ◦ C 36162 27.84 1.24 22.15 30.61
Total precipitation mm 36162 151.36 100.75 11.52 682.62

Notes: Summary statistics for the merged data from 2011-2021 and weighted by field acreage. Weather variables are for the
February to October growing season.
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Table 2.2: Summary statistics: intensive margin

units count mean sd min max
Growing practices

Planting day of year days 8617 107.31 22.98 48.00 179.00
Growing days days 8617 134.46 9.47 98.00 175.00
Early variety % 8617 14.59 35.31 0.00 100.00
Drip irrigation % 8617 87.18 33.43 0.00 100.00
Furrow irrigation % 8617 9.67 29.55 0.00 100.00
Sprinkler irrigation % 8617 3.16 17.48 0.00 100.00

Consumptive irrigation water use Acre-feet per acre 4905 2.00 0.29 0.59 3.04

Notes: Summary statistics for the merged subset of observations in processing tomatoes data from 2011-2021 and weighted by
field acreage.

2.4 Methods
The conceptual model in Appendix 2.A suggests that a grower may respond to water avail-

ability along different margins of adjustment. First, I ask if growers respond to water avail-

ability along the extensive margin: whether to plant and what to plant. Outcomes of interest

are the probability of fallowing, probability of planting a low-water crop, and probability of

planting a high-water crop. Second, I ask if and how growers respond along the intensive

margin, conditional on growing a low-water crop. The intensive margin model uses the sub-

set of observations of processing tomatoes under contract with a large processor. For these

observations, I observe detailed data on growing practices that make up the intensive margin

responses: planting day of year, season length, varietal choice, irrigation technology choice,

and estimated irrigation. Finally, I analyze the net effect of intensive margin adjustments

induced by water scarcity on processing tomato yield, quality, and revenue.

The preferred specification is:

outcomeit =β surface water supplyd(i)t + γ controlsit + αg(i) + λt + ϵit, (2.2)

where surface water supplyd(i)t is the proportion of surface water supply available in year t

to district d in which field i falls. I weight observations by field acreage which yields an
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estimate representative of statewide effects8. I control for the groundwater depth in year

t at the well nearest the field i, temperature exposure and precipitation for field i in year

t, and the major soil type for field i in controlsit. I also include grower fixed effects αg(i),

where g(i) is the grower associated with field i, and year fixed effects λt. Standard errors

ϵit are heteroskedastic robust and clustered by grower and district-year to account for the

possibility of both temporal and spatial dependence.

The inclusion of two-way fixed effects removes both time and grower-invariant con-

founders. Year fixed effects capture state-wide factors common to all fields in a year, in-

cluding factors affecting the agricultural economy and the processor’s preferences. Some

decisions made jointly by the grower and processor, such as the variety and planting date.

Since I use data from one processor, I can control for the effect of the processor’s preferences

through the inclusion of year fixed effects. For example, the year fixed effect would absorb

the processor shifting its entire season schedule in response to seasonal conditions. Condi-

tioning on the processor’s response, the remaining variation reflects grower decisions. Year

fixed effects also absorb the statewide average profitability of particular land-use choices, an

important driver of land-use decisions.

Grower fixed effects9 subsume average surface water availability to the grower so identify-

ing variation in surface water comes from year-to-year variation in allocations. The estimate

β captures how the average grower responds to a change in their water availability.

2.4.1 Identifying Assumptions

Giving β in Equation 2.2 a causal interpretation requires that surface water supply is quasi-

random, conditional on average supply. This is reasonable since surface water allocations

are set by government agencies in response to exogenous environmental conditions. Districts

differ in their average surface water availability because those with high-priority water access
8As a robustness check, I also estimate the model without weights. If the coefficients change dramatically, it
would be evidence of misspeficiation or heterogeneity. The results are largely robust to weighting decisions
(see Appendix 2.B).

9An alternative is to use field fixed effects that would absorb unobservable differences in field quality within
each grower’s farm. Estimates using field fixed effects are consistent in terms of sign and magnitude but the
intensive margin results are more imprecise (see Appendix 2.B).
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experience smaller declines in their allocation than those with low-priority access. However,

this is not a concern for identification since a grower’s average allocation is captured by

grower fixed effects. Critically, a grower cannot influence variation in their allocation to

individual fields.

One may be concerned that grower fixed effects do not adequately capture omitted vari-

ables for growers who have fields that span multiple irrigation districts. As a robustness

check, I estimate a model with grower-by-district fixed effects to account for growers who

span multiple water districts. I later show that most results are virtually unchanged (see

Appendix 2.B).

The greatest threat to identification is time-varying unobservable characteristics that are

correlated with both water availability and outcomes. For example, regions may experience

different trends in crop profitability that are linked to local factors like processing capacity

(e.g. Sayre (2022)). Indeed, crop choices have progressively switched from annuals to peren-

nials, particularly almonds, in parts of California (Carman, 2019). As a robustness check, I

include a linear regional time trend that captures potential divergence in agronomic or eco-

nomic conditions and results are virtually identical in terms of magnitude and significance

(see Appendix 2.B).

2.4.2 Heterogeneity

While the main specification in Equation 2.2 recovers the average response to water scarcity,

it may hide important heterogeneity in how growers respond. Recall that even within the

same year, water allocations can vary dramatically across California due to differences in

water access priority: districts with high-priority access experience smaller declines in their

water allocation compared to districts with low-priority contracts. The conceptual model in

Appendix 2.A suggests that investment in water-saving practices depends on the stringency

of water allocations, implying that growers’ response to water scarcity depends on their

surface water access. To test this, I interact surface water supply with a dummy variable
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“high priorityd(i)” that identifies districts with high-priority water access:

outcomeit =κ1 surface water supplyd(i)t + κ2 high priorityd(i)

+ κ3 (high priorityd(i) × surface water supplyd(i)t) + γ controlsit + αg(i) + λt + ϵit,

(2.3)

where κ1 is the response of growers with low-priority water access and κ1+κ3 is the response

of growers with high-priority water access.

Since priority status only varies in the cross-section, it is possible there are features of

the environment that vary spatially and are correlated with (but not caused by) priority

status, for example land quality. While I include variables like soil type to control for such

characteristics, care should be taken not to interpret these estimates as the causal effect of

changing a grower’s priority status. That said, this analysis does shed light on how growers’

response to water scarcity depends on their priority status.

2.5 Results
Table 2.3 reports estimates of the effect of surface water supply on extensive margin out-

comes. I find that growers respond to water scarcity by planting fewer acres to crops, leaving

more acres fallow. A one standard deviation decline in surface water supply significantly in-

creases the share of land fallowed by 2.9 percentage points. This is indicative of a reasonably

large change in planting decisions given the average share of fallowed acreage is only 9 per-

cent. Overall, my result is comparable to prior work looking at the effects of water scarcity

on planting decisions (Hagerty (2021); Manning et al. (2017)).

Water scarcity also affects the types of crops growers choose to plant. A one standard

deviation decrease in surface water supply significantly decreases the share of acreage planted

to high-water crops like cotton and pasture by 4.3 percentage points. This is consistent with

the conceptual model that shows high-water crops are not the most profitable land use when

water allocations are low (see Appendix 2.A). Growers are also slightly more likely to plant

low-water crops when water is scarce, however the effect is not statistically significant. I
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also estimate the effect on processing tomato acreage given its relative importance for this

sample of fields. Similar to the results for low-water crops (of which processing tomatoes

is a part), the estimated impact of water scarcity on processing tomato acreage is small

and insignificant. Together, these results plausibly suggest that growers maintain acreage in

low-water crops and choose to fallow fields that would otherwise be planted to high-water

crops.

Table 2.3: Effect of water supply on the extensive margin

(1) (2) (3) (4)
Fallow
prop.

High-water crop
prop.

Low-water crop
prop.

Processing tomato
prop.

Surface water supply -0.0008∗∗∗ 0.0011∗∗∗ -0.0004 -0.0002
(0.0002) (0.0002) (0.0002) (0.0003)

Marginal effect 0.029∗∗∗ -0.043∗∗∗ 0.014 0.008
(0.0078) (0.0087) (0.0090) (0.0096)

Grower fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
Observations 36161 36161 36161 36161

Notes: Each column shows the results from a separate regression model for the outcome variable identified in the column
header, using the full panel of field-year observations from 2011-2021. The reported estimate is the effect of a 1 percentage
point increase in surface water supply. The marginal effect is the estimated effect multiplied by negative one standard deviation
in surface water supply. Additional controls in all models include: groundwater depth, temperature exposure, precipitation, and
major soil type. Standard errors (in parentheses) are two-way clustered by grower and district-year. Significance: * p<0.05, **
p<0.01, *** p<0.001. Estimates are weighted by field acreage.

In addition to extensive margin adjustments, growers also respond to water scarcity by

changing growing practices as reported in Table 2.4. A one standard deviation decrease in

surface water supply causes processing tomato growers to plant fields earlier by 1.6 days

on average. All else equal, planting earlier exposes tomato plants to cooler temperatures

and reduces water demand. The effect is significant but small relative to the wide planting

window. Recall planting dates are negotiated between growers and processors and processors

value spread in planting dates to avoid processing bottlenecks. A small effect is consistent

with the fact that growers set their planting date in conjunction with the processor.

Growers are more likely to plant varieties that require fewer days to reach maturity
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during periods of water scarcity. A one standard deviation decrease in surface water supply

significantly increases the share of processing tomato acreage planted to early maturing

varieties by 2.9 percentage points. I find that the growing season length decreases during a

water-scarce year, but the effect is small and not statistically significant.

During periods of water scarcity, growers prefer to use drip irrigation over less water

efficient irrigation systems. A one standard deviation decrease in surface water supply sig-

nificantly increases the share of planted acreage using drip irrigation by 2 percentage points.

This is a relatively small magnitude compared with the large proportion of acreage using drip

irrigation (87 percent). Two-thirds of growers are only ever observed using drip irrigation

on their fields which limits further adaptation along this margin.

There are two main mechanisms through which growers change the proportion of tomato

acreage grown with drip irrigation. The first is an enduring transition from sprinkler or

furrow irrigation to drip irrigation on a particular field. However, growers infrequently change

irrigation systems on a given field, and when they do it is more likely a long-term decision

than a short-run response to water scarcity. Drip irrigation results are no longer significant

with the inclusion of field fixed effects, suggesting that growers are not updating field-level

irrigation systems in response to water scarcity. The second and more likely mechanism is a

reallocation of planted and fallowed acreage across fields. During a water scarce year, growers

are more likely to allocate fields equipped with drip irrigation to processing tomatoes. Fields

equipped with less efficient irrigation systems are either growing other crops or left fallow,

although the latter is more likely given the extensive margin adjustments I observe during

water scarce years.

I consider the effect of water availability on the log of estimated irrigation between 2016

and 2021 – a shorter panel than the other models reflecting OpenET’s current data availabil-

ity. Recall that irrigation inefficiency — a fixed percentage of any applied water lost due to

run-off or percolation — is unobserved. I include grower fixed effects to absorb time-invariant

heterogeneity in irrigation inefficiency. Taking the log of irrigation is important to account
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for the proportional nature of irrigation inefficiency, for example if a grower consistently loses

10% of applied water to percolation, the fixed effect will only control for this inefficiency if

the dependent variable is in logs.

Despite growers adjusting their growing practices, I find little evidence that water scarcity

causes growers to decrease the amount of water used to grow processing tomatoes. The effects

of surface and groundwater availability on estimated irrigation are both precise zeroes. In a

robustness check, I replace grower fixed effects with field fixed effects that allows irrigation

inefficiency to vary across fields rather than growers and the results are unchanged.

Table 2.4: Effect of water supply on the intensive margin

(1) (2) (3) (4) (5)
Planting day

day of year

Season length
no. days

Early variety
prop.

Drip irrigation
prop.

ln(irrigation)

Surface water supply 0.0439∗∗∗ 0.0006 -0.0008∗∗∗ -0.0005∗ 0.0001
(0.0117) (0.0014) (0.0002) (0.0002) (0.0002)

Marginal effect -1.630∗∗∗ -0.022 0.029∗∗∗ 0.020∗∗ -0.004
(0.4337) (0.0528) (0.0085) (0.0090) (0.0067)

Grower fixed effects ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓
Observations 8609 8609 8609 8609 4896

Notes: Each column shows the results from a separate regression model for the outcome variable identified in the column header,
using the subset of observations in the processing tomatoes data from 2011-2021. Results in column (5) are for 2016-2021. The
reported estimate is the effect of a 1 percentage point increase in surface water supply. The marginal effect is the estimated effect
multiplied by negative one standard deviation in surface water supply. Additional controls in all models include: groundwater
depth, temperature exposure, precipitation, and major soil type. Standard errors (in parentheses) are two-way clustered by
grower and district-year. Significance: * p<0.05, ** p<0.01, *** p<0.001. Estimates are weighted by field acreage.

The net effect of surface water supply on processing tomato yield, quality, and revenue

is reported in Table 2.5. While the coefficients indicate that yield (and therefore revenue)

decline during periods of water scarcity, imprecision in the estimates means I cannot rule

out no effect.
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Table 2.5: Effect of water supply on yield, quality, and revenue

(1) (2) (3)
ln(yield) ln(quality) ln(revenue)

Surface water supply 0.0003 0.0000 0.0003
(0.0003) (0.0001) (0.0003)

Marginal effect -0.011 -0.001 -0.013
(0.0102) (0.0023) (0.0111)

Grower fixed effects ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓
Observations 8609 8609 8609

Notes: Each column shows the results from a separate regression model for the outcome variable identified in the column
header, using the subset of observations in the processing tomatoes data from 2011-2021. The reported estimate is the effect
of a 1 percentage point increase in surface water supply. The marginal effect is the estimated effect multiplied by negative
one standard deviation in surface water supply. Additional controls in all models include: groundwater depth, temperature
exposure, precipitation, and major soil type. Standard errors (in parentheses) are two-way clustered by grower and district-year.
Significance: * p<0.05, ** p<0.01, *** p<0.001. Estimates are weighted by field acreage.

Growers respond to water scarcity differently depending on their water access priority,

as shown in Tables 2.6 and 2.7. I find that growers with high-priority water access rely

exclusively on crop switching to manage reductions in water availability. In an effort to

conserve water, growers decrease their acreage in high-water crops by 6 percentage points

but this is completely offset with an increase in low-water crop acreage. There is no significant

evidence that they increase fallowing or adjust their growing practices, however imprecision

in some estimates means adjustment along these margins cannot be completely ruled out.

In contrast, growers with low-priority water access rely on more costly margins of re-

sponse. These growers respond to water scarcity by fallowing acreage that would otherwise

be dedicated to high-water crops. The share of acreage in low-water crops like processing

tomatoes is effectively unchanged. But growers adjust how they grow processing tomatoes.

During a water-scarce year, growers with low-priority water access are more likely to plant

faster maturing varieties earlier in the season.
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Table 2.6: Effect of water supply on the extensive margin by water priority

(1) (2) (3) (4)
Fallow
prop.

High-water crop
prop.

Low-water crop
prop.

Processing tomato
prop.

Surface water supply -0.0008∗∗∗ 0.0009∗∗∗ -0.0001 -0.0001
(0.0002) (0.0002) (0.0002) (0.0003)

High priority=1 × Surface water supply 0.0015∗ 0.0009 -0.0025∗ -0.0023∗∗
(0.0007) (0.0007) (0.0010) (0.0007)

Surface water supply + High priority=1 × Surface water supply 0.001 0.002∗∗ -0.003∗∗ -0.002∗∗∗
(.0007) (.0007) (.001) (.0008)

Grower fixed effects ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓
Observations 36161 36161 36161 36161

Notes: Each column shows the results from a separate regression model for the outcome variable identified in the column header,
using the full panel of field-year observations from 2011-2021. The reported estimate is the effect of a 1 percentage point increase
in surface water supply for different subgroups. The first row “Surface water supply” is the estimate for growers with low-priority
water access, and the third row “Surface water supply + High priority=1 × Surface water supply” is the estimate for growers with
high-priority water access. Additional controls in all models include: groundwater depth, temperature exposure, precipitation,
and major soil type. Standard errors (in parentheses) are two-way clustered by grower and district-year. Significance: * p<0.05,
** p<0.01, *** p<0.001. Estimates are weighted by field acreage.

As shown in Table 2.8, growers with low-priority water access incur a yield penalty when

growing processing tomatoes during a water-scarce year. This captures the net effect of

changes along the intensive margin. As a result, their revenue is 3.4 percent smaller relative

to a year with average water availability.

Together, these findings are consistent with the conceptual model. Growers can manage

small declines in their allocation by switching from high-water to low-water crops. The

incentive to invest water-saving practices emerges when growers experience large declines

in their allocation. However, these practices incur the cost of a lower yield and therefore

revenue per acre.
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Table 2.7: Effect of water supply on the intensive margin by water priority

(1) (2) (3) (4) (5)
Planting day

day of year

Season length
no. days

Early variety
prop.

Drip irrigation
prop.

ln(irrigation)

Surface water supply 0.0280∗ 0.0003 -0.0006∗ -0.0002 0.0001
(0.0132) (0.0016) (0.0003) (0.0002) (0.0002)

High priority=1 × Surface water supply -0.0361 -0.0012 0.0007 0.0009 0.0002
(0.0339) (0.0028) (0.0007) (0.0008) (0.0006)

Surface water supply + High priority=1 × Surface water supply -0.008 -0.001 0.000 0.001 0.000
(.0366) (.0036) (.0008) (.0009) (.0007)

Grower fixed effects ✓ ✓ ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓ ✓ ✓
Observations 8609 8609 8609 8609 4896

Notes: Each column shows the results from a separate regression model for the outcome variable identified in the column header,
using the subset of observations in the processing tomatoes data from 2011-2021. Results in column (5) are for 2016-2021. The
reported estimate is the effect of a 1 percentage point increase in surface water supply for different subgroups. The first row
“Surface water supply” is the estimate for growers with low-priority water access, and the third row “Surface water supply +
High priority=1 × Surface water supply” is the estimate for growers with high-priority water access. Additional controls in all
models include: groundwater depth, temperature exposure, precipitation, and major soil type. Standard errors (in parentheses)
are two-way clustered by grower and district-year. Significance: * p<0.05, ** p<0.01, *** p<0.001. Estimates are weighted by
field acreage.

Table 2.8: Effect of water supply on yield, quality, and revenue by water priority

(1) (2) (3)
ln(yield) ln(quality) ln(revenue)

Surface water supply 0.0009∗∗ -0.0001 0.0009∗∗
(0.0003) (0.0001) (0.0003)

High priority=1 × Surface water supply -0.0004 0.0003 0.0001
(0.0008) (0.0002) (0.0008)

Surface water supply + High priority=1 × Surface water supply 0.001 0.000 0.001
(.0007) (.0002) (.0007)

Grower fixed effects ✓ ✓ ✓
Year fixed effects ✓ ✓ ✓
Observations 8609 8609 8609

Notes: Each column shows the results from a separate regression model for the outcome variable identified in the column
header, using the subset of observations in the processing tomatoes data from 2011-2021. The reported estimate is the effect
of a 1 percentage point increase in surface water supply for different subgroups. The first row “Surface water supply” is the
estimate for growers with low-priority water access, and the third row “Surface water supply + High priority=1 × Surface water
supply” is the estimate for growers with high-priority water access. Additional controls in all models include: groundwater
depth, temperature exposure, precipitation, and major soil type. Standard errors (in parentheses) are two-way clustered by
grower and district-year. Significance: * p<0.05, ** p<0.01, *** p<0.001. Estimates are weighted by field acreage.

2.6 Discussion and Conclusion
Growers respond to water scarcity by changing whether they plant and what they plant.

During a water-scarce year, I find that growers fallow a greater share of their acreage and

reduce the share of acreage in high-water crops. Water access priority drives differences in
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how growers respond. A water-scarce year causes growers in districts with low-priority water

access to fallow instead of planting high-water crops. By comparison, growers in districts

with high-priority water access respond by switching from high-water to low-water crops and

do not significantly increase fallowing.

I also analyze the effect of water supply on margins that earlier work could not consider

because of data constraints. In contrast to other studies that argue California farmers do

not adapt along the intensive margin (Hagerty (2021); Burlig et al. (2021)), I find signifi-

cant evidence that growers change growing practices in response to water scarcity. Growers

who contract processing tomatoes with a large tomato processor react to water scarcity by

planting earlier and choosing fast-maturing varieties. Most of the intensive margin response

is driven by growers with low-priority access to water. Growers are more likely to use drip

irrigation over less efficient irrigation methods but the effect is small. Two-thirds of growers

are only ever observed using drip irrigation on their fields which limits further adaptation

along this margin.

Decreased water supply under climate change will create challenges for agriculture but the

extent of damages will depend on how growers and the broader agricultural industry adapt.

I show that growers respond to water scarcity along the extensive and intensive margins but

that these responses are not without cost. I find that growers in low-priority water districts

earn 3.4 percent less revenue during a water-scarce year (one standard deviation decline in

water availability) because of reduced yield alone. To scale up this loss of revenue, I do

a partial equilibrium, back-of-the-envelope calculation, assuming growers in my sample are

representative of the broader California processing tomato industry. I apply the 3.4 percent

loss of revenue to the share of California’s $1 billion processing tomato industry produced

in low-priority water districts. This calculation suggests that intensive margin adjustments

in response to water scarcity cost processing tomato growers $20 million in lost revenue in a

water-scarce year.

These findings have important implications for industry and policy makers. First, my
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research shows growers engage in water-saving practices. This reinforces the need to support

and create opportunities for growers to invest in climate-smart production.

Finally, my findings indicate large returns from research and development of cultivars that

can be profitably grown using less water. While fallowing effectively conserves water, it also

fails to generate income for farmers and agricultural products for a growing global population.

Investment in new cultivars may assist growers conserve water without fallowing.
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2.A Conceptual framework
Consider a profit-maximizing farmer who relies on surface water to irrigate crops10. The

farmer chooses to plant H acres of a crop with the outside option to fallow for zero profits.

I assume all planted acres are harvested for a price p known at the time of planting11. The

farmer faces the following profit maximization problem:

max
x≥0,e∈(0,1)

π = pHf(w(x, e); θ)− cH − pee

s.t. x ≤ A

(2.4)

where f is per acre output or yield of the crop that is a function of effective water w and

weather θ. Effective water w is the amount of water that is used by the plant, which differs

from the applied irrigation x because of irrigation inefficiencies – excess water can run off

or percolate. I introduce an efficiency parameter e ∈ (0, 1), and the farmer can invest in

irrigation efficiency to cause a greater proportion of applied irrigation to be translated into

effective water for a cost of pe. It costs c per acre to produce the crop. The farmer is

allocated A acre-feet per acre of water that varies year-to-year. The constraint is that the

farmer may not irrigate more than their allocation.

Next, let’s consider the relationship between crop yield and effective water w. I use

a Von Liebig function of water productivity, which assumes that water exhibits constant

returns until it reaches an upper bound after which additional water provides no additional

benefits. This is reasonable in settings where overwatering or flooding is unlikely (Schoengold

& Zilberman, 2007). Yield is capped at the maximum attainable yield f . I assume applied

irrigation x and irrigation efficiency e act as substitutes. For example, a farmer could achieve

f 1 in Figure 2.A.1 by applying a lot of water with low efficiency or by applying less water

with high efficiency.
10This is a static model and does not include dynamics that would be needed to capture profit-maximizing

choices for perennial crops like almonds.
11While this model does not account for price risk, it is reasonable to assume that price risk is relatively small

given the widespread use of contracts that stipulate price in California agriculture.
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Investment in irrigation efficiency is costly, whereas applied water is unpriced but con-

strained by the allocation A. Applied water has a shadow price p̃A that is a consequence

of degree of water scarcity imposed by the allocation. Figure 2.A.1 shows how the optimal

level of irrigation efficiency changes with the allocation given a fixed price of investing in

irrigation efficiency pe. For the allocation A1, the farmer will apply the entire allocation so

that the constraint holds with equality x = A1. The farmer chooses the optimal irrigation

efficiency e∗1 that equates the relative prices ( p̃A1

pe
) with the marginal rate of substitution, as

shown in panel (a) of Figure 2.A.1. An increase in the allocation to A2 decreases the scarcity

of water relative to the price of investing in irrigation efficiency, leading to a smaller shadow

price p̃A2 . As shown in panel (b) of Figure 2.A.1, a high allocation leads to less investment

in irrigation efficiency.

Irrigation 
efficiency
e

Allocation

%!∗

&!

Slope	=	− #$!"
$#

(!

(a) Low allocation

Irrigation 
efficiency
e

%!∗

%%∗

&! &%

Slope	=	− #$!$
$#

Allocation

(!
(%

(b) High allocation

Figure 2.A.1: Optimal investment in irrigation efficiency and output

For a particular crop option, a low allocation translates into smaller profits because (a)

it induces costly investment in irrigation efficiency, and (b) production is limited. As the

allocation increases, so too does profit because production increases and there is a reduc-

tion in the optimal irrigation efficiency and its associated cost. Eventually, profits reach a

maximum level at the point where additional water provides no benefit to yield and there is
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little investment in water-saving practices thus minimizing the associated cost. Figure 2.A.2

panel (a) shows profits as a function of allocation for a low-water crop and high-water crop.

The high-water crop is more profitable than the low-water crop so long as the allocation is

large enough to meet the water demand of the plant. As the allocation declines, the most

profitable land use changes from high-water crop to low-water crop to fallow, tracing out the

envelope of profits panel (b) of Figure 2.A.2.

Profit

Allocation

High-water	crop

Fallow

(a) Profits from different land use options

Profit

Allocation

Envelope

(b) Envelope

Figure 2.A.2: Profit function

In addition to extensive margin adjustments, there are also curved sections of the frontier

where intensive margin adjustments occur. Conditional on growing the same crop, a decline

in allocation may cause the farmer to respond along the intensive margin. This includes

investing in growing practices that improve irrigation efficiency such as using drip irriga-

tion. Growers can also reduce the quantity of effective water at the cost of a yield penalty.

Responding along the intensive margin allows growers to conserve water and remain in agri-

cultural production.

2.B Robustness checks
A threat to identification is the presence of time-varying confounders correlated with water

scarcity and the outcomes. One notable difference between the north and south of Califor-

nia’s agricultural region is the types of crops that are profitability grown given downstream
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processing capacity. I include a linear time trend for the north region to capture potential

differences in agro-economic trends. Results are essentially unchanged, as shown in column

4 of Appendix Tables 2.B.1 to 2.B.9.

My preferred specification uses grower fixed effects. An alternative is to use field fixed

effects that would further absorb unobservable differences in field quality within each grower’s

farm. As shown in column 2 of Appendix Tables 2.B.1 to 2.B.4, the extensive margin results

are robust to replacing grower fixed with field fixed effects. The intensive margin results

are similar in magnitude but less precise (see column 2 of Appendix Tables 2.B.5 to 2.B.9).

Recall that the intensive margin outcomes are for a subset of field observations growing

processing tomatoes. Because fields are regularly rotated, a panel of processing tomatoes

field-year observations is highly unbalanced. I therefore prefer to use grower fixed effects

instead of field fixed effects.

My preferred specification weights observations by field acreage to produce estimates

that are representative of California-wide effects. If estimates are sensitive to the inclusion

of weights, it could indicate the model is misspecified. Results are similar with or without

weights as shown in column 6 of Appendix Tables 2.B.1 to 2.B.9.

The conversion of acreage in to or out of tree crops reflects a more complex, dynamic

decision about land use that isn’t captured by the model. I test if the extensive margin results

are robust to dropping observations of tree crops (6 percent of field-year observations). As

reported in column 7 of Appendix Tables 2.B.1 to 2.B.4, estimates are slightly larger in

magnitude but sign and significance are unchanged.
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Essay 3

Climate, Weather, and Collective

Reputation: Implications for California’s

Wine Prices and Quality

3.1 Introduction
Wine is the most differentiated of all farm products, with much of the differentiation based

on the combination of wine grape varieties and so-called “terroir”—reflecting the soil type,

topography, and climate in particular. Local climate determines the types of grapes that can

be suitably grown while weather variation introduces vintage-to-vintage quality differences.

Reflecting this product differentiation, prices of wine and the grapes used to produce it vary

considerably. Prices of grapes of the same variety produced in the same region in the same

vintage year can vary by a factor of 50 (Sambucci & Alston, 2017). Prices of wine and wine

grapes also vary over time among vintage years: beneficial weather results in higher-quality

wine grapes, yielding higher-quality wine that fetches a higher price. Wine produced by the

same winemaker using grapes grown on the vineyard can vary from year to year by a factor

of 20 or more (e.g., Ashenfelter (2010)).

This often largely uncontrolled variation in quality and prices adds to the asymmetric
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information or “lemons” problem that is pervasive in the market for fine wine (e.g., Livat et al.

(2019)). Geographic indications (GIs) for wine were first introduced 100 years ago to address

this problem in France (Mérel et al. (2021)). In the United States the counterpart American

Viticultural Areas (AVAs) were introduced in 1980, enabling U.S. wine producers to label

wine as coming from a specific AVA to exploit the “collective reputation” associated with that

region of production. The purpose of associating a particular wine with an AVA is to create

and capture price premia. Some studies have reported evidence on the value of collective

reputation for wine associated with GIs (e.g., Winfree & McCluskey (2005)). However,

relatively little is known about the complex relationships between prices and appellations

for wine in the context of variable weather and a changing climate, and formal evidence is

scant.

The objective of this study is to analyze the role of AVAs in mediating the relationship

between (1) an evolving climate (the long-run expected weather in a region), (2) weather

variation around the regional norm (vintage effects), and (3) the variety-specific price premia

and quality (expert rating scores) for varietal wines in different parts of California. Our

analysis is based on a sample of premium wines that were rated by Wine Spectator magazine

between 1994 and 2022.

The primary contributions of our work pertain to quantifying the variety-specific rela-

tionships between measures of wine quality (i.e., prices and rating scores) and measures of

climate and weather variation relative to climate, while controlling for appellations. We un-

cover complex variety-specific relationships between climate, weather, and wine prices and

quality across California’s diverse production regions. For Cabernet Sauvignon wines, the

relationship between price and climate follows an inverted U shape where wines produced

in cooler and warmer regions are discounted relative to the apparent optimum—an average

daily temperature of around 18.45◦C during the growing season. On the other hand, prices

for Chardonnay wines are generally higher in cooler regions like Sonoma and the Central

Coast, with a negative relationship between temperature and price across the range of our
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data. For Chardonnay, the optimum average daily temperature during the growing season

may be 17◦C or less, and California’s growing conditions may be generally too warm. Within

regions, temperatures warmer than the regional climate resulted in vintages with lower prices

and rating scores for both Cabernet Sauvignon and Chardonnay wine.

A further contribution of our work is to develop an improved understanding of the role of

AVAs in shaping the relationship between climate, weather, and perceived quality of wine in

California. We find both Cabernet Sauvignon and Chardonnay wines are discounted when

they are labeled as originating from “macro-regions” (such as California, the North Coast,

or Sonoma County) rather than from smaller California AVAs that by definition lie within

macro-regions in the state—as previously reported by Bombrun & Sumner (2003) and Kwon

et al. (2008). We also find that prices and ratings of wines from premier AVAs are less

influenced by deviations in temperature from AVA-specific climate. This is consistent with

the notion that producers of high-value grapes and wines intervene in the vineyard and the

winery to mitigate the effects of weather on the quality of their premium branded products–

possibly by reallocation of lower-quality products to lower-quality brands–while producers

of more generic grapes and wine do not.

A third contribution of this study is our measurement of key weather and climate vari-

ables. Although weather and climate can vary over relatively small distances in wine growing

regions in California, previous work on wine in California uses coarsely measured weather

and climate data: for example, Ramirez (2008) and Jones et al. (2005) use one weather

station for the whole of the Napa Valley and all 16 AVAs within. The resulting imprecision

in the measurement of weather and climate variables for the subregions adds to challenges

in estimating the true relationship between weather, climate, and wine characteristics. We

use spatially detailed weather data from PRISM (800m grids) to more-accurately represent

the relevant concepts of weather and climate and quantify their effects on California’s wine

quality and price, reducing the risk of measurement error bias.
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3.2 The Setting
Wine grapes are a long-lived perennial crop with a typical productive life of 25 years, and

often longer. California wine grapes were valued at $3.1 billion in 2020-21, making wine

grapes the second-most valuable crop in California after almonds (USDA NASS, 2021).

California produces around 80 percent of total U.S. wine by volume (Wine Institute, 2023)

in several distinct wine production regions (see Figure 3.1). These regions differ in terms

of terrain, climate, and soil type, which drives differences in the grape varieties grown and

the quality of grapes and wine produced. In the warm Southern Central Valley, wine grape

production is typically high yield per acre and relatively low value per ton. The cooler

areas near the coast are associated with smaller-scale production of higher-value premium

wine grapes. The Napa-Sonoma region on the north coast is especially known for Cabernet

Sauvignon, which is its most important variety and increasingly so, while the Central Coast

region is known for cooler climate Chardonnay and Pinot Noir (Alston et al. (2015); Alston

& Sambucci (2019)).

3.2.1 Geographic indications for wine

In 1980 the U.S. Government created American Viticultural Areas (AVAs) as a mechanism

for producers to signal quality and better capture the benefits from collective reputation

associated with the location of production (see U.S. Treasury/TTB (2022); Winfree & Mc-

Cluskey (2005); and Lapsley et al. (2019)). AVAs are defined geographic areas that may be

quite large and cross state or county lines, or may be quite small and lie within a county

or, in some cases, another AVA. In 2021, the United States had a total of 258 established

AVAs of which 142 are in California and 16 are nested within the Napa Valley AVA (see U.S.

Treasury/TTB (2021)).

Wineries may label a wine as coming from an AVA if 85 percent of the grapes were grown

in the AVA and the wine was fully finished in the state where the AVA is located. The

use of an AVA label does not impose restrictions on production or winemaking practices,
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Figure 3.1: Map of main wine regions in California

Source: Getty Images.
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unlike geographic indicators for wine in some other countries (for example, the Appellation

d’Origine Contrôlée for French wines; see, e.g., Alston & Gaeta (2021)). California’s wine

can also be labelled as originating from a particular county or the state of California. For a

wine to carry a county name on its label, at least 75 percent of the grapes must have been

grown in that county and the wine must have been fully finished within California. A wine

labeled with “California” must be made entirely using grapes from California and finished

within California (U.S. Treasury/TTB, 2020).

Prices of wine grapes vary considerably among and within AVAs, even within Califor-

nia (see, e.g.,Alston et al. (2015); Sambucci & Alston (2017)). In the 2021 California Grape

Crush Report (California Department of Food and Agriculture, 2022), prices of lots of Caber-

net Sauvignon grapes from Napa County (crush district 4) ranged from as low as $600 per

ton up to $62,000 per ton. Differentiation occurs along several dimensions, including wine

grape varieties, terroir, vineyard management and production practices, and fruit quality

(e.g., sugar content).

As described by, say, Sambucci & Alston (2017), considerable quantities of California wine

grapes are vinified by the growers and not sold as such (62% of Napa-Sonoma tons crushed

were sold, 38% not sold). For the wine grapes that are sold, growers often contract with

wineries for the sale of grapes, particularly among growers of high-quality grapes (Goodhue

et al. (2003); Franken (2014)).

Variation in wine grape prices ultimately reflects variation in the anticipated value of the

wine they will be used to make, since the demand for grapes is derived from the demand

for wine. The winemaking process potentially introduces additional variation in final wine

quality and price. A wineries’ individual reputation may also play a role in price formation.

For cheaper wines, price premia are more likely a consequence of collective reputation, in-

ferred from an AVA label, rather than firm-level reputation. For more expensive wines, the

premium for an individual winery’s reputation is likely to be a larger component of price

(Costanigro et al., 2010).
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Generally speaking, as discussed by Alston & Gaeta (2021), wine prices and ratings tend

to increase as we go from broader (e.g., entire country, state, or broad region within a state),

to narrower and more specific sub-regions of origin (such as north coast, or within that,

Napa Valley and its sub-AVAs). For example, Bombrun & Sumner (2003) report that, after

controlling for observable wine characteristics, wines using the Napa Valley AVA command

a price premium over wines labeled as from “California,” and some sub-AVAs like Oakville

and Howell Mountain capture even larger premia; see, also, Kwon et al. (2008).

The prime purpose of creating sub-AVAs is to create and capture such premia. Hence,

everything else equal, we should expect wine labeled as coming from one of the 16 sub-AVAs

within the Napa Valley AVA to command a price premium over wine labeled as coming

from the Napa Valley AVA (if it were not the case, winemakers might as well opt to use the

broader Napa Valley AVA over the sub-AVA on the label).

3.2.2 Links between climate change and wine quality

Ashenfelter & Storchmann (2016) and Jones et al. (2022) provide summaries of main points

from previous work on climate change and wine, including potential adaptation strategies.

It has long been understood that weather affects wine grape characteristics like color

and acid (Winkler, 1962). Grape characteristics are inputs to wine quality and can affect

the final wine’s color, aroma, tannins, and other flavor attributes. Grape varieties may be

characterized by an optimal temperature range–the lower limit delineates the point where

grapes will ripen, and the upper limit describes the point at which grapes will be overripe or

damaged. Figure 3.2 from Jones et al. (2012) illustrates the range of average growing season

temperatures that are optimal for each of the world’s most common winegrape cultivars.

In several papers the authors find that weather during the vintage year causes significant

variation in bottled wine prices: Ashenfelter et al. (1995) and Ashenfelter (2010) for Bor-

deaux wines; Byron & Ashenfelter (1995) for Australian wines; Haeger & Storchmann (2006)

and Ramirez (2008) for US wines. Variations in wine quality can be linked to various aspects

of weather including exposure to high temperatures, number of frost days, diurnal temper-
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Figure 3.2: Optimal average growing season temperature range by grape variety

Source: Jones et al. (2012)
Note: The original caption in Jones et al. (2012) reads “Climate-maturity groupings based on relationships between phenological
requirements and growing season average temperatures for high- to premium-quality wine production in the world’s benchmark
regions for many of the world’s most common cultivars. The dashed line at the end of the bars indicates that some adjustments
may occur as more data become available, but changes of more than ±0.2− 0.5◦C are highly unlikely (Jones, 2006).”
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ature range, rainfall, and degree day accumulation (Jones et al. (2005); Jones & Goodrich

(2008); Davis et al. (2019)). Timing of weather events also matters. For example, in the case

of Burgundy wines, rainfall is beneficial to quality if it occurs during the bud break period

but detrimental if it occurs during the ripening phase (Davis et al., 2019).

Alston et al. (2011) found that increased heat during the growing season contributed

to a statistically significant but small increase in sugar content of wine grapes grown in

California over the period 1990-2008. However, rather than a climate effect, they concluded

that most of the observed upward trend in sugar content (and associated increases in alcohol

percentage) must be attributed to other factors including changes in vineyard management

such as longer hang times. Using their estimated model parameters, even a substantial rise in

average temperatures would have had only a modest effect on sugar content of wine grapes.

Since the 1950s, grape growing regions in California have experienced warmer growing

seasons on average caused by a changing climate. Many regions have experienced an increase

in minimum (i.e., overnight) temperatures, which has reduced the occurrence of frost days

(Jones, 2004). Nemani et al. (2001) and Gambetta & Kurtural (2021) suggest that wine

quality in California appears to have largely benefitted from this warming. However, warming

trends have coincided with notable trends in the supply of and demand for wine that make it

difficult to disentangle the effect of warming from other factors. Technological advancements,

better plant material, and improved vineyard management have allowed producers to create

more consistent, high-quality wine (Jones et al., 2005). Demand for wine has also grown

over the past 50 years due to a larger and richer wine drinking population. Premium wine

has particularly seen large increases in demand because of consumer’s shifting preferences

toward high-quality products (Anderson et al., 2018).

Wine grape yields can also be affected by weather. Exposure to temperatures at the

extreme (i.e., frost or extreme heat) has been linked to lower yields, while moderate tem-

peratures particularly overnight are beneficial to yields (Cahill et al. (2007); Lobell et al.

(2006); White et al. (2006))
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Producers can potentially mediate the effect of weather (high temperatures) and cli-

mate change (rising temperatures) in several ways. One (longer-run) response is to relocate

wine grape production from warm regions to cool regions, such as towards the poles or to

higher elevation areas. Several studies predict a decline in areas of vineyards acreage in

key production regions (for example, southern Europe) because the regions are projected to

become too hot to produce quality wine (Moriondo et al. (2013); Hannah et al. (2013); Webb

et al. (2007)). However, these studies generally underestimate or ignore adaptive responses

that may help preserve production in wine-growing regions that are currently culturally and

economically important.

Grape varieties are diverse in their phenology and other traits related to climate and

weather. As climate changes, growers may take advantage of the large amount of varietal

diversity and plant a different variety that is more suited to their new climate (Wolkovich

et al., 2018). However, despite the availability of more than 1,000 commercial varieties, most

wine grape regions grow the same 12 varieties. In fact, the mix of wine grape varieties is

becoming less differentiated in the United States, especially in California (Alston et al., 2015)

and Australia (Puga et al., 2022), and instead these regions are becoming more similar to

France and the rest of the world as a whole. Traditional French varieties such as Cabernet

Sauvignon, Chardonnay, Merlot, Sauvignon Blanc, Pinot Noir, and Syrah (or Shiraz) are

increasingly predominant in California in places that are becoming increasingly less-favored

for growing those varieties. California growers have been very slow to adopt varieties from

Italy or Spain that may be better suited to hotter places. Varietal adaptation in California

and elsewhere is hampered by the long productive life of vineyards as well as historical

association of high-quality wine from particular regions with particular varieties. This is

particularly pronounced in many European regions where a wine cannot bear a geographic

indication as coming from a specific PDO unless it is made using particular varieties or blend

of varieties that are permitted by the PDO rules.

Changing the location of production or varieties grown can be seen as long-run, disruptive
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responses that essentially forsake the established identity of production that reflects the

association of particular wines produced in particular places using particular varieties—at the

terroir-varietal-GI nexus. Other, shorter-run responses can be undertaken seeking to preserve

that identity. Specifically, producers can manage weather shocks (or trends) by adapting

their growing practices, such as harvest date, canopy structure, and irrigation. Webb et al.

(2021) found that smaller damages from 2009 heatwave in South-Eastern Australia were

associated with (a) irrigation prior to the heatwave event, and (b) good canopy growth that

protects fruit from direct radiation. Other adjustments can be made in the winery.

3.3 Data
We compiled data on prices and expert rating scores for California’s wines from the Wine

Spectator magazine and matched these to relevant measures of weather and climate from

PRISM. Figure 3.3 summarizes the key datasets and how they were merged.

PRISM Weather Data
Daily ppt, tmin, and tmax by

800m grid
Aggregated to weather

variables by grid

USDA Cropland Data
Layer 

Land use in 2021
by 30m grid

Region boundaries 

Polygons of AVA boundaries,
county boundaries, and state

boundaries

PRISM to region
crosswalk

Matched PRISM grid polygon
to region polygon

PRISM grid weights

Matched land use to PRISM grid
polygon → percent of PRISM grid

identified as grape acreage

Region weather data 
Average weather variables across

grids that fall in region, weighted by
PRISM grid weights

Wine Spectator
reviews

Annual wine observations
Includes region name used to

match weather data

Figure 3.3: Diagram of key datasets and links between datasets
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3.3.1 Wine data

The Wine Spectator (WS) magazine publishes information on recommended retail prices,

expert ratings, and other information about many wines from around the world in each of

its monthly issues; WS editors’ blind taste and rate over 15,000 wines per year.

We collected information on wines from California published in the WS between January

1994 and December 2022. For each wine, we recorded its brand or producer, region (including

AVA), vintage year, rating, suggested retail price, wine grape variety, wine type, and number

of cases made. We focused on five grape varieties: Cabernet Sauvignon (27 percent of wine

observations), Chardonnay (23 percent), Merlot (9 percent), Pinot Noir (26 percent), and

Zinfandel (15 percent). Vintage is the year in which the grapes used to produce the wine

were grown. We kept data on vintages between 1991 and 2020, with other vintages being

too infrequently sampled to be included in our analysis.

Across the 28 years of WS magazines from which we collected data, some price variation

reflects changes in the purchasing power of money. We converted suggested retail prices into

equivalent 2022-dollar values using the Consumer Price Index (CPI) for the corresponding

issue year (the year in which the wine rating was published by the WS) (U.S. Bureau of

Labor Statistics (2023), specifically, the annual average of the CPI for all urban consumers,

series number CUUR0000SA0). The average suggested retail price is $66 per bottle in our

sample. These wines are high priced compared with California wines generally, and compared

to the range of wines produced within premium brand and regions that they predominately

represent.

Wine ratings reported by Wine Spectator magazine are ostensibly on a scale of 0–100

points but in practice for premium wines the typical range is 85–95 points, with exceptional

wines scoring more than 95 points. Wines are rated blind, meaning information about the

winery or wine (including its price) is unknown to the taster during the tasting.

In our sample, wine scores increased from an average of 85 point in 1991 to almost 90

points in 2020, and variation around the average declined over the decades shown in Figure
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3.4. Wine prices also increased in real terms from $35 per bottle in 1991 to more than $80

per bottle by the mid-2010s (all in 2022 dollars). These trends in the complete sample are

reflected in scores and prices for each variety (displayed in Appendix 3.A).
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We defined a wine’s region as the narrowest and most specific region that could be

identified on the label, as reported by Wine Spectator magazine. For example, a wine from

the Oakville AVA could be associated with California, Napa County, Napa Valley AVA, and

Oakville AVA simultaneously, since the Oakville AVA is found within the Napa Valley AVA,

which is in Napa County, California. In this example we defined the wine’s region as Oakville

AVA.

3.3.2 Wine regions

AVA boundaries were taken from the American Viticultural Areas Digitizing Project Team

(2021) produced by UC Davis Library and UC Davis DataLab. They publish “spatial data

from each of official American Viticultural Areas boundary descriptions which are accepted

and published by the Alcohol and Tobacco Tax and Trade Bureau.” We also used the

definitions of county and state boundaries from the U.S. Census Bureau (2026).

We classify a region as a “macro-region” if it is either (a) the state of California, (b) a

county in California, or (c) an AVA that contains at least one other AVA within its boundary.

We classify the remaining regions as sub-AVAs: an AVA that do not contain another AVA

within its boundary. See Appendix 3.B for a full list of the regions we analyzed and if they

were categorized as a macro-region.

3.3.3 Weather data

We used spatially detailed weather data from PRISM (PRISM Climate Group, Oregon State

University, 2020) to accurately represent regional weather and climate. PRISM interpolates

daily minimum and maximum temperatures and precipitation to 800m-by-800m grids, taking

into account elevation, coastal proximity, and aspect. Matching weather data (daily by

800m grid) to wine data (vintage by region) requires both temporal and spatial aggregation.

Starting with temporal aggregation, we used two different approaches to aggregate daily

observations into measures of weather and climate variables that may meaningfully influence

wine price and quality.

The first approach is to average daily average temperatures over the key growing months
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(April to October). This method is widely used in studies that link weather to agricultural

outcomes because average temperature is easy to measure and interpret, however it hides

potentially large differences in exposure to extreme temperatures. For example, a normal

season and an abnormal season will have the same average temperature if abnormally hot

and cold temperatures average each other out.

The second approach, degree days, is a concept pioneered by Snyder (1985) and pop-

ularized by Schlenker & Roberts (2009) (see Ortiz-Bobea (2021) for a summary). Degree

days measure how long and by how much temperatures exceed the lower temperature bound

while being below an upper temperature bound. We define growing degree days as degree

days with bounds between 10◦C and 35◦C, summed from April to October by vintage year.

The benefit of this approach is that it takes into account the distribution of temperatures

throughout the day.

We calculated regional climate as the static 40-year average of regional weather variables

from 1981 to 2020. An alternative definition of climate is the 10-year moving average of the

weather variables, which we included in robustness checks. We chose the 10-year horizon for

the practical reason of PRISM having 800m gridded data back only to 1981, 10 years before

our WS data begin.

To spatially aggregate PRISM grids to wine regions, we first identified every 800m PRISM

grid that intersects with each wine region using the boundaries described in Section 3.3.2.

For regions that intersect with multiple PRISM grids, we calculated a single observation for

the region by taking a weighted average of weather and climate variables across grids. Each

grid’s weight is equal to the share of the region’s grape acreage within the grid in 2021,

calculated using the USDA’s Cropland Data Layer (USDA National Agricultural Statistics

Service, 2022). Grids that were not associated with any grape acreage were assigned a weight

of zero and did not contribute to the weighted average.

Figure 3.5 shows average temperatures during the growing season (April to October)

over the past 40 vintages in a selected group of wine-growing regions. Average temperatures
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Figure 3.5: Average temperature (April to October) by vintage and region

are correlated across regions which indicates spatial dependence in weather: if one region of

California is unusually warm during a growing season then it is likely that other regions in

California are unusually warm too. However, the degree of correlation varies. Both Oakville

and Howell Mountain lie wholly within the Napa Valley and yet Howell Mountain’s weather

can be quite different owing to its elevation.

Table 3.1 includes summary statistics on the price, score, cases made, weather, and

proportion of the 53,930 observations associated with the various grape varieties and regions.

Appendix 3.C shows average price, score, and cases made by wine grape variety and region.

133



Table 3.1: Summary statistics

units mean sd min max
Price 2022 dollars 66.46 57.41 7 1231

Score points 87.70 3.88 55 99

Cases made no. 7939.58 40037.48 11 2600000

Vintage year 2006.68 7.99 1991 2020

Weather

Average temperature, annual average ◦ C 14.74 0.83 10 20

Minimum temperature, annual average ◦ C 7.28 0.98 2 14

Maximum temperature, annual average ◦ C 22.21 1.07 17 27

Precipitation, annual total mm 779.93 361.50 42 2430

count percent of total observations
Grape variety

Cabernet Sauvignon 14,786 27

Chardonnay 12,972 23

Merlot 4,826 9

Pinot Noir 14,459 26

Zinfandel 8,353 15

Grape location

North Coast AVAs 38,195 69

Napa Sub-AVAs 8,187 15

Central Coast and Santa Cruz AVAs 8,275 15

Sierra Foothills AVAs 349 0.6

Central Valley AVAs 400 0.7

South Coast AVAs 61 0.1

County 5,621 10

California State 2,495 4

Total observations 53,930
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3.4 Climate and California’s wine quality and prices
Here, we explore the associations between climate and California’s wine. The causal effect

of climate and climate change on wine price and score is difficult to disentangle from other

factors. Climate varies in the cross-section along with other time invariant characteristics of

regions, such as soil type and typography. Climate change, manifesting in warming trends,

has coincided with the uptake of improved vineyard practices and technologies that enable

producers to generate more consistent and high-quality product, as well as an upward trend

in consumer demand for premium wine and other shifts in demand.

Figure 3.6 to Figure 3.9 show the relationship between climate and wine prices and

scores for Cabernet Sauvignon and Chardonnay wines. Here, we define climate as the 40-

year average of growing season average temperatures from 1981 to 2020. Figure 3.6 and

Figure 3.7 show the average wine score and price by climate and region, where the size of

each region’s bubble corresponds to the number of observations in the WS data associated

with that region. Figure 3.8 and Figure 3.9 show the distribution of wine scores and prices

for different climate intervals. We chose interval cut offs so that each interval had roughly

the same number of observations.

As expected, both Cabernet Sauvignon and Chardonnay wines were discounted if they

were labeled as coming from a macro-region (colored blue in Figure 3.6 and Figure 3.7).

Recall a macro-region is one that contains another wine region within its boundaries, such

as California, Paso Robles, Santa Barbara County, Central Coast, or Napa Valley AVA (refer

to Section 3.3.2 and Appendix 3.B for details).

For Cabernet Sauvignon wines in Figure 3.6, there is a distinctive cluster of wines from

Sonoma including Sonoma Valley, Sonoma County, and sub-AVAs within such as Dry Creek

Valley and Alexander Valley. The upper cluster is all places within the Napa Valley, hotter

than Sonoma. There appears to be little relationship between wine prices and climate among

the cluster of regions within the Napa Valley. This supports the idea that growers in these

places have adapted to their local climate to produce high-quality Cabernet Sauvignon wine.
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Leaving out the Napa Valley AVAs, with their high-quality wines, there is a generally negative

relationship between price and heat across the rest of California—for middle of the road

Cabernet Sauvignon. Pooling observations across all regions in Figure 3.8, the relationship

between price and climate follows an inverted U shape for Cabernet Sauvignon.

In contrast, for Chardonnay wines in Figure 3.7, prices are generally higher in cooler

places, especially for wines from Sonoma and parts of the Central Coast. While at any given

temperature there is a broad range of prices at cooler temperatures, there is a generally

negative relationship between temperature and price. This is confirmed in the distributions

of wine scores and prices in Figure 3.9, which shows that Chardonnay wines from places with

warmer climates tend to be priced and scored lower.
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Figure 3.6: Average Cabernet Sauvignon wine scores and prices by climate and region

Note: The size of the bubble corresponds to the number of observations. We label the 10 regions with the largest number of
observations.
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Figure 3.7: Average Chardonnay wine scores and prices by climate and region

Note: The size of the bubble corresponds to the number of observations. We label the 10 regions with the largest number of
observations.
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Figure 3.8: Distribution of Cabernet Sauvignon wine scores and prices by climate
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Figure 3.9: Distribution of Chardonnay wine scores and prices by climate
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3.5 Statistical analysis of vintage weather effects
Here, we establish statistical models of varietal wine prices and scores as a function of

measures of weather for each of the main varieties. The goal of this model is to estimate

vintage effects arising from temperature variation around the regional norm. Since wine

grape varieties (Cabernet Sauvignon, Chardonnay, Merlot, Pinot Noir, and Zinfandel) have

distinct optimal climates, we estimated the model for each variety separately. We estimated:

yit = αr(i) + f
(
xr(i)t, µr(i); β

)
+ ρ1pptr(i)t + ρ2ppt

2
r(i)t + ψ (t) + ϵit (3.1)

where yit is the outcome variable (price or score) for wine observation i using grapes grown

in region r (i) in vintage year t. We specified the weather variable xr(i)t as either (a) the

regional average temperature, averaged from April to October in vintage year t, or (b) the

regional growing degree days (GDD) between 10◦C and 35◦C, summed from April to October

in vintage year t. The climate variable µr(i) is the forty-year average of the weather variable

(average temperature or GDD) from 1981 to 2020. Precipitation during the growing season,

pptr(i)t is summed from April to October. ψ (t) is a quadratic time trend. We included

region fixed effects αr(i) to absorb time-invariant characteristics of the regions. The errors

are heteroskedastic robust and clustered by region.

The function f
(
xr(i)t, µr(i); β

)
relates regional weather and climate variables to the out-

come variables. We made three changes to frequently used quadratic-in-weather specification

(e.g., as used by Jones et al. (2005) and Haeger & Storchmann (2006)). First, we focused

on deviations in weather from local climate. Second, we fitted a flexible restricted cubic

spline (also known as a natural cubic spline) that allows for asymmetry in the relationship

between weather and wine outcomes. Third, we explored the role of AVAs in influencing the

relationship between weather variation and wine.

We focused on deviations in weather from local climate, which we define as dr(i)t =

xr(i)t − µr(i). The underpinning idea is that producers have adapted to their local climate,
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and any deviation from local climate may be sub-optimal for the quality and price of wine.

For the specification, first consider the quadratic specification f (.) = β1dr(i)t + β2d
2
r(i)t.

The quadratic specification assumes symmetry: the economic impacts of increases and de-

creases in temperature–relative to climate–are mirror images of each other.

We prefer a specification that does not impose symmetry and allows positive and negative

deviations in weather from climate to have differential impacts on wine price and quality. If

the relationship really is symmetric then this would be a special case of our more flexible

model. However, fitting a more flexible model is not without its own potential pitfalls. For

example, a high-order polynomial like a cubic can generate a curve that doesn’t fit the data

well at the tails i.e. when weather is especially different from climate.

We instead fitted a spline on deviations in weather from climate. We first splitted the

predictor (dr(i)t in our case) into segments with “knots” defining the start and end of each

segment. We then fitted a polynomial (such as a cubic) in each segment and force the

segments to join smoothly at the knots. We opted to use a restricted cubic spline, which

is a cubic spline with the added restriction that the first and last segments are linear, thus

reducing the risk of overfitting the data-sparse tails. We chose four knots that split the

distribution of weather deviations into quintiles.

A restricted cubic spline with four knots has a function f (.) = β1dr(i)t + β2V1,r(i)t +

β3V2,r(i)t. It introduces new variables V1,r(i)t and V2,r(i)t that are transformations of dr(i)t

defined in Appendix 3.D. Together, this f (.) function captures (a) the cubic polynomials

between knots 1 and 2 and knots 3 and 4, (b) the restriction that individual curves join

smoothly at the knots, and (c) the restriction that the segments before knot 1 and after knot

4 are linear. A downside of the restricted cubic spline is that the individual β coefficients

are not intuitive. Restricted cubic spline results are best shown graphical which is the focus

of the results.

Finally, we examined the role of AVAs in mediating the relationship between weather

variation and price premia and quality. To examine heterogeneity in the response to weather,
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we interacted temperature variables with an indicator variable I(r(i) ∈ sub-AVA) where I(.)

takes on a 1 if the condition inside the parentheses is satisfied, and 0 otherwise. The inclusion

of this indicator variable allowed us to compare the effects on wines associated with sub-AVAs

and wines associated with macro-regions.

yit =αr(i) + f
(
xr(i)t, µr(i); β

)
+ f

(
xr(i)t, µr(i); β

)
(I (r (i) ∈ sub-AVA)

+ ρ1pptr(i)t + ρ2ppt
2
r(i)t + ψ (t) + ϵit

(3.2)

Next, we show results from these statistical models that aim to uncover the effect of vintage

weather on wine price and quality. Results for Cabernet Sauvignon and Chardonnay are

shown in Figure 3.10 to Figure 3.13 while results for the other varieties (Merlot, Pinot Noir,

and Zinfandel) are shown in Appendix 3.E. Here, we use average temperatures over the

growing season (April to October) as the definition of weather. Alternative results using

growing degree days are presented in Appendix 3.F. For each figure, the top panel shows

the effect of a deviation in average temperature from regional climate on wine scores and

prices. The x-axis is the average temperature minus regional climate: zero indicates that

temperatures and climate were equal, one indicates that average temperatures were 1◦C

warmer than the regional climate, and negative one indicates that average temperatures were

1◦C cooler than the regional climate. The bottom panel of each graph shows the distribution

of average temperature minus regional climate associated with the observed wine prices and

scores.

Cabernet Sauvignon wines produced with grapes grown in warmer temperatures than the

regional climate have lower scores and prices on average. As shown in Figure 3.10, average

temperatures 2◦C warmer than the regional climate cause Cabernet Sauvignon prices to

decline to an average of $90 per bottle compared with $106 per bottle when temperatures

are at their regional norm. Across all the data, Cabernet Sauvignon scores average around

88.5 points, but this drops to 87 points for vintages that were warmer than usual by 1.5◦C or

more. Cabernet Sauvignon wine prices and scores benefit from cooler average temperatures.
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Vintages exposed to temperatures 1.5◦C cooler than the regional climate scored more than

89 points and were priced over $120 per bottle on average.

We compared the effects of deviations from climate on Cabernet Sauvignon wines from

Napa Valley AVA (n=6,938) and sub-AVAs within Napa Valley (n= 3,996) including the

Oakville, Rutherford, and Stags Leap District AVAs–premium producers of Cabernet Sauvi-

gnon wines. Temperatures warmer than the regional norm had significantly different effects

on prices for and scores for wines from macro-regions compared with sub-AVAs as shown

in Figure 3.11. We find that warmer temperatures are beneficial for the prices of Cabernet

Sauvignon wine from sub-AVAs on average, although there is some imprecision in the re-

sults. By comparison, temperatures above the regional norm cause Napa Valley AVA wines

to decline in price.

Chardonnay wines scores are negatively affected by both positive and negative deviations

in weather from climate but because of imprecision in the estimates we can’t rule out no

effect (see Figure 3.12). Average temperatures above regional climate cause Chardonnay

prices to decline: a 1.5◦C warmer vintage has an average price of $40 per bottle compared

to almost $50 per bottle when temperatures are at their regional norm.

To unpack heterogeneous effects on Chardonnay wines, we focused on Central Coast

AVAs with cool coastal climates that are beneficial for Chardonnay wine grapes. We com-

pare wines from Central Coast macro-regions (n=854) including Central Coast, Paso Robles,

and Monterey, with wines from sub-AVAs within the Central Coast macro-regions (n=1,531)

including Sta. Rita Hills, Santa Maria Valley, and Edna Valley AVAs. Like Cabernet Sauvi-

gnon wines, we find large negative effects of temperatures warmer than climate on the prices

of Chardonnay from macro-regions shown in Figure 3.13. Wines from premier sub-AVAs are

broadly unaffected by weather deviations from climate.
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Figure 3.10: Effect of a deviation in temperature from regional climate on Cabernet Sauvi-
gnon wine scores and prices
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Figure 3.11: Effect of a deviation in temperature from regional climate on Cabernet Sauvi-
gnon wine scores and prices by Napa Valley AVA and Napa Valley Sub-AVAs
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Figure 3.12: Effect of a deviation in temperature from regional climate on Chardonnay wine
scores and prices
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Figure 3.13: Effect of a deviation in temperature from regional climate on Chardonnay wine
scores and prices by Central Coast Macro-Regions and Central Coast Sub-AVAs
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In Appendix 3.F, we checked the robustness of our results to several modelling decisions.

We show results using alternative definitions of the temperature variable (growing degree

days) and climate variable (10-year moving average). We also show results for the log of the

dependent variables (price and score) instead of natural units. Overall, the results in these

robustness checks are broadly similar in magnitude and significance to the main results.

3.6 Discussion and Conclusion
How does weather variation around the regional norm affect wine quality and prices? Pre-

vious work finds mixed evidence of the effect of weather variation on California’s wines.

Haeger & Storchmann (2006) found significant evidence of a quadratic relationship between

temperature and the prices of Pinot Noir wines from California and Oregon. Temperatures

above the optimum caused a drop in Pinot Noir prices on average. Ramirez (2008) found

that weather variability affects Napa wine quality and prices, but their results indicated

that “warmer summers tend to be associated with lower, not higher, quality ratings, a result

that does not coincide with expectations.” Jones et al. (2005) estimated a quadratic-in-

temperature specification on Sotheby’s vintage ratings in wine regions across the world and

found no effect of temperature on U.S. wine quality.

These three papers rely on coarse measurement of weather and climate variables. Haeger

& Storchmann (2006) and Ramirez (2008) used observations from sparse weather stations to

proxy for true weather (and climate) experienced at the vineyards often 20 to 30 miles away.

Jones et al. (2005) used gridded weather data but took one representative grid for all coastal

California regions. Our spatially detailed weather data from PRISM were interpolated to

800m grids and accounted for factors that affect the local microclimate such as elevation,

coastal proximity, and aspect. We calculated a region’s weather and climate variables by

taking the weighted average of grids that fall within the region, where each grid’s weight is

equal to the share of the region’s grape acreage within the grid. This allows us to represent

the relevant concepts of weather and climate more accurately.

We also used a restricted cubic spline specification that does not impose symmetry for
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positive and negative shocks. Indeed, the effects are asymmetric: a vintage year warmer

than the regional norm causes wine to be lower in quality and price on average, whereas a

vintage year cooler than the regional norm causes null or positive effects on wine quality and

prices depending on the grape variety.

How does being associated with an AVA influence the relationship between weather,

climate, and wine? Wine prices are a function of reputation which itself is a function of his-

torical quality performance. Costanigro et al. (2010) find that inconsistent quality, measured

through an increase in the standard deviation of wine scores, causes a reduction in reputa-

tion premia for both individual wineries and AVAs. According to these authors, for cheaper

wines from macro-regions, any reputation premia is more likely a consequence of collective

reputation of the region. Individual investment in consistent quality is shared among all

the wines that collectively associate with the region. By comparison, winemakers in premier

regions benefit from investing in consistent quality through two channels: (a) the collective

reputation premia, and (b) the winery’s individual reputation premia.

We find that the prices of wine from macro-regions are lower if they use grapes grown

during vintages that are warmer than the regional norm. By comparison, prices and scores for

wines from premier sub-AVAs are comparatively resilient to deviations in weather from their

regional norm, suggesting that growers and/or winemakers in sub-AVAs invest in weather-

mitigating practices. This finding is consistent with the greater incentive for those making

premium wines to maintain consistent quality and the preserve the reputation premia it

confers on their wines.

Climate change is predicted to cause wine-growing regions in California to become warmer

by the end of the century. As shown in Figure 3.14, the average temperature between April

and October in the Napa Valley AVA is predicted to average almost 22◦C in the last ten

years of the century, more than 3◦C degrees higher than the thirty-year average to 2020.

Decisions by vineyard managers and winemakers will influence the extent to which climate

change will affect wine quality and price.
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Over the course of many decades and even centuries of wine grape growing, producers have

adapted their practices to better suit their local climate. Studies on the potential to adapt

to climate change predominately focus on varietal choice (e.g. Wolkovich et al. (2018)) and

changing production locations (e.g. Moriondo et al. (2013)). Some work highlights potential

adaptation within the production process like harvesting date, canopy management, and

irrigation (e.g. Webb et al. (2021); Van Leeuwen & Darriet (2016); Santos et al. (2020)).

Our results suggest that some growers and winemakers are mitigating the effects of vintage

weather shocks on wine quality and prices. Further work should be done to understand

whether these practices could reduce the negative consequences of climate change.
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3.A Scores and prices by vintage and grape variety
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Figure 3.A.1: Wine scores and prices by vintage, Cabernet Sauvignon
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Figure 3.A.2: Wine scores and prices by vintage, Chardonnay
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Figure 3.A.3: Wine scores and prices by vintage, Merlot
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Figure 3.A.4: Wine scores and prices by vintage, Pinot Noir
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Figure 3.A.5: Wine scores and prices by vintage, Zinfandel
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3.B Categorization of regions into macro-regions and sub-

AVAs

Table 3.B.1: Categorization of regions into Macro-Region or Sub-AVA

Macro-Region? Region count
North Coast AVAs

✓ Napa Valley 11,814
✓ Russian River Valley 6,420
✓ Sonoma Coast 3,501

Los Carneros 3,127
Dry Creek Valley 1,771
Alexander Valley 1,625

✓ Sonoma Valley 1,528
Anderson Valley 1,070
Oakville 973
Rutherford 857
Howell Mountain 721
Stags Leap District 498
St. Helena 404
Mt. Veeder 351

✓ Mendocino 345
Spring Mountain District 329

✓ North Coast 316
Sonoma Mountain 278
Diamond Mountain District 227
Knights Valley 216
Yountville 194
Green Valley of Russian River Valley 192
Calistoga 132
Fort Ross-Seaview 132
Coombsville 126
Oak Knoll District of Napa Valley 123
Redwood Valley 117
Chalk Hill 116
Mendocino Ridge 114
Rockpile 107
Atlas Peak 102
Moon Mountain District Sonoma County 55
Petaluma Gap 52

continued . . .

166



. . . continued
Macro-Region? Region count

Bennett Valley 50
✓ Northern Sonoma 44
✓ Clear Lake 37

Yorkville Highlands 36
Guenoc Valley 21
Eagle Peak Mendocino County 16
Wild Horse Valley 14
Fountaingrove District 10
Chiles Valley 9
Suisun Valley 8
Potter Valley 7
Pine Mountain-Cloverdale Peak 6
High Valley 2
Solano County Green Valley 2

Central Coast AVAs
Sta. Rita Hills 1,508
Santa Lucia Highlands 1,350

✓ Paso Robles 1,104
Santa Maria Valley 932

✓ Central Coast 659
✓ Santa Cruz Mountains 554
✓ Monterey 440

Edna Valley 412
Arroyo Grande Valley 279

✓ Santa Ynez Valley 228
Chalone 154
Mt. Harlan 147
Livermore Valley 129
Arroyo Seco 113
Carmel Valley 45

✓ San Francisco Bay 44
Adelaida District 35
Happy Canyon of Santa Barbara 32

✓ Santa Clara Valley 30
Santa Margarita Ranch 19
Cienega Valley 18
Paso Robles Willow Creek District 15
Ben Lomond Mountain 8
York Mountain 7
San Ysidro District 5
Ballard Canyon 2
Paso Robles Highlands District 2

continued . . .
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. . . continued
Macro-Region? Region count

El Pomar District 1
Hames Valley 1
Paicines 1

✓ San Benito 1
Central Valley AVAs

✓ Lodi 355
Dunnigan Hills 24

✓ Clarksburg 11
Borden Ranch 5
River Junction 4
Mokelumne River 1

Sierra Foothills AVAs
✓ El Dorado 133
✓ Sierra Foothills 70

California Shenandoah Valley 66
Fiddletown 62
North Yuba 16
Fair Play 2

South Coast AVAs
Cucamonga Valley 22
Temecula Valley 20
Malibu-Newton Canyon 18

✓ South Coast 1
County and state

✓ California 2,495
✓ Sonoma County 2,793
✓ Santa Barbara County 856
✓ Mendocino County 465
✓ Monterey County 387
✓ Amador County 325
✓ Contra Costa County 196
✓ Napa County 156
✓ San Luis Obispo County 122
✓ Lake County 91
✓ Marin County 61
✓ Red Hills Lake County 46
✓ Calaveras County 33
✓ Santa Clara County 16
✓ San Benito County 13
✓ El Dorado County 9
✓ San Mateo County 8
✓ Nevada County 7

continued . . .
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. . . continued
Macro-Region? Region count

✓ San Joaquin County 7
✓ Trinity County 5
✓ Yolo County 4
✓ Kelsey Bench-Lake County 3
✓ San Diego County 3
✓ Santa Cruz County 3
✓ Solano County 3
✓ Los Angeles County 2
✓ Stanislaus County 2
✓ Tehama County 2
✓ Alameda County 1
✓ Siskiyou County 1
✓ Ventura County 1

3.C Summary statistics by grape variety and region

Table 3.C.1: Average price, average score and average number of cases made per wine by
location, all grape varieties

Observations
no.

Price
2022 dollars

Score
points

Cases made
no.

North Coast AVAs 38,195 76.44 88.30 3,820
Central Coast & Santa Cruz AVAs 8,275 51.64 87.20 6,153
Sierra Foothills AVAs 349 31.03 84.90 2,036
Central Valley AVAs 400 25.77 84.40 24,509
South Coast AVAs 61 37.51 83.67 6,315
County 5,621 40.27 86.20 14,827
California State 2,495 23.01 83.39 64,743
Total 55,396 65.97 87.65 7,940
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Table 3.C.2: Average price, average score and average number of cases made per wine by
location, Cabernet Sauvignon

Observations
no.

Price
2022 dollars

Score
points

Cases made
no.

North Coast AVAs 12,663 116.98 88.94 4,430
Central Coast & Santa Cruz AVAs 797 53.70 85.44 15,372
Sierra Foothills AVAs 36 28.81 80.92 2,507
Central Valley AVAs 27 22.00 83.11 32,630
South Coast AVAs 11 58.95 84.55 1,119
County 747 52.29 85.94 23,419
California State 505 24.93 82.71 72,628
Total 14,706 106.72 88.35 8,116

Table 3.C.3: Average price, average score and average number of cases made per wine by
location, Chardonnay

Observations
no.

Price
2022 dollars

Score
points

Cases made
no.

North Coast AVAs 8,242 53.79 88.58 5,724
Central Coast & Santa Cruz AVAs 2,385 41.64 87.51 9,854
Sierra Foothills AVAs 29 24.91 82.69 3,971
Central Valley AVAs 49 18.97 84.08 47,475
South Coast AVAs 16 25.83 80.31 21,283
County 1,584 36.79 86.86 22,668
California State 667 21.01 83.69 84,199
Total 12,972 47.56 87.88 12,362
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Table 3.C.4: Average price, average score and average number of cases made per wine by
location, Merlot

Observations
no.

Price
2022 dollars

Score
points

Cases made
no.

North Coast AVAs 3,305 56.70 86.60 4,955
Central Coast & Santa Cruz AVAs 418 35.11 83.71 9,777
Sierra Foothills AVAs 22 27.22 80.50 1,381
Central Valley AVAs 21 16.97 80.05 24,159
South Coast AVAs 9 50.29 82.11 814
County 615 46.92 85.03 13,931
California State 436 18.47 81.93 79,479
Total 4,826 49.81 85.66 12,924

Table 3.C.5: Average price, average score and average number of cases made per wine by
location, Pinot Noir

Observations
no.

Price
2022 dollars

Score
points

Cases made
no.

North Coast AVAs 8,931 64.90 88.26 1,966
Central Coast & Santa Cruz AVAs 3,993 61.20 87.89 2,442
Central Valley AVAs 4 16.51 82.50 9,090
County 1,183 43.12 86.06 10,279
California State 348 31.07 84.47 31,146
Total 14,459 61.27 87.89 3,422

Table 3.C.6: Average price, average score and average number of cases made per wine by
location, Zinfandel

Observations
no.

Price
2022 dollars

Score
points

Cases made
no.

North Coast AVAs 5,054 45.15 87.41 1,750
Central Coast & Santa Cruz AVAs 682 38.31 86.25 2,213
Sierra Foothills AVAs 262 32.33 86.06 1,827
Central Valley AVAs 299 27.96 84.90 20,259
South Coast AVAs 25 30.95 86.00 1,381
County 1,492 32.94 86.21 6,450
California State 539 22.16 84.16 44,084
Total 8,353 39.87 86.76 5,832
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3.D Details on restricted cubic spline specification
We chose K = 4 knot locations — κ1 < κ2 < κ3 < κ4 — that split the distribution of

weather deviations d into quintiles.

We defined:

Vi =
(d− κi)

3
+ − (κK − κK−1)

−1 {(d− κK−1)
3
+ (κK − κi)− (d− κK)

3
+ (κK−1 − κi)}

(κK − κ1)
2

for i = 1, 2

(3.3)

See Stone & Koo (1985) for details on how the linearity constraints on a restricted cubic

spline are used to derive Vi.

3.E Results for other varieties
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Figure 3.E.1: Effect of a deviation in temperature from local climate on Merlot wine scores
and prices
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Figure 3.E.3: Effect of a deviation in temperature from local climate on Zinfandel wine scores
and prices
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3.F Robustness checks
We considered several approaches to aggregating daily observations of temperature. For

most of our analysis we use growing season average temperature, which we calculate by

taking the average of daily observations of average daily temperature from April to October.

In this robustness check, we use an alternative measure called degree days. Following Ortiz-

Bobea (2021), we calculate growing degree days (GDD) as the time spent between 10◦C and

35◦C, summed from April to October. Overall, results using GDD (Figure 3.F.1 and Figure

3.F.2) are similar to results using average temperature. This is expected because average

temperatures and GDD are highly correlated.

There are also different ways to define climate. Here, we show results where climate is

defined as the 10-year moving average of regional average temperature. Overall results are

virtually unchanged (Figure 3.F.3 and Figure 3.F.4).

Finally, we show results where the dependent variables (price and score) are in log form

instead of levels. Prices are skewed so one may argue that taking the log of price before

estimation is preferred. Overall, we find that the shape of the estimates is very similar

(Figure 3.F.5 and Figure 3.F.6). We opt to show the main results in levels for ease of

interpretation.
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Figure 3.F.2: Effect of a deviation in GDD from local climate on Chardonnay wine scores
and prices
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Figure 3.F.3: Effect of a deviation in temperature from local climate (10-year moving aver-
age) on Cabernet Sauvignon wine scores and prices
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Figure 3.F.4: Effect of a deviation in temperature from local climate (10-year moving aver-
age) on Chardonnay wine scores and prices
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Figure 3.F.5: Effect of a deviation in temperature from local climate on Cabernet Sauvignon
wine scores and prices (in logs)
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Figure 3.F.6: Effect of a deviation in temperature from local climate on Chardonnay wine
scores and prices (in logs)
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